JP3931834B2 - Optical wavelength multiplexer / demultiplexer - Google Patents

Optical wavelength multiplexer / demultiplexer Download PDF

Info

Publication number
JP3931834B2
JP3931834B2 JP2003116146A JP2003116146A JP3931834B2 JP 3931834 B2 JP3931834 B2 JP 3931834B2 JP 2003116146 A JP2003116146 A JP 2003116146A JP 2003116146 A JP2003116146 A JP 2003116146A JP 3931834 B2 JP3931834 B2 JP 3931834B2
Authority
JP
Japan
Prior art keywords
waveguide
slab
channel
demultiplexer
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003116146A
Other languages
Japanese (ja)
Other versions
JP2004325516A (en
Inventor
浩一 丸
研輔 松井
尚登 上塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2003116146A priority Critical patent/JP3931834B2/en
Publication of JP2004325516A publication Critical patent/JP2004325516A/en
Application granted granted Critical
Publication of JP3931834B2 publication Critical patent/JP3931834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Optical Integrated Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、光通信の分野において波長多重伝送を行う際に用いられる光波長合分波器に関し、特に、低損失かつフラットな通過帯域特性を実現できる光波長合分波器に関するものである。
【0002】
【従来の技術】
光通信の分野においては、複数の信号を別々の波長の光にのせ、1本の光ファイバで伝送することにより情報容量を増大する波長分割多重方式が検討されている。この方法では、異なる波長の光を合分波する光波長合分波器が重要な役割を果たしている。なかでも、アレイ導波路回折格子を用いた光波長合分波器は、狭い波長間隔の合分波を実現することが可能であり、通信容量の多重数を容易に大きくできる利点を有している。
【0003】
これまで、送信側レーザ光の波長揺らぎを許容したり、1チャンネル当たりの帯域幅を広げて伝送速度を増加する目的で、アレイ回折格子を用いた光合分波器において、通過域の特性をフラットにする様々な検討がなされてきている(例えば、特許文献1)。
【0004】
図4に従来のアレイ導波路回折格子型光波長合分波器の光回路を示す。図4(a)は、光回路の全体説明図であり、図4(b)は、図4(a)のA部の拡大説明図である。この光波長合分波器は、複数のチャネル導波路(以下、「アレイ導波路」と呼ぶ)5で構成されているアレイ導波路回折格子4の入力側に、入力用チャネル導波路1、マッハツェンダ回路42および入力側スラブ導波路3が接続されている。また、アレイ導波路回折格子4の出力側に、出力用チャネル導波路7および出力側スラブ導波路6が接続されている。
【0005】
マッハツェンダ回路42は、入力用チャネル導波路1に接続された1対のスラブ接続用直線チャネル導波路49、2本の異なる長さのチャネル導波路からなる遅延用チャネル導波路410および3dBカプラ411から成っている。1対のスラブ接続用直線チャネル導波路49は、近接して配置され、マッハツェンダ回路42におけるもう一方の3dBカプラの役割も有している。
【0006】
アレイ導波路回折格子型光波長合分波器では、入力側スラブ導波路3の一方端から入射した光波は、入力側スラブ導波路3内を伝搬し、アレイ導波路回折格子4との境界に到達する。到達した光波は、境界での電界分布に応じた電力比で各アレイ導波路5に結合し、伝搬する。アレイ導波路5のグレーティング効果により、アレイ導波路5と出力側スラブ導波路6との境界近傍における光波の等位相面の向きが波長毎に異なるため、波長が変化すると、出力側スラブ導波路6と各出力用チャネル導波路7の境界において光の集光位置がシフトする。このため、各出力用チャネル導波路7からは固有の分波波長を有する光波のみを取り出すことができ、光波の合分波機能が実現される。
【0007】
ここで、図4に示した光波長合分波器では、入力側スラブ導波路3にマッハツェンダ回路42を接続している。このマッハツェンダ回路42内での干渉によって、入力側スラブ導波路3へは、スラブ接続用直線チャネル導波路49のそれぞれから波長に関して交互に光が出力される。
【0008】
図5に、スラブ接続用直線チャネル導波路49の#1と#2のそれぞれから入力側スラブ導波路3へ出力する光パワーの波長依存性を示す。入力側スラブ導波路3の端面における入射位置を変えた場合、ある出力用チャネル導波路7には、それぞれの入射位置に依存するような異なる波長の光が集光する。したがって、図5の波長依存性の周期を適切にすることにより、2個のスラブ接続用直線チャネル導波路49からのそれぞれ異なる波長の光を、同じ出力用チャネル導波路7に集光させることが可能になる。これによって、通過域の広帯域化を実現できる(例えば、非特許文献1)。
【0009】
【特許文献1】
特開平08−122557号公報
【非特許文献1】
IEEE PHOTONICS TECHNOLOGY LETTERS,VOL.14,No.1,pp.56−58,2002
【0010】
【発明が解決しようとする課題】
従来のアレイ導波路回折格子型光波長合分波器では、それぞれのスラブ接続用直線チャネル導波路49のコア幅が遅延用チャネル導波路410のコア幅と等しくされている。しかも、コア間のギャップ412をクラッド材で埋め込めるように、スラブ接続用直線チャネル導波路49のギャップ幅を十分に広げなければならないため、それぞれのスラブ接続用直線チャネル導波路49のコア中心間距離をある一定値以下に近づけることができない。
【0011】
このため、それぞれのスラブ接続用直線チャネル導波路49から出力される光パワーが同レベルとなる波長(図5のλc)において、スラブ接続用直線チャネル導波路49から入力側スラブ導波路3に入射する光を重ね合わせた電界分布614は、図6に示すような急峻な双峰状になってしまう。したがって、λcでは、この入力部分の電界分布と、出力側スラブ導波路6から出力用チャネル導波路7に接続する部分の電界分布とのミスマッチが大きくなる。結果として、図7の波長損失特性に示すように、通過域がリップル状になるか、またはリップルを抑えようとすると、アレイ導波路5の本数を減らす必要があり、損失が大きくなってしまう。
【0012】
そこで、本発明の目的は、スラブ接続用直線チャネル導波路のコア間ギャップ幅を、クラッド材で十分埋め込み可能な幅としながら、通過域をリップル状にせず、低損失かつフラットな通過域特性を実現できる光波長合分波器を提供することにある。
【0013】
【課題を解決するための手段】
上記目的を達成するため、本発明は、複数のチャネル導波路からなるアレイ導波路回折格子と、前記アレイ導波路回折格子の一端側に接続された入力側スラブ導波路と、前記アレイ導波路回折格子の他端側に接続された出力側スラブ導波路と、前記出力側スラブ導波路に接続された出力用チャネル導波路とを有し、前記入力側スラブ導波路に接続されたマッハツェンダ回路が接続され、該マッハツェンダ回路は、前記入力側スラブ導波路に接続された1対のスラブ接続用直線チャネル導波路、前記スラブ接続用直線チャネル導波路に接続されたテーパ導波路、前記テーパ導波路に接続された2本の異なる長さの遅延用チャネル導波路、および前記遅延用チャネル導波路に接続された3dBカプラとからなる光波長合分波器において、前記テーパ導波路はそのコア幅が連続的に変化し前記スラブ接続用直線チャネル導波路との接続部分で最も狭く形成され、前記1対のスラブ接続用直線チャネル導波路はそのコア幅が前記テーパ導波路との接続部分と等しいまま互いに近接して前記スラブ導波路に接続され方向性結合器を構成することを特徴とする光波長合分波器。光波長合分波器を提供する。
【0014】
このように、マッハツェンダ回路を構成する導波路の幅を、入力側スラブ導波路との接続部近傍で狭く形成することにより、入力側スラブ導波路への入力部分の電界分布と、出力側スラブ導波路から出力チャネル導波路に接続する部分の電界分布とのミスマッチを小さくすることができる。これによって、通過域のリップルを小さくすることができ、帯域内の損失を低減することができる。
【0015】
マッハツェンダ回路を上記のように構成し、テーパ導波路のコア幅を、スラブ接続用直線チャネル導波路側で狭く形成することにより、入力側スラブ導波路との接続部近傍でコア幅を狭く形成することができる。
【0016】
スラブ接続用直線チャネル導波路のコア幅は、入力側スラブ導波路とのミスマッチ損失が増加しない範囲であれば、できるだけ狭い方が好ましく、コアとクラッドの比屈折率差が0.75%程度となるチャネル導波路においては、1μm〜3μmのコア幅であることが好ましい。また、1対のスラブ接続用直線チャネル導波路間の間隙は、クラッド材の埋め込みが容易である3μm以上とすることが好ましい。さらに、遅延用チャネル導波路のコア幅は擬似シングルモード条件である6μm〜8μmとすることが好ましい。
【0018】
【発明の実施の形態】
図1は、本発明のアレイ導波路回折格子型光波長合分波器の一実施の形態の説明図であり、図1(a)は、光回路の全体説明図であり、図1(b)は、図1(a)のA部の拡大説明図である。この光波長合分波器は、石英基板8の上に作製され、石英基板8上に石英系材料のコアが形成され、このコアにより光回路が構成されている。コアおよび石英基板8の表面は、石英系材料のクラッド膜で覆われている。光回路は、複数のアレイ導波路4で構成されるアレイ導波路回折格子3の入力側に、入力用チャネル導波路1、マッハツェンダ回路2および入力側スラブ導波路3が接続されている。また、アレイ導波路回折格子4の出力側に、出力用チャネル導波路7および出力側スラブ導波路6が接続されている。
【0019】
マッハツェンダ回路2は、入力側スラブ導波路2に接続した1対のスラブ接続用直線チャネル導波路9、スラブ接続用直線チャネル導波路9に接続したテーパ導波路13、テーパ導波路13に接続した2本の異なる長さの遅延用チャネル導波路10、および遅延用チャネル導波路10に接続した3dBカプラ11から成っている。1対のスラブ接続用直線チャネル導波路9およびテーパ導波路13は、近接して配置され、3dBカプラ(方向性結合器)の役割も果たしている。
【0020】
一対のスラブ接続用直線チャネル導波路9のコア幅はいずれも1.5μmとし、遅延用チャネル導波路10のコア幅は6μmとした。これらのコア幅を連続的に変化させるために、テーパ導波路13が設けられている。
【0021】
本実施の形態におけるスラブ接続用直線チャネル導波路9から入力側スラブ導波路3に入射する光を重ね合わせた電界分布14は、図2に示す通りである。本発明においては、スラブ接続用直線チャネル導波路9のコア幅を従来よりも細くすることにより、スラブ接続用直線チャネル導波路9間の間隙12の幅が同じであっても、それぞれのスラブ接続用直線チャネル導波路9から出力される光の電界分布14の重心を近づけることができる。また、スラブ接続用直線チャネル導波路9のコア幅が細いため、スラブ接続用直線チャネル導波路9のそれぞれの電界分布におけるエバネッセント領域を広げることができる。これらの理由で、入力部分の電界分布と、出力側スラブ導波路6から出力チャネル導波路7に接続する部分の電界分布とのミスマッチを小さくすることができる。したがって、通過域のリップルを小さくすることができ、帯域内の損失を低減することができる。
【0022】
本実施の形態における波長損失特性は図3に示す通りであり、図7の従来例と比べて通過域のリップルを低減できていることがわかる。
【0023】
【発明の効果】
以上説明してきたとおり、本発明は、複数のチャネル導波路からなるアレイ導波路回折格子と、前記アレイ導波路回折格子の一端側に接続された入力側スラブ導波路と、前記アレイ導波路回折格子の他端側に接続された出力側スラブ導波路と、前記出力側スラブ導波路に接続された出力用チャネル導波路とを有し、前記入力側スラブ導波路にマッハツェンダ回路が接続された光波長合分波器において、前記マッハツェンダ回路を構成する導波路の幅が、前記入力側スラブ導波路との接続部近傍で狭く形成されている光波長合分波器を提供するものであり、入力側スラブ導波路への入力部分の電界分布と、出力側スラブ導波路から出力チャネル導波路に接続する部分の電界分布とのミスマッチを小さくすることができる。これによって、通過域のリップルを小さくすることができ、帯域内の損失を低減することができる。
【図面の簡単な説明】
【図1】本発明の光波長合分波器の一実施の形態の説明図であり、図1(a)は、全体説明図、図1(b)は、図1(a)のA部の拡大説明図。
【図2】本発明の一実施の形態におけるスラブ接続用直線チャネル導波路から入力側スラブ導波路に入射する光の電界分布を示す説明図。
【図3】本発明の一実施の形態における波長損失特性の説明図。
【図4】従来の光波長合分波器の説明図であり、図4(a)は、全体説明図、図4(b)は、図4(a)のA部の拡大説明図。
【図5】従来の光波長合分波器のスラブ接続用直線チャネル導波路から入力側スラブ導波路に入射する光パワーの波長依存性の説明図。
【図6】従来例のスラブ接続用直線チャネル導波路から入力側スラブ導波路に入射する光の電界分布を示す説明図。
【図7】従来例の波長損失特性の説明図。
【符号の説明】
1:入力用チャネル導波路
2:マッハツェンダ回路
3:入力側スラブ導波路
4:アレイ導波路回折格子
5:アレイ導波路
6:出力側スラブ導波路
7:出力用チャネル導波路
8:基板
9:スラブ接続用直線チャネル導波路
10:遅延用チャネル導波路
11:3dBカプラ
12:間隙
13:テーパ導波路
14:重ね合わせ電界分布
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an optical wavelength multiplexer / demultiplexer used when performing wavelength division multiplexing transmission in the field of optical communications, and more particularly to an optical wavelength multiplexer / demultiplexer capable of realizing low loss and flat passband characteristics.
[0002]
[Prior art]
In the field of optical communications, a wavelength division multiplexing system is being studied in which a plurality of signals are placed on light of different wavelengths and transmitted through a single optical fiber to increase the information capacity. In this method, an optical wavelength multiplexer / demultiplexer that multiplexes / demultiplexes light of different wavelengths plays an important role. In particular, an optical wavelength multiplexer / demultiplexer using an arrayed waveguide diffraction grating can realize multiplexing / demultiplexing with a narrow wavelength interval, and has the advantage of easily increasing the number of multiplexed communication capacities. Yes.
[0003]
Up to now, in order to allow the wavelength fluctuation of the laser beam on the transmitting side and increase the transmission speed by widening the bandwidth per channel, the characteristics of the passband in the optical multiplexer / demultiplexer using an array diffraction grating are flattened. Various studies have been made (for example, Patent Document 1).
[0004]
FIG. 4 shows an optical circuit of a conventional arrayed waveguide grating optical wavelength multiplexer / demultiplexer. 4A is an overall explanatory diagram of the optical circuit, and FIG. 4B is an enlarged explanatory diagram of a portion A of FIG. 4A. This optical wavelength multiplexer / demultiplexer includes an input channel waveguide 1 and a Mach-Zehnder on the input side of an arrayed waveguide diffraction grating 4 composed of a plurality of channel waveguides (hereinafter referred to as “arrayed waveguides”) 5. The circuit 42 and the input side slab waveguide 3 are connected. An output channel waveguide 7 and an output side slab waveguide 6 are connected to the output side of the arrayed waveguide grating 4.
[0005]
The Mach-Zehnder circuit 42 includes a pair of slab-connecting linear channel waveguides 49 connected to the input channel waveguide 1, a delay channel waveguide 410 composed of two channel waveguides of different lengths, and a 3 dB coupler 411. It is made up. The pair of slab connecting linear channel waveguides 49 are arranged close to each other, and also have the role of the other 3 dB coupler in the Mach-Zehnder circuit 42.
[0006]
In the arrayed waveguide grating optical wavelength multiplexer / demultiplexer, the light wave incident from one end of the input side slab waveguide 3 propagates in the input side slab waveguide 3 and reaches the boundary with the arrayed waveguide grating 4. To reach. The reached light wave is coupled to each arrayed waveguide 5 with a power ratio corresponding to the electric field distribution at the boundary and propagates. Due to the grating effect of the arrayed waveguide 5, the direction of the equiphase surface of the light wave in the vicinity of the boundary between the arrayed waveguide 5 and the output-side slab waveguide 6 differs depending on the wavelength. Therefore, when the wavelength changes, the output-side slab waveguide 6 The light condensing position shifts at the boundary between the output channel waveguides 7. For this reason, only the light wave having a specific demultiplexing wavelength can be extracted from each output channel waveguide 7, and a light wave multiplexing / demultiplexing function is realized.
[0007]
Here, in the optical wavelength multiplexer / demultiplexer shown in FIG. 4, a Mach-Zehnder circuit 42 is connected to the input-side slab waveguide 3. Due to the interference in the Mach-Zehnder circuit 42, light is alternately output to the input-side slab waveguide 3 with respect to the wavelength from each of the slab connection linear channel waveguides 49.
[0008]
FIG. 5 shows the wavelength dependence of the optical power output to the input-side slab waveguide 3 from each of # 1 and # 2 of the slab connection linear channel waveguide 49. When the incident position on the end face of the input-side slab waveguide 3 is changed, light of different wavelengths depending on the incident positions is collected in a certain output channel waveguide 7. Accordingly, by making the wavelength-dependent period of FIG. 5 appropriate, light of different wavelengths from the two slab connecting linear channel waveguides 49 can be condensed on the same output channel waveguide 7. It becomes possible. As a result, a wider passband can be realized (for example, Non-Patent Document 1).
[0009]
[Patent Document 1]
Japanese Unexamined Patent Publication No. 08-122557 [Non-patent Document 1]
IEEE PHOTOTONICS TECHNOLOGY LETTERS, VOL. 14, no. 1, pp. 56-58, 2002
[0010]
[Problems to be solved by the invention]
In the conventional arrayed waveguide grating optical wavelength multiplexer / demultiplexer, the core width of each slab connecting linear channel waveguide 49 is made equal to the core width of the delay channel waveguide 410. In addition, since the gap width of the slab connecting linear channel waveguide 49 must be sufficiently widened so that the gap 412 between the cores can be filled with the clad material, between the core centers of the respective slab connecting linear channel waveguides 49 The distance cannot be reduced below a certain value.
[0011]
Therefore, the light power output from each slab connection linear channel waveguide 49 is incident on the input side slab waveguide 3 from the slab connection linear channel waveguide 49 at a wavelength (λc in FIG. 5). The electric field distribution 614 obtained by superimposing the light to be abrupt has a steep double peak shape as shown in FIG. Therefore, at λc, the mismatch between the electric field distribution at the input portion and the electric field distribution at the portion connecting the output-side slab waveguide 6 to the output channel waveguide 7 becomes large. As a result, as shown in the wavelength loss characteristic of FIG. 7, if the passband is in a ripple shape or the ripple is to be suppressed, it is necessary to reduce the number of arrayed waveguides 5, and the loss increases.
[0012]
Accordingly, an object of the present invention is to provide a low-loss and flat passband characteristic without making the passband ripple, while making the gap width between the cores of the straight channel waveguide for slab connection sufficiently wide to be buried with a clad material. An object of the present invention is to provide an optical wavelength multiplexer / demultiplexer that can be realized.
[0013]
[Means for Solving the Problems]
To achieve the above object, the present invention provides an arrayed waveguide diffraction grating composed of a plurality of channel waveguides, an input-side slab waveguide connected to one end of the arrayed waveguide diffraction grating, and the arrayed waveguide diffraction An output-side slab waveguide connected to the other end of the grating and an output channel waveguide connected to the output-side slab waveguide, and a Mach-Zehnder circuit connected to the input-side slab waveguide is connected The Mach-Zehnder circuit is connected to the pair of slab-connecting linear channel waveguides connected to the input-side slab waveguide, the tapered waveguide connected to the slab-connecting linear channel waveguide, and connected to the tapered waveguide. in two different lengths of delay channel waveguide, and an optical wavelength demultiplexer comprising a 3dB coupler connected to said delay channel waveguides, the tape The waveguide has a core width that continuously changes and is formed to be narrowest at a connection portion with the straight channel waveguide for slab connection. The pair of straight channel waveguides for slab connection has a core width that is the tapered waveguide. An optical wavelength multiplexer / demultiplexer comprising a directional coupler connected to the slab waveguide in the vicinity of each other while being equal to the connecting portion . An optical wavelength multiplexer / demultiplexer is provided.
[0014]
In this way, by narrowing the width of the waveguide constituting the Mach-Zehnder circuit near the connection portion with the input side slab waveguide, the electric field distribution of the input portion to the input side slab waveguide and the output side slab waveguide are reduced. The mismatch with the electric field distribution of the portion connected from the waveguide to the output channel waveguide can be reduced. As a result, the ripple in the passband can be reduced, and loss in the band can be reduced.
[0015]
The Mach-Zehnder circuit is configured as described above, and the core width of the tapered waveguide is narrowed on the straight channel waveguide side for slab connection, so that the core width is narrowed in the vicinity of the connection portion with the input-side slab waveguide. be able to.
[0016]
The core width of the linear channel waveguide for slab connection is preferably as narrow as possible as long as mismatch loss with the input-side slab waveguide does not increase, and the relative refractive index difference between the core and the cladding is about 0.75%. In the channel waveguide, the core width is preferably 1 μm to 3 μm. The gap between the pair of straight channel waveguides for connecting slabs is preferably 3 μm or more, which allows easy embedding of a clad material. Further, the core width of the delay channel waveguide is preferably 6 μm to 8 μm, which is a pseudo single mode condition.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an explanatory view of an embodiment of an arrayed waveguide grating optical wavelength multiplexer / demultiplexer according to the present invention. FIG. 1 (a) is an overall explanatory view of an optical circuit, and FIG. ) Is an enlarged explanatory view of a portion A in FIG. This optical wavelength multiplexer / demultiplexer is fabricated on a quartz substrate 8, a core made of a quartz-based material is formed on the quartz substrate 8, and an optical circuit is constituted by this core. The surface of the core and the quartz substrate 8 is covered with a clad film made of a quartz material. In the optical circuit, an input channel waveguide 1, a Mach-Zehnder circuit 2, and an input side slab waveguide 3 are connected to the input side of an arrayed waveguide diffraction grating 3 composed of a plurality of arrayed waveguides 4. An output channel waveguide 7 and an output side slab waveguide 6 are connected to the output side of the arrayed waveguide grating 4.
[0019]
The Mach-Zehnder circuit 2 includes a pair of slab connection linear channel waveguides 9 connected to the input-side slab waveguide 2, a taper waveguide 13 connected to the slab connection linear channel waveguide 9, and 2 connected to the taper waveguide 13. It consists of a delay channel waveguide 10 of different lengths and a 3 dB coupler 11 connected to the delay channel waveguide 10. The pair of slab connecting linear channel waveguides 9 and the tapered waveguides 13 are arranged close to each other and also serve as a 3 dB coupler (directional coupler).
[0020]
The core width of each of the pair of slab connecting straight channel waveguides 9 is 1.5 μm, and the core width of the delay channel waveguide 10 is 6 μm. In order to continuously change these core widths, a tapered waveguide 13 is provided.
[0021]
The electric field distribution 14 obtained by superimposing the light incident on the input-side slab waveguide 3 from the slab-connecting linear channel waveguide 9 in this embodiment is as shown in FIG. In the present invention, the core width of the slab connecting linear channel waveguide 9 is made narrower than before, so that even if the width of the gap 12 between the slab connecting linear channel waveguides 9 is the same, each slab connecting The center of gravity of the electric field distribution 14 of the light output from the straight channel waveguide 9 can be made closer. Further, since the core width of the slab connecting linear channel waveguide 9 is narrow, the evanescent region in each electric field distribution of the slab connecting linear channel waveguide 9 can be expanded. For these reasons, the mismatch between the electric field distribution at the input portion and the electric field distribution at the portion connected from the output-side slab waveguide 6 to the output channel waveguide 7 can be reduced. Therefore, the ripple in the pass band can be reduced and the loss in the band can be reduced.
[0022]
The wavelength loss characteristic in the present embodiment is as shown in FIG. 3, and it can be seen that the passband ripple can be reduced as compared with the conventional example of FIG.
[0023]
【The invention's effect】
As described above, the present invention includes an arrayed waveguide diffraction grating composed of a plurality of channel waveguides, an input-side slab waveguide connected to one end of the arrayed waveguide diffraction grating, and the arrayed waveguide diffraction grating. An output-side slab waveguide connected to the other end of the output channel, and an output channel waveguide connected to the output-side slab waveguide, and a Mach-Zehnder circuit connected to the input-side slab waveguide. In the multiplexer / demultiplexer, there is provided an optical wavelength multiplexer / demultiplexer in which the width of the waveguide constituting the Mach-Zehnder circuit is narrowly formed in the vicinity of the connection portion with the input-side slab waveguide. The mismatch between the electric field distribution at the input portion to the slab waveguide and the electric field distribution at the portion connected from the output-side slab waveguide to the output channel waveguide can be reduced. As a result, the ripple in the passband can be reduced, and loss in the band can be reduced.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment of an optical wavelength multiplexer / demultiplexer according to the present invention, FIG. 1 (a) is an overall explanatory diagram, and FIG. 1 (b) is an A part of FIG. 1 (a). FIG.
FIG. 2 is an explanatory diagram showing an electric field distribution of light incident on an input-side slab waveguide from a slab-connecting linear channel waveguide according to an embodiment of the present invention.
FIG. 3 is an explanatory diagram of wavelength loss characteristics according to an embodiment of the present invention.
4A and 4B are explanatory diagrams of a conventional optical wavelength multiplexer / demultiplexer, in which FIG. 4A is an overall explanatory diagram, and FIG. 4B is an enlarged explanatory diagram of a portion A in FIG.
FIG. 5 is an explanatory diagram of wavelength dependency of optical power incident on an input-side slab waveguide from a slab connection linear channel waveguide of a conventional optical wavelength multiplexer / demultiplexer.
FIG. 6 is an explanatory diagram showing an electric field distribution of light incident on an input-side slab waveguide from a conventional slab connection linear channel waveguide.
FIG. 7 is an explanatory diagram of wavelength loss characteristics of a conventional example.
[Explanation of symbols]
1: input channel waveguide 2: Mach-Zehnder circuit 3: input side slab waveguide 4: array waveguide diffraction grating 5: array waveguide 6: output side slab waveguide 7: output channel waveguide 8: substrate 9: slab Connecting linear channel waveguide 10: delay channel waveguide 11: 3 dB coupler 12: gap 13: taper waveguide 14: overlapping electric field distribution

Claims (2)

複数のチャネル導波路からなるアレイ導波路回折格子と、前記アレイ導波路回折格子の一端側に接続された入力側スラブ導波路と、前記アレイ導波路回折格子の他端側に接続された出力側スラブ導波路と、前記出力側スラブ導波路に接続された出力用チャネル導波路とを有し、前記入力側スラブ導波路に接続されたマッハツェンダ回路が接続され、該マッハツェンダ回路は、前記入力側スラブ導波路に接続された1対のスラブ接続用直線チャネル導波路、前記スラブ接続用直線チャネル導波路に接続されたテーパ導波路、前記テーパ導波路に接続された2本の異なる長さの遅延用チャネル導波路、および前記遅延用チャネル導波路に接続された3dBカプラとからなる光波長合分波器において、
前記テーパ導波路はそのコア幅が連続的に変化し前記スラブ接続用直線チャネル導波路との接続部分で最も狭く形成され、前記1対のスラブ接続用直線チャネル導波路はそのコア幅が前記テーパ導波路との接続部分と等しいまま互いに近接して前記スラブ導波路に接続され方向性結合器を構成することを特徴とする光波長合分波器。
An arrayed waveguide diffraction grating composed of a plurality of channel waveguides, an input side slab waveguide connected to one end of the arrayed waveguide diffraction grating, and an output side connected to the other end of the arrayed waveguide diffraction grating A Mach-Zehnder circuit connected to the input-side slab waveguide , wherein the Mach- Zehnder circuit is connected to the input-side slab waveguide. A pair of slab connecting linear channel waveguides connected to the waveguide, a tapered waveguide connected to the slab connecting linear channel waveguide, and two different length delays connected to the tapered waveguide In an optical wavelength multiplexer / demultiplexer comprising a channel waveguide and a 3 dB coupler connected to the delay channel waveguide ,
The taper waveguide has a core width that continuously changes and is formed to be narrowest at a connection portion with the straight channel waveguide for slab connection, and the core width of the pair of straight channel waveguides for slab connection is the taper. An optical wavelength multiplexer / demultiplexer comprising a directional coupler connected to the slab waveguide adjacent to each other while being equal to a connection portion with the waveguide .
前記スラブ接続用直線チャネル導波路のコア幅は1μm〜3μm、前記1対のスラブ接続用直線チャネル導波路間の間隙は3μm以上、前記遅延用チャネル導波路のコア幅は6μm〜8μmである請求項記載の光波長合分波器。The core width of the straight channel waveguide for slab connection is 1 μm to 3 μm, the gap between the pair of straight channel waveguides for slab connection is 3 μm or more, and the core width of the delay channel waveguide is 6 μm to 8 μm. Item 4. The optical wavelength multiplexer / demultiplexer according to Item 1 .
JP2003116146A 2003-04-21 2003-04-21 Optical wavelength multiplexer / demultiplexer Expired - Fee Related JP3931834B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003116146A JP3931834B2 (en) 2003-04-21 2003-04-21 Optical wavelength multiplexer / demultiplexer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003116146A JP3931834B2 (en) 2003-04-21 2003-04-21 Optical wavelength multiplexer / demultiplexer

Publications (2)

Publication Number Publication Date
JP2004325516A JP2004325516A (en) 2004-11-18
JP3931834B2 true JP3931834B2 (en) 2007-06-20

Family

ID=33496489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003116146A Expired - Fee Related JP3931834B2 (en) 2003-04-21 2003-04-21 Optical wavelength multiplexer / demultiplexer

Country Status (1)

Country Link
JP (1) JP3931834B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11656405B2 (en) 2019-08-01 2023-05-23 Nippon Telegraph And Telephone Corporation Optical multi/demultiplexing circuit

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7075747B2 (en) * 2017-12-06 2022-05-26 Nttエレクトロニクス株式会社 Optical wavelength combiner / demultiplexer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11656405B2 (en) 2019-08-01 2023-05-23 Nippon Telegraph And Telephone Corporation Optical multi/demultiplexing circuit

Also Published As

Publication number Publication date
JP2004325516A (en) 2004-11-18

Similar Documents

Publication Publication Date Title
JP4361030B2 (en) Mode splitter and optical circuit
EP1226461B1 (en) Phasar with flattened pass-band
US5940555A (en) Optical multiplexer/demultiplexer
JP4190733B2 (en) Arrayed waveguide grating optical multiplexer / demultiplexer
JP6653886B2 (en) Mode multiplexer / demultiplexer and mode multiplex transmission system
JP4076785B2 (en) Optical coupling device
JP2002202419A (en) Array waveguide diffraction grating type optical coupling/branching device and optical waveguide circuit
JP4477260B2 (en) Waveguide-type optical coupler and optical multiplexer / demultiplexer using the waveguide-type optical coupler
JPH05313029A (en) Light wave combining/splitting instrument
US6892004B1 (en) Optical coupling arrangement having low coupling loss and high production yield
JP2001350041A (en) Array waveguide diffraction grating type optical multiplexer/demultiplexer and optical waveguide circuit
JP2003149471A (en) Waveguide type optical multiplexer-demultiplexer
JP2002341165A (en) Optical wavelength multiplexing and demultiplexing device, and method for using the same
JP6509626B2 (en) Wavelength multiplexing / demultiplexing device, optical receiver and optical transmitter
JP2003172830A (en) Optical multiplexer/demultiplexer
Truong et al. A design of triplexer based on a 2× 2 butterfly MMI coupler and a directional coupler using silicon waveguides
JP3931834B2 (en) Optical wavelength multiplexer / demultiplexer
JP2001108846A (en) Waveguide grating router
JP3857925B2 (en) Optical multiplexer / demultiplexer
KR20110002619A (en) Optical device
JP3029028B2 (en) Optical wavelength multiplexer / demultiplexer
JP6351114B2 (en) Mode multiplexer / demultiplexer and design method of mode multiplexer / demultiplexer
KR100722250B1 (en) Array waveguide lattice type optical multiplexer/demultiplexer circuit
JP2000298222A (en) Optical circuit element
JP2003075662A (en) Light wavelength multiplexer/demultiplexer

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070305

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140323

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees