JP3954660B2 - Fe group based amorphous metal ribbon - Google Patents

Fe group based amorphous metal ribbon Download PDF

Info

Publication number
JP3954660B2
JP3954660B2 JP19166095A JP19166095A JP3954660B2 JP 3954660 B2 JP3954660 B2 JP 3954660B2 JP 19166095 A JP19166095 A JP 19166095A JP 19166095 A JP19166095 A JP 19166095A JP 3954660 B2 JP3954660 B2 JP 3954660B2
Authority
JP
Japan
Prior art keywords
amorphous metal
group
ribbon
metal ribbon
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19166095A
Other languages
Japanese (ja)
Other versions
JPH0941104A (en
Inventor
修司 上埜
健児 網谷
克裕 川島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Unitika Ltd
Original Assignee
Unitika Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Unitika Ltd filed Critical Unitika Ltd
Priority to JP19166095A priority Critical patent/JP3954660B2/en
Publication of JPH0941104A publication Critical patent/JPH0941104A/en
Application granted granted Critical
Publication of JP3954660B2 publication Critical patent/JP3954660B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Continuous Casting (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、急冷凝固状態においてパルス電圧発生特性に優れた非晶質金属薄帯に関するものであり、特に、交流あるいは直流磁化特性において急峻な磁化反転を示す、パルス電圧発生特性に優れたFe族基非晶質金属薄帯に関するものである。
【0002】
【従来の技術】
溶融状態の合金を急冷することにより、薄帯状、細線状、粉粒体状など種々の形状と特性を有する非晶質金属材料が得られることはよく知られている。その中でも、特開昭56−165016号公報ならびに特開昭57−79052号公報により開示されたFe及びCo基の急冷凝固非晶質金属細線は、磁化過程におけるある特定の励磁磁界値(逆磁区形成限界磁界値)において急速に磁化反転を生じる双安定磁気特性を示す磁性材料として知られており、励磁磁界の変化速度に関係なく、検出コイルに鋭い誘導電圧パルスを発生するパルス電圧発生素子として各種磁気マーカや磁気センサに広く応用されている。
【0003】
一方、磁歪の大きいFe族基非晶質金属薄帯は、急冷凝固状態では非晶質金属細線と異なり、双安定磁気特性を示さないことが広く知られており、交流磁界中において薄帯を励磁したとき、検出コイルに発生する誘導電圧パルスの電圧の大きさは非晶質金属細線の場合に比べて劣るものとされてきた。
【0004】
【発明が解決しようとする課題】
しかしながら、上記の特開昭56−165016号公報及び特開昭57−79052号公報に開示された円形断面を有するFe及びCo基の非晶質金属細線は、回転液中紡糸法と呼ばれる製造方法により作製されるため、回転冷却液中において細線形態を形成する特定の合金組成のものに限定されるという問題があった。
また、上記の製造方法では、100μm以下の細孔を有するノズルから溶融合金を回転冷却液中に安定して噴出させることが困難であり、100μm以下の線径を有するFe及びCo基の急冷凝固非晶質金属細線が得られにくいという問題もあった。そのため、上記の製造方法により得られたFe及びCo基の急冷凝固非晶質金属細線が、双安定磁気特性を示すパルス電圧発生素子として各種有機材料からなるフィルムに挟まれて使用される場合には、素子全体の寸法が厚くなるという問題点を有していた。したがって、厚さが100μm以下の超薄型のパルス電圧発生素子として使用可能な、非晶質金属材料の開発が望まれていた。
本発明は、合金組成の選択が容易であり、かつ厚さが100μm以下の超薄型のパルス電圧発生素子としても優れた性能を有する非晶質金属材料を提供することを目的とするものである。
【0005】
【課題を解決するための手段】
本発明者らは、このような課題を解決するために鋭意検討の結果、従来、急冷凝固状態ではパルス電圧発生特性が悪いとされてきたFe族基非晶質金属薄帯において、選択が容易な合金組成で、特定の磁歪と特定の断面形態を有するものが、厚さ100μm以下の超薄型のパルス電圧発生素子として優れた性能を有するという事実を見出し、本発明に到達した。
すなわち、本発明は、Fe族基の元素であるFe、Co、Niのうち少なくとも1種の元素を合計で65原子%以上90原子%以下含有し、B、P、C、Si、Al、Ga、Zr、Nb及びTaの群から選ばれた1種又は2種以上の元素を合計で10原子%以上35原子%以下含有し(各原子成分の合計が100原子%である。)、磁歪定数の絶対値が1×10−6以上であり、幅が400μm以下100μm以上であり、かつ相当厚さの幅に対する長さの比が0.1以上0.3以下であることを特徴とするFe族基非晶質金属薄帯を要旨とするものである。
【0006】
【発明の実施の形態】
以下、本発明を詳細に説明する。
本発明の非晶質金属薄帯は、X線回折実験により確認される非晶質構造を有することが必要であるが、交流あるいは直流磁化特性において急峻な磁化反転を示し、パルス電圧発生特性が優れている限りにおいては、結晶質相が若干含まれていてもよい。
また、本発明のFe族基非晶質金属薄帯においては、Fe族基の元素であるFe、Co、Niのうち少なくとも1種の元素を合計で65原子%以上含む合金であることが必要である。Fe族基の元素の合計含有量が65原子%未満である場合には、磁気特性が劣化し、室温において急峻な磁化反転を示す磁気特性を示さなくなる。
【0007】
さらに、本発明においては、Fe、Co及びNiのうち少なく1種の元素を合計で65原子%以上90原子%以下含有することが好ましく、特に、Niが35原子%以下であることが好ましい。また、Fe、Co及びNiのうち少なく1種の元素を合計で65原子%以上90原子%以下含有し、非晶質形成を促進する元素として、B、P、C、Si、Al、Ga、Zr、Nb及びTaの群から選ばれた1種又は2種以上の元素を合計で10原子%以上35原子%以下含む合金であることがより好ましい。Fe族基の元素の合計含有量が90原子%を越える場合や、非晶質形成を促進する元素の合計が10原子%未満あるいは35原子%を越える場合には、非晶質形成能が低下しやすくなるため、非晶質単相を形成しにくくなり、磁化曲線において急峻な磁化反転を示す磁気特性を有する非晶質金属薄帯が得られにくくなる。また、この合金組成に耐食性を改善する目的で、W、V、Cr、Cu、Moが10原子%以下含まれていても磁化曲線において急峻な磁化反転を示すものであれば特に問題はない。
【0008】
本発明の非晶質金属薄帯においては、磁歪定数の絶対値が1×10-6以上であることが必要であり、特に、磁歪定数の絶対値が3×10-6以上3×10-4以下であることが好ましい。非晶質金属薄帯が磁歪定数の絶対値として1×10-6より小さい磁歪を有するものになると、磁化特性において急峻な磁化反転を示さなくなり、パルス電圧発生特性が大幅に悪化する。
【0009】
また、本発明の非晶質金属薄帯においては、幅が400μm以下で、かつ薄帯の相当厚さの幅に対する長さの比が0.1以上であることが必要であり、幅が400μm以下100μm以上で、かつ薄帯の相当長さの幅に対する長さの比が0.1以上0.3以下であることが好ましい。また、幅が350μm以下100μm以上で、かつ薄帯の相当厚さの幅に対する長さの比が0.14以上であることがより好ましい。さらに、本発明の非晶質金属薄帯においては、幅が275μm以下で、かつ相当厚さの幅に対する長さの比が0.2以上であることが特に好ましい。なお、ここでいう薄帯の「幅」とは、任意の断面における端部間の距離(横方向の最大寸法)のことであり、「相当厚さ」とは、(断面積)÷(幅)の数式で求められる値のことである。
Fe族基非晶質金属薄帯において、薄帯の断面の幅が400μm以上の場合や、薄帯の相当厚さの幅に対する長さの比が0.1以下の断面形態を有する場合には、交流磁化特性あるいは直流磁化特性において急峻な磁化反転を示さなくなり、パルス電圧発生特性が大幅に悪化する。
さらに、断面の幅が100μmより小さくなると、急峻な磁化反転を示しても、パルス発生特性が悪化する傾向が認められる。
【0010】
また、本発明の非晶質金属薄帯は、相当厚さに対して薄帯の長さが500倍以上であることが好ましく、1000倍以上であることがより好ましい。薄帯の長さが相当厚さの500倍未満の場合には、交流磁化特性あるいは直流磁化特性において急峻な磁化反転を示さなくなりやすく、パルス電圧発生特性が大幅に悪化する傾向を示す。
本発明の非晶質金属薄帯の断面形態の例を図1〜3に示す。本発明においては上記で定義される「幅」と「相当厚さ」において、幅が400μm以下で、かつ相当厚さの幅に対する長さの比が0.1以上であれば、断面が矩形に近いものや半月、三日月状などの種々の断面形態を有する薄帯であってもよい。
【0011】
本発明のFe族基非晶質金属薄帯は、本発明における断面形態を有する薄帯が得られる方法であれば、特に製造方法は限定されるものではないが、Fe族基の合金を溶融してその溶融金属を高速運動する固体冷媒に接触させることにより急冷凝固を実現する製造方法により作製することができる。中でも、従来より液体急冷法として知られている融液抽出法(メルトイクストラクション法)、遠心急冷法、単ロール法あるいは双ロール法を用いて作製することが好ましい。
【0012】
例えば、液体急冷法として単ロール法を利用する場合には、先端に孔を有するセラミックス製ノズル中で合金を溶融し、回転している銅ロール上に溶融合金をノズル孔から噴出させて急冷凝固させることにより、本発明のFe族基金属薄帯を製造することができる。ここで、代表的な製造条件としては、断面積が0.2mm2 以下のノズル孔を有するセラミックス製のノズルを用い、5〜50m/sの周速度で回転する銅ロール上に、大気中や真空中、あるいはアルゴン等の不活性ガス雰囲気中でノズル孔から溶融合金を0.005kg/cm2 以上の圧力で噴出させればよい。
【0013】
また、図4は、急速に磁化反転を生じるある特定の励磁磁界値(臨界磁界値)以下の励磁磁界下における本発明のFe族基非晶質金属薄帯の交流磁化ヒステリシスループの一例を示す図であり、図5は、臨界磁界下における本発明のFe族基非晶質金属薄帯の交流磁化ヒステリシスループの一例を示す図である。交流磁化特性において、図4〜5に示されるように、ある特定の励磁磁界値(臨界磁界値)において急速に磁化反転を生じる磁気特性を示すものであり、その急峻な磁化反転において材料の飽和磁化(飽和磁束密度)の30%以上の磁化変化量を伴うものである。そして、磁化反転が生じる臨界磁界値としては、0.02〜0.45Oeを示し、交流磁界中で急峻な磁化反転に伴う波形の鋭い誘導電圧パルスを発生するものである。
【0014】
また、発生するパルス電圧の高調波成分も非晶質金属細線の場合とほぼ同様の良好なものが得られ、パルス電圧発生素子として、各種磁気マーカや磁気センサーに広く用いることができる新しい磁性材料である。
また、本発明のFe族基非晶質金属薄帯においては、容易に厚さ(断面の縦方向の最大寸法)が100μm以下のものが得られ、超薄型のパルス電圧発生素子として各種磁気マーカや磁気センサーに広く用いることができる。
【0015】
【実施例】
次に、実施例及び比較例により本発明を具体的に説明する。
実施例1〜14、比較例1〜7
表1及び表2に示す各種組成からなる合金を、アルゴン雰囲気下で直径200〜400μmのノズル孔を備える石英ノズル中で溶融させた。次に、1500rpmで回転する直径20cmの銅ロール上に、溶融合金をアルゴンガス噴出圧0.2〜2.0kg/cm2 で噴出させることにより、金属薄帯を作製した。このときの石英ノズルと回転冷却ロール面との距離は1mm以下であった。
【0016】
次に、作製したこれらの金属薄帯の組織、磁歪定数、幅、相当厚さの幅に対する長さの比、交流磁化ヒステリシスループにおける急峻な磁化反転の有無、検出パルス電圧を測定した。それらの結果を表1及び表2に示す。
ここで、組織については、X線回折法により非晶質相特有のハローパターンが得られた状態を非晶質と判定し、非晶質と結晶質とが混在する状態は結晶質と判定した。
また、断面を光学顕微鏡により10点観察し、10断面について幅、相当厚さ、相当厚さの幅に対する長さの比を求め、急冷薄帯の幅、相当厚さの幅に対する長さの比として、これら10点の平均値をとった。
また、作製された金属薄帯の磁歪定数は、試料長20cmの薄帯を幅より10〜20%程度大きい内径の石英ガラス管内に挿入し、薄帯の長手方向に圧縮力あるいは張力を負荷しながら交流磁気ヒステリシスループを測定することにより求めた。なお、印加磁界は60Hzの交流電源を用いた。
【0017】
さらに、試料長20cmの薄帯について励磁磁界0.01〜1Oe、周波数60Hzにおいて交流磁気ヒステリシスループを測定し、急峻な磁化反転の有無を判定した。
また、作製された金属薄帯のパルス電圧発生特性としては、周波数50Hz、印加最大磁界1Oeの正弦波で試料長15cmの薄帯を励磁し、金属薄帯の周囲に巻かれた長さ3.5cm、590ターン、内径3cmの検出コイルにて検出されるパルス電圧を測定した。
【0018】
【表1】

Figure 0003954660
【0019】
【表2】
Figure 0003954660
【0020】
表1より明らかなように、本発明のFe族基非晶質金属薄帯は、実施例1〜14にあるように交流磁化特性においてある特定の励磁磁界値(臨界磁界値)において急速に磁化反転を生じる磁気特性を示すものであり、検出コイルに発生する誘導パルスも波形の鋭いパルスであり、いずれも70mV以上の優れたパルス電圧発生特性を有していた。
【0021】
しかしながら、表2の比較例1及び2に示すように、幅が400μmを越えるか、あるいは、相当厚さの幅に対する比が0.1未満の断面を有する金属薄帯は、たとえ1×10-6以上の磁歪を有し、組織が非晶質であっても、磁気特性において急峻な磁化反転を示さず、発生するパルス電圧も実施例1〜14に比べて格段に低いものになった。
また、比較例3及び4に示すように、磁歪定数の絶対値が1×10-6より小さくなると、組織が非晶質であっても、磁気特性において急峻な磁化反転を示さず、発生するパルス電圧も実施例1〜14に比べて格段に低いものになった。
【0022】
さらに、比較例5〜6に示すように、Fe族基の元素の合計含有量が65原子%より少なくなると、磁気特性が劣化し非磁性薄帯となってしまった。
また、比較例7では、Fe族基の元素の含有量が65原子%より少なく、非晶質形成を促進する元素の含有量が多過ぎたため、かえって非晶質構造が形成できず、磁歪を有する強磁性体結晶質であり、磁気特性において急峻な磁化反転を示さず、発生するパルス電圧も実験における励磁振幅の範囲では明確に観測されなかった。
【0023】
【発明の効果】
本発明のFe族基非晶質金属薄帯は、ある特定の励磁磁界値(臨界磁界値)において急峻な磁化反転を示し、パルス電圧発生特性に優れた非晶質金属薄帯であり、盗難防止用磁気マーカなどの各種磁気マーカや回転センサー等の各種磁気センサーに広く応用できる新しい磁性材料である。また、従来の急冷凝固非晶質金属細線では得られない超薄型のパルス発生素子として種々の超薄型センサー素子への応用が可能な工業材料である。
【図面の簡単な説明】
【図1】本発明のFe族基非晶質金属薄帯の断面の一例を示す模式図である。
【図2】本発明のFe族基非晶質金属薄帯の断面の他の一例を示す模式図である。
【図3】本発明のFe族基非晶質金属薄帯の断面の他の一例を示す模式図である。
【図4】本発明のFe族基非晶質金属薄帯の、臨界磁界値以下の励磁磁界下における交流磁化ヒステリシスループの一例を示す図である。
【図5】本発明のFe族基非晶質金属薄帯の、臨界磁界下における交流磁化ヒステリシスループの一例を示す図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an amorphous metal ribbon having excellent pulse voltage generation characteristics in a rapidly solidified state, and in particular, an Fe group having excellent pulse voltage generation characteristics exhibiting steep magnetization reversal in AC or DC magnetization characteristics. The present invention relates to a base amorphous metal ribbon.
[0002]
[Prior art]
It is well known that an amorphous metal material having various shapes and characteristics such as a thin strip shape, a fine wire shape, and a granular material shape can be obtained by rapidly cooling a molten alloy. Among them, Fe and Co-based rapidly solidified amorphous metal wires disclosed in Japanese Patent Laid-Open Nos. 56-165016 and 57-79052 have a specific excitation magnetic field value (reverse magnetic domain) in the magnetization process. It is known as a magnetic material that exhibits bistable magnetic characteristics that cause rapid magnetization reversal at the formation limit magnetic field value), and as a pulse voltage generating element that generates a sharp induction voltage pulse in the detection coil regardless of the change rate of the excitation magnetic field Widely applied to various magnetic markers and magnetic sensors.
[0003]
On the other hand, Fe group-based amorphous metal ribbons with large magnetostriction are widely known to show no bistable magnetic properties, unlike amorphous metal wires, in a rapidly solidified state. When excited, the magnitude of the induced voltage pulse generated in the detection coil has been inferior to that of an amorphous metal thin wire.
[0004]
[Problems to be solved by the invention]
However, the Fe and Co-based amorphous metal wires having a circular cross section disclosed in the above Japanese Patent Laid-Open No. 56-165016 and Japanese Patent Laid-Open No. 57-79052 are produced by a method called spinning in a rotating liquid. Therefore, there is a problem in that it is limited to a specific alloy composition that forms a fine wire form in the rotating coolant.
In the above manufacturing method, it is difficult to stably eject the molten alloy from the nozzle having pores of 100 μm or less into the rotating coolant, and rapid solidification of Fe and Co bases having a wire diameter of 100 μm or less. There was also a problem that it was difficult to obtain an amorphous metal fine wire. Therefore, when the Fe and Co-based rapidly solidified amorphous metal wires obtained by the above manufacturing method are used sandwiched between films made of various organic materials as pulse voltage generating elements exhibiting bistable magnetic characteristics. Has the problem that the overall dimensions of the device are increased. Therefore, it has been desired to develop an amorphous metal material that can be used as an ultra-thin pulse voltage generating element having a thickness of 100 μm or less.
An object of the present invention is to provide an amorphous metal material that is easy to select an alloy composition and has excellent performance as an ultra-thin pulse voltage generation element having a thickness of 100 μm or less. is there.
[0005]
[Means for Solving the Problems]
As a result of diligent studies to solve such problems, the present inventors have been able to easily select an Fe group-based amorphous metal ribbon, which has conventionally been considered to have poor pulse voltage generation characteristics in a rapidly solidified state. The present inventors have found the fact that an alloy composition having a specific magnetostriction and a specific cross-sectional shape has excellent performance as an ultrathin pulse voltage generation element having a thickness of 100 μm or less, and has reached the present invention.
That is, the present invention contains at least one element of Fe, Co, and Ni, which are Fe group elements, in a total of 65 atomic% to 90 atomic%, and includes B, P, C, Si, Al, Ga. 1 element or 2 or more elements selected from the group consisting of Zr, Nb, and Ta are contained in a total of 10 atomic% to 35 atomic% (the total of each atomic component is 100 atomic%), and the magnetostriction constant. Fe is characterized by having an absolute value of 1 × 10 −6 or more, a width of 400 μm or less and 100 μm or more, and a ratio of a length to a width of an equivalent thickness of 0.1 or more and 0.3 or less. The group-group amorphous metal ribbon is the gist.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail.
The amorphous metal ribbon of the present invention is required to have an amorphous structure confirmed by an X-ray diffraction experiment, but exhibits steep magnetization reversal in AC or DC magnetization characteristics, and has a pulse voltage generation characteristic. As long as it is excellent, the crystalline phase may be slightly contained.
In addition, the Fe group-based amorphous metal ribbon of the present invention needs to be an alloy containing at least one element out of Fe group elements Fe, Co, and Ni in a total of 65 atomic% or more. It is. When the total content of elements of the Fe group group is less than 65 atomic%, the magnetic characteristics are deteriorated and the magnetic characteristics exhibiting steep magnetization reversal at room temperature are not exhibited.
[0007]
Furthermore, in the present invention, it is preferable that at least one element of Fe, Co, and Ni is contained in a total of 65 atom% to 90 atom%, and in particular, Ni is preferably 35 atom% or less. Further, B, P, C, Si, Al, Ga, an element containing at least one element of Fe, Co, and Ni in a total of 65 atomic% or more and 90 atomic% or less and promoting amorphous formation. It is more preferable that the alloy contains one or more elements selected from the group consisting of Zr, Nb, and Ta in a total amount of 10 atomic% to 35 atomic%. When the total content of elements of the Fe group exceeds 90 atomic%, or when the total content of elements that promote amorphous formation is less than 10 atomic% or exceeds 35 atomic%, the amorphous forming ability decreases. As a result, it is difficult to form an amorphous single phase, and it is difficult to obtain an amorphous metal ribbon having magnetic characteristics exhibiting steep magnetization reversal in the magnetization curve. Further, for the purpose of improving the corrosion resistance in this alloy composition, there is no particular problem as long as W, V, Cr, Cu, and Mo are contained in an amount of 10 atomic% or less as long as they show steep magnetization reversal in the magnetization curve.
[0008]
In the amorphous metal ribbon of the present invention, the absolute value of the magnetostriction constant is required to be 1 × 10 −6 or more, and in particular, the absolute value of the magnetostriction constant is 3 × 10 −6 or more to 3 × 10 It is preferably 4 or less. When the amorphous metal ribbon has a magnetostriction smaller than 1 × 10 −6 as the absolute value of the magnetostriction constant, the magnetization characteristic does not show a sharp magnetization reversal, and the pulse voltage generation characteristic is greatly deteriorated.
[0009]
In the amorphous metal ribbon of the present invention, it is necessary that the width is 400 μm or less, and the ratio of the length of the ribbon to the width is 0.1 or more, and the width is 400 μm. It is preferable that the length is 100 μm or more and the ratio of the length of the ribbon corresponding to the width is 0.1 to 0.3. More preferably, the width is 350 μm or less and 100 μm or more, and the ratio of the length of the ribbon corresponding to the width is 0.14 or more. Further, in the amorphous metal ribbon of the present invention, it is particularly preferable that the width is 275 μm or less and the ratio of the length to the width of the equivalent thickness is 0.2 or more. The “width” of the ribbon here refers to the distance (maximum horizontal dimension) between the end portions in an arbitrary cross section, and the “equivalent thickness” refers to (cross-sectional area) / (width) ) Is a value obtained by the mathematical expression.
When the cross-sectional width of the ribbon is 400 μm or more in the Fe group-based amorphous metal ribbon, or when the ratio of the length to the width of the equivalent thickness of the ribbon is 0.1 or less, In addition, steep magnetization reversal is not exhibited in the AC magnetization characteristics or the DC magnetization characteristics, and the pulse voltage generation characteristics are greatly deteriorated.
Furthermore, when the width of the cross section is smaller than 100 μm, it is recognized that the pulse generation characteristics tend to be deteriorated even when steep magnetization switching is shown.
[0010]
The amorphous metal ribbon of the present invention preferably has a length of 500 times or more, more preferably 1000 times or more of the equivalent thickness. When the length of the ribbon is less than 500 times the equivalent thickness, the AC magnetization characteristics or the DC magnetization characteristics tend not to show steep magnetization reversal, and the pulse voltage generation characteristics tend to be greatly deteriorated.
Examples of the cross-sectional form of the amorphous metal ribbon of the present invention are shown in FIGS. In the present invention, in the “width” and “equivalent thickness” defined above, if the width is 400 μm or less and the ratio of the length of the equivalent thickness to the width is 0.1 or more, the cross section is rectangular. It may be a ribbon having various cross-sectional shapes such as a close one, a half moon, and a crescent.
[0011]
The production method of the Fe group-based amorphous metal ribbon of the present invention is not particularly limited as long as the ribbon having the cross-sectional shape in the present invention is obtained, but the Fe group-based alloy is melted. Then, the molten metal can be produced by a manufacturing method that realizes rapid solidification by bringing the molten metal into contact with a solid refrigerant that moves at high speed. Among them, it is preferable to prepare by using a melt extraction method (melt extraction method), a centrifugal quenching method, a single roll method, or a twin roll method, which is conventionally known as a liquid quenching method.
[0012]
For example, when the single roll method is used as the liquid quenching method, the alloy is melted in a ceramic nozzle having a hole at the tip, and the molten alloy is ejected from the nozzle hole onto a rotating copper roll and rapidly solidified. By doing so, the Fe group-based metal ribbon of the present invention can be produced. Here, as a typical manufacturing condition, using a ceramic nozzle having a nozzle hole with a cross-sectional area of 0.2 mm 2 or less, on a copper roll rotating at a peripheral speed of 5 to 50 m / s, The molten alloy may be ejected from the nozzle hole at a pressure of 0.005 kg / cm 2 or more in vacuum or in an inert gas atmosphere such as argon.
[0013]
FIG. 4 shows an example of an AC magnetization hysteresis loop of the Fe group-based amorphous metal ribbon of the present invention under an excitation magnetic field below a specific excitation magnetic field value (critical magnetic field value) that rapidly causes magnetization reversal. FIG. 5 is a diagram showing an example of an AC magnetization hysteresis loop of the Fe group-based amorphous metal ribbon of the present invention under a critical magnetic field. As shown in FIGS. 4 to 5, the AC magnetization characteristic shows a magnetic characteristic that causes a rapid magnetization reversal at a specific excitation magnetic field value (critical magnetic field value). This is accompanied by a magnetization change amount of 30% or more of magnetization (saturation magnetic flux density). The critical magnetic field value at which magnetization reversal occurs is 0.02 to 0.45 Oe, and an induced voltage pulse having a sharp waveform accompanying steep magnetization reversal in an alternating magnetic field is generated.
[0014]
In addition, the harmonic component of the generated pulse voltage is as good as that of an amorphous metal wire, and a new magnetic material that can be widely used for various magnetic markers and magnetic sensors as a pulse voltage generation element. It is.
In addition, the Fe group-based amorphous metal ribbon of the present invention can easily be obtained with a thickness (maximum dimension in the longitudinal direction of the cross section) of 100 μm or less. It can be widely used for markers and magnetic sensors.
[0015]
【Example】
Next, the present invention will be specifically described with reference to Examples and Comparative Examples.
Examples 1-14, Comparative Examples 1-7
Alloys having various compositions shown in Tables 1 and 2 were melted in a quartz nozzle having a nozzle hole having a diameter of 200 to 400 μm in an argon atmosphere. Next, a metal ribbon was produced by ejecting the molten alloy onto a 20 cm diameter copper roll rotating at 1500 rpm at an argon gas ejection pressure of 0.2 to 2.0 kg / cm 2 . At this time, the distance between the quartz nozzle and the rotary cooling roll surface was 1 mm or less.
[0016]
Next, the structure, magnetostriction constant, width, ratio of length to equivalent width, presence / absence of steep magnetization reversal in the AC magnetization hysteresis loop, and detection pulse voltage were measured. The results are shown in Tables 1 and 2.
Here, regarding the structure, the state in which the halo pattern peculiar to the amorphous phase was obtained by the X-ray diffraction method was determined to be amorphous, and the state in which amorphous and crystalline were mixed was determined to be crystalline. .
Further, the cross section was observed at 10 points with an optical microscope, the width, the equivalent thickness, and the ratio of the length to the width of the equivalent thickness were obtained for the ten sections, and the ratio of the length of the quenched ribbon to the width of the equivalent thickness The average value of these 10 points was taken.
In addition, the magnetostriction constant of the manufactured metal ribbon is that a ribbon with a sample length of 20 cm is inserted into a quartz glass tube having an inner diameter that is approximately 10 to 20% larger than the width, and a compressive force or tension is applied in the longitudinal direction of the ribbon. The AC magnetic hysteresis loop was measured. The applied magnetic field was a 60 Hz AC power supply.
[0017]
Further, an AC magnetic hysteresis loop was measured for a ribbon having a sample length of 20 cm at an excitation magnetic field of 0.01 to 1 Oe and a frequency of 60 Hz, and the presence or absence of steep magnetization reversal was determined.
In addition, the pulse voltage generation characteristics of the manufactured metal ribbon are as follows: the length of the coil wound around the metal ribbon by exciting a ribbon of 15 cm in length with a sine wave having a frequency of 50 Hz and an applied maximum magnetic field of 1 Oe. A pulse voltage detected by a detection coil having 5 cm, 590 turns, and an inner diameter of 3 cm was measured.
[0018]
[Table 1]
Figure 0003954660
[0019]
[Table 2]
Figure 0003954660
[0020]
As is apparent from Table 1, the Fe group-based amorphous metal ribbon of the present invention is rapidly magnetized at a specific excitation magnetic field value (critical magnetic field value) in the AC magnetization characteristics as in Examples 1 to 14. The inductive pulse generated in the detection coil is also a pulse having a sharp waveform, and all have excellent pulse voltage generation characteristics of 70 mV or more.
[0021]
However, as shown in Comparative Examples 1 and 2 in Table 2, a metal ribbon having a cross section whose width exceeds 400 μm or whose ratio of the equivalent thickness to the width is less than 0.1 is 1 × 10 Even if it has a magnetostriction of 6 or more and the structure is amorphous, it does not show a steep magnetization reversal in magnetic properties, and the generated pulse voltage is much lower than those of Examples 1-14.
Further, as shown in Comparative Examples 3 and 4, when the absolute value of the magnetostriction constant is smaller than 1 × 10 −6, even if the structure is amorphous, the magnetic characteristics do not show a sharp magnetization reversal and are generated. The pulse voltage was also much lower than in Examples 1-14.
[0022]
Furthermore, as shown in Comparative Examples 5 to 6, when the total content of Fe group group elements was less than 65 atomic%, the magnetic properties deteriorated, resulting in a nonmagnetic ribbon.
Further, in Comparative Example 7, the content of the Fe group group element was less than 65 atomic%, and the content of the element promoting the formation of the amorphous was too much. It has a ferromagnetic crystalline material, does not show a sharp magnetization reversal in magnetic properties, and the generated pulse voltage is not clearly observed in the range of excitation amplitude in the experiment.
[0023]
【The invention's effect】
The Fe group-based amorphous metal ribbon of the present invention is an amorphous metal ribbon that exhibits a steep magnetization reversal at a specific excitation magnetic field value (critical magnetic field value) and is excellent in pulse voltage generation characteristics. It is a new magnetic material that can be widely applied to various magnetic markers such as a magnetic marker for prevention and various magnetic sensors such as a rotation sensor. Further, it is an industrial material that can be applied to various ultra-thin sensor elements as an ultra-thin pulse generating element that cannot be obtained by conventional rapidly solidified amorphous metal wires.
[Brief description of the drawings]
FIG. 1 is a schematic view showing an example of a cross section of an Fe group-based amorphous metal ribbon of the present invention.
FIG. 2 is a schematic view showing another example of the cross section of the Fe group-based amorphous metal ribbon of the present invention.
FIG. 3 is a schematic view showing another example of the cross section of the Fe group-based amorphous metal ribbon of the present invention.
FIG. 4 is a diagram showing an example of an AC magnetization hysteresis loop of an Fe group-based amorphous metal ribbon according to the present invention under an excitation magnetic field that is equal to or lower than a critical magnetic field value.
FIG. 5 is a diagram showing an example of an AC magnetization hysteresis loop of the Fe group-based amorphous metal ribbon of the present invention under a critical magnetic field.

Claims (1)

Fe族基の元素であるFe、Co、Niのうち少なくとも1種の元素を合計で65原子%以上90原子%以下含有し、B、P、C、Si、Al、Ga、Zr、Nb及びTaの群から選ばれた1種又は2種以上の元素を合計で10原子%以上35原子%以下含有し(各原子成分の合計が100原子%である。)、磁歪定数の絶対値が1×10−6以上であり、幅が400μm以下100μm以上であり、かつ相当厚さの幅に対する長さの比が0.1以上0.3以下であることを特徴とするFe族基非晶質金属薄帯。Contains at least one element of Fe group elements Fe, Co, and Ni in a total of 65 atomic% to 90 atomic%, and includes B, P, C, Si, Al, Ga, Zr, Nb, and Ta 1 atom or 2 or more elements selected from the group consisting of 10 to 35 atom% in total (total of each atomic component is 100 atom%), and the absolute value of magnetostriction constant is 1 × Fe group-based amorphous metal having a length of 10 −6 or more, a width of 400 μm or less and 100 μm or more, and a ratio of a length to a width of an equivalent thickness of 0.1 to 0.3 Ribbon.
JP19166095A 1995-07-27 1995-07-27 Fe group based amorphous metal ribbon Expired - Lifetime JP3954660B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19166095A JP3954660B2 (en) 1995-07-27 1995-07-27 Fe group based amorphous metal ribbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19166095A JP3954660B2 (en) 1995-07-27 1995-07-27 Fe group based amorphous metal ribbon

Publications (2)

Publication Number Publication Date
JPH0941104A JPH0941104A (en) 1997-02-10
JP3954660B2 true JP3954660B2 (en) 2007-08-08

Family

ID=16278347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19166095A Expired - Lifetime JP3954660B2 (en) 1995-07-27 1995-07-27 Fe group based amorphous metal ribbon

Country Status (1)

Country Link
JP (1) JP3954660B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6057766A (en) * 1997-02-14 2000-05-02 Sensormatic Electronics Corporation Iron-rich magnetostrictive element having optimized bias-field-dependent resonant frequency characteristic
US6254695B1 (en) * 1998-08-13 2001-07-03 Vacuumschmelze Gmbh Method employing tension control and lower-cost alloy composition annealing amorphous alloys with shorter annealing time
US6359563B1 (en) * 1999-02-10 2002-03-19 Vacuumschmelze Gmbh ‘Magneto-acoustic marker for electronic article surveillance having reduced size and high signal amplitude’

Also Published As

Publication number Publication date
JPH0941104A (en) 1997-02-10

Similar Documents

Publication Publication Date Title
JP4310480B2 (en) Amorphous alloy composition
US6355361B1 (en) Fe group-based amorphous alloy ribbon and magnetic marker
JP6223826B2 (en) Ferromagnetic amorphous alloy ribbons with reduced surface protrusions, their casting methods and applications
TWI452147B (en) Ferromagnetic amorphous alloy ribbon with reduced surface defects and application thereof
JP2009174034A (en) Amorphous soft magnetic alloy, amorphous soft magnetic alloy strip, amorphous soft magnetic alloy powder, and magnetic core and magnetic component using the same
Koshiba et al. Fe-based soft magnetic amorphous alloys with a wide supercooled liquid region
JP2018083984A (en) Fe-BASED AMORPHOUS ALLOY AND Fe-BASED AMORPHOUS ALLOY RIBBON WITH EXCELLENT SOFT MAGNETIC PROPERTY
JP3877893B2 (en) High permeability metal glass alloy for high frequency
JPH07268566A (en) Production of fe-base soft-magnetic alloy and laminated magnetic core using the same
TWI452146B (en) Ferromagnetic amorphous alloy ribbon and fabrication thereof
JP6313956B2 (en) Nanocrystalline alloy ribbon and magnetic core using it
JP3954660B2 (en) Fe group based amorphous metal ribbon
JP3364299B2 (en) Amorphous metal wire
Itoi et al. High-frequency permeability of (Fe, Co, Ni) 62 Nb 8 B 30 amorphous alloys with a wide supercooled liquid region
JPH0230375B2 (en)
JP4097748B2 (en) Fe group-based amorphous metal ribbon and magnetic marker
JPH0643627B2 (en) Amorphous metal wire
JPS642658B2 (en)
JPH0651899B2 (en) Amorphous metal wire
EP0083930B1 (en) Amorphous alloy for magnetic head
JPS6261660B2 (en)
JPS6052557A (en) Low-loss amorphous magnetic alloy
JPH10324939A (en) Cobalt-base amorphous soft magnetic alloy
JPH0525947B2 (en)
JP2817965B2 (en) High frequency wound core

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070427

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110511

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120511

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140511

Year of fee payment: 7

EXPY Cancellation because of completion of term