JP3919442B2 - Pneumatic detection device for hydraulic brake for vehicles - Google Patents

Pneumatic detection device for hydraulic brake for vehicles Download PDF

Info

Publication number
JP3919442B2
JP3919442B2 JP2000344024A JP2000344024A JP3919442B2 JP 3919442 B2 JP3919442 B2 JP 3919442B2 JP 2000344024 A JP2000344024 A JP 2000344024A JP 2000344024 A JP2000344024 A JP 2000344024A JP 3919442 B2 JP3919442 B2 JP 3919442B2
Authority
JP
Japan
Prior art keywords
amount
change
air
rate
brake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000344024A
Other languages
Japanese (ja)
Other versions
JP2002145042A (en
Inventor
賢治 堀井
一徳 吉田
秀之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor East Japan Inc
Original Assignee
Kanto Auto Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanto Auto Works Ltd filed Critical Kanto Auto Works Ltd
Priority to JP2000344024A priority Critical patent/JP3919442B2/en
Publication of JP2002145042A publication Critical patent/JP2002145042A/en
Application granted granted Critical
Publication of JP3919442B2 publication Critical patent/JP3919442B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Braking Systems And Boosters (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ブレーキペダルからブースタ及びリザーバタンク付きのマスタシリンダを経由してホイールシリンダに至るブレーキ配管内へのエア入りを検知するための車両用液圧ブレーキのエア入り検知装置に関するものである。
【0002】
【従来の技術】
組立ラインにおいてブレーキ液を車両に注入する場合、ブレーキ系統の配管内を真空にしてリザーバタンクから注入を行っているが、実際には真空度が低く、配管内にエアが残っている場合があるために、検査工程で制動力の計測と共に作業者の官能評価によりエア入りを判断している。
【0003】
【発明が解決しようとする課題】
したがって、その判断には熟練を要し、結果にバラツキも生じ易い。また、正確にエア残量を計測する場合はホイールシリンダのブリーダキャップからエアを集めて合否の判断を行わなければならず、タイヤの脱着及びエアの収集作業に時間を要し、全数検査は不可能である。
【0004】
本発明は、このような点に鑑みて、ブレーキペダルの踏込み特性を基に自動的に所定量を上廻るエア混入を短時間で判断できる車両用液圧ブレーキのエア入り検知装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明は、この目的を達成するために、ブースタを介してブレーキペダルにより液圧を制御させるマスタシリンダからホイールシリンダに至るブレーキ配管内へのエア入りを検知するための車両用液圧ブレーキのエア入り検知装置であって、ブレーキペダルを踏込み駆動するアクチュエータと、このアクチュエータにそれぞれ付属して踏力を検知する荷重センサ及び踏込み量を検知する変位量センサと、これらの荷重センサ及び変位量センサの検知信号を入力として踏込み量に対する踏力の特性曲線データを作成するデータ作成手段と、特性曲線データを踏込み量について2階微分した2階微分曲線データを作成し、ブースタが機能し始めて踏込み量の変化に対する踏力の変化率が徐々に大きくなった後に略一定化する踏込み領域における2階微分曲線データのピーク値の標準のピーク値に対する減算値により、変化率の変化速度が標準の変化速度を所定量下廻るか否かを判断して所定量を上廻るエア入りを判断する判断手段と、その判断結果を出力する出力手段とを備えたことを特徴とする。
【0006】
データ作成手段が作成した踏込み量に対する踏力の特性曲線データにおいて、踏み込み初期は、機械的な遊び或はブースタも有効に作動せず、したがって踏込み量に対する踏力の変化量は僅かになる。この初期領域を過ぎてブースタが有効に機能し始めると、ブレーキ系に付随する種々の弾性要素が、踏込み量の増加に伴って圧縮されることにより、ブレーキ系のばね定数が徐々に大きくなって略一定化する。気泡が存在すると、そのばね特性が本来のばね特性に直列に加わり、その圧縮過程でばね定数が略一定化すのが遅れる。判断手段は、特性曲線データについて踏み込み初期を過ぎて変化率が徐々に大きくなって一定化する踏込み領域での踏力の変化率であるばね定数の変化速度が、所定量のエア混入に起因して標準の変化速度を所定量下廻るか否かを判断する。
【0007】
このために、判断手段は、特性曲線データを踏込み量について2階微分した2階微分曲線データを作成し、変化率の最大変化速度に相当する2階微分曲線のピーク値の標準のピーク値に対する減算値により、変化速度が標準の変化速度を所定量下廻るか否かを判断する。
【0008】
【発明の実施の形態】
図1乃至図3を基に本発明の実施の形態による車両用液圧ブレーキのエア入り検知装置を説明するもので、車両用液圧ブレーキは、周知のように、リザーバタンク1に貯えられたブレーキ液が、ブレーキペダル5の踏込みに応動してマスタシリンダ3でエンジンの吸気圧によって踏力の増幅を行うブースタ4により増圧されて、ブレーキホース8を介してホイールシリンダ6に供給されるブレーキ系で構成される。
【0009】
エア入り検知装置は、リザーバタンク1付きのマスタシリンダ3を経由してホイールシリンダ6に至るブレーキ配管内の液に所定量を上廻って混入するエアを検知するために、ブレーキペダル5を踏込み駆動するアクチュエータとしてのエアシリンダ10と、そのシリンダロッド11の先端に設けられて踏力を検知する荷重センサ12及び踏込み量を検知する変位量センサとしてシリンダロッド11の前進量を検知するリニアスケール13と、これらの検知信号を入力としてエア入りを判断する信号処理装置20とより構成される。
【0010】
エアシリンダ10は、シリンダロッド11をブレーキペダル5の足踏面に対接させ得るように傾斜させる基部15に支持されると共に、始動信号に応答してシリンダロッド11を所定のストロークだけ前進させ、次いで原位置に復帰させる制御回路が付属している。
【0011】
信号処理装置20はエア入りを判断するためのプログラムがインストールされるパソコンを利用し構成され、荷重センサ12及びリニアスケール13の検知信号をインタフェイス部でA/D変換して取り込み、踏込み量xに対する踏力Fの特性曲線データを作成するデータ作成手段21と、踏込み量xに対する踏力Fの標準の変化率データを格納する標準データ格納手段22と、データ作成手段21で作成された特性曲線データについてブースタ4が機能し始めて踏込み量xの増加に対する踏力Fの変化率、即ちばね定数が徐々に大きくなって一定の変化率(ばね定数)に近付く後述の踏込み領域bの変化率の変化速度が標準の変化速度を所定量下廻るか否かを判断して所定量を上廻るエア入りを判断する判断手段23と、画面表示器24aで判断データ及び合否結果を報知し、さらに光もしくは音、例えば警報ランプ24bで異常な量のエア入りを報知する出力手段24と、判断結果をメモリに逐次収録するデータ収録手段25とを備えている。エアシリンダ10には、キーボード26の操作に応答してインタフェイス部を介して始動信号が供給される。
【0012】
図2は踏込み量xに対する踏力Fの変化である典型的な踏込み−踏力の特性曲線を示するもので、実線はエアの非混入、点線はエア入りの状態である。判断手段23は、踏込み量xに対する踏力Fの変化である点線の踏込み−踏力の特性曲線データ(同図A)について先ず踏込み量xで微分してばね定数に相当する踏込み量の変化に対する踏力Fの変化率の曲線データを作成し(同図B)、次いでこの曲線をさらに踏込み量xで微分したその2階微分値、即ちばね定数の変化速度値である2階微分曲線データを作成する(同図C)。続いて、踏込み領域bで検出される2階微分のパルス状波形Aのピーク値を車両ごとに予め登録されている車体番号と共にデータ収録手段25に逐次保存させると共に、標準データ格納手段22に格納された図2の実線に対応する標準の2階微分曲線データの標準のピーク値と比較して所定量下廻るか否かにより合否を判断する。
【0013】
ブレーキペダル5からホイールシリンダ6に至るブレーキ系では、ブレーキペダルからブースタ及びリザーバタンク付きのマスタシリンダを経由してホイールシリンダに至るブレーキ系のブレーキバッド、ブレーキ液の体積弾性率、リザーバタンク1付きのマスタシリンダ3及びホイールシリンダ6間の配管の拡縮剛性等が弾性要素として作用し、エアが混入している場合にはその気泡のばね特性が直列に加わる。したがって、一般的に踏込み−踏力の特性曲線は折れ線状になる。即ち、図3は、ある車種についてブースタ作動時にブレーキペダルの往復動の周期を約10秒として踏み込み量の変化に対する踏力の実測データを示すもので、実線はエア入り無しの2回の試験結果、点線は約1ccのエア入りの2回の試験結果を示す。
【0014】
つまり、図3において、踏込み領域aは、ブレーキペダル5の踏込みの遊び或はブースタ4も有効に作動しない初期領域である。踏込み領域bは、ブースタ4が有効に作動し、ブレーキ系の前述の本来の弾性要素が気泡も加わって圧縮される過程を含むブレーキの実際の作動領域である。したがって、ブレーキの踏込み伴ってブレーキ系のばね定数が徐々に大きくなって略一定になり、その際気泡が存在する場合にはその容積が圧縮される過程でのばね定数の変化速度の相違が踏込み領域bの特性曲線に反映される。踏込み領域cは、前述のブレーキ系において残った気泡がさらに圧縮されて再度ばね定数が徐々に大きくなって略一定になって最大踏み込み量に達する作動領域、即ちブースタの作動比率が増加しストロークに対する踏力が最大となる作動領域である。この領域では気泡は実質上ばね作用を呈さない程度に圧縮された状態であり、したがって気泡が存在しても標準の特性曲線と同じ変化率の折れ線状になるだけで、同図Cの2番目のパルス波形のピーク値及び波形幅のエア混入の有無に起因する相対的な差は、踏込み領域bの始期よりも顕著でなくなる。
【0015】
このように構成されたエア抜き装置の動作は次の通りである。検査工程に搬入されてきた車両のブレーキペダル5に、エアシリンダ10のシリンダロッド11の先端に装着された荷重センサ12を対接させ、エアシリンダ10を往復作動させる。
【0016】
これにより、データ作成手段21は、荷重センサ12及びリニアスケール13のディジタル化された往動時の検知信号を取り込んで、x−F特性曲線データを作成する。判断手段23は、この特性曲線データについてばね定数が実質上立上り始める踏込み領域bの初期に発生する2階微分のパルス状波形Aを検出し、そのピーク値をばね定数の変化速度の最大値として算出し、標準のばね定数の変化速度のピーク値を所定量下廻るか否かにより異常なエア量の混入を判断する。その判断結果は、画面表示器24aに合否がパルス状波形Aのピーク値等と共に表示され、逐次各車両についてこれに関連するデータが逐次保存され、異常が検知された場合には警報ランプ24bでも報知される。パルス状波形Aのピーク値は、容易に算出されると共に、そのままエア入り度合の指標となる。
【0017】
検査対象となる車種が変わる場合には、キーボード26の操作により、標準データ格納手段22の標準データを変更し、判断手段23の判断基準値を変更する等により対応し得るように構成できる。
【0018】
また、図3に示すように、踏込み量−踏力の特性曲線はブレーキペダル5の往復度に対してヒステリシス特性を示すが、場合によりブレーキペダル5の復動時の曲線データを基に判断しても良い。ブレーキペダル5を踏込み駆動するアクチュエータとしては、ピニオン及びラックを駆動するモータとし、その際の変位量センサを回転数センサとすることも考えられる。
【0019】
さらに、本発明のブレーキ配管内エア入り検知装置を車両の製造工程に採用した場合について説明したが、短時間でエア残量が計測でき、またブレーキペダルの踏込みも自動的に行われるために、従来二人で行っていたエア入り検査作業を一人で行える。
【0020】
【発明の効果】
本発明によれば、踏込み量に対する踏力の特性曲線データについて、その変化率の変化速度のピーク値が、標準のピーク値を所定量下廻るか否かを判断して、ブレーキ系に混入した所定量のエアが自動的に検知可能となる。したがって、車両の製造ラインでエア入りを短時間で検査可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態による車両用液圧ブレーキのエア入り検知装置の構成を示すもである。
【図2】同装置の動作を説明する図である。
【図3】エア入りの有無による踏込み特性の実測データを説明する図である。
【符号の説明】
3 マスタシリンダ
4 ブースタ
5 ブレーキペダル
6 ホイールシリンダ
10 エアシリンダ
12 荷重センサ
13 リニアスケール
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an air entry detection device for a hydraulic brake for a vehicle for detecting entry of air into a brake pipe from a brake pedal to a wheel cylinder via a booster and a master cylinder with a reservoir tank.
[0002]
[Prior art]
When injecting brake fluid into the vehicle in the assembly line, the brake system piping is evacuated and injected from the reservoir tank, but the vacuum is actually low and air may remain in the piping. Therefore, in the inspection process, the entry of air is determined by measuring the braking force and sensory evaluation of the operator.
[0003]
[Problems to be solved by the invention]
Therefore, skill is required for the determination, and the results are likely to vary. In addition, when accurately measuring the remaining amount of air, air must be collected from the bleeder cap of the wheel cylinder to make a pass / fail judgment, and it takes time to remove and install tires and collect air. Is possible.
[0004]
In view of the above, the present invention provides an intrusion detection device for a hydraulic brake for a vehicle that can automatically determine in a short time whether air is in excess of a predetermined amount based on the depression characteristics of a brake pedal. With the goal.
[0005]
[Means for Solving the Problems]
In order to achieve this object, the present invention provides a hydraulic brake air for a vehicle for detecting the entry of air into a brake pipe extending from a master cylinder to a wheel cylinder, the hydraulic pressure of which is controlled by a brake pedal via a booster. An on-line detection device, an actuator for depressing and driving a brake pedal, a load sensor for detecting a depressing force and a displacement amount sensor for detecting a depressing amount respectively attached to the actuator, and detection of these load sensor and displacement amount sensor The data creation means for creating the characteristic curve data of the pedaling force with respect to the stepping amount using the signal as input, and the second order differential curve data obtained by second-order differentiation of the characteristic curve data with respect to the stepping amount are created . 2 in the depression area to be substantially kept constant after the reaction force of the change rate gradually increases The subtracted value to the standard peak value of the peak value of the derivative curve data, the rate of change of rate of change determining means for determining air remaining of more than a predetermined amount to determine whether the standard rate of change predetermined amount Shitamawaru And an output means for outputting the determination result.
[0006]
In the characteristic curve data of the pedaling force with respect to the stepping amount created by the data creating means, the mechanical play or the booster does not operate effectively at the initial stepping, and therefore, the amount of change in the stepping force with respect to the stepping amount becomes slight. When the booster starts to function effectively past this initial region, the spring constant of the brake system gradually increases as the various elastic elements associated with the brake system are compressed as the amount of depression increases. It becomes almost constant. If air bubbles are present, the spring characteristics are added in series with the original spring characteristics, and the spring constant is delayed in the compression process. The judging means is that the rate of change of the spring constant, which is the rate of change of the stepping force in the stepping region where the rate of change gradually increases and stabilizes after the initial stepping on the characteristic curve data, is attributed to a predetermined amount of air mixing. Determine whether the standard rate of change is below a specified amount.
[0007]
For this purpose, the judging means creates second-order differential curve data obtained by second-order differentiation of the characteristic curve data with respect to the depression amount, and the peak value of the second-order differential curve corresponding to the maximum rate of change of the change rate with respect to the standard peak value. more subtraction value, the change speed is determined whether or not a predetermined amount Shitamawaru standard rate of change.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a perspective view of a pneumatic brake detecting device for a hydraulic brake according to an embodiment of the present invention. FIG. 3 shows a hydraulic brake stored in a reservoir tank 1 as is well known. A brake system in which the brake fluid is boosted by the booster 4 that amplifies the pedaling force by the intake pressure of the engine in response to the depression of the brake pedal 5 and is supplied to the wheel cylinder 6 via the brake hose 8. Consists of.
[0009]
The air entry detection device depresses and drives the brake pedal 5 in order to detect air that exceeds a predetermined amount in the fluid in the brake pipe that reaches the wheel cylinder 6 via the master cylinder 3 with the reservoir tank 1. An air cylinder 10 as an actuator for performing the operation, a load sensor 12 provided at the tip of the cylinder rod 11 for detecting a pedaling force, and a linear scale 13 for detecting a forward movement amount of the cylinder rod 11 as a displacement amount sensor for detecting a depression amount; The signal processing device 20 is configured to determine whether the air has entered using these detection signals as inputs.
[0010]
The air cylinder 10 is supported by a base portion 15 that inclines the cylinder rod 11 so as to come into contact with the footstep of the brake pedal 5 and advances the cylinder rod 11 by a predetermined stroke in response to a start signal. A control circuit for returning to the original position is included.
[0011]
The signal processing device 20 is configured by using a personal computer in which a program for determining whether air enters is installed, and the detection signals of the load sensor 12 and the linear scale 13 are A / D converted at the interface unit, and the amount of depression x Data creation means 21 for creating characteristic curve data of the pedaling force F with respect to the pedal, standard data storage means 22 for storing standard change rate data of the pedaling force F with respect to the depression amount x, and characteristic curve data created by the data creation means 21 The rate of change of the stepping force F with respect to the increase of the stepping amount x after the booster 4 starts to function, that is, the rate of change of the rate of change of the stepping region b, which will be described later, gradually approaches a constant rate of change (spring constant) as the spring constant gradually increases. Determining means 23 for determining whether or not the change rate of the air is lower than a predetermined amount and determining whether the air exceeds the predetermined amount, and a screen display 24a. Output means 24 for notifying the judgment data and the pass / fail result, and further notifying light or sound, for example, an abnormal amount of air with an alarm lamp 24b, and data recording means 25 for successively recording the judgment results in the memory are provided. . A start signal is supplied to the air cylinder 10 through the interface in response to the operation of the keyboard 26.
[0012]
FIG. 2 shows a typical depression-depression force characteristic curve, which is a change in the depression force F with respect to the depression amount x, where the solid line indicates that no air is mixed and the dotted line indicates that the air is included. The judging means 23 first differentiates the stepping-force characteristic curve data (A) in the dotted line, which is a change in the pedaling force F with respect to the pedaling amount x, by differentiating the pedaling amount x by the pedaling amount x, and the pedaling force F with respect to the change in the pedaling amount corresponding to the spring constant. Curve data of the change rate of the curve (B in the figure), and then the second-order differential value obtained by differentiating the curve by the amount of depression x, that is, the second-order differential curve data that is the rate of change of the spring constant is generated ( Fig. C). Subsequently, the peak value of the second-order differential pulse waveform A detected in the stepping area b is sequentially stored in the data recording unit 25 together with the vehicle body number registered in advance for each vehicle, and stored in the standard data storage unit 22. Pass / fail is determined based on whether or not it falls below a predetermined amount compared to the standard peak value of the standard second-order differential curve data corresponding to the solid line in FIG.
[0013]
In the brake system from the brake pedal 5 to the wheel cylinder 6, the brake pad from the brake pedal to the wheel cylinder via the booster and the master cylinder with the reservoir tank, the volume elastic modulus of the brake fluid, the reservoir tank 1 The expansion / contraction rigidity of the pipe between the master cylinder 3 and the wheel cylinder 6 acts as an elastic element, and when air is mixed, the spring characteristics of the bubbles are added in series. Therefore, in general, the depression-depression force characteristic curve is a polygonal line. That is, FIG. 3 shows actual measurement data of the pedaling force with respect to the change in the depression amount when the booster is activated for a certain vehicle type with the cycle of the brake pedal being about 10 seconds. The dotted line shows the results of two tests with about 1 cc of air.
[0014]
That is, in FIG. 3, the depression area “a” is an initial area where the play of the brake pedal 5 or the booster 4 does not operate effectively. The stepping area b is an actual operating area of the brake including a process in which the booster 4 is effectively operated and the above-described original elastic element of the brake system is compressed by adding bubbles. Therefore, as the brake is depressed, the spring constant of the brake system gradually increases and becomes substantially constant. At this time, if bubbles are present, the difference in the rate of change of the spring constant during the process of compressing the volume is depressed. This is reflected in the characteristic curve of region b. The stepping region c is an operating region in which the remaining air bubbles in the brake system are further compressed and the spring constant gradually increases again to become substantially constant and reaches the maximum stepping amount, that is, the booster operating ratio increases and increases with respect to the stroke. This is the operating range where the pedal effort is maximized. In this region, the bubbles are compressed to such an extent that they do not substantially exhibit a spring action. Therefore, even if the bubbles are present, they are only a polygonal line having the same rate of change as the standard characteristic curve. The relative difference between the peak value of the pulse waveform and the waveform width due to the presence or absence of air mixing is less noticeable than the beginning of the stepping region b.
[0015]
The operation of the air bleeder thus configured is as follows. The load sensor 12 attached to the tip of the cylinder rod 11 of the air cylinder 10 is brought into contact with the brake pedal 5 of the vehicle carried into the inspection process, and the air cylinder 10 is reciprocated.
[0016]
Thereby, the data creation means 21 takes in the digitized detection signals at the time of forward movement of the load sensor 12 and the linear scale 13 and creates xF characteristic curve data. The judging means 23 detects the second-order differential pulse waveform A generated at the beginning of the stepping region b where the spring constant starts to rise substantially for this characteristic curve data, and uses the peak value as the maximum value of the change rate of the spring constant. The abnormal air amount is determined based on whether or not the peak value of the change rate of the standard spring constant is below a predetermined amount. The result of the determination is displayed on screen display 24a along with the peak value of pulse-shaped waveform A, etc., and data related to this is sequentially stored for each vehicle, and if an abnormality is detected, alarm lamp 24b also displays. Informed. The peak value of the pulse waveform A is easily calculated and serves as an index of the degree of air entry.
[0017]
When the vehicle type to be inspected changes, it can be configured so that the standard data in the standard data storage means 22 is changed by operating the keyboard 26 and the judgment reference value of the judgment means 23 is changed.
[0018]
Further, as shown in FIG. 3, the characteristic curve of the depression amount-depression force shows a hysteresis characteristic with respect to the reciprocation degree of the brake pedal 5, but in some cases, it is determined based on the curve data when the brake pedal 5 is moved backward. Also good. As an actuator for depressing and driving the brake pedal 5, a motor for driving a pinion and a rack may be used, and a displacement sensor at that time may be a rotational speed sensor.
[0019]
Furthermore, although the description has been given of the case where the brake pipe air entry detecting device of the present invention is adopted in the vehicle manufacturing process, the remaining amount of air can be measured in a short time, and the brake pedal is automatically depressed, Air inspection work that was previously performed by two people can be performed by one person.
[0020]
【The invention's effect】
According to the present invention, in the characteristic curve data of the pedaling force with respect to the depression amount, it is determined whether or not the peak value of the change rate of the rate of change falls below the standard peak value by a predetermined amount, and is mixed into the brake system. A certain amount of air can be automatically detected. Therefore, it is possible to inspect the air entry in a short time in the vehicle production line.
[Brief description of the drawings]
FIG. 1 shows a configuration of a pneumatic entry detection device for a hydraulic brake for a vehicle according to an embodiment of the present invention.
FIG. 2 is a diagram for explaining the operation of the apparatus.
FIG. 3 is a diagram for explaining actual measurement data of depression characteristics depending on presence / absence of air.
[Explanation of symbols]
3 Master cylinder 4 Booster 5 Brake pedal 6 Wheel cylinder 10 Air cylinder 12 Load sensor 13 Linear scale

Claims (1)

ブースタを介してブレーキペダルにより液圧を制御させるマスタシリンダからホイールシリンダに至るブレーキ配管内へのエア入りを検知するための車両用液圧ブレーキのエア入り検知装置であって、
前記ブレーキペダルを踏込み駆動するアクチュエータと、このアクチュエータにそれぞれ付属して踏力を検知する荷重センサ及び踏込み量を検知する変位量センサと、これらの荷重センサ及び変位量センサの検知信号を入力として前記踏込み量に対する前記踏力の特性曲線データを作成するデータ作成手段と、前記特性曲線データを踏込み量について2階微分した2階微分曲線データを作成し、前記ブースタが機能し始めて前記踏込み量の変化に対する前記踏力の変化率が徐々に大きくなった後に略一定化する踏込み領域における前記2階微分曲線データのピーク値の標準のピーク値に対する減算値により、前記変化率の変化速度が標準の変化速度を所定量下廻るか否かを判断して所定量を上廻るエア入りを判断する判断手段と、その判断結果を出力する出力手段とを備えたことを特徴とする車両用液圧ブレーキのエア入り検知装置。
An air entry detection device for a hydraulic brake for a vehicle for detecting the entry of air into a brake pipe extending from a master cylinder to a wheel cylinder, the fluid pressure of which is controlled by a brake pedal via a booster,
An actuator for depressing the brake pedal, a load sensor for detecting the depressing force, a displacement sensor for detecting the depressing amount, and a depressing signal of these load sensor and displacement sensor as inputs. Data creation means for creating characteristic curve data of the treading force with respect to the amount; second-order differential curve data obtained by second-order differentiation of the characteristic curve data with respect to the stepping amount; and the booster starts to function and the change with respect to the stepping amount changes The rate of change of the rate of change differs from the standard rate of change by subtracting the peak value of the second-order differential curve data from the standard peak value in the stepping region that becomes substantially constant after the rate of change of the pedal force gradually increases. Judgment means for judging whether or not the air amount exceeds the predetermined amount by judging whether or not the amount is below the fixed amount, Air entering the detection device for a vehicle hydraulic brake, characterized in that an output means for outputting.
JP2000344024A 2000-11-10 2000-11-10 Pneumatic detection device for hydraulic brake for vehicles Expired - Fee Related JP3919442B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000344024A JP3919442B2 (en) 2000-11-10 2000-11-10 Pneumatic detection device for hydraulic brake for vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000344024A JP3919442B2 (en) 2000-11-10 2000-11-10 Pneumatic detection device for hydraulic brake for vehicles

Publications (2)

Publication Number Publication Date
JP2002145042A JP2002145042A (en) 2002-05-22
JP3919442B2 true JP3919442B2 (en) 2007-05-23

Family

ID=18818290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000344024A Expired - Fee Related JP3919442B2 (en) 2000-11-10 2000-11-10 Pneumatic detection device for hydraulic brake for vehicles

Country Status (1)

Country Link
JP (1) JP3919442B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10253296A1 (en) * 2002-11-15 2004-05-27 Robert Bosch Gmbh Car hydraulic brake undissolved gas test procedure, compares regression lines fitted to measured pressure versus piston travel with predicted values
JP5040128B2 (en) * 2005-04-08 2012-10-03 日産自動車株式会社 Air mixing amount measuring apparatus and air mixing amount measuring method
DE102012220179B4 (en) 2011-11-24 2024-05-02 Schaeffler Technologies AG & Co. KG Procedure for checking correct filling of a hydraulic clutch system
CN103975173B (en) * 2011-11-24 2017-09-08 舍弗勒技术股份两合公司 The operating system of hydraulic pressure

Also Published As

Publication number Publication date
JP2002145042A (en) 2002-05-22

Similar Documents

Publication Publication Date Title
JP2700879B2 (en) Inspection method of vehicle brake device
JP4064483B2 (en) Inspection method and apparatus for vehicle brake device
KR101923678B1 (en) Method for determining an actuating force applied to a vehicle brake that can be actuated hydraulically and mechanically
US8050836B2 (en) Method and system for determining initiation of a panic braking maneuver
JPH09216556A (en) Inspection method and device of vehicle brake device
US7542837B2 (en) Determining the moment of activation of an automatic hold function
JPS6134613B2 (en)
JP3166788U (en) Elevator diagnostic device
KR101474688B1 (en) Automatic in and out apparatus of Multi Concent
JP3919442B2 (en) Pneumatic detection device for hydraulic brake for vehicles
JP3948721B2 (en) Pneumatic detection device for hydraulic brake for vehicles
JP3725471B2 (en) Method for functionally testing a vehicle dynamics control sensor system
KR900701583A (en) A method of monitoring the operation or operating status of a device, system or components of the system.
JPH09207763A (en) Method and device for inspecting vehicle brake device
JP3948723B2 (en) Pneumatic detection device for hydraulic brake for vehicles
KR100802753B1 (en) Testing device for evaluating fuel flowing sound in fuel tank
CN215598714U (en) Detection apparatus for electronic brake booster footboard feels
CN113119940A (en) System and method for detecting brake chatter in a vehicle
JP4690612B2 (en) Learning method of pedal play amount in an automatic car driving device
JP2745822B2 (en) Operation check device for anti-skid brake system
RU2342643C1 (en) Method for determining vehicle braking distance and device for its measurement
KR100224264B1 (en) Brake dynamo system
JPH0822669B2 (en) Brake inspection method
JP2005516839A (en) Method for determining or calibrating the maximum boost characteristic curve of a vacuum brake booster
JP2745821B2 (en) Operation check device for anti-skid brake system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060419

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060606

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070213

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees