JP3923329B2 - Compound antenna - Google Patents

Compound antenna Download PDF

Info

Publication number
JP3923329B2
JP3923329B2 JP2002031129A JP2002031129A JP3923329B2 JP 3923329 B2 JP3923329 B2 JP 3923329B2 JP 2002031129 A JP2002031129 A JP 2002031129A JP 2002031129 A JP2002031129 A JP 2002031129A JP 3923329 B2 JP3923329 B2 JP 3923329B2
Authority
JP
Japan
Prior art keywords
antenna
linearly polarized
polarized wave
dielectric member
radiating element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002031129A
Other languages
Japanese (ja)
Other versions
JP2003234617A (en
Inventor
憲一 照沼
晴久 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokowo Co Ltd
Original Assignee
Yokowo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokowo Co Ltd filed Critical Yokowo Co Ltd
Priority to JP2002031129A priority Critical patent/JP3923329B2/en
Publication of JP2003234617A publication Critical patent/JP2003234617A/en
Application granted granted Critical
Publication of JP3923329B2 publication Critical patent/JP3923329B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)
  • Details Of Aerials (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、アメリカ本土で放送が開始されるXMサテライトラジオ放送およびシリウスサテライト放送などの、衛星波と地上波の双方で送信される放送信号をともに受信するための複合アンテナに関するものである。
【0002】
【従来の技術】
衛星から送信される衛星波と、これを地上局で受信して変調方式を相違させて再び地上局から送信される地上波とを、ともに受信する従来の複合アンテナの一例を、図9を参照して説明する。
【0003】
図9は、従来の複合アンテナの一例の斜視図である。図9において、誘電体板10の表面に矩形の面状放射素子12が配設され、誘電体板10の裏面にグランドプレート14が配設され、面状放射素子12に裏面側から誘電体板10を貫通した給電線(図示せず)が電気的接続され、面状放射素子12とグランドプレート14により衛星から送信される円偏波の衛星波を受信する円偏波受信パッチアンテナ16が構成されている。また、面状放射素子12の中心位置に、上方に突設してヘリカルコイルを含んで構成されて垂直直線偏波の地上波を受信する垂直直線偏波受信アンテナ素子18が配設される。なお、垂直直線偏波受信アンテナ素子18は、面状放射素子12とは絶縁状態にある。
【0004】
かかる構成の従来の複合アンテナの指向特性は、図10ないし図12のごときである。図10は、円偏波受信パッチアンテナ16で衛星波を受信した垂直面内指向特性図である。図11は、垂直直線偏波受信アンテナ素子18で地上波を受信した垂直面内指向特性図である。図12は、垂直直線偏波受信アンテナ素子18で地上波を受信した水平面内指向特性図である。
【0005】
【発明が解決しようとする課題】
図9に示す従来の複合アンテナにあっては、図12に示すごとく、地上波に対して水平面内指向特性は無指向性を示している。また、図示してないが、衛星波に対して水平面内指向特性が無指向性を示すことは勿論である。しかるに、図10に示すごとく、衛星波に対して、垂直上方の利得が最も大きく、仰角が低くなるほど利得が低下する。これは受信する場所によりまた複合アンテナが設置される姿勢などにより受信感度に変化を生ずることとなる。そして、図11に示すごとく、地上波に対して、水平方向の低仰角における利得が小さい。地上波に対して良好な受信感度を得るためには、水平方向の低仰角の利得が大きいことが望ましい。
【0006】
本発明は、上述のごとき従来技術の事情に鑑みてなされてもので、衛星波に対して仰角の違いにより利得の変化が少なくまた低仰角でも利得が大きく、さらに地上波に対して低仰角の利得がより大きくなるように改善した複合アンテナを提供することを目的とする。
【0007】
【課題を解決するための手段】
かかる目的を達成するために、本発明の複合アンテナは、円偏波の衛星波と垂直直線偏波の地上波を受信する複合アンテナであって、上方に凸なる錐状で厚さが略一定な誘電体部材の表面に、前記錐状の頂点を中心として錐状放射素子を配設し、前記誘電体部材の裏面にグランドプレートを配設し、前記錐状放射素子に給電線を接続して前記錐状放射素子とグランドプレートで前記円偏波を受信し得る円偏波受信パッチアンテナを形成し、前記誘電体部材の前記錐状の頂点に上方に突設して前記垂直直線偏波を受信し得る垂直直線偏波受信アンテナ素子を前記錐状放射素子と絶縁状態で配設し、前記垂直直線偏波受信アンテナ素子の基端に同軸構造の中心導体を接続して構成されている。
【0008】
そして、前記誘電体部材を円錐状とし、その表面に円錐状の前記錐状放射素子を配設し、前記垂直直線偏波受信アンテナ素子をヘリカルコイルを含んで構成しても良い。
【0009】
また、前記錐状放射素子に、前記グランドプレート側から前記誘電体部材を貫通して前記給電線としての第1の同軸構造の中心導体を電気的接続し、前記第1の同軸構造の外部導体を前記グランドプレートに電気的接続し、前記垂直直線偏波受信アンテナ素子の基端を、第2の同軸構造の中心導体に電気的接続し、前記第2の同軸構造の外部導体を前記グランドプレートに電気的接続して構成することもできる。
【0010】
【発明の実施の形態】
以下、本発明の第1実施例を図1ないし図6を参照して説明する。図1は、本発明の複合アンテナの第1実施例の外観図であり、(a)は平面図、(b)は側面図である。図2は、図1の(a)のA−A断面矢視拡大図である。図3は、円偏波受信パッチアンテナで衛星波を受信した垂直面内指向特性図である。図4は、垂直直線偏波受信アンテナ素子で地上波を受信した垂直面内指向特性図である。図5は、垂直直線偏波受信アンテナ素子で地上波を受信した水平面内指向特性図である。図6は、図1の複合アンテナをアンテナ収容筐体に収容した縦断面図である。
【0011】
本発明の複合アンテナにあっては、上方に凸なる円錐状で厚さtが略一定な誘電体部材20の表面に、導電金属板や導電金属薄膜などからなる円錐状の円錐状放射素子22が配設される。誘電体部材20の頂点を中心として円錐状放射素子22が配設され、その頂点は一致する。そして、円錐状放射素子22の縁には、放射状に対向する2箇所に切り欠き状の摂動素子22a,22aが設けられる。また、誘電体部材20の裏面略全面に導電金属薄膜などからなるグランドプレート24が配設される。さらに、第1の同軸線路26の中心導体26aが裏面側から誘電体部材20を貫通して、表面にある円錐状放射素子22に半田付け28などにより適宜に電気的接続される。また、第1の同軸線路26の外部導体26bは、グランドプレート24に適宜に半田付けなどにより電気的接続される。もって、誘電体部材20を挟んで設けられた円錐状放射素子22とグランドプレート24により、円錐状の円偏波受信パッチアンテナが形成される。なお、一例として、XMサテライトラジオ放送の送信周波数の2.3GHzの円偏波の衛星波を受信するための円錐状放射素子22は、その頂角が125°であり、頂点から縁までの寸法は25mmである。この円錐状放射素子22の受信周波数に対する外形寸法は、誘電体部材20の誘電率により適宜に設定すべきことは勿論である。
【0012】
さらに、誘電体部材20の円錐状の頂点に、上方に突設してヘリカルコイル部30aとその基端側が直線部30bとされる垂直直線偏波受信アンテナ素子30が配設される。直線部30bが誘電体部材20の頂点を垂直方向に貫通し、裏面側に設けられる第2の同軸線路32の中心導体32aに電気的接続される。この第2の同軸線路32の外部導体36bは、誘電体部材20の裏面のグランドプレート24に半田付けなどにより適宜に電気的接続される。なお、この垂直直線偏波受信アンテナ素子30は、円錐状放射素子22に対して絶縁された状態とされている。そして、垂直直線偏波受信アンテナ素子30は、グランドプレート24より上方の部分がアンテナとして作用し、一例として、共振させるように放送の送信周波数の2.3GHzの1/4波長の電気長に設定される。
【0013】
かかる構成の本発明の複合アンテナにあっては、図3に示すごとく、衛星波に対して、円錐状放射素子22で受信した垂直面内指向特性は、垂直上方から略±70°の低い仰角まで受信感度はほぼ5dBと略同一であり、しかも±90°の低仰角にあっても、−5dBと、図10に示す従来の複合アンテナに比較して、略3dBほど利得が向上している。そこで、衛星波に対して、これを受信する場所や本発明の複合アンテナが設置される姿勢により受信感度の変化が少ない。しかも、低仰角における受信感度が向上している。もって、衛星波を確実に受信し得る。なお、衛星波に対する水平面内指向特性は、図示していないが、無指向性であることは勿論である。
【0014】
そして、図4に示すごとく、地上波に対して、垂直直線偏波アンテナ素子30で受信した垂直指向特性は、±90°の低仰角においてほぼ1dBと、図11に示す従来の複合アンテナに比較して、略3dBほど利得が向上している。これにより、地上波に対して略3dBほど受信感度の向上が図れている。
【0015】
ここで、垂直直線偏波アンテナ素子30に対して、円錐状放射素子22は反射板として作用することから、この反射板を頂角の小さな円錐状とすることで±90°の低仰角の利得が改善されるものと考えられるが、円錐状放射素子22の頂角を180°から単に減少させても、垂直直線偏波アンテナ素子30の±90°の低仰角の利得が一律に向上するものではなく、増加と減少が交互に生ずる。そこで、発明者らは、反射板としての円錐状放射素子22の頂角を、実験により125°に設定している。
【0016】
上述のごとき本発明の複合アンテナは、一例として車の屋根などに搭載できるように、図6に示すごとく、アンテナ収容筐体に収容される。図6において、誘電体部材20の基部側に回路基板40が配設され、この回路基板40には衛星波および地上波の受信信号を増幅する低雑音増幅回路(図示せず)が搭載され、第1と第2の同軸線路26,32の他端が回路基板40に適宜に電気的接続されて、受信信号が低雑音増幅回路に入力される。そして、この低雑音増幅回路の増幅出力は、出力ケーブル42により導出される。また、複合アンテナを上から覆うように略円錐状の誘電体からなるレドーム44が設けられ、複合アンテナの下側には基台46が配設される。レドーム44と基台46により、水密的に複合アンテナを収容し得るアンテナ収容筐体48が構成される。さらに、基台46が適宜に車の屋根に貼着などにより適宜に固定され得る。
【0017】
次に、本発明の第2実施例を図7を参照して説明する。図7は、本発明の複合アンテナの第2実施例の外観斜視図である。図7に示す第2実施例では、四角錐状で厚さが略一定な誘電体部材50の表面に、その頂点を一致させて導電金属板や導電金属薄膜などからなる四角錐状放射素子52が配設される。そして、誘電体部材50の頂点に上方に突出させてヘリカルコイルを含む垂直直線偏波受信アンテナ素子30が配設される。なお、誘電体部材50の裏面には図示しないグランドプレートが設けられ、また四角錐状放射素子52にも適宜な給電線が電気的接続されて、円偏波受信パッチアンテナが形成される。
【0018】
図7に示す本発明の第2実施例にあっても、第1実施例と同様に、衛星波および地上波に対してともに低仰角の利得の向上が図れる。
【0019】
さらに、本発明の第3実施例を図8を参照して説明する。図8は、本発明の複合アンテナの第3実施例の外観図であり、(a)は平面図、(b)は正面図である。図8に示す第3実施例で、第1実施例と相違するところは、円錐状放射素子22に対する給電線を、第1の同軸線路26に代えて、誘電体部材20の表面に設けた帯状の導電金属薄膜などからなるマイクロストリップライン60で形成したものである。第1実施例と同様の作用効果が得られることは勿論である。
【0020】
なお、上述の第1実施例では、第1と第2の同軸線路26,32を用いているが、同軸構造が形成されれば、いかなる構造のものであっても良い。また、第1実施例のごとく、円錐状の誘電体部材20の表面に平面投影形状が円形の円錐状放射素子22が設けられるものに限られず、平面投影形状が矩形(正方形および長方形を含む)のものや正方形の1つの隅が切り欠かれたものなどであっても良い。また、第2実施例のごとく、四角錐状の誘電体部材50の表面に平面投影形状が矩形の四角錐状放射素子52が設けられるものに限られず、平面投影形状が円形の錐状放射素子であっても良い。そして、第2実施例で、誘電体部材およびその表面に配設される錐状放射素子は、四角錐に限られず、五角錐や六角錐などいかなる角錐状であっても良い。さらに、誘電体部材は、楕円錐状や長方形の四角錐などであっても良い。誘電体部材20、50の表面に設けられる錐状放射素子は、その平面投影形状が円偏波を受信し得るいかなるパッチ形状であっても良い。さらに、実施例では、垂直直線偏波受信アンテナ素子30は、物理的長さを短くするためにヘリカルコイルを含んで形成されているが、物理的長さが長くても良ければポールアンテナで形成しても良いことは勿論であり、水平面内指向性が無指向なアンテナであればいかなる構造のものであっても良い。
【0021】
【発明の効果】
以上説明したように本発明の複合アンテナは構成されているので、以下のごとき格別な効果を奏する。
【0022】
請求項1記載の複合アンテナにあっては、円偏波受信パッチアンテナを形成する放射素子を錐状としたことにより、衛星波を円偏波受信パッチアンテナで受信した垂直面内指向特性の低仰角において、および地上波を垂直直線偏波受信素子で受信した垂直面内指向特性の低仰角におけるいずれでも利得が改善される。しかも、衛星波に対して垂直上方から略±70°の低い仰角までの広い範囲で利得はほぼ一定である。そこで、衛星波に対して、これを受信する場所や複合アンテナの姿勢の変化などにより、受信感度が大幅に変化することがない。
【0023】
請求項2記載の複合アンテナにあっては、全体を略円錐状に形成し、その頂点に物理的長さが短いヘリカルコイルを含んだ垂直直線偏波受信アンテナ素子を突設するので、全体を小型に構成するのに好適である。
【0024】
請求項3記載の複合アンテナにあっては、円偏波受信パッチアンテナおよび垂直直線偏波受信アンテナ素子による受信信号を、第1と第2の同軸構造で導出するので、受信信号の導出経路における減衰を生じることがない。
【図面の簡単な説明】
【図1】本発明の複合アンテナの第1実施例の外観図であり、(a)は平面図、(b)は側面図である。
【図2】図1の(a)のA−A断面矢視拡大図である。
【図3】本発明の複合アンテナの円偏波受信パッチアンテナで衛星波を受信した垂直面内指向特性図である。
【図4】本発明の複合アンテナの垂直直線偏波受信アンテナ素子で地上波を受信した垂直面内指向特性図である。
【図5】本発明の複合アンテナの垂直直線偏波受信アンテナ素子で地上波を受信した水平面内指向特性図である。
【図6】図1の複合アンテナをアンテナ収容筐体に収容した縦断面図である。
【図7】本発明の複合アンテナの第2実施例の外観斜視図である。
【図8】 本発明の複合アンテナの第3実施例の外観図であり、(a)は平面図、(b)は正面図である。
【図9】従来の複合アンテナの一例の斜視図である。
【図10】 従来の複合アンテナの円偏波受信パッチアンテナで衛星波を受信した垂直面内指向特性図である。
【図11】従来の複合アンテナの垂直直線偏波受信アンテナ素子で地上波を受信して垂直面内指向特性図である。
【図12】従来の複合アンテナの垂直直線偏波受信アンテナ素子で地上波を受信した水平面内指向特性図である。
【符号の説明】
14、24 グランドプレート
18、30 垂直直線偏波受信アンテナ素子
20、50 誘電体部材
22 円錐状放射素子
26 第1の同軸線路
32 第2の同軸線路
52 四角錐状放射素子
60 マイクロストリップライン
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite antenna for receiving both broadcast signals transmitted by both satellite waves and terrestrial waves, such as XM satellite radio broadcasts and Sirius satellite broadcasts that start broadcasting in the continental United States.
[0002]
[Prior art]
Refer to FIG. 9 for an example of a conventional composite antenna that receives both a satellite wave transmitted from a satellite and a terrestrial wave received by the ground station and transmitted again from the ground station with a different modulation method. To explain.
[0003]
FIG. 9 is a perspective view of an example of a conventional composite antenna. In FIG. 9, a rectangular planar radiation element 12 is disposed on the surface of the dielectric plate 10, a ground plate 14 is disposed on the back surface of the dielectric plate 10, and the dielectric plate is disposed on the planar radiation element 12 from the back surface side. A circularly polarized wave receiving patch antenna 16 that receives a circularly polarized satellite wave transmitted from a satellite is configured by a planar radiation element 12 and a ground plate 14 that are electrically connected to a feeder line (not shown) penetrating 10. Has been. In addition, a vertical linearly polarized wave receiving antenna element 18 that protrudes upward and includes a helical coil and receives a vertical linearly polarized ground wave is disposed at the center position of the planar radiating element 12. The vertically linearly polarized wave receiving antenna element 18 is in an insulated state from the planar radiating element 12.
[0004]
The directivity characteristics of the conventional composite antenna having such a configuration are as shown in FIGS. FIG. 10 is a vertical in-plane directivity characteristic diagram in which a satellite wave is received by the circularly polarized wave receiving patch antenna 16. FIG. 11 is a vertical in-plane directivity characteristic diagram in which a terrestrial wave is received by the vertical linearly polarized wave receiving antenna element 18. FIG. 12 is a horizontal plane directivity characteristic diagram in which a terrestrial wave is received by the vertical linearly polarized wave receiving antenna element 18.
[0005]
[Problems to be solved by the invention]
In the conventional composite antenna shown in FIG. 9, as shown in FIG. 12, the directional characteristic in the horizontal plane shows omnidirectionality with respect to the ground wave. Moreover, although not shown in the drawing, it is a matter of course that the directivity characteristic in the horizontal plane shows omnidirectionality with respect to the satellite wave. However, as shown in FIG. 10, the gain in the vertical direction is the largest with respect to the satellite wave, and the gain decreases as the elevation angle decreases. This causes a change in reception sensitivity depending on the place where the reception is performed and the posture where the composite antenna is installed. And as shown in FIG. 11, the gain in the low elevation angle of a horizontal direction is small with respect to a terrestrial wave. In order to obtain good reception sensitivity for terrestrial waves, it is desirable that the gain of the low elevation angle in the horizontal direction is large.
[0006]
Since the present invention has been made in view of the circumstances of the prior art as described above, the gain change is small due to the difference in elevation angle with respect to the satellite wave, the gain is large even at a low elevation angle, and the low elevation angle with respect to the ground wave. It is an object of the present invention to provide a composite antenna improved so that the gain becomes larger.
[0007]
[Means for Solving the Problems]
In order to achieve such an object, the composite antenna of the present invention is a composite antenna that receives a circularly polarized satellite wave and a vertical linearly polarized terrestrial wave, and has an upwardly convex cone shape and a substantially constant thickness. A conical radiating element is disposed on the surface of the dielectric member with the conical apex as a center, a ground plate is disposed on the back surface of the dielectric member, and a feed line is connected to the conical radiating element. The circularly polarized wave receiving patch antenna capable of receiving the circularly polarized wave is formed by the conical radiating element and the ground plate, and the vertical linearly polarized wave is projected upward from the cone-shaped apex of the dielectric member. A linearly polarized wave receiving antenna element capable of receiving a signal is disposed in an insulated state from the conical radiating element, and a coaxial central conductor is connected to the base end of the vertically linearly polarized wave receiving antenna element . .
[0008]
The dielectric member may be conical, the conical radiating element may be disposed on the surface of the dielectric member, and the vertical linearly polarized wave receiving antenna element may include a helical coil.
[0009]
Further, a central conductor of the first coaxial structure as the feeder line is electrically connected to the conical radiating element from the ground plate side through the dielectric member, and the outer conductor of the first coaxial structure is electrically connected. Is electrically connected to the ground plate, the base end of the vertical linearly polarized wave receiving antenna element is electrically connected to the center conductor of the second coaxial structure, and the outer conductor of the second coaxial structure is connected to the ground plate. It can also be configured by electrical connection.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS. 1A and 1B are external views of a first embodiment of a composite antenna according to the present invention. FIG. 1A is a plan view and FIG. 1B is a side view. 2 is an AA cross-sectional arrow enlarged view of FIG. FIG. 3 is a vertical in-plane directivity characteristic diagram in which satellite waves are received by a circularly polarized wave receiving patch antenna. FIG. 4 is a vertical in-plane directivity characteristic diagram in which terrestrial waves are received by the vertical linearly polarized wave receiving antenna element. FIG. 5 is a horizontal plane directivity characteristic diagram in which the terrestrial wave is received by the vertical linearly polarized wave receiving antenna element. FIG. 6 is a longitudinal sectional view in which the composite antenna of FIG. 1 is accommodated in an antenna housing case.
[0011]
In the composite antenna of the present invention, the conical conical radiating element 22 made of a conductive metal plate, a conductive metal thin film, or the like is formed on the surface of the dielectric member 20 having a convex conical shape and a substantially constant thickness t. Is disposed. A conical radiating element 22 is disposed around the apex of the dielectric member 20, and the apexes coincide. The edge of the conical radiating element 22 is provided with notch-like perturbing elements 22a and 22a at two radially opposing positions. In addition, a ground plate 24 made of a conductive metal thin film or the like is disposed on substantially the entire back surface of the dielectric member 20. Further, the central conductor 26a of the first coaxial line 26 penetrates the dielectric member 20 from the back side and is appropriately electrically connected to the conical radiating element 22 on the surface by soldering 28 or the like. Further, the outer conductor 26b of the first coaxial line 26 is electrically connected to the ground plate 24 by appropriate soldering or the like. Accordingly, a conical circularly polarized wave receiving patch antenna is formed by the conical radiating element 22 and the ground plate 24 provided with the dielectric member 20 in between. As an example, the cone-shaped radiating element 22 for receiving a 2.3 GHz circularly polarized satellite wave having a transmission frequency of XM satellite radio broadcasting has an apex angle of 125 ° and a dimension from the apex to the edge. Is 25 mm. Of course, the external dimensions of the conical radiating element 22 with respect to the reception frequency should be appropriately set according to the dielectric constant of the dielectric member 20.
[0012]
Furthermore, a vertical linearly polarized wave receiving antenna element 30 is provided at the conical apex of the dielectric member 20 so as to protrude upward, and the helical coil portion 30a and the base end side thereof are a straight portion 30b. The straight line portion 30b penetrates the apex of the dielectric member 20 in the vertical direction and is electrically connected to the center conductor 32a of the second coaxial line 32 provided on the back surface side. The outer conductor 36b of the second coaxial line 32 is appropriately electrically connected to the ground plate 24 on the back surface of the dielectric member 20 by soldering or the like. The vertical linearly polarized wave receiving antenna element 30 is insulated from the conical radiating element 22. The vertical linearly polarized wave receiving antenna element 30 functions as an antenna at a portion above the ground plate 24. As an example, the vertical linearly polarized wave receiving antenna element 30 is set to an electrical length of ¼ wavelength of 2.3 GHz of the broadcast transmission frequency so as to resonate. Is done.
[0013]
In the composite antenna of the present invention having such a configuration, as shown in FIG. 3, the vertical in-plane directivity received by the conical radiating element 22 with respect to the satellite wave has a low elevation angle of approximately ± 70 ° from vertically above. The reception sensitivity is substantially the same as 5 dB, and even at a low elevation angle of ± 90 °, the gain is improved by about 3 dB as compared with the conventional composite antenna shown in FIG. . Therefore, there is little change in the reception sensitivity with respect to the satellite wave depending on the location where the satellite wave is received and the posture where the composite antenna of the present invention is installed. In addition, the reception sensitivity at a low elevation angle is improved. Thus, the satellite wave can be reliably received. In addition, although the directivity characteristic in the horizontal plane with respect to the satellite wave is not illustrated, it is a matter of course that it is non-directional.
[0014]
As shown in FIG. 4, the vertical directivity characteristic received by the vertical linearly polarized antenna element 30 with respect to the terrestrial wave is approximately 1 dB at a low elevation angle of ± 90 °, compared with the conventional composite antenna shown in FIG. Thus, the gain is improved by about 3 dB. Thereby, the reception sensitivity is improved by about 3 dB with respect to the ground wave.
[0015]
Here, since the conical radiating element 22 acts as a reflecting plate with respect to the vertical linearly polarized antenna element 30, a gain of a low elevation angle of ± 90 ° is obtained by making the reflecting plate into a conical shape having a small apex angle. However, even when the apex angle of the conical radiating element 22 is simply reduced from 180 °, the gain of the low elevation angle of ± 90 ° of the vertical linearly polarized antenna element 30 is uniformly improved. Rather, the increase and decrease occur alternately. Therefore, the inventors set the apex angle of the conical radiating element 22 as the reflecting plate to 125 ° by experiment.
[0016]
The composite antenna of the present invention as described above is housed in an antenna housing case as shown in FIG. 6 so that it can be mounted on the roof of a car as an example. In FIG. 6, a circuit board 40 is disposed on the base side of the dielectric member 20, and a low noise amplification circuit (not shown) for amplifying satellite wave and ground wave reception signals is mounted on the circuit board 40. The other ends of the first and second coaxial lines 26 and 32 are appropriately electrically connected to the circuit board 40, and the received signal is input to the low noise amplifier circuit. The amplified output of the low noise amplifier circuit is derived by the output cable 42. A radome 44 made of a substantially conical dielectric is provided so as to cover the composite antenna from above, and a base 46 is disposed below the composite antenna. The radome 44 and the base 46 constitute an antenna housing case 48 capable of housing the composite antenna in a watertight manner. Furthermore, the base 46 can be appropriately fixed to the roof of the vehicle by sticking or the like.
[0017]
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 7 is an external perspective view of a second embodiment of the composite antenna of the present invention. In the second embodiment shown in FIG. 7, the pyramid-shaped radiating element 52 made of a conductive metal plate, a conductive metal thin film, or the like with the apex coincident with the surface of the dielectric member 50 having a quadrangular pyramid and a substantially constant thickness. Is disposed. A vertical linearly polarized wave receiving antenna element 30 including a helical coil is provided so as to protrude upward from the apex of the dielectric member 50. A ground plate (not shown) is provided on the back surface of the dielectric member 50, and an appropriate feeding line is electrically connected to the quadrangular pyramid radiating element 52 to form a circularly polarized wave receiving patch antenna.
[0018]
Even in the second embodiment of the present invention shown in FIG. 7, the gain of the low elevation angle can be improved for both the satellite wave and the ground wave as in the first embodiment.
[0019]
Furthermore, a third embodiment of the present invention will be described with reference to FIG. 8A and 8B are external views of a third embodiment of the composite antenna of the present invention. FIG. 8A is a plan view and FIG. 8B is a front view. The third embodiment shown in FIG. 8 differs from the first embodiment in that a feeding line for the conical radiating element 22 is provided on the surface of the dielectric member 20 in place of the first coaxial line 26. This is formed by a microstrip line 60 made of a conductive metal thin film. Needless to say, the same effects as those of the first embodiment can be obtained.
[0020]
In the first embodiment, the first and second coaxial lines 26 and 32 are used. However, any structure may be used as long as a coaxial structure is formed. Further, as in the first embodiment, the planar projection shape is not limited to the one in which the conical radiating element 22 having a circular planar projection shape is provided on the surface of the conical dielectric member 20, and the planar projection shape is rectangular (including squares and rectangles). Or one with a square corner cut out. Further, as in the second embodiment, the quadrangular pyramid radiating element 52 having a rectangular planar projection shape is not provided on the surface of the quadrangular pyramid-shaped dielectric member 50, and the conical radiating element having a circular planar projection shape is provided. It may be. In the second embodiment, the dielectric member and the cone-shaped radiating element disposed on the surface thereof are not limited to a quadrangular pyramid, and may be any pyramid shape such as a pentagonal pyramid or a hexagonal pyramid. Further, the dielectric member may be an elliptical cone or a rectangular quadrangular pyramid. The conical radiating elements provided on the surfaces of the dielectric members 20 and 50 may have any patch shape whose planar projection shape can receive circularly polarized waves. Further, in the embodiment, the vertical linearly polarized wave receiving antenna element 30 is formed to include a helical coil in order to shorten the physical length. However, if the physical length can be long, it is formed from a pole antenna. Of course, any structure may be used as long as the antenna has a non-directional horizontal plane directivity.
[0021]
【The invention's effect】
Since the composite antenna of the present invention is configured as described above, the following special effects can be obtained.
[0022]
In the composite antenna according to claim 1, the radiation element forming the circularly polarized wave receiving patch antenna has a conical shape, so that the vertical in-plane directivity characteristic of the satellite wave received by the circularly polarized wave receiving patch antenna is low. The gain is improved both at the elevation angle and at the low elevation angle of the vertical in-plane directivity when the ground wave is received by the vertical linearly polarized wave receiving element. In addition, the gain is substantially constant over a wide range from vertically above to a low elevation angle of approximately ± 70 ° with respect to the satellite wave. Therefore, the reception sensitivity of the satellite wave does not change significantly due to a change in the location where the satellite wave is received or the attitude of the composite antenna.
[0023]
In the composite antenna according to claim 2, the whole is formed in a substantially conical shape, and a vertically linearly polarized wave receiving antenna element including a helical coil having a short physical length is provided at the apex thereof. It is suitable for a small configuration.
[0024]
In the composite antenna according to claim 3, since the received signal by the circularly polarized wave receiving patch antenna and the vertical linearly polarized wave receiving antenna element is derived by the first and second coaxial structures, Does not cause attenuation.
[Brief description of the drawings]
1A and 1B are external views of a first embodiment of a composite antenna of the present invention, where FIG. 1A is a plan view and FIG. 1B is a side view;
FIG. 2 is an enlarged view taken along the line AA in FIG.
FIG. 3 is a vertical in-plane directivity characteristic diagram in which satellite waves are received by the circularly polarized wave receiving patch antenna of the composite antenna of the present invention.
FIG. 4 is a vertical in-plane directivity characteristic diagram in which terrestrial waves are received by the vertically linearly polarized wave receiving antenna element of the composite antenna of the present invention.
FIG. 5 is a directional characteristic diagram in a horizontal plane in which terrestrial waves are received by the vertically linearly polarized wave receiving antenna element of the composite antenna of the present invention.
6 is a longitudinal sectional view in which the composite antenna of FIG. 1 is housed in an antenna housing case.
FIG. 7 is an external perspective view of a second embodiment of the composite antenna of the present invention.
8A and 8B are external views of a third embodiment of the composite antenna of the present invention, where FIG. 8A is a plan view and FIG. 8B is a front view.
FIG. 9 is a perspective view of an example of a conventional composite antenna.
FIG. 10 is a vertical in-plane directivity characteristic diagram in which satellite waves are received by a circularly polarized wave receiving patch antenna of a conventional composite antenna.
FIG. 11 is a vertical in-plane directivity characteristic diagram when a ground wave is received by a vertical linearly polarized wave receiving antenna element of a conventional composite antenna.
FIG. 12 is a horizontal plane directivity characteristic diagram in which terrestrial waves are received by a vertical linearly polarized wave receiving antenna element of a conventional composite antenna.
[Explanation of symbols]
14, 24 Ground plates 18, 30 Vertically linearly polarized wave receiving antenna elements 20, 50 Dielectric member 22 Conical radiating element 26 First coaxial line 32 Second coaxial line 52 Square pyramidal radiating element 60 Microstrip line

Claims (3)

円偏波の衛星波と垂直直線偏波の地上波を受信する複合アンテナであって、上方に凸なる錐状で厚さが略一定な誘電体部材の表面に、前記錐状の頂点を中心として錐状放射素子を配設し、前記誘電体部材の裏面にグランドプレートを配設し、前記錐状放射素子に給電線を接続して前記錐状放射素子とグランドプレートで前記円偏波を受信し得る円偏波受信パッチアンテナを形成し、前記誘電体部材の前記錐状の頂点に上方に突設して前記垂直直線偏波を受信し得る垂直直線偏波受信アンテナ素子を前記錐状放射素子と絶縁状態で配設し、前記垂直直線偏波受信アンテナ素子の基端に同軸構造の中心導体を接続して構成したことを特徴とする複合アンテナ。A composite antenna that receives a circularly polarized satellite wave and a vertical linearly polarized ground wave, and is centered on the top of the cone-shaped apex on the surface of a dielectric member that is convex upward and has a substantially constant thickness. A conical radiating element is disposed, a ground plate is disposed on the back surface of the dielectric member, a feed line is connected to the conical radiating element, and the circularly polarized wave is generated by the conical radiating element and the ground plate. A circularly polarized wave receiving patch antenna that can be received is formed, and a vertically linearly polarized wave receiving antenna element that can receive the vertically linearly polarized wave by protruding upward from the apex of the cone of the dielectric member is formed into the cone shape. A composite antenna comprising a radiating element and an insulating state, and a coaxial central conductor connected to a base end of the vertical linearly polarized wave receiving antenna element . 請求項1記載の複合アンテナにおいて、前記誘電体部材を円錐状とし、その表面に円錐状の前記錐状放射素子を配設し、前記垂直直線偏波受信アンテナ素子をヘリカルコイルを含んで構成したことを特徴とする複合アンテナ。2. The composite antenna according to claim 1, wherein the dielectric member has a conical shape, the conical radiating element is disposed on a surface of the dielectric member, and the vertical linearly polarized wave receiving antenna element includes a helical coil. A composite antenna characterized by that. 請求項1または2記載の複合アンテナにおいて、前記錐状放射素子に、前記グランドプレート側から前記誘電体部材を貫通して前記給電線としての第1の同軸構造の中心導体を電気的接続し、前記第1の同軸構造の外部導体を前記グランドプレートに電気的接続し、前記垂直直線偏波受信アンテナ素子の基端を、第2の同軸構造の中心導体に電気的接続し、前記第2の同軸構造の外部導体を前記グランドプレートに電気的接続して構成したことを特徴とする複合アンテナ。3. The composite antenna according to claim 1, wherein the central conductor of the first coaxial structure as the feed line is electrically connected to the conical radiating element through the dielectric member from the ground plate side, The outer conductor of the first coaxial structure is electrically connected to the ground plate, the proximal end of the vertical linearly polarized wave receiving antenna element is electrically connected to the center conductor of the second coaxial structure, and the second conductor A composite antenna comprising an outer conductor having a coaxial structure electrically connected to the ground plate.
JP2002031129A 2002-02-07 2002-02-07 Compound antenna Expired - Fee Related JP3923329B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002031129A JP3923329B2 (en) 2002-02-07 2002-02-07 Compound antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002031129A JP3923329B2 (en) 2002-02-07 2002-02-07 Compound antenna

Publications (2)

Publication Number Publication Date
JP2003234617A JP2003234617A (en) 2003-08-22
JP3923329B2 true JP3923329B2 (en) 2007-05-30

Family

ID=27774620

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002031129A Expired - Fee Related JP3923329B2 (en) 2002-02-07 2002-02-07 Compound antenna

Country Status (1)

Country Link
JP (1) JP3923329B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709677A (en) * 2012-05-22 2012-10-03 西安电子科技大学 Multi-mode and multi-frequency circularly polarized receiving antenna for positioning Beidou second generation satellite

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7079078B2 (en) 2003-04-09 2006-07-18 Alps Electric Co., Ltd. Patch antenna apparatus preferable for receiving ground wave and signal wave from low elevation angle satellite
WO2006098173A1 (en) * 2005-03-16 2006-09-21 Pioneer Corporation High-frequency receiver and adjacent interference wave reducing method
JP4508242B2 (en) * 2005-08-12 2010-07-21 株式会社村田製作所 Antenna structure and wireless communication apparatus including the same
DE102009048229B4 (en) 2009-10-05 2021-01-21 Sennheiser Electronic Gmbh & Co. Kg Antenna unit for wireless audio transmission
JP6422547B1 (en) * 2017-09-28 2018-11-14 株式会社ヨコオ Patch antenna and antenna device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4658262A (en) * 1985-02-19 1987-04-14 Duhamel Raymond H Dual polarized sinuous antennas
JPS6333905A (en) * 1986-07-29 1988-02-13 Sony Corp Microstrip antenna
JP2869892B2 (en) * 1989-08-24 1999-03-10 株式会社村田製作所 Microstrip antenna
JP3053421B2 (en) * 1990-10-22 2000-06-19 八木アンテナ株式会社 Yamagata antenna
JPH06310930A (en) * 1993-04-27 1994-11-04 Mitsubishi Electric Corp Antenna system
JPH07122930A (en) * 1993-10-26 1995-05-12 Matsushita Electric Ind Co Ltd Circular polarized wave planar antenna
JP2777978B2 (en) * 1995-03-22 1998-07-23 防衛庁技術研究本部長 Conical spiral antenna
JPH0964636A (en) * 1995-08-21 1997-03-07 Matsushita Electric Ind Co Ltd Planar antenna
JP3472421B2 (en) * 1996-10-31 2003-12-02 京セラ株式会社 Common antenna device and portable wireless device using the same
JP2000114857A (en) * 1998-09-30 2000-04-21 Toyota Motor Corp Antenna having resin dielectric and production thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102709677A (en) * 2012-05-22 2012-10-03 西安电子科技大学 Multi-mode and multi-frequency circularly polarized receiving antenna for positioning Beidou second generation satellite

Also Published As

Publication number Publication date
JP2003234617A (en) 2003-08-22

Similar Documents

Publication Publication Date Title
JP4121424B2 (en) Dual polarized antenna
US6646618B2 (en) Low-profile slot antenna for vehicular communications and methods of making and designing same
US9270017B2 (en) Multi-element cavity-coupled antenna
CA2329458C (en) Planar antenna device
EP1478051A1 (en) Combined antennas combining a circularly polarized patch antenna and a vertically polarized metal plate antenna
JP2008503904A (en) Multi-beam antenna
JPH11511614A (en) Low internal modulation electromagnetic feed antenna for mobile phone
US8773322B2 (en) High performance HDTV antenna design and fabrication
EP1033782B1 (en) Monopole antenna
JP3923329B2 (en) Compound antenna
US6906683B2 (en) Circular polarized wave reception antenna
JP2003347838A (en) Antenna device
CN111370858B (en) Directional UHF antenna and electronic equipment
JP4878024B2 (en) antenna
JP2004048369A (en) Composite antenna
JP4766260B2 (en) Antenna device
JP3764289B2 (en) Microstrip antenna
JP3002252B2 (en) Planar antenna
JP2745489B2 (en) Inverted F-type antenna
JP2007235832A (en) Planar loop antenna
KR102154226B1 (en) Patch antenna
KR101739889B1 (en) High efficient planar array antenna with protrusion dielectric loading structure for tilted beam direction
JP2006014152A (en) Plane antenna
JP4133665B2 (en) Compound antenna
JPH0537229A (en) Microstrip antenna

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061003

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees