JP3923263B2 - Composite crystal oscillator and overtone crystal oscillator using the same - Google Patents

Composite crystal oscillator and overtone crystal oscillator using the same Download PDF

Info

Publication number
JP3923263B2
JP3923263B2 JP2001021360A JP2001021360A JP3923263B2 JP 3923263 B2 JP3923263 B2 JP 3923263B2 JP 2001021360 A JP2001021360 A JP 2001021360A JP 2001021360 A JP2001021360 A JP 2001021360A JP 3923263 B2 JP3923263 B2 JP 3923263B2
Authority
JP
Japan
Prior art keywords
vibration
resonator
overtone
crystal
oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001021360A
Other languages
Japanese (ja)
Other versions
JP2002232234A (en
Inventor
茂 小原
光明 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Dempa Kogyo Co Ltd
Original Assignee
Nihon Dempa Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Dempa Kogyo Co Ltd filed Critical Nihon Dempa Kogyo Co Ltd
Priority to JP2001021360A priority Critical patent/JP3923263B2/en
Publication of JP2002232234A publication Critical patent/JP2002232234A/en
Application granted granted Critical
Publication of JP3923263B2 publication Critical patent/JP3923263B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Oscillators With Electromechanical Resonators (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は複合型水晶振動子及びこれを用いたオーバトーン水晶発振器(オーバトーン発振器とする)を産業上の技術分野とし、特に発振回路及びフィルタを形成する発振子と共振子とを具えたSCカットの複合型水晶振動子に関する。
【0002】
【従来の技術】
(発明の背景)水晶振動子は周波数及び時間の基準素子として周知され、例えばコルピッツ型とした水晶発振器に組み込まれ、通信機器を含む各種の電子機器に内蔵される。近年では、デジタル化による情報通信等によって高周波数化が進み、例えば水晶振動子の基本波振動に対するオーバトーン振動を使用したオーバトーン発振器が採用される。
【0003】
(従来技術の一例)第3図は一従来例を説明するオーバトーン発振器の回路図である。
オーバトーン発振器は、インダクタ成分として使用する水晶振動子からなる発振子1、これとコルピッツ型とする共振回路2を形成する分割コンデンサ3(ab)、及び例えばトランジスタ4とした増幅器等からなる。水晶振動子は水晶片5の両主面に対向する励振電極6(ab)及び引出電極7(ab)を形成し、図示しない端子を有する密閉容器内に保持してなる。
【0004】
但し、発振子1としての水晶振動子は、基本波振動に対して奇数次のオーバトーン振動で動作する(オーバトーン発振子1とする)。そして、オーバトーン振動による振動周波数(共振周波数)は、基本波振動に対して概ね整数倍の周波数(オーバトーン周波数とする)となる。
【0005】
通常では、オーバトーン振動は基本波振動に対して振動強度が劣勢で、クリスタルインピーダンス(CI)が小さい。このため、例えば分割コンデンサ3(ab)の接地側のコンデンサ3bに図示しないインダクタを並列に接続して、基本波振動周波数に対する例えば5倍波のオーバトーン周波数を選択する。また、インダクタを使用せず、水晶片5の形状やこれを励振する電極構造により、基本波振動に対するオーバトーン振動の強度を高くしてCIを小さくする。あるいは、水晶振動子から見た回路側の負性抵抗の周波数特性によりオーバトーン周波数を選択したりする。
【0006】
そして、この例ではコルピッツ型とする分割コンデンサ3(ab)の中点(接続点)とトランジスタ4のエミッタとの間に共振子8としての水晶振動子を接続する。共振子8はオーバトーン発振子1と同様に基本波振動に対するオーバトーン振動で動作する(オーバトーン共振子8とする)。この場合、オーバトーン共振子8は共振回路2と発振用増幅器とからなる発振閉ループ内に挿入されたことになる。オーバトーン共振子8としての水晶振動子は、前述同様に水晶片5に励振電極6(ab)及び引出電極7(ab)を設けて密閉容器に封入した構成とする。
【0007】
ここでは、オーバトーン発振子1及び共振子8としての水晶振動子はいずれもSCカットの水晶片5からなる。図中の符号9(abc)はバイアス抵抗、10は発振周波数の調整用コンデンサ、Vcはコレクタ側に設けた電源、Voはエミッタ側から導出する出力である。
【0008】
このようなものでは、水晶発振器の発振周波数はオーバトーン発振子1のオーバトーン周波数に概ね一致する。但し、厳格にはオーバトーン発振子1から見た回路側の直列等価容量(所謂負荷容量)に依存する。そして、この例では、共振回路2と発振用増幅器とからなる発振閉ループ内に水晶振動子としたオーバトーン共振子8を接続するので、発振周波数の帯域がさらに狭まる。但し、オーバトーン共振子8の共振周波数はオーバトーン発振子1に依存した発振周波数に設定される。
【0009】
要するに、オーバトーン共振子8は発振周波数となる水晶振動子の概ね5倍のオーバトーン周波数のみを通過させるフィルタとして機能する。したがって、SCカット特有の振動姿態であるCモード(厚みすべり振動姿態、X軸方向に変位)に近接して発生するBモード(厚み滑り振動姿態、Z′軸方向に変位)を遮断して、これによるスプリアス発振を防止する。
【0010】
なお、SCカットの水晶片5(水晶振動子)は、例えば一般に使用頻度が高いATカットの水晶振動子と同様に厚みすべり振動姿態で振動し、これらは水晶片5の厚みに反比例して即ち厚みが小さいほど振動周波数(共振周波数)は高くなる。そして、ATカットに比較して例えば熱衝撃特性に優れることから、例えば恒温槽を使用した高安定用の水晶発振器に採用されている。
【0011】
【発明が解決しようとする課題】
(従来技術の問題点)しかしながら、上記構成のオーバトーン発振器では、例えばBモードによるスプリアス発振を防止するため、素子としては形状が大きくしかもフィルタとしては高価な水晶振動子を使用する。したがって、水晶発振器の小型化を阻害するとともに経済性の悪い問題があった。
【0012】
また、オーバトーン発振子1及び共振子8は、基本波振動に対するオーバトーン振動で動作する。この場合、オーバトーン振動による振動周波数(共振周波数)は基本波振動の場合よりも帯域幅が狭くなる。すなわち、5倍波としたオーバトーン振動は基本波振動での周波数スペクトラムに比較して、主振動成分f51に対する高調波成分f5s(f52〜f5n)がより一層抑圧されるので(第5図の周波数スペクトラム図)、帯域幅が狭くなる。
【0013】
要するに、オーバトーン発振子1及び共振子8はいずれも主振動成分f51が高調波成分f5s(f52〜f5n)よりも強勢で帯域幅の狭い発振及び共振周波数となる。したがって、オーバトーン発振子1に依存した発振周波数に、オーバトーン共振子8の共振周波数を一致させることが困難で生産性を低下する問題もあった。なお、オーバトーン発振子1及び共振子8による発振周波数と共振周波数が大きくずれた場合は発振しない。
【0014】
(発明の目的)本発明は小型化を促進して経済性に優れた発振子及び共振子を具える複合型水晶振動子及びこれを用いて周波数調整を容易にしたオーバトーン発振器を提供することを目的とする。
【0015】
【解決手段】
本発明は、第1振動領域よりも厚みの小さい第2振動領域を一体的に水晶片に設け、第1振動領域又は第2振動領域のいずれか一方を発振回路を形成する発振子として他方をフィルタを形成する共振子とし、厚みの大きい第1振動領域は基本波振動に対するオーバトーン振動で動作し、厚みの小さい第2振動領域は基本波振動で動作したことを基本的な解決手段とする。
【0016】
【作用】
本発明では、厚みの異なる第1振動領域と第2振動領域のいずれか一方を発振子又は共振子として他方を共振子又は発振子とするので、例えばこれを封入する密閉容器を一つにできる。また、水晶片への例えば蒸着による電極形成を同一マスクで一体的にできるので、別個の場合に比較して製造工程を短縮する。そして、厚みの大きい第1振動領域をオーバトーン振動として、厚みの小さい第2振動領域を基本波振動とするので、第1振動領域と第2振動領域による振動周波数の帯域幅を異ならせる。以下、本発明の一実施例を説明する。
【0017】
【実施例】
第1図は本発明の一実施例を説明する水晶振動子の図である。なお、前従来例図と同一部分には同番号を付与してその説明は簡略又は省略する。
複合型水晶振動子は前述のようにSCカットの水晶片5からなる。この例では、水晶片5は例えば一方向に長い矩形状とする。そして、中央部から一端側を平板状として第1振動領域11とし、他端側に一主面側から凹部を形成して第2振動領域12とする。第2振動領域12は第1振動領域11の厚みに対して概ね1/n(n>3)とし、ここでは1/5とする。すなわち、第2振動領域12は第1振動領域11による基本波周波数に対して5倍の振動周波数(概ねの発振周波数)に相当した小さな厚みに設定する。
【0018】
なお、第1及び第2振動領域11、12にはそれぞれ両主面間で対向した励振電極6(ab)及び幅方向の端面を含む両端部に延出した引出電極7(ab)が形成される。図では7bは記していない。これらは同一マスクをかけて例えば蒸着によって基礎電極が一体的に形成される。その後、発振周波数及び共振周波数に応じて個々に調整される。そして、水晶片5は例えば図示しないサポータや表面実装容器の底面に固着される等の保持機構によって保持され、第1及び第2振動領域11,12の各励振電極6(ab)と電気的に接続した端子を有する密閉容器内に封入される。
【0019】
このようなものでは、複合型水晶振動子は前述の発振回路に組み込まれる。そして、複合型水晶振動子の第1振動領域11は、5倍波のオーバトーン周波数で動作するオーバトーン発振子1とする。また、第2振動領域12は共振周波数を5倍波のオーバトーン周波数(発振周波数)とした基本波振動で動作する共振子(基本波共振子とする)8Aとする。符号8Aは、従来例のオーバトーン共振子8に対して便宜的に付与したもので図中にはない。
【0020】
これらは、図示しない回路基板上での配線路によって電気的に接続され、オーバトーン発振子1はコルピッツ型とする共振回路2を形成し、分割コンデンサ3(ab)の中点に共振子8(ここでは基本波共振子8A)を接続した前述の発振回路を構成する(前第3図参照)。
【0021】
このような構成であれば、オーバトーン発振子1と基本波共振子8Aは同一の水晶片5に一体的に形成される。したがって、例えば密閉容器を一つにできるので小型化を促進する。そして、例えば同一マスクを用いた蒸着等によって電極形成を一体的にできるので製造工程を短縮して経済性を高められる。
【0022】
しかも、オーバトーン発振子1と分割コンデンサ3(ab)からなる共振回路2に基本波共振子8Aを接続するので、前述したように高周波数とした発振周波数の帯域をさらに狭める。したがって、この場合は、SCカットの主振動(Cモード)に対する特にBモードを抑圧してスプリアス発振を防止する。
【0023】
そして、この実施例ではオーバトーン発振子1による発振周波数を、基本波振動で動作する基本波共振子8Aで通過(共振)させる。そして、基本波共振子8Aはオーバトーン共振子8に対し、前述とは逆に共振周波数(振動周波数)の基本波成分f1に対する高調波成分fsが、第2図に示したように比較的に大きいので、帯域幅は広くなる。
【0024】
したがって、発振周波数に対する基本波共振子8Aの共振周波数がずれたとしても、共振周波数の帯域幅が広いので発振周波数は基本波共振子を通過する。但し、この場合でもBモードは遮断する。これにより、従来例のオーバトーン共振子8を使用した場合よりも、周波数調整を容易にする。
【0025】
【第2実施例】
第1実施例では、複合型水晶振動子の第1振動領域11をオーバトーン発振子1とし、第2振動領域12を基本波共振子8Aとしたが、第2実施例では、厚みの小さい第2振動領域12を基本波で動作する基本波発振子1Aとし、厚みの大きい第1振動領域11をオーバトーン周波数で動作するオーバトーン共振子8とする。なお、これ以外は第1実施例と同一なのでその説明は省略する。
【0026】
このような構成であれば、発振周波数は基本波振動によるので前述したように帯域幅は広くなる。そして、共振周波数はオーバトーン振動なので帯域幅は狭くなる。したがって、オーバトーン共振子8の共振周波数が基本波発振子1Aによる発振周波数から多少ずれたとしても、発振周波数は比較的に広帯域なのでオーバトーン共振子8の共振周波数に一致した周波数成分が通過する。これにより、第1実施例とは逆に、オーバトーン共振子8の共振周波数を厳格に管理すれは、基本波発振子1Aの周波数調整を容易にする。
【0027】
なお、第1及び第2実施例においても、発振子と共振子を同一水晶片から形成するので、特に温度によって周波数が変化する特性、所謂周波数温度特性を概ね同じにする。したがって、従来のように発振子と共振子を別個にするものに比較して、周囲温度に対する安定度を高められる。この場合、発振子及び共振子としての個別の水晶振動子を恒温槽に収容して高安定用とする場合に比較しても、槽内温度の揺らぎに対して同一の周波数変化となるので、発振を安定に維持できる。
【0028】
【他の事項】
上記実施例では水晶振動子をSCカットとしたが、例えば振動姿態をSCカットと同様な厚みすべり振動姿態としたATカットやBTカットでも同様に適用できる。この場合でも、発振周波数に近接した例えば輪郭系の振動姿態に起因したスプリアス発振を防止する。また、第1振動領域11は水晶片5自体の厚みとして第2振動領域12は凹部としたが、例えばいずれも深さの異なる一主面側や両主面側からの凹部としても、あるいは単に段差を設けて第1振動領域11と第2振動領域12の厚みを異ならせてもよい。要は、励振電極6(ab)の形成される第1振動領域11と第2振動領域12との振動(共振)周波数に換算される実質的な厚みを異にすればよい。
【0029】
また、例えば基本波共振子8Aとして使用する第2振動領域12には両主面間で対向する励振電極6(ab)を設けたが、例えば両主面に一組ずつの入出力電極を形成してなる所謂MCF(Monolithic crystal filter)としてもよい。また、基本波共振子8Aは発振閉ループ内となる共振回路2に接続したが、例えば水晶発振器の出力側即ち発振閉ループ外に設けてオーバトーン周波数(発振周波数の高調波成分)を選択する場合でも適用できる。本発明では発振閉ループ外に実質的にフィルタとして機能する共振子を設けた場合でも、オーバトーン発振器とする。
【0030】
要するに、本発明では、基本波振動又はオーバトーン振動とした互いに異なる振動で動作する発振子と共振子を一枚の水晶片に形成して、発振回路を形成する発振子及びフィルタを形成する共振子が用いられた水晶発振器に適用することを趣旨とするもので、適宜自在な変更を含めてこのような趣旨に基づくものは本発明の技術的範囲に属する。なお、上記実施例では基本波振動とオーバトーン振動としたが、いずれもオーバトーン振動として例えば発振子を3次とし、共振子を5次のオーバトーンとして発振及び共振周波数を一致させてもよく、この場合は低次数のオーバトーン周波数が基本波周波数に相当する。
【0031】
【発明の効果】
本発明は、第1振動領域に対して該第1振動領域よりも厚みの小さい第2振動領域を水晶片に一体的に設け、第1振動領域又は第2振動領域のいずれか一方を発振回路を形成する発振子として他方をフィルタを形成する共振子とし、第1振動領域は基本波に対するオーバトーン周波数で動作し、第2振動領域は基本波周波数で動作したので、小型化を促進して経済性に優れた複合型水晶振動子及びこれを用いたオーバトーン発振器を提供できる。
【図面の簡単な説明】
【図1】本発明の一実施例を説明する複合型水晶振動子(水晶片)の図である。
【図2】本発明の一実施例を説明する周波数スペクトラムの図である。
【図3】従来例を説明する水晶発振器の回路図である。
【図4】従来例を説明する水晶片の平面図である。
【図5】従来例を説明する周波数スペクトラムの図である。
【符号の説明】
1 水晶振動子(発振子)、2 共振回路、3(ab) 分割コンデンサ、4トランジスタ、5 水晶片、6 励振電極、7 引出電極、8 水晶振動子(共振子)、9 バイアス抵抗、10 調整コンデンサ.
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite crystal resonator and an overtone crystal oscillator using the composite crystal resonator (referred to as an overtone oscillator) in the industrial technical field, and in particular, an SC including an oscillator and a resonator forming an oscillation circuit and a filter. The present invention relates to a cut composite crystal resonator.
[0002]
[Prior art]
BACKGROUND OF THE INVENTION A crystal resonator is well known as a frequency and time reference element, and is incorporated in, for example, a Colpitts-type crystal oscillator and incorporated in various electronic devices including communication devices. In recent years, the frequency has been increased by digital communication and the like, and for example, an overtone oscillator using overtone vibration with respect to fundamental wave vibration of a crystal resonator is employed.
[0003]
FIG. 3 is a circuit diagram of an overtone oscillator for explaining a conventional example.
The overtone oscillator includes an oscillator 1 made of a crystal resonator used as an inductor component, a split capacitor 3 (ab) that forms a Colpitts-type resonance circuit 2 and an amplifier such as a transistor 4, for example. The crystal resonator is formed with excitation electrodes 6 (ab) and extraction electrodes 7 (ab) facing both main surfaces of the crystal piece 5 and held in a sealed container having terminals (not shown).
[0004]
However, the crystal resonator as the oscillator 1 operates with an odd-order overtone vibration with respect to the fundamental vibration (referred to as an overtone oscillator 1). The vibration frequency (resonance frequency) due to overtone vibration is a frequency that is approximately an integral multiple of the fundamental vibration (referred to as overtone frequency).
[0005]
Normally, overtone vibration is inferior in vibration strength to fundamental wave vibration, and crystal impedance (CI) is small. For this reason, for example, an inductor (not shown) is connected in parallel to the capacitor 3b on the ground side of the dividing capacitor 3 (ab), and an overtone frequency of, for example, a fifth harmonic with respect to the fundamental vibration frequency is selected. Further, without using the inductor, the shape of the crystal piece 5 and the electrode structure for exciting the crystal piece 5 increase the intensity of overtone vibration with respect to the fundamental vibration, thereby reducing CI. Alternatively, the overtone frequency is selected according to the frequency characteristic of the negative resistance on the circuit side as viewed from the crystal resonator.
[0006]
In this example, a crystal resonator as the resonator 8 is connected between the midpoint (connection point) of the split capacitor 3 (ab) of the Colpitts type and the emitter of the transistor 4. Similar to the overtone resonator 1, the resonator 8 operates with overtone vibration relative to the fundamental vibration (referred to as an overtone resonator 8). In this case, the overtone resonator 8 is inserted into an oscillation closed loop composed of the resonance circuit 2 and the oscillation amplifier. The crystal resonator as the overtone resonator 8 has a configuration in which the excitation electrode 6 (ab) and the extraction electrode 7 (ab) are provided on the crystal piece 5 and sealed in a sealed container as described above.
[0007]
Here, each of the quartz vibrators as the overtone oscillator 1 and the resonator 8 is composed of an SC-cut crystal piece 5. In the figure, reference numeral 9 (abc) is a bias resistor, 10 is an oscillation frequency adjusting capacitor, Vc is a power source provided on the collector side, and Vo is an output derived from the emitter side.
[0008]
In such a case, the oscillation frequency of the crystal oscillator substantially matches the overtone frequency of the overtone oscillator 1. However, strictly speaking, it depends on a series equivalent capacity (so-called load capacity) on the circuit side as viewed from the overtone oscillator 1. In this example, since the overtone resonator 8 as a crystal resonator is connected to the oscillation closed loop including the resonance circuit 2 and the oscillation amplifier, the oscillation frequency band is further narrowed. However, the resonance frequency of the overtone resonator 8 is set to an oscillation frequency depending on the overtone resonator 1.
[0009]
In short, the overtone resonator 8 functions as a filter that allows passage of only an overtone frequency that is approximately five times that of the crystal resonator serving as the oscillation frequency. Therefore, the B mode (thickness sliding vibration mode, displacement in the Z′-axis direction) generated close to the C mode (thickness-slip vibration mode, displacement in the X-axis direction), which is a vibration mode peculiar to SC cut, is cut off. This prevents spurious oscillation.
[0010]
The SC-cut crystal piece 5 (quartz crystal resonator) vibrates in a thickness-slip vibration state, for example, in the same manner as an AT-cut crystal resonator that is generally used frequently, and these are inversely proportional to the thickness of the crystal piece 5. The smaller the thickness, the higher the vibration frequency (resonance frequency). And since it is excellent in a thermal shock characteristic compared with AT cut, it is employ | adopted for the crystal oscillator for high stability using a thermostat, for example.
[0011]
[Problems to be solved by the invention]
(Problem of the prior art) However, in the overtone oscillator configured as described above, for example, in order to prevent spurious oscillation due to the B mode, an element having a large shape and an expensive crystal resonator is used as a filter. Therefore, there is a problem that the miniaturization of the crystal oscillator is hindered and the economy is poor.
[0012]
The overtone oscillator 1 and the resonator 8 operate with overtone vibration with respect to fundamental wave vibration. In this case, the bandwidth of the vibration frequency (resonance frequency) due to overtone vibration is narrower than that of the fundamental wave vibration. That is, the overtone vibration having the fifth harmonic is further suppressed in the harmonic component f5s (f52 to f5n) with respect to the main vibration component f51 as compared with the frequency spectrum in the fundamental vibration (frequency in FIG. 5). Spectrum diagram), bandwidth is narrowed.
[0013]
In short, both the overtone oscillator 1 and the resonator 8 have an oscillation and resonance frequency having a narrower bandwidth with the main vibration component f51 being stronger than the harmonic component f5s (f52 to f5n). Therefore, there is a problem that it is difficult to make the resonance frequency of the overtone resonator 8 coincide with the oscillation frequency depending on the overtone resonator 1 and the productivity is lowered. It should be noted that no oscillation occurs when the oscillation frequency of the overtone oscillator 1 and the resonator 8 and the resonance frequency greatly deviate.
[0014]
(Object of the Invention) The present invention provides a composite crystal resonator including an oscillator and a resonator which are excellent in economic efficiency by promoting downsizing, and an overtone oscillator in which frequency adjustment is facilitated using the same. With the goal.
[0015]
[Solution]
According to the present invention, a second vibration region having a thickness smaller than that of the first vibration region is integrally provided on the crystal piece, and one of the first vibration region and the second vibration region is used as an oscillator that forms an oscillation circuit. It is assumed that the resonator forming the filter is a basic solution means that the first vibration region having a large thickness is operated by overtone vibration relative to the fundamental wave vibration, and the second vibration region having a small thickness is operated by fundamental wave vibration. .
[0016]
[Action]
In the present invention, since one of the first vibration region and the second vibration region having different thicknesses is an oscillator or a resonator and the other is a resonator or an oscillator, for example, a single sealed container can be used to enclose it. . In addition, since the electrodes can be integrally formed on the quartz piece by, for example, vapor deposition using the same mask, the manufacturing process is shortened compared to separate cases. Since the first vibration region having a large thickness is used as overtone vibration and the second vibration region having a small thickness is used as fundamental wave vibration, the bandwidths of vibration frequencies of the first vibration region and the second vibration region are made different. An embodiment of the present invention will be described below.
[0017]
【Example】
FIG. 1 is a diagram of a crystal resonator illustrating one embodiment of the present invention. In addition, the same number is attached | subjected to the same part as a prior art example figure, and the description is abbreviate | omitted or abbreviate | omitted.
As described above, the composite crystal unit is composed of the SC-cut crystal piece 5. In this example, the crystal piece 5 has, for example, a rectangular shape that is long in one direction. Then, one end side from the central portion is formed into a flat plate shape as the first vibration region 11, and a concave portion is formed on the other end side from one main surface side to form a second vibration region 12. The second vibration region 12 is approximately 1 / n (n> 3) with respect to the thickness of the first vibration region 11, and is 1/5 here. That is, the second vibration region 12 is set to have a small thickness corresponding to a vibration frequency (approximately an oscillation frequency) five times the fundamental frequency of the first vibration region 11.
[0018]
The first and second vibration regions 11 and 12 are formed with excitation electrodes 6 (ab) facing each other between the main surfaces and extraction electrodes 7 (ab) extending to both ends including the end surfaces in the width direction. The In the figure, 7b is not shown. The basic electrodes are integrally formed by, for example, vapor deposition using the same mask. Thereafter, the frequency is individually adjusted according to the oscillation frequency and the resonance frequency. The crystal piece 5 is held by a holding mechanism such as a supporter (not shown) or fixed to the bottom surface of the surface mounting container, and is electrically connected to each excitation electrode 6 (ab) in the first and second vibration regions 11 and 12. It is enclosed in a sealed container having connected terminals.
[0019]
In such a case, the composite crystal resonator is incorporated in the oscillation circuit described above. The first vibration region 11 of the composite crystal resonator is the overtone oscillator 1 that operates at the overtone frequency of the fifth harmonic. The second vibration region 12 is a resonator 8A that operates with fundamental vibration with a resonance frequency of an overtone frequency (oscillation frequency) of a fifth harmonic (referred to as a fundamental wave resonator) 8A. Reference numeral 8A is given to the overtone resonator 8 of the conventional example for convenience and is not shown in the figure.
[0020]
These are electrically connected by a wiring path on a circuit board (not shown), and the overtone oscillator 1 forms a Colpitts-type resonance circuit 2, and the resonator 8 ( Here, the above-described oscillation circuit to which the fundamental wave resonator 8A) is connected is configured (see FIG. 3 above).
[0021]
With such a configuration, the overtone oscillator 1 and the fundamental wave resonator 8A are integrally formed on the same crystal piece 5. Therefore, for example, since one sealed container can be formed, miniaturization is promoted. For example, the electrodes can be integrally formed by vapor deposition using the same mask, so that the manufacturing process can be shortened and the economy can be improved.
[0022]
In addition, since the fundamental wave resonator 8A is connected to the resonance circuit 2 including the overtone resonator 1 and the dividing capacitor 3 (ab), the oscillation frequency band having a high frequency is further narrowed as described above. Therefore, in this case, the spurious oscillation is prevented by suppressing the B mode in particular for the SC cut main vibration (C mode).
[0023]
In this embodiment, the oscillation frequency of the overtone oscillator 1 is passed (resonated) by the fundamental wave resonator 8A operating with fundamental wave vibration. In contrast to the overtone resonator 8, the fundamental wave resonator 8A has a higher harmonic component fs than the fundamental frequency component f1 of the resonance frequency (vibration frequency), as shown in FIG. Because it is large, the bandwidth is widened.
[0024]
Therefore, even if the resonance frequency of the fundamental wave resonator 8A with respect to the oscillation frequency is shifted, the oscillation frequency passes through the fundamental wave resonator because the bandwidth of the resonance frequency is wide. However, even in this case, the B mode is cut off. As a result, the frequency adjustment is facilitated as compared with the case of using the conventional overtone resonator 8.
[0025]
[Second embodiment]
In the first embodiment, the first vibration region 11 of the composite crystal resonator is the overtone resonator 1, and the second vibration region 12 is the fundamental wave resonator 8A. In the second embodiment, the first resonator region 11 having a small thickness is used. The second vibration region 12 is a fundamental wave oscillator 1A that operates with a fundamental wave, and the thick first vibration region 11 is an overtone resonator 8 that operates at an overtone frequency. Other than this, the description is omitted because it is the same as the first embodiment.
[0026]
In such a configuration, since the oscillation frequency is based on fundamental wave vibration, the bandwidth is widened as described above. Since the resonance frequency is overtone vibration, the bandwidth is narrowed. Therefore, even if the resonance frequency of the overtone resonator 8 is slightly deviated from the oscillation frequency of the fundamental wave resonator 1A, the oscillation frequency is relatively wide, so that a frequency component that matches the resonance frequency of the overtone resonator 8 passes. . Thus, contrary to the first embodiment, strictly controlling the resonance frequency of the overtone resonator 8 facilitates the frequency adjustment of the fundamental wave resonator 1A.
[0027]
In the first and second embodiments as well, since the oscillator and the resonator are formed from the same crystal piece, the characteristic that the frequency changes with temperature, that is, the so-called frequency temperature characteristic is made substantially the same. Therefore, the stability with respect to the ambient temperature can be increased as compared with the conventional case in which the oscillator and the resonator are separated. In this case, even if the individual crystal resonators as the oscillator and the resonator are housed in a thermostatic bath and used for high stability, the same frequency change occurs due to the fluctuation of the temperature in the bath. Oscillation can be maintained stably.
[0028]
[Other matters]
In the above-described embodiment, the crystal resonator is SC cut. However, the present invention can be similarly applied to, for example, AT cut or BT cut in which the vibration state is the same as the thickness-slip vibration state similar to the SC cut. Even in this case, spurious oscillation caused by, for example, a contoured vibration state close to the oscillation frequency is prevented. The first vibration region 11 has a thickness of the crystal piece 5 itself and the second vibration region 12 has a recess. However, for example, the first vibration region 11 may be a recess from one main surface side or both main surface sides having different depths, or simply A step may be provided to make the thickness of the first vibration region 11 and the second vibration region 12 different. In short, what is necessary is just to make the substantial thickness converted into the vibration (resonance) frequency of the 1st vibration area | region 11 and the 2nd vibration area | region 12 in which the excitation electrode 6 (ab) is formed different.
[0029]
Further, for example, the excitation electrode 6 (ab) opposed between the two principal surfaces is provided in the second vibration region 12 used as the fundamental wave resonator 8A. For example, a pair of input / output electrodes is formed on both the principal surfaces. A so-called MCF (Monolithic crystal filter) may be used. Further, although the fundamental wave resonator 8A is connected to the resonance circuit 2 in the oscillation closed loop, for example, when the overtone frequency (a harmonic component of the oscillation frequency) is selected by providing it at the output side of the crystal oscillator, that is, outside the oscillation closed loop. Applicable. In the present invention, even if a resonator that substantially functions as a filter is provided outside the oscillation closed loop, the overtone oscillator is used.
[0030]
In short, in the present invention, an oscillator and a resonator that operate with different vibrations such as fundamental wave vibration or overtone vibration are formed on a single crystal piece to form an oscillator and a filter that form an oscillation circuit. It is intended to be applied to a crystal oscillator in which a child is used, and those based on such a purpose, including arbitrary modifications as appropriate, belong to the technical scope of the present invention. In the above embodiment, the fundamental wave vibration and the overtone vibration are used. However, as the overtone vibration, for example, the oscillator may be a third order and the resonator may be a fifth order overtone, and the oscillation and resonance frequencies may be matched. In this case, the low-order overtone frequency corresponds to the fundamental frequency.
[0031]
【The invention's effect】
According to the present invention, a second vibration region having a thickness smaller than that of the first vibration region is provided integrally with a crystal piece with respect to the first vibration region, and either the first vibration region or the second vibration region is provided as an oscillation circuit. Since the first vibration region operates at an overtone frequency relative to the fundamental wave and the second vibration region operates at the fundamental wave frequency, the other vibration region is used as a resonator that forms a filter. It is possible to provide a composite crystal resonator excellent in economic efficiency and an overtone oscillator using the same.
[Brief description of the drawings]
FIG. 1 is a diagram of a composite crystal resonator (crystal piece) for explaining an embodiment of the present invention.
FIG. 2 is a frequency spectrum diagram illustrating an embodiment of the present invention.
FIG. 3 is a circuit diagram of a crystal oscillator for explaining a conventional example.
FIG. 4 is a plan view of a crystal piece for explaining a conventional example.
FIG. 5 is a frequency spectrum diagram illustrating a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Crystal oscillator (resonator), 2 Resonance circuit, 3 (ab) Divided capacitor, 4 transistor, 5 Crystal piece, 6 Excitation electrode, 7 Extraction electrode, 8 Crystal oscillator (resonator), 9 Bias resistance, 10 Adjustment Capacitor.

Claims (6)

振動周波数が厚みに反比例した厚みすべり振動姿態の水晶片からなる水晶振動子において、前記水晶片に厚みの異なる第1振動領域と第2振動領域(但し、第1振動領域の厚み>第2振動領域の厚み)とを一体的に設け、前記第1振動領域又は第2振動領域のいずれか一方を発振回路を形成する発振子として他方をフィルタを形成する共振子とし、前記第1振動領域は基本波振動に対するオーバトーン振動で動作し、前記第2振動領域は基本波振動で動作することを特徴とする複合型水晶振動子。In a quartz crystal resonator comprising a quartz piece having a thickness-slip vibration mode in which the vibration frequency is in inverse proportion to the thickness, the quartz piece has a first vibration region and a second vibration region having different thicknesses (where the thickness of the first vibration region> second vibration). Thickness of the region) is integrally provided, and either the first vibration region or the second vibration region is an oscillator that forms an oscillation circuit, and the other is a resonator that forms a filter, and the first vibration region is A composite crystal resonator that operates with overtone vibration relative to fundamental vibration, and wherein the second vibration region operates with fundamental vibration. 前記第1振動領域はオーバトーン振動で動作する発振子とし、前記第2振動領域は基本波振動で動作する共振子とした請求項1に記載の複合型水晶振動子。2. The composite crystal resonator according to claim 1, wherein the first vibration region is a resonator that operates by overtone vibration, and the second vibration region is a resonator that operates by fundamental wave vibration. 前記第1振動領域はオーバトーン振動で動作する共振子とし、前記第2振動領域は基本波振動で動作する発振子とした請求項1に記載の複合型水晶振動子。The first vibration area is a resonator operating at overtone vibration, the composite crystal resonator of claim 1, wherein the second vibration area is obtained by a resonator that operates at the fundamental wave vibration. 前記水晶片はSCカットである請求項1、2又は3に記載の水晶振動子。The crystal unit according to claim 1, wherein the crystal piece is SC cut. インダクタ成分としての水晶振動子からなる発振子を有する共振回路と発振用増幅器とを有する発振閉ループ内に共振子を挿入してなるオーバトーン水晶発振器において、前記発振子と前記共振子とに請求項1の複合型水晶振動子を適用したことを特徴とするオーバトーン水晶発振器。An overtone crystal oscillator in which a resonator is inserted in an oscillation closed loop having a resonance circuit having an oscillator composed of a crystal resonator as an inductor component and an oscillation amplifier, and the resonator and the resonator are provided. An overtone crystal oscillator characterized by applying the composite crystal resonator of No. 1. 前記共振回路はインダクタ成分としての水晶振動子と分割コンデンサからなり、前記分割コンデンサの中点と発振器用増幅器との間に前記共振子としての水晶振動子を接続してなる請求項5に記載のオーバトーン水晶発振器。6. The resonance circuit according to claim 5, wherein the resonance circuit includes a crystal resonator as an inductor component and a split capacitor, and the crystal resonator as the resonator is connected between a midpoint of the split capacitor and an amplifier for an oscillator. Overtone crystal oscillator.
JP2001021360A 2001-01-30 2001-01-30 Composite crystal oscillator and overtone crystal oscillator using the same Expired - Fee Related JP3923263B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001021360A JP3923263B2 (en) 2001-01-30 2001-01-30 Composite crystal oscillator and overtone crystal oscillator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001021360A JP3923263B2 (en) 2001-01-30 2001-01-30 Composite crystal oscillator and overtone crystal oscillator using the same

Publications (2)

Publication Number Publication Date
JP2002232234A JP2002232234A (en) 2002-08-16
JP3923263B2 true JP3923263B2 (en) 2007-05-30

Family

ID=18886930

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001021360A Expired - Fee Related JP3923263B2 (en) 2001-01-30 2001-01-30 Composite crystal oscillator and overtone crystal oscillator using the same

Country Status (1)

Country Link
JP (1) JP3923263B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100995031B1 (en) 2003-10-01 2010-11-19 엘지전자 주식회사 Method for controlling signal transmitting applying for MIMO
JP4892267B2 (en) * 2006-03-31 2012-03-07 日本電波工業株式会社 Dual mode crystal oscillation circuit
KR100913101B1 (en) 2008-02-28 2009-08-21 엘지전자 주식회사 Method for signal transmitting applying for MIMO
CN113872527B (en) * 2021-09-26 2022-07-08 北京晨晶电子有限公司 Overtone temperature compensation crystal oscillator and electronic equipment

Also Published As

Publication number Publication date
JP2002232234A (en) 2002-08-16

Similar Documents

Publication Publication Date Title
KR100488617B1 (en) Piezoelectric resonator, filter, and electronic communication device
JP2007158486A (en) Crystal resonator element, crystal resonator, and crystal oscillator
US7012355B2 (en) Crystal unit
JP4989743B2 (en) Piezoelectric oscillator
JP2007208771A (en) Piezoelectric vibration element, piezoelectric vibrator, and piezoelectric oscillator
KR20070029561A (en) Oscillatory circuit having two oscillators
Kourani et al. A wideband oscillator exploiting multiple resonances in lithium niobate MEMS resonator
JP2003087086A (en) Piezoelectric resonator and manufacturing method therefor, piezoelectric filter and manufacturing method therefor, duplexer and electronic communications equipment
JP3923263B2 (en) Composite crystal oscillator and overtone crystal oscillator using the same
JP2016158245A (en) Single terminal circuit
JP3921355B2 (en) Frequency switching type high frequency oscillator
JP4499457B2 (en) Crystal oscillator
JP2002232236A (en) Complex crystal resonator and crystal oscillator using the same
JPH0870232A (en) Surface acoustic wave element and oscillat0r
JPH04269010A (en) Surface-wave resonator
JP3155113B2 (en) Temperature compensated crystal oscillation circuit
JP2001257558A (en) Piezoelectric vibrator
JP2002217644A (en) Crystal oscillator
JP2002290153A (en) Two-frequency switch-type high-frequency oscillator
JP2000082922A (en) Piezoelectric oscillator
KR100691284B1 (en) Voltage Controlled Oscillator Capable of Tuning Negative Resistance
JPS60261205A (en) Oscillating circuit
JP2001060844A (en) Composite piezoelectric vibrator
JP2004134852A (en) Piezoelectric device, its manufacturing method, and portable telephone and electronic apparatus utilizing piezoelectric device
JP2000091878A (en) Piezoelectric vibrator and piezoelectric oscillator

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060613

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060810

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070220

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100302

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110302

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120302

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130302

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140302

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees