JP3941070B2 - Ground measurement method, ground measurement program, and ground measurement device - Google Patents

Ground measurement method, ground measurement program, and ground measurement device Download PDF

Info

Publication number
JP3941070B2
JP3941070B2 JP2005359306A JP2005359306A JP3941070B2 JP 3941070 B2 JP3941070 B2 JP 3941070B2 JP 2005359306 A JP2005359306 A JP 2005359306A JP 2005359306 A JP2005359306 A JP 2005359306A JP 3941070 B2 JP3941070 B2 JP 3941070B2
Authority
JP
Japan
Prior art keywords
load
ground
drop height
peak value
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005359306A
Other languages
Japanese (ja)
Other versions
JP2007163275A (en
Inventor
廣貴 川崎
正明 長澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP2005359306A priority Critical patent/JP3941070B2/en
Publication of JP2007163275A publication Critical patent/JP2007163275A/en
Application granted granted Critical
Publication of JP3941070B2 publication Critical patent/JP3941070B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、地盤に関する物理量を計測するための地盤計測方法、地盤計測プログラムおよび地盤計測装置に関するものであり、特に、平板載荷試験等の他の現場試験法との相関性を高めることができる地盤計測方法、地盤計測プログラムおよび地盤計測装置に関するものである。   The present invention relates to a ground measurement method, a ground measurement program, and a ground measurement device for measuring a physical quantity related to the ground, and in particular, the ground that can enhance the correlation with other field test methods such as a plate loading test. The present invention relates to a measurement method, a ground measurement program, and a ground measurement device.

従来より、地盤の剛性等の物理量を取得して評価する試験方法としては、平板載荷試験が最も一般的であり、図8に示した各種規格が定められている。この平板載荷試験には、各種の計測装置の組み合わせでJIS A 1215に示されるものが用いられる。図8に示した繰返し平板載荷試験では、5サイクルの繰返し載荷により、1点あたり120分の計測時間を要する。一方、FWD(Falling Weight Deflectometer)という地盤計測装置は、試験対象である地盤上に設置される載荷板に重錘を落下させ、当該重錘落下によって前記載荷板に加わる荷重値と、重錘の落下に伴う地盤の変位とを計測する装置である(例えば、特許文献1参照)。   Conventionally, as a test method for acquiring and evaluating a physical quantity such as the rigidity of the ground, a flat plate loading test is the most common, and various standards shown in FIG. 8 are defined. For this flat plate loading test, a combination of various measuring devices shown in JIS A 1215 is used. In the repeated flat plate loading test shown in FIG. 8, a measurement time of 120 minutes per point is required due to repeated loading of 5 cycles. On the other hand, a ground measuring device called FWD (Falling Weight Deflectometer) drops a weight on a loading plate installed on the ground to be tested, and the load value applied to the loading plate described above by the weight falling, It is a device that measures the displacement of the ground accompanying a fall (see, for example, Patent Document 1).

そして、上記のような地盤計測装置によって計測された地盤に加わる時系列の荷重値と、地盤の時系列の変位とに基づいて地盤に関する物理量を求め、物理量が所定の条件を満たすか否か等の評価を行っている。   Then, a physical quantity related to the ground is obtained based on the time-series load value applied to the ground measured by the ground measuring device as described above and the time-series displacement of the ground, and whether or not the physical quantity satisfies a predetermined condition, etc. Is being evaluated.

図9は、従来の地盤計測装置10の構成を示す側面図である。同図に示した地盤計測装置10は、載荷部11と、支持体12と、荷重計測手段13と、主軸14と、重錘15と、不動部16と、変位計測手段17とを備えている。   FIG. 9 is a side view showing a configuration of a conventional ground measuring apparatus 10. The ground measurement apparatus 10 shown in the figure includes a loading portion 11, a support 12, a load measurement means 13, a main shaft 14, a weight 15, a stationary portion 16, and a displacement measurement means 17. .

載荷部11は、金属などの剛体で構成され、計測対象となる地盤Gの上面に接触するよう設置される。支持体12は、載荷部11の上側に設けてあり、金属などの剛体からなる。支持体12は、上支持板12aと下支持板12bとの間を複数の支柱12cで連結した構造体である。支持体12の上支持板12aの上面には、落下した重錘15を受けるダンパー12dが設けてある。   The loading part 11 is comprised with rigid bodies, such as a metal, and is installed so that the upper surface of the ground G used as a measuring object may be contacted. The support 12 is provided on the upper side of the loading portion 11 and is made of a rigid body such as metal. The support 12 is a structure in which the upper support plate 12a and the lower support plate 12b are connected by a plurality of support columns 12c. A damper 12d for receiving the dropped weight 15 is provided on the upper surface of the upper support plate 12a of the support 12.

荷重計測手段13は、荷重を電圧の変化として検出するロードセルなどからなる。荷重計測手段13は、支持体12の下支持板12bと載荷部11との間に介在してある。この荷重計測手段13は、支持体12に重錘15を落下したときに、載荷部11に生じた地盤Gに加わる衝撃荷重を計測する。   The load measuring unit 13 includes a load cell that detects a load as a change in voltage. The load measuring means 13 is interposed between the lower support plate 12 b of the support 12 and the loading portion 11. The load measuring means 13 measures an impact load applied to the ground G generated in the loading portion 11 when the weight 15 is dropped on the support 12.

主軸14は、載荷部11に対して鉛直となる軸線に沿う態様で支持体12を介して載荷部11に連結してある。重錘15は、複数の錘板を組み合わせてなるものであり、その総質量を可変できる。係合部15cは、主軸14の軸線に沿って移動可能になされており、その移動可能な位置で固定できるようになっている。重錘15は、固定された当該係合部15cに係合されることでその位置が保持されており、計測時にはかかる係合状態を解除することで重錘15が保持位置から落下し、支持体12の上側に設けられたダンパー12dに衝突する。   The main shaft 14 is connected to the loading portion 11 via the support 12 in a mode along an axis that is perpendicular to the loading portion 11. The weight 15 is a combination of a plurality of weight plates, and its total mass can be varied. The engaging portion 15c is movable along the axis of the main shaft 14, and can be fixed at the movable position. The position of the weight 15 is held by being engaged with the fixed engaging portion 15c. At the time of measurement, the weight 15 is dropped from the holding position by releasing the engaged state, and is supported. It collides with a damper 12d provided on the upper side of the body 12.

不動部16は、金属などの剛体からなり、重錘15の落下とは独立しており、重錘15の落下時においてその位置が変動しないようになっている。変位計測手段17は、不動部16側に設けてあり、主軸14の位置変位を計測する。変位計測手段17は、例えば主軸14に基準位置を設け、この基準位置の移動を計測する。この変位計測手段17は、重錘15を落下させたときの主軸14の位置変位から地盤Gのたわみ(変位)量を計測する。   The immovable portion 16 is made of a rigid body such as a metal and is independent of the fall of the weight 15 so that the position thereof does not change when the weight 15 is dropped. The displacement measuring means 17 is provided on the stationary part 16 side, and measures the positional displacement of the main shaft 14. For example, the displacement measuring means 17 provides a reference position on the spindle 14 and measures the movement of the reference position. The displacement measuring means 17 measures the amount of deflection (displacement) of the ground G from the position displacement of the main shaft 14 when the weight 15 is dropped.

以上が地盤計測装置10の構成であり、荷重および変位の計測を行う場合には、係合部15cと重錘15の係合状態を解除する。これにより、重錘15が落下しダンパー12dに衝突する。かかる重錘15の落下に伴って支持体12および載荷部11を介して地盤Gに衝撃荷重が加わり、その荷重が荷重計測手段13によって計測される。   The above is the configuration of the ground measurement device 10, and when the load and displacement are measured, the engagement state of the engagement portion 15 c and the weight 15 is released. Thereby, the weight 15 falls and collides with the damper 12d. As the weight 15 falls, an impact load is applied to the ground G through the support 12 and the loading portion 11, and the load is measured by the load measuring means 13.

また、この荷重によって地盤Gが所定量だけ沈下すると、その沈下に伴って載荷部11とこれに連結される支持体12および主軸14が下方側に移動する。つまり、主軸14が地盤Gが沈下した所定量と同じだけ下方側に移動し、この移動量を変位計測手段17が計測することで地盤Gの変位を計測することができるのである。   Further, when the ground G sinks by a predetermined amount due to this load, the loading portion 11, the support body 12 and the main shaft 14 connected thereto move downward along with the sinking. That is, the main shaft 14 moves downward as much as the predetermined amount by which the ground G has sunk, and the displacement measuring means 17 measures the displacement so that the displacement of the ground G can be measured.

特許第2506282号公報Japanese Patent No. 2506282

ところで、従来の地盤計測装置10においては、地盤剛性の計測方法として、載荷部11の設置時の端面誤差を除く目的で、本載荷と同一の落下高さに対して予備載荷を行った上で、その後の本載荷を3回以上行い、これら本載荷の平均を地盤剛性kHFWDと評価している。このため、地盤には予備載荷時の重錘落下による締固めの影響と、本載荷時の同一落下高さでの重錘落下の繰返しによる締固めの影響が生じ、地盤本来の正確な地盤剛性の評価ができない。すなわち、地盤に載荷履歴の影響が出てしまう。 By the way, in the conventional ground measurement apparatus 10, as a method for measuring the ground rigidity, for the purpose of removing an end face error at the time of installing the loading portion 11, preliminary loading is performed for the same drop height as that of the actual loading. Thereafter, the actual loading is performed three times or more, and the average of these loadings is evaluated as the ground rigidity k HFWD . For this reason, the ground has the effect of compaction due to falling weights during preloading and the effect of compaction due to repeated weights falling at the same drop height during full loading. Cannot be evaluated. That is, the loading history affects the ground.

また、地盤剛性評価においては、平板載荷試験の支持力係数k30と、地盤計測装置10のような小型FWDの地盤剛性kHFWDとの相関関係比を求めることで、地盤剛性を評価するようにしている。ところが、支持力係数k30は、単調載荷によって求められるものであるのに対して、地盤剛性kHFWDは、繰返し載荷によって求められるものであり、異なる特性を持つため、地盤特性の非線形性の影響を受けて、これらの相関は低いものとなっている。 In the ground stiffness evaluation, the ground stiffness is evaluated by obtaining the correlation ratio between the bearing capacity coefficient k 30 of the flat plate loading test and the ground stiffness k HFWD of a small FWD such as the ground measuring device 10. ing. However, the bearing capacity coefficient k 30 is obtained by monotonic loading, whereas the ground stiffness k HFWD is obtained by repeated loading and has different characteristics. As a result, these correlations are low.

例えば、図10は、平板載荷試験の支持力係数k30と、小型FWDの地盤剛性kHFWDとの相関関係を示す。図中、○×△□は、それぞれ地盤の種類(礫質土、砂質土等)を示している。図10によれば、両対数で図示しているにも関わらず、直線関係に載っておらず、支持力係数k30と地盤剛性kHFWDとの相関性の悪いことが判る。この結果、FWD試験によって地盤剛性を評価する場合、その精度において信頼性の低いものとなっている。 For example, FIG. 10 shows the correlation between the bearing capacity coefficient k 30 in the flat plate loading test and the ground stiffness k HFWD of the small FWD. In the figure, ○ × △ □ indicates the type of ground (gravel soil, sandy soil, etc.). According to FIG. 10, it can be seen that although it is shown as a logarithm, it is not in a linear relationship and the correlation between the bearing force coefficient k 30 and the ground stiffness k HFWD is poor. As a result, when the ground rigidity is evaluated by the FWD test, the accuracy is low.

本発明は上記に鑑みてなされたもので、地盤に載荷履歴の影響を与えず、地盤本来の正確な剛性の計測が可能で、平板載荷試験等の他の現場試験法との相関性を高めることができ、地盤剛性の評価を精度よく行うことができる地盤計測方法、地盤計測プログラムおよび地盤計測装置を提供することを目的とする。   The present invention has been made in view of the above, and does not affect the loading history of the ground, enables accurate measurement of the inherent rigidity of the ground, and enhances the correlation with other on-site testing methods such as flat plate loading tests. An object of the present invention is to provide a ground measurement method, a ground measurement program, and a ground measurement device that can accurately evaluate the ground rigidity.

上記目的を達成するため、本発明は、計測対象である地盤に設置した載荷面に落下すべき重錘の落下高さを検出する検出工程と、前記検出工程で検出される前記落下高さを徐々に高くなるように変化させ、変化させたそれぞれの落下高さで1回ずつ連続的に前記重錘を前記載荷面に落下させる載荷制御工程と、それぞれの落下高さから前記重錘を落下させた際に発生する荷重および前記地盤の累積的な変位に基づいて、前記それぞれの落下高さ毎の荷重ピーク値と累積的な変位のピーク値を計測する計測工程と、荷重−変位の関係を表す直交座標上において、計測された前記それぞれの落下高さ毎の荷重ピーク値と累積的な変位のピーク値を示す点を近似直線で結ぶことで、直線の勾配を初期載荷支持係数として算定する算定工程と、を含むことを特徴とする。 In order to achieve the above object, the present invention provides a detection step of detecting a fall height of a weight to be dropped on a loading surface installed on the ground to be measured, and the fall height detected in the detection step. The load is controlled so as to gradually increase, and the weight is continuously dropped once on the changed load height, and the weight is dropped from each drop height. Load-displacement relationship with a measuring step for measuring a load peak value and a cumulative displacement peak value for each drop height based on a load generated when the load is generated and a cumulative displacement of the ground In the Cartesian coordinate system, the measured load peak value for each drop height and the point indicating the cumulative displacement peak value are connected by an approximate straight line, and the slope of the straight line is calculated as the initial loading support coefficient. including a calculation step of, the And wherein the door.

また、本発明は、コンピュータに、計測対象である地盤に設置した載荷面に落下すべき重錘の落下高さを検出する検出工程と、前記検出工程で検出される前記落下高さを徐々に高くなるように変化させ、変化させたそれぞれの落下高さで1回ずつ連続的に前記重錘を前記載荷面に落下させる載荷制御工程と、それぞれの落下高さから前記重錘を落下させた際に発生する荷重および前記地盤の累積的な変位に基づいて、前記それぞれの落下高さ毎の荷重ピーク値と累積的な変位のピーク値を計測する計測工程と、荷重−変位の関係を表す直交座標上において、計測された前記それぞれの落下高さ毎の荷重ピーク値と累積的な変位のピーク値を示す点を近似直線で結ぶことで、直線の勾配を初期載荷支持係数として算定する算定工程と、を実行させるための地盤計測プログラムである。 Further, the present invention provides a computer with a detection step of detecting a fall height of a weight to be dropped on a loading surface installed on a ground to be measured, and the fall height detected in the detection step gradually. A load control step of continuously dropping the weight onto the load surface once at each changed drop height, and dropping the weight from each drop height. Represents a load-displacement relationship with a measurement process for measuring a load peak value and a cumulative displacement peak value for each drop height based on a load generated at a time and a cumulative displacement of the ground. Calculation to calculate the slope of the straight line as the initial loading support coefficient by connecting the measured load peak value for each drop height and the point indicating the cumulative displacement peak value with an approximate straight line on the Cartesian coordinates and process, the execution It is because the ground measurement program.

また、本発明は、計測対象である地盤に設置した載荷面に落下すべき重錘の落下高さを検出する検出手段と、前記検出手段で検出される前記落下高さを徐々に高くなるように変化させ、変化させたそれぞれの落下高さで1回ずつ連続的に前記重錘を前記載荷面に落下させる載荷制御手段と、それぞれの落下高さから前記重錘を落下させた際に発生する荷重および前記地盤の累積的な変位に基づいて、前記それぞれの落下高さ毎の荷重ピーク値と累積的な変位のピーク値を計測する計測手段と、荷重−変位の関係を表す直交座標上において、計測された前記それぞれの落下高さ毎の荷重ピーク値と累積的な変位のピーク値を示す点を近似直線で結ぶことで、直線の勾配を初期載荷支持係数として算定する算定手段と、を具備することを特徴とする。 Further, the present invention provides a detecting means for detecting the falling height of the weight to be dropped on the loading surface installed on the ground to be measured, and the falling height detected by the detecting means is gradually increased. And when the weight is dropped from each drop height, the load control means for continuously dropping the weight onto the load surface once at each changed drop height. Measuring means for measuring the load peak value for each drop height and the peak value of the cumulative displacement based on the load to be applied and the cumulative displacement of the ground, and the orthogonal coordinates representing the load-displacement relationship The calculation means for calculating the slope of the straight line as the initial loading support coefficient by connecting the measured load peak value for each drop height and the point indicating the cumulative displacement peak value with an approximate straight line, It is characterized by comprising .

以上説明したように、本発明によれば、落下高さを徐々に高くなるように変化させ、変化させたそれぞれの落下高さで1回ずつ連続的に重錘を載荷面に落下させており、予備載荷を行うことなく本載荷のみを落下高さを細分化して1回ずつ行うことで、徐々に地盤を締固めるので地盤に載荷履歴の影響を与えることなく、地盤本来の正確な剛性を計測することができ、また、重錘落下による衝撃荷重は瞬間荷重であり荷重を掛け続けるような単調増加は難しいが、落下高さを徐々に高くして1回ずつ本載荷を連続的に行い地盤の累積的な変位を計測するので、落下高さ毎に載荷する荷重ピーク点に対する変位ピーク点を結ぶことで平板載荷試験の単調載荷時と相関性の高い初期載荷剛性の特性を得ることができ、よって、平板載荷試験等の他の現場試験法との相関性を高めることができ、地盤剛性の評価を精度よく行うことができる。   As described above, according to the present invention, the drop height is changed to be gradually increased, and the weight is continuously dropped onto the loading surface once at each changed drop height. By subdividing the fall height of the main load only once without performing preliminary loading, the ground is gradually compacted, so that the ground's original accurate rigidity can be maintained without affecting the loading history. It is possible to measure, and the impact load due to falling weight is an instantaneous load and it is difficult to increase monotonically so that the load is continuously applied. However, the load height is gradually increased and this load is continuously performed once at a time. Since the cumulative displacement of the ground is measured, it is possible to obtain a characteristic of initial loading stiffness that is highly correlated with the monotonic loading of the plate loading test by connecting the displacement peak point to the loading peak point loaded at each drop height. Therefore, other than flat plate loading test etc. It is possible to improve the correlation between the field test methods, evaluation of soil stiffness can be performed accurately.

以下に添付図面を参照して、本発明にかかる地盤計測方法、地盤計測プログラムおよび地盤計測装置の好適な実施例を詳細に説明する。なお、この実施例により本発明が限定されるものではない。   Exemplary embodiments of a ground measurement method, a ground measurement program, and a ground measurement device according to the present invention will be described below in detail with reference to the accompanying drawings. In addition, this invention is not limited by this Example.

図1は、本発明の一実施例にかかる地盤計測装置100の構成を示す図である。地盤計測装置100は、地盤Gに加えた荷重値と地盤Gの変位とを計測してPC(パーソナルコンピュータ)200に供給し、かかる計測結果に基づいてPC200が地盤に関する物理量を計測する。   FIG. 1 is a diagram showing a configuration of a ground measuring apparatus 100 according to an embodiment of the present invention. The ground measurement device 100 measures the load value applied to the ground G and the displacement of the ground G, supplies the measured value to a PC (personal computer) 200, and the PC 200 measures a physical quantity related to the ground based on the measurement result.

地盤計測装置100において、載荷部1は、金属などの剛体で構成され、計測対象となる地盤Gの上面に接触するよう設置される。支持体2は、載荷部1の上側に設けてあり、金属などの剛体からなる。支持体2は、上支持板2aと下支持板2bとの間を複数の支柱2cなどで連結した構造体であり、その上支持板2aの上面には、落下した重錘5を受けるダンパー2dが設けてある。   In the ground measuring apparatus 100, the loading part 1 is comprised with rigid bodies, such as a metal, and is installed so that the upper surface of the ground G used as a measuring object may be contacted. The support 2 is provided on the upper side of the loading portion 1 and is made of a rigid body such as metal. The support body 2 is a structure in which the upper support plate 2a and the lower support plate 2b are connected by a plurality of support columns 2c, and the upper surface of the upper support plate 2a has a damper 2d that receives the dropped weight 5. Is provided.

荷重計測手段3は、荷重を電圧の変化として検出するロードセルなどからなる。荷重計測手段3は、支持体2の下支持板2bと載荷部1との間に介在してある。この荷重計測手段3は、支持体2に重錘5を落下したときに、載荷部1に生じた地盤Gに加わる衝撃荷重を計測する。   The load measuring means 3 includes a load cell that detects a load as a change in voltage. The load measuring means 3 is interposed between the lower support plate 2 b of the support 2 and the loading portion 1. The load measuring means 3 measures an impact load applied to the ground G generated in the loading portion 1 when the weight 5 is dropped on the support 2.

主軸4は、載荷部1に対して鉛直となる軸線に沿う態様で支持体2を介して載荷部1に連結してある。重錘5は、複数の錘板を組み合わせてなるものであり、その総質量を可変できる。係合部5cは、主軸4の軸線に沿って移動可能になされており、その移動可能な位置で固定できるようになっている。重錘5は、油圧機構(図示せず)により落下位置から上昇自在であって、固定された当該係合部5cに係合されることでその位置が保持されており、計測時にはかかる係合状態を解除することで重錘5が保持位置から落下し、支持体2の上側に設けられたダンパー2dに衝突する。なお、係合部5cの固定位置を変動させることで、重錘5の落下高さを調整することができる。   The main shaft 4 is connected to the loading portion 1 via the support body 2 in a manner along an axis that is perpendicular to the loading portion 1. The weight 5 is formed by combining a plurality of weight plates, and its total mass can be varied. The engaging portion 5c is movable along the axis of the main shaft 4, and can be fixed at the movable position. The weight 5 can be raised from the drop position by a hydraulic mechanism (not shown), and the position is maintained by being engaged with the fixed engagement portion 5c. By releasing the state, the weight 5 falls from the holding position and collides with a damper 2d provided on the upper side of the support body 2. In addition, the fall height of the weight 5 can be adjusted by changing the fixing position of the engaging part 5c.

不動部6は、金属などの剛体からなり、重錘5の落下とは独立しており、重錘5の落下時においてその位置が変動しないようになっている。変位計測手段7は、不動部6側に設けてあり、主軸4の位置変位を計測する。変位計測手段7は、例えば主軸4に基準位置を設け、この基準位置の移動を計測する。この変位計測手段7は、重錘5を落下させたときの主軸4の位置変位から地盤Gのたわみ(変位)量を計測する。   The immovable portion 6 is made of a rigid body such as a metal and is independent of the falling of the weight 5 so that the position thereof does not fluctuate when the weight 5 is dropped. The displacement measuring means 7 is provided on the non-moving part 6 side and measures the positional displacement of the main shaft 4. For example, the displacement measuring means 7 provides a reference position on the spindle 4 and measures the movement of the reference position. The displacement measuring means 7 measures the amount of deflection (displacement) of the ground G from the position displacement of the main spindle 4 when the weight 5 is dropped.

支持体2近傍に配置されたロータリエンコーダ8は、重錘5の最下位位置に連結された繰り出し自在なワイヤ部材9を有して、ダンパー2dの頂部の位置を基準とする重錘5の底面までの距離、すなわち重錘5の落下高さを無段階に検出するためのものである。一実施例では、重錘5の落下高さを細分化し、落下高さが徐々に高くなるように変化させて本載荷を1回ずつ行わせるものであり、一例として、5mm,10mm,20mm,40mm,60mm,80mm,100mm,125mm,150mm,175mm,200mm,225mm,250mm,275mm,300mmなる15段階の落下高さが設定されている。このような細分化された15段階の落下高さは、載荷する最大荷重、例えば500(kN/m2)に対して個々の本載荷で加える荷重の分割幅(荷重段階)が15分割で等ピッチ(厳密に等ピッチでなくても、ほぼ等ピッチであればよい)となるように、最大荷重時の落下高さ300mmに対して分割設定されたものである。ロータリエンコーダ8は、このように分割設定された15段階のそれぞれの落下高さに重錘5の底面が到達したか否かを逐次検出し、検出結果をPC200に対して出力する。 The rotary encoder 8 arranged in the vicinity of the support body 2 has a wire member 9 that can be fed out connected to the lowest position of the weight 5, and the bottom surface of the weight 5 with reference to the position of the top of the damper 2 d. This is a stepless detection of the distance up to, ie, the fall height of the weight 5. In one embodiment, the falling height of the weight 5 is subdivided and changed so that the falling height gradually increases, and this loading is performed once, for example, 5 mm, 10 mm, 20 mm, There are 15 levels of drop heights of 40 mm, 60 mm, 80 mm, 100 mm, 125 mm, 150 mm, 175 mm, 200 mm, 225 mm, 250 mm, 275 mm, and 300 mm. Such subdivided drop heights in 15 steps are such that the maximum load to be loaded, for example, the division width (load stage) of the load applied by each main load with respect to 500 (kN / m 2 ) is 15 divisions, etc. The pitch is divided and set with respect to the drop height of 300 mm at the maximum load so that the pitch (roughly equal pitch is not necessary) is required. The rotary encoder 8 sequentially detects whether or not the bottom surface of the weight 5 has reached the respective 15 drop heights divided and set, and outputs the detection result to the PC 200.

つぎに、図2に示したフローチャートを参照しつつ、一実施例の動作について説明する。図2は、一実施例の全体動作を説明するフローチャートである。図2に示したステップSA1では、PC200で図3に示す設定画面Mが表示され、計測に関する設定が行われる。この設定画面Mでは、例えば15段階の本載荷(荷重段階1、荷重段階2、…、荷重段階14、荷重段階15)に対応する落下高さ(mm)が設定される。落下高さは、当該載荷で重錘5を落下させる高さである。なお、当該載荷で重錘5を落下させるサイクル回数は、いずれも1回に設定される。この設定により、例えば5mm,10mm,20mm,40mm,60mm,80mm,100mm,125mm,150mm,175mm,200mm,225mm,250mm,275mm,300mmなる15段階の落下高さが設定される。   Next, the operation of the embodiment will be described with reference to the flowchart shown in FIG. FIG. 2 is a flowchart for explaining the overall operation of the embodiment. In step SA1 shown in FIG. 2, the setting screen M shown in FIG. 3 is displayed on the PC 200, and settings relating to measurement are performed. On this setting screen M, for example, drop heights (mm) corresponding to fifteen stages of actual loading (load stage 1, load stage 2,..., Load stage 14, load stage 15) are set. The fall height is a height at which the weight 5 is dropped by the load. Note that the number of cycles for dropping the weight 5 with the load is set to one. With this setting, for example, 15-step drop heights of 5 mm, 10 mm, 20 mm, 40 mm, 60 mm, 80 mm, 100 mm, 125 mm, 150 mm, 175 mm, 200 mm, 225 mm, 250 mm, 275 mm, and 300 mm are set.

ステップSA2では、載荷部1が地盤Gの設置面に設置される。ついで、ステップSA3では、荷重段階数を示すmの初期値として1が設定される。ステップSA5では、PC200の制御により、m段階(ここでは、m=1)で重錘5が上昇された後、落下される。具体的には、油圧機構により重錘5を上昇させ、重錘5が所定の落下高さ(重錘5がダンパー2dから5mm上昇した位置)まで上昇したことがロータリエンコーダ8で検出されると、ロータリエンコーダ8からPC200へ検出結果が出力され、PC200は、油圧機構を停止させた後、リリース動作に移行させることで、重錘5が落下し、載荷部1に荷重がかかる。   In step SA2, the loading unit 1 is installed on the installation surface of the ground G. In step SA3, 1 is set as an initial value of m indicating the number of load stages. In step SA5, under the control of the PC 200, the weight 5 is lifted and dropped in m steps (here, m = 1). Specifically, when the weight 5 is raised by the hydraulic mechanism, and the rotary encoder 8 detects that the weight 5 has risen to a predetermined drop height (position where the weight 5 has risen 5 mm from the damper 2d). The detection result is output from the rotary encoder 8 to the PC 200, and the PC 200 stops the hydraulic mechanism and then shifts to the release operation, whereby the weight 5 falls and a load is applied to the loading unit 1.

ステップSA6では、PC200は、変位計測手段7の計測結果に基づいて、載荷部1に加わった(衝撃)荷重Pmおよび地盤G(載荷部1)の変位δmを計測する。ステップSA7では、PC200は、支持力係数Kmを算定する。この支持力係数Kmは、荷重Pmのピーク値を、変位δmのピーク値で除算した値である。 At step SA6, PC 200, based on the measurement result of the displacement measuring means 7 measures the displacement [delta] m of which joined the loading unit 1 (impact) load P m and the ground G (loading unit 1). In step SA7, PC 200 is to calculate the bearing capacity coefficient K m. The supporting force coefficient K m is the peak value of the load P m, is a value obtained by dividing the peak value of the displacement [delta] m.

ステップSA8では、PC200は、載荷部1の径をB、ポアソン比をν、支持力係数をKmとして、つぎの半無限弾性地盤の理論式(1)式から地盤Gの弾性係数Emを算定する。 In step SA8, the PC 200 determines the elastic coefficient E m of the ground G from the following theoretical equation (1) of the semi-infinite elastic ground, where the diameter of the loading portion 1 is B, the Poisson's ratio is ν, and the bearing force coefficient is K m. Calculate.

m=0.25π・B(1−ν2)・Km ………………(1) E m = 0.25π · B (1-ν 2 ) · K m (1)

ステップSA9では、PC200は、m段階(荷重段階1〜荷重段階15)の全ての処理が完了したか否かを判断し、この場合、m=1であり、判断結果を「No」とし、ステップSA10では、mを+1ずつインクリメントする。ステップSA4以降では、つぎの荷重段階2(m=2)の処理が実行される。以後、荷重段階3(m=3)、…、荷重段階14(m=14)、荷重段階15(m=15)の処理が連続的に順次実行される。   In step SA9, the PC 200 determines whether or not all of the m stages (load stage 1 to load stage 15) have been completed. In this case, m = 1, and the determination result is “No”. In SA10, m is incremented by +1. After step SA4, the next load stage 2 (m = 2) process is executed. Thereafter, the processes of the load stage 3 (m = 3),..., The load stage 14 (m = 14), and the load stage 15 (m = 15) are successively executed sequentially.

具体的には、重錘5が落下高さ10mmに引き上げられた後、落下させることで荷重段階2の処理が実行され、次いで、重錘5が落下高さ20mmに引き上げられた後、落下させることで荷重段階3の処理が実行され、…、重錘5が落下高さ275mmに引き上げられた後、落下させることで荷重段階14の処理が実行され、次いで、重錘5が落下高さ300mmに引き上げられた後、落下させることで荷重段階15の処理が実行される。   Specifically, after the weight 5 is pulled up to a drop height of 10 mm, the load stage 2 is executed by dropping it, and then the weight 5 is pulled up to a drop height of 20 mm and then dropped. Then, the process of the load stage 3 is executed, and after the weight 5 is pulled up to a drop height of 275 mm, the process of the load stage 14 is executed by dropping it, and then the weight 5 has a drop height of 300 mm. After being pulled up, the load stage 15 is processed by dropping it.

そして、m段階(m=15)の処理が完了すると、PC200は、ステップSA9の判断結果を「Yes」とする。ステップSA11では、PC200は、荷重段階1〜荷重段階15における荷重ピーク値(ステップSA5で計測された荷重のピーク値)と変位ピーク値(ステップSA5で計測された変位のピーク値)とを示す点を近似直線で結ぶことで、直線の勾配を初期載荷支持係数Kiとして算定する。 When the m steps (m = 15) are completed, the PC 200 sets “Yes” as a result of the determination made at step SA9. In step SA11, the PC 200 indicates the load peak value (the load peak value measured in step SA5) and the displacement peak value (the displacement peak value measured in step SA5) in the load stage 1 to the load stage 15. by connecting an approximate straight line, to calculate the slope of the line as an initial loading support coefficient K i.

つぎに、PC200は、初期載荷支持係数をKi、載荷部1の径をB、ポアソン比をνとして、つぎの(2)式から初期載荷弾性係数Eiを算定する。 Next, the PC 200 calculates the initial loading elastic coefficient E i from the following equation (2), where K i is the initial loading support coefficient, B is the diameter of the loading portion 1 and Poisson's ratio is ν.

i=0.25π・B(1−ν2)・Ki ………………(2) E i = 0.25π · B (1-ν 2 ) · K i (2)

ステップSA12では、PC200は、m段階における弾性係数Em(ステップSA8で算定)を、繰返し載荷弾性係数Erとして算定する。ステップSA13では、載荷部1が格納され、一連の計測が終了する。 In step SA12, the PC 200 calculates the elastic coefficient E m (calculated in step SA8) at the m stage as the repeated loading elastic coefficient Er . In step SA13, the loading unit 1 is stored, and a series of measurements is completed.

すなわち、一実施例は、図4に示すように、載荷する最大荷重500(kN/m2)に対して荷重の分割幅が15分割でほぼ等ピッチとなるように細分化させて分割設定された落下高さを低いほうから高くなるように順次変化させ、変化させたそれぞれの落下高さで1回ずつ連続的に重錘7を載荷部1に落下させ、それぞれの落下高さから重錘7を落下させた際に発生する地盤Gの累積的な変位を荷重とともに計測するようにしたものである。 That is, as shown in FIG. 4, the embodiment is divided and set so that the load division width is divided into 15 divisions to be substantially equal pitches with respect to the maximum load 500 (kN / m 2 ) to be loaded. The falling height is sequentially changed so as to increase from the lower one, and the weight 7 is continuously dropped to the loading portion 1 once at each changed dropping height, and the weight is reduced from each falling height. The cumulative displacement of the ground G generated when 7 is dropped is measured together with the load.

このように、一実施例によれば、予備載荷を行うことなく本載荷のみを落下高さを細分化して徐々に高くして1回ずつ行うことで、徐々に地盤Gを締固めるので地盤Gに予備載荷や同一落下高さでの本載荷の繰返しによる載荷履歴の影響を与えることなく、地盤本来の正確な剛性(荷重を掛け続けた状態での地盤沈下に相当)を計測することができる。また、FWDの場合、加える衝撃荷重は変動の大きい瞬間荷重であり単調増加は難しいが、落下高さを徐々に高くして1回ずつ本載荷を連続的に行い載荷履歴の影響のない状態で累積された地盤Gの変位を計測するので、各段階の荷重ピーク値と対応する変位ピーク値とを示す点(図4中に示す白丸参照)を近似直線で結ぶことで、平板載荷試験の単調載荷時と相関性が高い初期載荷剛性(k値)特性(或いは、単調載荷剛性の特性)を得ることができ、よって、平板載荷試験等の他の現場試験法との相関性を高めることができ、例えば構造物基礎用の地盤剛性や地耐力の評価を精度よく行うことができる。また、当初地盤Gにおける載荷部1の設置面に凹凸(端面誤差)があったとしても、取得した初期載荷剛性の特性によって地盤Gの様子を把握することができるので、本載荷に先立ち予備載荷を別個単独で行って平らにしなくても、設置面の凹凸(端面誤差)の影響を初期載荷剛性の特性から除去することができる。   In this way, according to one embodiment, the ground G is gradually compacted by subdividing the fall height of the main load only once and gradually increasing without performing preliminary loading. It is possible to measure the ground's original exact rigidity (equivalent to ground subsidence in a state where a load is continuously applied) without affecting the loading history due to repeated loading of a preload or the same load at the same drop height. . In addition, in the case of FWD, the applied impact load is a momentary load with large fluctuations, and it is difficult to increase monotonously. Since the accumulated displacement of the ground G is measured, the point indicating the load peak value at each stage and the corresponding displacement peak value (see white circles in FIG. 4) are connected by an approximate straight line, so that the monotonicity of the flat plate loading test It is possible to obtain initial loading stiffness (k value) characteristics (or monotonic loading stiffness characteristics) that are highly correlated with loading, and thus to increase the correlation with other on-site testing methods such as flat plate loading tests. For example, it is possible to accurately evaluate the ground rigidity and the earth strength for a structure foundation. Moreover, even if there is unevenness (end surface error) on the installation surface of the loading part 1 in the initial ground G, the state of the ground G can be grasped by the acquired characteristics of the initial loading rigidity, so preliminary loading prior to the actual loading. Even if it is not performed separately and flattened, the influence of unevenness (end surface error) of the installation surface can be removed from the characteristics of the initial loading rigidity.

図5−1は、平板載荷試験の結果(荷重および変位)を表す図であり、図5−2は、図1に示した地盤計測装置100による試験(SFWD試験という)の結果(荷重および変位)を表す図である。これらの図において、弾性係数Eは、載荷部1の直径B=0.45m、ポアソン比ν=0.3とした場合の前述の(1)式により求めたものである。図5−1と図5−2との対比から明らかなように、単調載荷時の地盤剛性(支持力係数k)を示す初期載荷剛性(k値)は、平板載荷試験の結果と一実施例の小型FWDの結果とで比較的類似の傾向を示しており、両者間の相関性が高いことが判る。   FIG. 5A is a diagram illustrating the results (load and displacement) of the flat plate loading test, and FIG. 5B is the results (load and displacement) of the test (referred to as the SFWD test) by the ground measuring device 100 illustrated in FIG. ). In these figures, the elastic modulus E is obtained by the above-described equation (1) when the diameter B of the loading portion 1 is 0.45 m and the Poisson's ratio ν is 0.3. As is clear from the comparison between FIG. 5A and FIG. 5B, the initial loading stiffness (k value) indicating the ground stiffness (supporting force coefficient k) at the time of monotonic loading is the result of the plate loading test and one example. The results of the small FWD show a relatively similar tendency, and it can be seen that the correlation between the two is high.

一方、従来のSFWDで計測されていた地盤剛性kHFWDは、図4中に示す繰返し載荷剛性に相当するものである。図10に示したように従来のSFWDの相関性の悪かった原因は、一実施例のような初期載荷剛性(k値)特性を計測することができず、SFWDの繰返し載荷剛性と平板載荷試験の支持力係数k30(初期載荷剛性)との相関をとっていたためである。 On the other hand, the ground stiffness k HFWD measured by the conventional SFWD corresponds to the repeated loading stiffness shown in FIG. As shown in FIG. 10, the cause of the poor correlation of the conventional SFWD is that the initial loading stiffness (k value) characteristics cannot be measured as in the first embodiment, and the repeated loading stiffness of the SFWD and the flat plate loading test are not possible. This is because there was a correlation with the bearing force coefficient k 30 (initial loading rigidity).

ここで、繰返し載荷剛性自体は、道路、空港の路床、路盤等のように自動車や飛行機による荷重が繰返し載荷される地盤に対する動的荷重特性の評価には有効である。すなわち、一実施例によれば、日本道路公団基準JHS103(図8参照)で規格化されている繰返し平板載荷試験(以下、単に平板載荷試験という)と同等な繰返し弾性係数を、短時間で得ることができる。従って、従来の繰返し平板載荷試験に代わる地盤の剛性評価手法となり得るため、時間、コストを削減することができる。   Here, the repeated loading rigidity itself is effective in evaluating dynamic load characteristics for a ground on which a load from an automobile or an airplane is repeatedly loaded, such as a road, an airport roadbed, and a roadbed. That is, according to one embodiment, a repeated elastic modulus equivalent to a repeated flat plate loading test (hereinafter simply referred to as a flat plate loading test) standardized by the Japan Highway Public Corporation Standard JHS103 (see FIG. 8) is obtained in a short time. be able to. Therefore, since it can be a ground stiffness evaluation method that can replace the conventional repeated flat plate loading test, time and cost can be reduced.

図6−1は、平板載荷試験の結果(繰返し載荷弾性係数および荷重)を表す図であり、図6−2は、一実施例のSFWD試験の結果(繰返し載荷弾性係数および各荷重段階の荷重ピーク値)を表す図である。両図によれば、荷重に対する繰返し載荷弾性係数の増加程度(地盤が徐々に締固まっていく特性)も同様な傾向を示し、両者の相関度が高いことが判る。   FIG. 6A is a diagram showing the results of the flat plate loading test (repeated loading elastic modulus and load), and FIG. 6B is the result of the SFWD test of one example (repeated loading elastic modulus and load at each load stage). It is a figure showing a peak value. According to both figures, it can be seen that the degree of increase in the cyclic loading elastic modulus with respect to the load (the characteristic that the ground gradually becomes solid) shows a similar tendency, and the degree of correlation between the two is high.

さらに、図7−1は、路盤、厚さt=0.5の改良土、厚さt=1.0mの改良土等の種々の地盤に対する平板載荷試験と一実施例のSFWDとの初期弾性係数同士の相関性を表した図であり、図7−2は、砕石、珪砂等の種々の地盤に対するCBR試験のCBRと一実施例のSFWDの弾性係数との相関性を表した図である。これらの図から、一実施例のSFWDの計測方法は、地盤剛性を調査できる平板載荷試験やCBR試験等の他の現場試験法と極めて相関性の高いことが明らかである。実施に際しては、計測対象となる現場において、事前の数点に対して平板載荷試験などとキャリブレーション試験を実施し、その後に、一実施例のようなSFWDによる調査を行うことで、実地盤の剛性を迅速・簡便にして精度よく適切に把握することができる。   Furthermore, FIG. 7-1 shows the initial elasticity of the flat plate loading test and SFWD of one embodiment for various grounds such as roadbed, improved soil with thickness t = 0.5, and improved soil with thickness t = 1.0 m. FIG. 7-2 is a diagram showing the correlation between the CBR of the CBR test for various grounds such as crushed stone and silica sand, and the elastic modulus of SFWD of one embodiment. . From these figures, it is clear that the SFWD measurement method of one embodiment is highly correlated with other on-site test methods such as a plate loading test and a CBR test that can investigate the ground rigidity. At the time of implementation, at the site to be measured, a flat plate loading test and a calibration test are performed on several points in advance, and then an investigation by SFWD as in one embodiment is performed, so that the actual ground Rigidity can be grasped quickly and easily and accurately.

なお、一実施例では、載荷する最大荷重に対して荷重の分割幅がほぼ等ピッチとなるように荷重段階mを15段階に分割設定し、これに対応する落下高さも15段階に分割設定したが、15段階の分割設定に限らない。ただし、分割数としては、荷重の分割幅が、載荷する最大荷重に対してほぼ等ピッチで10〜20分割されるように設定することが好ましい。単調増加の場合の地盤の挙動を計測する上で、地盤の固さ等に応じて初期載荷剛性の特性には荷重レベルによって曲がり等を生じてくるものであり(図4等は、比較的硬い地盤の場合の特性を示しているが、比較的柔らかい地盤の場合には荷重レベルによって急激に変位が大きくなって荷重が飽和する非線形特性を示す)、その変曲点等の地盤の挙動を精度よく計測し、地盤の地耐力を精度よく評価する上では、10分割以上に分割設定することが好ましいためである。すなわち、9分割以下の粗い分割設定の場合、初期載荷剛性の特性における曲がりが判りにくく、地盤の地耐力評価が難しくなってしまう。また、分割数は、多ければ多いほど、より精度の高い特性計測が可能となるが、一実施例のようなSFWDは元々短時間での計測処理の完了を目的としており、例えば1回の落下処理に30秒要するとして10分程度の短時間で計測処理を完了させる上では、20分割以下程度に分割設定することが好ましいためである。   In one embodiment, the load stage m is divided into 15 stages so that the divided width of the load is substantially equal to the maximum load to be loaded, and the corresponding drop height is also divided into 15 stages. However, the division setting is not limited to 15 levels. However, the number of divisions is preferably set so that the load division width is divided into 10 to 20 at substantially equal pitches with respect to the maximum load to be loaded. When measuring the behavior of the ground in the case of monotonous increase, the initial loading stiffness characteristics bend depending on the load level depending on the hardness of the ground, etc. (Fig. 4 etc. is relatively hard) The characteristics of the ground are shown, but in the case of relatively soft ground, it shows a nonlinear characteristic in which the load suddenly increases and the load is saturated depending on the load level), and the ground behavior at the inflection point etc. is accurate This is because it is preferable to divide and set 10 divisions or more in order to measure well and accurately evaluate the ground strength of the ground. That is, in the case of a coarse division setting of 9 divisions or less, it is difficult to understand the bending in the characteristics of the initial loading rigidity, and it becomes difficult to evaluate the ground strength of the ground. In addition, as the number of divisions increases, more accurate characteristic measurement is possible. However, SFWD as in one embodiment is originally intended to complete measurement processing in a short time, for example, one drop This is because, in order to complete the measurement process in a short time of about 10 minutes if the process takes 30 seconds, it is preferable to set the division to about 20 or less.

また、上述した一実施例では、地盤計測装置100の機能を実現するためのコンピュータプログラム(地盤計測プログラム)を、インターネット等の通信回線を介してユーザに提供するようにしてもよいし、当該コンピュータプログラムをCD−ROM(Compact Disc-Read Only Memory)などのコンピュータ読み取り可能な記録媒体に記録してユーザに提供するようにしてもよい。   In the above-described embodiment, a computer program (ground measurement program) for realizing the functions of the ground measurement device 100 may be provided to the user via a communication line such as the Internet. The program may be recorded on a computer-readable recording medium such as a CD-ROM (Compact Disc-Read Only Memory) and provided to the user.

以上のように、本発明にかかる地盤計測方法、地盤計測プログラムおよび地盤計測装置は、地盤に関する物理量の計測に対して有用である。   As described above, the ground measurement method, the ground measurement program, and the ground measurement device according to the present invention are useful for the measurement of physical quantities related to the ground.

本発明にかかる一実施例による地盤計測装置の構成を示す図である。It is a figure which shows the structure of the ground measurement apparatus by one Example concerning this invention. 同一実施例の全体動作を説明するフローチャートである。It is a flowchart explaining the whole operation | movement of the same Example. 同一実施例における設定画面Mを示す図である。It is a figure which shows the setting screen M in the same Example. 同一実施例のSFWD試験の荷重および変位の関係を表す図である。It is a figure showing the relationship of the load and displacement of the SFWD test of the same Example. 平板載荷試験の結果(荷重および変位)を表す図である。It is a figure showing the result (load and displacement) of a flat plate loading test. 同一実施例のSFWD試験の結果(荷重および変位)を表す図である。It is a figure showing the result (load and displacement) of the SFWD test of the same Example. 平板載荷試験の結果(繰返し載荷弾性係数および荷重ピーク値)を表す図である。It is a figure showing the result (a cyclic loading elastic modulus and a load peak value) of a flat plate loading test. 同一実施例のSFWD試験の結果(繰返し載荷弾性係数および荷重ピーク値)を表す図である。It is a figure showing the result (Repetitive loading elastic modulus and load peak value) of the SFWD test of the same Example. 種々の地盤に対する平板載荷試験と同一実施例のSFWDとの初期弾性係数同士の相関性を表した図である。It is a figure showing the correlation of the initial elastic coefficients with the flat plate loading test with respect to various grounds, and SFWD of the same Example. 種々の地盤に対するCBR試験のCBRと同一実施例のSFWDの弾性係数との相関性を表した図である。It is a figure showing the correlation with CBR of the CBR test with respect to various grounds, and the elastic modulus of SFWD of the same Example. 従来の平板載荷試験の各種規格を示す図である。It is a figure which shows the various standards of the conventional flat plate loading test. 従来の地盤計測装置の構成を示す側面図である。It is a side view which shows the structure of the conventional ground measurement apparatus. 平板載荷試験の支持力係数k30と、従来の小型FWDの地盤剛性kHFWDとの相関関係を示す図である。A supporting force coefficient k 30 of the plate loading test is a diagram showing the correlation between the ground stiffness k HFWD of conventional small FWD.

符号の説明Explanation of symbols

1 載荷部
3 荷重計測手段
5 重錘
7 変位計測手段
8 ロータリエンコーダ
100 地盤計測装置
200 PC
DESCRIPTION OF SYMBOLS 1 Loading part 3 Load measuring means 5 Weight 7 Displacement measuring means 8 Rotary encoder 100 Ground measuring device 200 PC

Claims (9)

計測対象である地盤に設置した載荷面に落下すべき重錘の落下高さを検出する検出工程と、
前記検出工程で検出される前記落下高さを徐々に高くなるように変化させ、変化させたそれぞれの落下高さで1回ずつ連続的に前記重錘を前記載荷面に落下させる載荷制御工程と、
それぞれの落下高さから前記重錘を落下させた際に発生する荷重および前記地盤の累積的な変位に基づいて、前記それぞれの落下高さ毎の荷重ピーク値と累積的な変位のピーク値を計測する計測工程と、
荷重−変位の関係を表す直交座標上において、計測された前記それぞれの落下高さ毎の荷重ピーク値と累積的な変位のピーク値を示す点を近似直線で結ぶことで、直線の勾配を初期載荷支持係数として算定する算定工程と、
を含むことを特徴とする地盤計測方法。
A detection process for detecting the fall height of the weight to be dropped on the loading surface installed on the ground to be measured;
A load control step of changing the drop height detected in the detection step so as to gradually increase, and continuously dropping the weight onto the load surface once at each changed drop height; ,
Based on the load generated when the weight is dropped from each drop height and the cumulative displacement of the ground, the load peak value and the cumulative displacement peak value for each drop height are calculated. Measuring process to measure,
On the Cartesian coordinates representing the load-displacement relationship, the slope of the straight line is initialized by connecting the measured load peak value for each drop height and a point indicating the cumulative displacement peak value with an approximate straight line. A calculation process for calculating the loading support coefficient;
The ground measurement method characterized by including.
前記載荷制御工程では、載荷する最大荷重に対して荷重の分割幅がほぼ等ピッチとなるように前記落下高さを分割設定し、分割設定されたそれぞれの落下高さとなるように該落下高さを順次変化させることを特徴とする請求項1に記載の地盤計測方法。   In the load control step described above, the drop height is divided and set so that the divided width of the load is substantially equal to the maximum load to be loaded, and the drop height is set to the respective divided drop heights. The ground measurement method according to claim 1, wherein the ground is sequentially changed. 前記載荷制御工程では、前記荷重の分割幅を、載荷する最大荷重に対してほぼ等ピッチで10〜20分割されるように設定することを特徴とする請求項2に記載の地盤計測方法。   The ground measurement method according to claim 2, wherein in the load control step, the division width of the load is set so as to be divided into 10 to 20 at a substantially equal pitch with respect to the maximum load to be loaded. コンピュータに、
計測対象である地盤に設置した載荷面に落下すべき重錘の落下高さを検出する検出工程と、
前記検出工程で検出される前記落下高さを徐々に高くなるように変化させ、変化させたそれぞれの落下高さで1回ずつ連続的に前記重錘を前記載荷面に落下させる載荷制御工程と、
それぞれの落下高さから前記重錘を落下させた際に発生する荷重および前記地盤の累積的な変位に基づいて、前記それぞれの落下高さ毎の荷重ピーク値と累積的な変位のピーク値を計測する計測工程と、
荷重−変位の関係を表す直交座標上において、計測された前記それぞれの落下高さ毎の荷重ピーク値と累積的な変位のピーク値を示す点を近似直線で結ぶことで、直線の勾配を初期載荷支持係数として算定する算定工程と、
を実行させるための地盤計測プログラム。
On the computer,
A detection process for detecting the fall height of the weight to be dropped on the loading surface installed on the ground to be measured;
A load control step of changing the drop height detected in the detection step so as to gradually increase, and continuously dropping the weight onto the load surface once at each changed drop height; ,
Based on the load generated when the weight is dropped from each drop height and the cumulative displacement of the ground, the load peak value and the cumulative displacement peak value for each drop height are calculated. Measuring process to measure,
On the Cartesian coordinates representing the load-displacement relationship, the slope of the straight line is initialized by connecting the measured load peak value for each drop height and a point indicating the cumulative displacement peak value with an approximate straight line. A calculation process for calculating the loading support coefficient;
A ground measurement program for running.
前記載荷制御工程では、載荷する最大荷重に対して荷重の分割幅がほぼ等ピッチとなるように前記落下高さを分割設定し、分割設定されたそれぞれの落下高さとなるように該落下高さを順次変化させることを特徴とする請求項4に記載の地盤計測プログラム。   In the load control step described above, the drop height is divided and set so that the divided width of the load is substantially equal to the maximum load to be loaded, and the drop height is set to the respective divided drop heights. The ground measurement program according to claim 4, wherein the ground is sequentially changed. 前記載荷制御工程では、前記荷重の分割幅を、載荷する最大荷重に対してほぼ等ピッチで10〜20分割されるように設定することを特徴とする請求項5に記載の地盤計測プログラム。   6. The ground measurement program according to claim 5, wherein, in the load control step, the load division width is set to be divided into 10 to 20 at a substantially equal pitch with respect to the maximum load to be loaded. 計測対象である地盤に設置した載荷面に落下すべき重錘の落下高さを検出する検出手段と、
前記検出手段で検出される前記落下高さを徐々に高くなるように変化させ、変化させたそれぞれの落下高さで1回ずつ連続的に前記重錘を前記載荷面に落下させる載荷制御手段と、
それぞれの落下高さから前記重錘を落下させた際に発生する荷重および前記地盤の累積的な変位に基づいて、前記それぞれの落下高さ毎の荷重ピーク値と累積的な変位のピーク値を計測する計測手段と、
荷重−変位の関係を表す直交座標上において、計測された前記それぞれの落下高さ毎の荷重ピーク値と累積的な変位のピーク値を示す点を近似直線で結ぶことで、直線の勾配を初期載荷支持係数として算定する算定手段と、
を具備することを特徴とする地盤計測装置。
Detection means for detecting the fall height of the weight to be dropped on the loading surface installed on the ground to be measured;
Load control means for changing the drop height detected by the detection means to gradually increase, and continuously dropping the weight onto the load surface once at each changed drop height; ,
Based on the load generated when the weight is dropped from each drop height and the cumulative displacement of the ground, the load peak value and the cumulative displacement peak value for each drop height are calculated. Measuring means for measuring;
On the Cartesian coordinates representing the load-displacement relationship, the slope of the straight line is initialized by connecting the measured load peak value for each drop height and a point indicating the cumulative displacement peak value with an approximate straight line. A calculation means for calculating the loading support coefficient;
A ground measuring device comprising:
前記載荷制御手段は、載荷する最大荷重に対して荷重の分割幅がほぼ等ピッチとなるように前記落下高さを分割設定し、分割設定されたそれぞれの落下高さとなるように該落下高さを順次変化させることを特徴とする請求項7に記載の地盤計測装置。   The load control means described above divides and sets the drop height so that the divided width of the load is substantially equal to the maximum load to be loaded, and the drop height is set to the respective divided drop heights. The ground measuring device according to claim 7, which is sequentially changed. 前記載荷制御手段は、前記荷重の分割幅を、載荷する最大荷重に対してほぼ等ピッチで10〜20分割されるように設定することを特徴とする請求項8に記載の地盤計測装置。   9. The ground measurement device according to claim 8, wherein the load control means sets the divided width of the load so as to be divided into 10 to 20 at a substantially equal pitch with respect to the maximum load to be loaded.
JP2005359306A 2005-12-13 2005-12-13 Ground measurement method, ground measurement program, and ground measurement device Active JP3941070B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005359306A JP3941070B2 (en) 2005-12-13 2005-12-13 Ground measurement method, ground measurement program, and ground measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005359306A JP3941070B2 (en) 2005-12-13 2005-12-13 Ground measurement method, ground measurement program, and ground measurement device

Publications (2)

Publication Number Publication Date
JP2007163275A JP2007163275A (en) 2007-06-28
JP3941070B2 true JP3941070B2 (en) 2007-07-04

Family

ID=38246339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005359306A Active JP3941070B2 (en) 2005-12-13 2005-12-13 Ground measurement method, ground measurement program, and ground measurement device

Country Status (1)

Country Link
JP (1) JP3941070B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288483A (en) * 2011-07-08 2011-12-21 中国飞机强度研究所 Supporting clamp for compression stabilization experiment of reinforced wallboard and supporting coefficient testing method for end socket
CN103603330A (en) * 2013-11-08 2014-02-26 河海大学 Method for using total station instrument to measure horizontal displacement of deep soil

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6456709B2 (en) * 2015-02-13 2019-01-23 公益財団法人鉄道総合技術研究所 Multi-stage loading system for track support stiffness evaluation
CN112763317A (en) * 2020-12-29 2021-05-07 中国航空工业集团公司西安飞机设计研究所 Method for measuring end support coefficient of shaft pressing clamp

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288483A (en) * 2011-07-08 2011-12-21 中国飞机强度研究所 Supporting clamp for compression stabilization experiment of reinforced wallboard and supporting coefficient testing method for end socket
CN102288483B (en) * 2011-07-08 2014-12-24 中国飞机强度研究所 Supporting clamp for compression stabilization experiment of reinforced wallboard and supporting coefficient testing method for end socket
CN103603330A (en) * 2013-11-08 2014-02-26 河海大学 Method for using total station instrument to measure horizontal displacement of deep soil

Also Published As

Publication number Publication date
JP2007163275A (en) 2007-06-28

Similar Documents

Publication Publication Date Title
Lin et al. Interaction between laterally loaded pile and surrounding soil
US7040146B2 (en) Soil or snow probe
JP4694211B2 (en) Method and apparatus for characterizing a tread surface, eg for understanding an artificial lawn surface
KR100901083B1 (en) A pre-consolidation testing apparatus equipped with shear wave generators and receivers for measuring shear wave velocity distribution of soils
JP3941070B2 (en) Ground measurement method, ground measurement program, and ground measurement device
Lutenegger Cylindrical shear or plate bearing?—Uplift behavior of multi-helix screw anchors in clay
US6349590B1 (en) Method and apparatus for estimating load bearing capacity of piles
JP2006234648A (en) Method for quick loading test of pile
Shariatmadari et al. Bearing capacity of driven piles in sands from SPT–applied to 60 case histories
JP2004332400A (en) Method of measuring coefficient of subgrade reaction, device for deriving coefficient of subgrade reaction, method of constructing subgrade, and program
JP4173089B2 (en) Dynamic loading test method
JP3987441B2 (en) Weight drop shock absorber in ground stiffness measuring device
JP2011102527A (en) Horizontal load testing method of pile
Fellenius et al. Analysis of piles in a residual soil—The ISC'2 prediction
JP4863796B2 (en) Pile bearing capacity measurement method
RU2398936C1 (en) Method for assessment of drilled pipe bearing capacity
JP2008020424A (en) Measurement precision improving method using accelerometer for compact fwd
JP4863813B2 (en) Method for evaluating the soundness of foundation structures
JP3941065B2 (en) Ground measurement device
Long et al. Improved design for driven piles based on a pile load test program in Illinois: phase 2.
JP2506282B2 (en) Ground support test equipment
Abbiss Deformation of landfill from measurements of shear wave velocity and damping
US8865989B1 (en) Kinetic measurement of piano key mechanisms for inertial properties and keystroke characteristics
Baziar et al. Centrifuge study of seismic response of soil-nailed walls supporting a footing on the ground surface
JP4733158B2 (en) Elastic modulus measurement method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070323

R150 Certificate of patent or registration of utility model

Ref document number: 3941070

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130413

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140413

Year of fee payment: 7