JP3913412B2 - Sealed alkaline storage battery - Google Patents

Sealed alkaline storage battery Download PDF

Info

Publication number
JP3913412B2
JP3913412B2 JP23227999A JP23227999A JP3913412B2 JP 3913412 B2 JP3913412 B2 JP 3913412B2 JP 23227999 A JP23227999 A JP 23227999A JP 23227999 A JP23227999 A JP 23227999A JP 3913412 B2 JP3913412 B2 JP 3913412B2
Authority
JP
Japan
Prior art keywords
positive electrode
battery
manganese
weight
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23227999A
Other languages
Japanese (ja)
Other versions
JP2001057229A (en
Inventor
睦 矢野
光紀 徳田
衛 木本
靖彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP23227999A priority Critical patent/JP3913412B2/en
Publication of JP2001057229A publication Critical patent/JP2001057229A/en
Application granted granted Critical
Publication of JP3913412B2 publication Critical patent/JP3913412B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【0001】
【発明の属する技術分野】
本発明は、放電スタートの密閉型アルカリ蓄電池に関するものである。放電スタートの蓄電池とは、予め充電することなく初回の放電を行うことができる蓄電池のことである。
【0002】
【従来の技術及び発明が解決しようとする課題】
従来、亜鉛を負極活物質とする密閉型アルカリ蓄電池用の正極活物質としては、二酸化マンガンが提案されており、正極中に混合する導電剤としてはアセチレンブラックとりん状黒鉛とを混合したものが用いられている(特公昭57−57822号公報参照)。
【0003】
しかしながら、二酸化マンガンは充放電サイクルにおける可逆性が悪く、初回の放電を行った後充電しても当初の二酸化マンガンに戻らないので、充放電サイクルにおいて放電容量が急激に低下する。また、二酸化マンガンの酸素過電圧が低いために、充電時に正極側で酸素ガス(水の電気分解による)が発生して電池内圧が上昇し、それに伴い電池外装部材の接合部における密着性が低下して、電解液が外部に漏出しやすい。また、導電剤としてアセチレンブラックとりん状黒鉛の混合物を用いた場合、活物質粒子の導電性を十分に高めることができないため、高い放電容量を得ることが困難であった。
【0004】
このような問題を解消し得る正極活物質として、本出願人はマンガンを固溶したγ型オキシ水酸化ニッケルを提案している(特開平10−214621号公報参照)。マンガンを固溶したγ型オキシ水酸化ニッケルを正極活物質として用いることにより、充放電サイクルの長期に渡って電解液が外部に漏出しにくい、信頼性の高い放電スタートの密閉型アルカリ蓄電池を得ることができる。
【0005】
このような密閉型アルカリ蓄電池においては、亜鉛を負極活物質として用いる場合、負極を電池缶の中心に配置し、正極をその周りに配置するいわゆるインサイドアウト型構造が一般に採用されている。このような蓄電池構造によれば、活物質充填量を高めることができるので、高い放電容量を得ることができるが、放電容量をさらに高める工夫が求められている。
【0006】
本発明の目的は、高い放電容量が得られ、かつ充放電サイクルの長期に渡って電解液が外部に漏出しにくい、信頼性の高い放電スタートの密閉型アルカリ蓄電池を提供することにある。
【0007】
【課題を解決するための手段】
本発明の密閉型アルカリ蓄電池は、電池缶と、電池缶と電気的に接触するように電池缶内に配置される、γ型オキシ水酸化ニッケルを正極活物質とした中空状の正極と、正極の内側に配置される、亜鉛を負極活物質とした負極と、正極と負極の間に配置されるセパレータと、負極内に挿入された状態で配置される負極集電体と、正極、負極、及びセパレータ内に含浸される電解液とを備える密閉型アルカリ蓄電池であって、γ型オキシ水酸化ニッケルがマンガンをニッケルとマンガンの総量に対して5〜50重量%固溶しており、かつ正極中に混合される導電剤が黒鉛を無機酸と酸化剤との混合水溶液中にて酸化処理して得られる粉末を150〜1000℃で加熱処理したものであり、黒鉛の平均粒子径が、3〜20μmであり、マンガンを固溶したγ型オキシ水酸化ニッケルと導電剤が重量比(γ型オキシ水酸化ニッケル:導電剤)で97:3〜85:15の割合で正極中に混合されており、初回放電前のγ型オキシ水酸化ニッケル中のニッケル原子の価数が3.4〜3.8価であることを特徴としている。
【0008】
本発明において正極活物質として用いるγ型オキシ水酸化ニッケルは、マンガン(Mn)を5〜50重量%固溶している。
本発明におけるマンガンの固溶量は以下の式により定義される。
【0009】
マンガンの固溶量(重量%)=(γ型オキシ水酸化ニッケル中のマンガン量)/(γ型オキシ水酸化ニッケル中のニッケル及びマンガンの合計量)×100
本発明に従いγ型オキシ水酸化ニッケルにマンガンを固溶させることにより、酸素過電圧を増加させることができる。マンガンの固溶量が5重量%未満であると、酸素過電圧を十分に増加させることができないため、充放電を繰り返した際に電解液の漏れが発生する。マンガンの固溶量が50重量%を超えると、活物質であるγ型オキシ水酸化ニッケルの量が相対的に減少するため、十分な放電容量が得られない。
【0010】
本発明においては、正極中に混合する導電剤として、黒鉛を無機酸と酸化剤との混合水溶液中にて酸化処理して得られる粉末を150〜1000℃で加熱処理したものを用いている。このように黒鉛に対して、無機酸と酸化剤を用いて酸化処理した後加熱処理を施すことにより、黒鉛の層間に無機酸イオンが挿入された、いわゆる膨潤化黒鉛とすることができる。このような膨潤化黒鉛は、高い導電性を有しており、本発明ではこのような黒鉛を正極中に混合する導電剤として用いることにより、高い放電容量を実現している。
【0011】
本発明において、黒鉛を酸化処理して得られた粉末を加熱処理する温度は、上述のように150〜1000℃である。この温度の範囲外では、高い導電性を有する黒鉛が得られないので、高い放電容量を得ることができない。
【0012】
また、黒鉛を酸化処理する際に用いる無機酸としては、硫酸(H2SO4)、硝酸(HNO3)、セレン酸(H2SeO4)を例示することができ、酸化剤としては、次亜塩素酸ナトリウム(NaClO)、過マンガン酸カリウム(KMnO4)、過酸化水素(H22)、 過塩素酸カリウム(KClO4)、過塩素酸(HClO4)を例示することができる。
【0013】
また、上記酸化処理の対象となる黒鉛の平均粒子径としては、3〜20μmが好ましい。3μm未満であると、二次凝集が生じやすくなり、20μmを超えると、表面積が小さくなり、活物質との接触面積が低下するため、いずれも高い放電容量を得ることができない場合がある。
【0014】
また、本発明において、マンガンを固溶したγ型オキシ水酸化ニッケルと導電剤との混合割合は、重量比(γ型オキシ水酸化ニッケル:導電剤)で97:3〜85:15の割合であることが好ましい。すなわち、導電剤の添加量が3〜15重量%であることが好ましい。導電剤の添加量が3重量%未満であると、添加量が少ないため十分な放電容量を得ることができない場合があり、15重量%を超えると、活物質であるγ型オキシ水酸化ニッケルの量が相対的に少なくなるため、十分な放電容量を得ることができない場合がある。
【0015】
本発明におけるγ型オキシ水酸化ニッケル中のニッケル原子の価数は、初回放電前において、すなわち満充電状態で、3.4〜3.8価であることが好ましい。ニッケル原子の価数が3.4未満になると、十分な放電容量が得られにくく、また酸素過電圧が低いため充電時に電解液の漏れが発生する場合がある。また、一般にオキシ水酸化ニッケルにおいては、ニッケル原子の価数が3.8価よりも大きなものは存在しない。従って、満充填状態の後にさらに充電を続けても、水が分解して酸素ガスが発生するだけであり、ニッケル原子の価数が3.8価を超えることはない。
【0016】
本発明において用いるγ型オキシ水酸化ニッケルは、例えば水酸化ニッケルを次亜塩素酸ナトリウム(NaClO)等の酸化剤で酸化することにより得られる。またニッケルの価数は、反応させる酸化剤の添加量により調整することができる。
【0017】
本発明において用いるγ型オキシ水酸化ニッケルには、マンガン以外に、さらに亜鉛、コバルト、ビスマス、アルミニウム、イットリウム、エルビウム、イッテルビウム、ガドリニウム及びカルシウムよりなる群から選ばれた少なくとも1種の元素が固溶されていてもよい。これらの元素が固溶したγ型オキシ水酸化ニッケルを用いることにより、正極の酸素過電圧をさらに高めることができる。これらの元素の固溶量としては、0.5〜5重量%程度が好ましい。なお、この固溶量は以下の式により定義される。
【0018】
他の元素の固溶量(重量%)=(γ型オキシ水酸化ニッケル中の他の元素の量)/(γ型オキシ水酸化ニッケル中のニッケル及び他の元素の合計量)×100また、本発明においては、正極、負極、セパレータ、負極集電体、及び電解液が、電池缶内の容積の75体積%以上を占めることが好ましい。これにより、電池缶内における活物質の充填量を高めることができ、放電容量の高い密閉型アルカリ蓄電池とすることができる。また、このような放電容量の高い密閉型アルカリ蓄電池において、電池内圧の上昇を抑制し、充放電を繰り返した際に電解液が外部へ漏出するのを防止することができる。
【0019】
本発明の密閉型アルカリ蓄電池用導電剤は、密閉型アルカリ蓄電池の電極に添加される導電剤であり、黒鉛を無機酸と酸化剤との混合水溶液中にて酸化処理して得られる粉末を150〜1000℃で加熱処理したものであることを特徴としている。
【0020】
本発明の導電剤を電極に添加することにより、電極の導電性を高めることができ、高い放電容量を得ることができる。
【0021】
【実施例】
以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は以下の実施例により限定されるものではない。
【0022】
(実験1)
この実験では、マンガンを固溶したγ型オキシ水酸化ニッケルに、黒鉛を酸化・加熱処理した粉末を添加混合した電池A1〜A10、導電剤としてりん状黒鉛とアセチレンブラックを混合したものを添加した比較電池X、及び二酸化マンガンを正極活物質に使用した比較電池Yの1サイクル目の放電容量、25サイクル目の放電容量維持率及び漏液電池発生数を調べた。
【0023】
〔導電剤の作製〕
濃硫酸と過マンガン酸カリウムを重量比で9:1に混合した水溶液を1000ml用意した。この水溶液を100℃に保持し、平均粒子径が10μmの黒鉛を50g投入し1時間混合した。ろ過、水洗、乾燥後、300℃で5時間加熱処理した。なお、黒鉛の平均粒子径は、レーザー回折式粒度分布測定装置で測定している。
【0024】
〔正極の作製〕
硫酸マンガン40.4g、硫酸ニッケル154.8gを水に溶解し総量を5000mlとした。この水溶液に、10重量%アンモニアと10重量%水酸化ナトリウムの混合水溶液を滴下しpHを9.5±0.3に保持した。pHが低下した際にはこの混合水溶液を滴下しpHが一定になった後、1時間混合した。混合後、ろ過、水洗し、80℃にて乾燥した。
【0025】
10モル/リットルの水酸化ナトリウム水溶液500mlと10重量%次亜塩素酸ナトリウム水溶液1500mlの混合液に上記で得られたマンガンを固溶した水酸化ニッケル粉末100gを撹拌しながら投入し、1時間撹拌混合した後、ろ過、水洗し、60℃で乾燥して、γ型オキシ水酸化ニッケルを得た。このとき、マンガンがγ型オキシ水酸化ニッケル中のニッケルとマンガンの総量に対して20重量%固溶されていることを原子吸光法で確認した。また、このときのニッケル原子の価数は鉄の2価・3価の酸化還元滴定により測定した結果3.6であった。
【0026】
このようにして得たγ型オキシ水酸化ニッケル(正極活物質)と〔導電剤の作製〕で作製した黒鉛粉末を90:10の重量比で混合した粉末100重量部と、30重量%水酸化カリウム水溶液10重量部とを、らいかい機で30分間混合し、加圧成型して、外径1.3cm、内径0.95cm、高さ1.15cmの円筒中空状の成型体を作製した。
【0027】
これにより、γ型オキシ水酸化ニッケルと導電剤の総量に対して導電剤を10重量%添加したことになる。なお、電池の作製においては、この円筒中空状の正極を3個直列に重ねて、全体として1個の円筒中空体として使用した。
【0028】
〔負極の作製〕
負極活物質としての亜鉛粉末65重量部と、酸化亜鉛(ZnO)を飽和量含む40重量%水酸化カリウム水溶液34重量部と、ゲル化剤としてのアクリル酸樹脂(日本純薬社製、商品名「ジュンロンPW150」)1重量部とを混合して、ゲル状の負極を作製した。
【0029】
〔電池の作製〕
上記の正極及び負極を用いて、通称「インサイドアウト型」と呼ばれている構造(電池缶側が正極側、電池蓋側が負極側:「アウトサイド・正極型」とも呼ばれる)で、AAサイズの密閉型アルカリ蓄電池(本発明電池)A1を作製した。なお、放電容量を正極容量で規定するために、正極と負極との電気化学的な容量を1:1.2とした(以下の電池も全てこれと同じ容量比にした)。また、負極、正極、セパレータ、負極集電体、及び電解液からなる発電要素体が占める体積を、電池缶内の容積に対して、80体積%とした(以下の電池も全てこれと同じ充填率にした)。
【0030】
図1は、作製した密閉型アルカリ蓄電池を示す部分断面図である。図示の密閉型アルカリ蓄電池は、有底円筒状の正極缶(正極外部端子)1、負極蓋(負極外部端子)2、絶縁パッキング3、真鍮製の負極集電棒4、円筒中空状の正極(ニッケル極)5、ビニロンを主材とする円筒フィルム状のセパレータ6、ゲル状負極(亜鉛極)7などからなる。
【0031】
正極缶1には、正極缶1の円筒部の内周面に当接させて正極5が収納されており、該円筒中空状の正極5の内周面には、セパレータ6が外周面を当接させて設けられており、セパレータ6の内側には、ゲル状の負極7が充填されている。負極7の中央部には、正極缶1と負極蓋2とを電気的に絶縁する絶縁パッキング3により一端を支持された負極集電棒(負極集電体)4が挿入されている。正極缶1の開口部は、負極蓋2により閉蓋されている。電池内部の密閉は、正極缶1の開口部に絶縁パッキング3を嵌め込み、その上に負極蓋2を載置した後、正極缶1の閉口端を内側にかしめることによりなされている。本実施例の密閉型アルカリ蓄電池において、電極缶は、正極缶1、負極蓋2及び絶縁パッキング3から構成される。
【0032】
なお、上記実施例の密閉型アルカリ蓄電池においては中空状正極として円筒状の正極を用いているが、本発明はこれに限定されるものではなく、例えば、角筒状などの中空状正極であってもよい。
【0033】
(実験2)
正極の作製で、硫酸マンガンの量を5.1gとしたこと以外は同様にして電池A2を作製した。このときのマンガン固溶量は、2.5重量%であることを原子吸光法で確認した。またニッケル原子の価数は3.6であった。
【0034】
(実験3)
正極の作製で、硫酸マンガンの量を10.2gとしたこと以外は同様にして電池A3を作製した。このときのマンガン固溶量は、5重量%であることを原子吸光法で確認した。またニッケル原子の価数は3.6であった。
【0035】
(実験4)
正極の作製で、硫酸マンガンの量を20.2gとしたこと以外は同様にして電池A4を作製した。このときのマンガン固溶量は、10重量%であることを原子吸光法で確認した。またニッケル原子の価数は3.6であった。
【0036】
(実験5)
正極の作製で、硫酸マンガンの量を101gとしたこと以外は同様にして電池A5を作製した。このときのマンガン固溶量は、50重量%であることを原子吸光法で確認した。またニッケル原子の価数は3.6であった。
【0037】
(実験6)
正極の作製で、硫酸マンガンの量を121gとしたこと以外は同様にして電池A6を作製した。このときのマンガン固溶量は、60重量%であることを原子吸光法で確認した。またニッケル原子の価数は3.6であった。
【0038】
(実験7)
導電剤の作製で加熱温度を120℃としたことを除いては、実験1と同様にして電池A7を作製した。このときのマンガン固溶量は、20重量%であり、ニッケル原子の価数は3.6であった。
【0039】
(実験8)
導電剤の作製で加熱温度を150℃としたことを除いては、実験1と同様にして電池A8を作製した。このときのマンガン固溶量は、20重量%であり、ニッケル原子の価数は3.6であった。
【0040】
(実験9)
導電剤の作製で加熱温度を1000℃としたことを除いては、実験1と同様にして電池A9を作製した。このときのマンガン固溶量は、20重量%であり、ニッケル原子の価数は3.6であった。
【0041】
(実験10)
導電剤の作製で加熱温度を1100℃としたことを除いては、実験1と同様にして電池A10を作製した。このときのマンガン固溶量は、20重量%であり、ニッケル原子の価数は3.6であった。
【0042】
(比較例1)
正極の作製において、導電剤としてりん状黒鉛とアセチレンブラックを重量比で9:1で混合したものをγ型オキシ水酸化ニッケルとの総量に対して10重量%添加したことを除いて、同様にして比較電池Xを作製した。
【0043】
(比較例2)
二酸化マンガン粉末150重量部、りん状黒鉛27重量部、アセチレンブラック3重量部及びパラフィン0.06重量部を添加混合したものを加圧成型して、正極を作製した。この正極を使用したことを以外は同様して、比較電池Yを作製した。
【0044】
(各電池の種々の充放電サイクルにおける容量維持率及び漏液電池発生数)
正極活物質のみが異なる上記12種の密閉型アルカリ蓄電池について、100mAで電池電圧が1Vになるまで放電した後、100mAで電池電圧が1.95V(比較電池Yは1.65V)に達するまで充電を行う工程を1サイクルとする充放電サイクル試験を行って、各電池の1サイクル目の放電容量、25サイクル目における容量維持率及び漏液電池発生数を調べた。なお、電池はそれぞれ10本ずつ作製した。
【0045】
結果を表1に示す。表1中の1サイクル目の放電容量は、電池A1の1サイクル目の容量を100とした指数である。また25サイクル目における容量維持率は、各電池の1サイクル目の放電容量に対する比率(%)であり、かつ電解液が漏出しなかった電池の容量維持率の平均値である。
【0046】
【表1】

Figure 0003913412
【0047】
表1に示す結果から明らかなように、マンガンを5〜50重量%固溶したγ型オキシ水酸化ニッケルに、黒鉛を150〜1000℃で加熱処理して得られたものを導電剤として添加した正極を用いた電池A1、A3、A4、A5、A8、及びA9が、初期及び充放電サイクルの経過後も、高い放電容量が得られることがわかる。
【0048】
電池A2の耐漏液特性が悪いのはマンガンの固溶量が少ないため、酸素過電圧を十分に増加させることができないためと思われる。電池A6の放電容量が低いのは、マンガンの固溶量が多いため、活物質である水酸化ニッケルの量が少ないことによるものと思われる。
【0049】
また、電池A7及びA10の放電容量が低いのは、黒鉛の加熱処理の温度が低すぎるまたは高すぎるため、導電剤としての導電性が低いためであると思われる。
【0050】
比較電池Xの放電容量が低いのは、導電剤の導電性が低いためと思われる。また比較電池Yの放電容量が低いのは、正極活物質の結晶構造が変化したためであると思われる。また、耐漏液特性が悪いのは、正極の酸素過電圧が低いためと思われる。
【0051】
(実験2)
この実験では、黒鉛の平均粒子径が放電容量に及ぼす影響について検討した。平均粒子径が2μm、3μm、20μm、25μmである黒鉛を用いたことを除いては、実験1と同様に電池B1、B2、B3、B4を作製した。黒鉛の加熱処理温度は300℃であり、マンガンを20重量%固溶したγ型オキシ水酸化ニッケル(ニッケル価数3.6)と黒鉛の総量に対して10重量%添加した。なお、黒鉛の平均粒子径は、レーザー回折式粒度分布測定装置により測定した。
【0052】
これらのB1〜B4の各電池について、実験1で行ったのと同じ条件で充放電サイクル試験を行い、1サイクル目の放電容量並びに25サイクル目における放電容量維持率及び漏液電池発生数を調べた。
【0053】
結果を表2示す。表2中の1サイクル目の放電容量は、電池A1の1サイクル目の放電容量を100とした指数である。また25サイクル目における容量維持率は、各電池の1サイクル目の放電容量に対する比率(%)である。A1は表1中のA1と同じ電池である。
【0054】
【表2】
Figure 0003913412
【0055】
表2に示す結果から明らかなように、黒鉛の平均粒子径を3〜20μmの範囲内にすることにより、より高い放電容量が得られることがわかる。これらに比べ、電池B1の放電容量が低いのは、平均粒子径が小さすぎるため二次凝集が生じるためと思われる。また、電池B4の放電容量が低いのは、黒鉛の平均粒子径が大きくなるため、その比表面積が小さくなり、活物質との接触面積が低下するためと思われる。
【0056】
(実験3)
この実験では、導電剤の添加量について検討した。マンガンを20重量%固溶したγ型オキシ水酸化ニッケル(ニッケル価数3.6)と導電剤の混合比率を98:2、97:3、85:15、80:20としたことを除いては、実験1と同様にして電池C1〜C4を作製した。なお、黒鉛の平均粒子径は10μm、加熱処理温度は300℃である。
【0057】
これらC1〜C4の各電池について、実験1で行ったのと同じ条件で充放電サイクル試験を行い、1サイクル目の放電容量並びに25サイクル目の放電容量維持率及び漏液電池発生数を調べた。
【0058】
結果を表3に示す。表3中の1サイクル目の放電容量は、電池A1の1サイクル目の放電容量を100とした指数である。また25サイクル目における容量維持率は、各電池の1サイクル目の放電容量に対する比率(%)である。A1は表1中のA1と同じ電池である。
【0059】
【表3】
Figure 0003913412
【0060】
表3に示す結果から明らかなように、導電剤の添加量としては3〜15重量%の範囲が特に好ましいことがわかる。電池C1の放電容量が低いのは、導電剤の添加量が少ないためと思われる。また電池C4の放電容量が低いのは、導電剤の添加量が多いため、活物質の充填量が相対的に低下したことによるものと思われる。
【0061】
(実験4)
この実験では、γ型オキシ水酸化ニッケル中のニッケル原子の価数と放電容量及び耐漏液特性の関係を調べた。
【0062】
実験1の正極の作製において、水酸化ナトリウム水溶液500mlと混合する10重量%次亜塩素酸ナトリウム水溶液の量を、1500mlに代えて、1350ml、1400ml、または1600mlとしたこと以外は電池A1の作製と同様にして、密閉型アルカリ蓄電池D1〜D3を作製した。なお、このときのニッケル原子の価数は、それぞれ3.3、3.4、3.8である。
【0063】
導電剤としては、平均粒子径が10μmの黒鉛を上記と同様に酸化処理し300℃で加熱処理したものを用いた。そして、マンガンを20重量%固溶したγ型オキシ水酸化ニッケルとの総量に対して10重量%添加した。これらD1〜D3の各電池について、実験1で行ったのと同じ条件で充放電サイクル試験を行い、1サイクル目の放電容量並びに25サイクル目の放電容量維持率及び漏液電池発生数を調べた。
【0064】
結果を下記の表4に示す。表4中の1サイクル目の放電容量は、電池A1の1サイクル目の容量を100とした指数である。また25サイクル目における容量維持率は、各電池の1サイクル目の放電容量に対する比率(%)であり、かつ電解液が漏出しなかった電池の容量維持率の平均値である。A1は表1中のA1と同じ電池である。
【0065】
【表4】
Figure 0003913412
【0066】
表4に示す結果から明らかなように、放電容量が大きく、耐漏液特性に優れた電池を得るためには、正極活物質としてニッケルの原子の価数が3.4〜3.8であるγ型オキシ水酸化ニッケルを使用することが好ましいことがわかる。
【0067】
(実験5)
この実験では、マンガン以外に固溶させる元素の影響について検討した。なお、固溶量の定義を以下に示す。
固溶量(重量%)=(γ型オキシ水酸化ニッケル中のマンガン以外の固溶元素量)/(γ型オキシ水酸化ニッケル中のニッケル量+マンガン以外の固溶元素量)×100
【0068】
(実験5−1)
実験1の正極の作製において硫酸マンガン、硫酸ニッケル以外に硫酸亜鉛(ZnSO4)を1.46g溶解させたこと以外は同様にして電池E1を作製した。このときの亜鉛の固溶量は1重量%、マンガンの固溶量は20重量%であることを原子吸光法で確認した。この電池E1において導電剤は、平均粒子径が10μmの黒鉛を酸化処理し300℃で加熱処理したものを用いた。そして、マンガンを20重量%固溶したγ型オキシ水酸化ニッケル(ニッケル価数3.6)との総量に対して10重量%の導電剤を添加した。
【0069】
(実験5−2)
実験1の正極の作製において硫酸マンガン、硫酸ニッケル以外に硫酸コバルト(CoSO4)を1.55g溶解させたこと以外は同様にして電池E2を作製した。このとき、コバルトの固溶量は1重量%、マンガンの固溶量は20重量%であることを原子吸光法で確認した。この電池E2において導電剤は、平均粒子径が10μmの黒鉛を酸化処理し300℃で加熱処理したものを用いた。そして、マンガンを20重量%固溶したγ型オキシ水酸化ニッケル(ニッケル価数3.6)との総量に対して10重量%の導電剤を添加した。
【0070】
(実験5−3)
実験1の正極の作製において硫酸マンガン、硫酸ニッケル以外に硝酸ビスマス(Bi(NO3)3)を0.81g溶解させたこと以外は同様にして電池E3を作製した。このとき、ビスマスの固溶量は1重量%、マンガンの固溶量は20重量%であることを原子吸光法で確認した。この電池E3において導電剤は、平均粒子径が10μmの黒鉛を酸化処理し300℃で加熱処理したものを用いた。そして、マンガンを20重量%固溶したγ型オキシ水酸化ニッケル(ニッケル価数3.6)との総量に対して10重量%の導電剤を添加した。
【0071】
(実験5−4)
実験1の正極の作製において硫酸マンガン、硫酸ニッケル以外に硫酸アルミニウム(Al2(SO4)3)を3.74g溶解させたこと以外は同様にして電池E4を作製した。このとき、アルミニウムの固溶量は1重量%、マンガンの固溶量は20重量%であることを原子吸光法で確認した。この電池E4において導電剤は、平均粒子径が10μmの黒鉛を酸化処理し300℃で加熱処理したものを用いた。そして、マンガンを20重量%固溶したγ型オキシ水酸化ニッケル(ニッケル価数3.6)との総量に対して10重量%の導電剤を添加した。
【0072】
(実験5−5)
実験1の正極の作製において硫酸マンガン、硫酸ニッケル以外に硫酸イットリウム(Y2(SO4)3)を1.55g溶解させたこと以外は同様にして電池E5を作製した。このとき、イットリウムの固溶量は1重量%であることを発光分析法(ICP)で確認した。また、マンガンの固溶量は20重量%であることを原子吸光法で確認した。この電池E5において導電剤は、平均粒子径が10μmの黒鉛を酸化処理し300℃で加熱処理したものを用いた。そして、マンガンを20重量%固溶したγ型オキシ水酸化ニッケル(ニッケル価数3.6)との総量に対して10重量%の導電剤を添加した。
【0073】
(実験5−6)
実験1の正極の作製において硫酸マンガン、硫酸ニッケル以外に硫酸エルビウム(Er2(SO4)3)を1.10g溶解させたこと以外は同様にして電池E6を作製した。このとき、エルビウムの固溶量は1重量%であることを発光分析法(ICP)で確認した。また、マンガンの固溶量は20重量%であることを原子吸光法で確認した。この電池E6において導電剤は、平均粒子径が10μmの黒鉛を酸化処理し300℃で加熱処理したものを用いた。そして、マンガンを20重量%固溶したγ型オキシ水酸化ニッケル(ニッケル価数3.6)との総量に対して10重量%の導電剤を添加した。
【0074】
(実験5−7)
実験1の正極の作製において硫酸マンガン、硫酸ニッケル以外に硫酸イッテルビウム(Yb2(SO4)3)を1.08g溶解させたこと以外は同様にして電池E7を作製した。このとき、イッテルビウムの固溶量は1重量%であることを発光分析法(ICP)で確認した。また、マンガンの固溶量は20重量%であることを原子吸光法で確認した。この電池E7において導電剤は、平均粒子径が10μmの黒鉛を酸化処理し300℃で加熱処理したものを用いた。そして、マンガンを20重量%固溶したγ型オキシ水酸化ニッケル(ニッケル価数3.6)との総量に対して10重量%の導電剤を添加した。
【0075】
(実験5−8)
実験1の正極の作製において硫酸マンガン、硫酸ニッケル以外に硫酸ガドリニウム(Gd2(SO4)3)を1.13g溶解させたこと以外は同様にして電池E8を作製した。このとき、ガドリニウムの固溶量は1重量%であることを発光分析法(ICP)で確認した。また、マンガンの固溶量は20重量%であることを原子吸光法で確認した。この電池E8において導電剤は、平均粒子径が10μmの黒鉛を酸化処理し300℃で加熱処理したものを用いた。そして、マンガンを20重量%固溶したγ型オキシ水酸化ニッケル(ニッケル価数3.6)との総量に対して10重量%の導電剤を添加した。
【0076】
(実験5−9)
実験1の正極の作製において硫酸マンガン、硫酸ニッケル以外に硝酸カルシウム(Ca(NO3)2)を2.41g溶解させたこと以外は同様にして電池E9を作製した。このとき、カルシウムの固溶量は1重量%であることを発光分析法(ICP)で確認した。また、マンガンの固溶量は20重量%であることを原子吸光法で確認した。この電池E9において導電剤は、平均粒子径が10μmの黒鉛を酸化処理し300℃で加熱処理したものを用いた。そして、マンガンを20重量%固溶したγ型オキシ水酸化ニッケル(ニッケル価数3.6)との総量に対して10重量%の導電剤を添加した。
【0077】
(実験5−10)
実験1の正極の作製において硫酸マンガン、硫酸ニッケル以外に硫酸エルビウム(Er2(SO4)3)を1.10g、硫酸アルミニウム(Al2(SO4)3)を3.74g溶解させたこと以外は同様にして電池E10を作製した。このとき、エルビウムの固溶量が1重量%であることを発光分析法(ICP)で確認した。また、アルミニウムの固溶量は1重量%、マンガンの固溶量は20重量%であることを原子吸光法で確認した。この電池E10において導電剤は、平均粒子径が10μmの黒鉛を酸化処理し300℃で加熱処理したものを用いた。そして、マンガンを20重量%固溶したγ型オキシ水酸化ニッケル(ニッケル価数3.6)との総量に対して10重量%の導電剤を添加した。
【0078】
これらのE1〜E10の各電池について上記実験1で行ったのと同じ条件で充放電サイクル試験を行い、1サイクル目の放電容量並びに25サイクル目の放電容量維持率及び漏液電池発生数を調べた。
【0079】
この結果を表5に示す。この表5において1サイクル目の放電容量は、電池A1の1サイクル目の容量を100とした指数(電池10個の平均値)であり、また25サイクル目における容量維持率は、各電池の1サイクル目の放電容量に対する比率(%)であり、かつ電解液が漏出しなかった電池の容量維持率の平均値である。
【0080】
【表5】
Figure 0003913412
【0081】
表5に示す結果から明らかなように、マンガン以外に、亜鉛、コバルト、ビスマス、アルミニウム、イットリウム、エルビウム、イッテルビウム、ガドリニウム及びカルシウムよりなる群より選ばれた少なくとも1種の元素を固溶させても優れた特性が得られることがわかる。
【0082】
【発明の効果】
本発明によれば、高い放電容量が得られ、かつ充放電サイクルの長期に渡って電解液が外部に漏出しにくい、信頼性の高い放電スタートの密閉型アルカリ蓄電池とすることができる。
【図面の簡単な説明】
【図1】本発明に従う一実施例の密閉型アルカリ蓄電池を示す部分断面図。
【符号の説明】
1…正極缶
2…負極蓋
3…絶縁パッキング
4…負極集電棒
5…正極
6…セパレータ
7…ゲル状負極[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a discharge-type sealed alkaline storage battery. The discharge start storage battery is a storage battery capable of performing the first discharge without being charged in advance.
[0002]
[Prior art and problems to be solved by the invention]
Conventionally, manganese dioxide has been proposed as a positive electrode active material for sealed alkaline storage batteries using zinc as a negative electrode active material, and a conductive agent mixed in the positive electrode is a mixture of acetylene black and phosphorous graphite. (See Japanese Patent Publication No. 57-57822).
[0003]
However, manganese dioxide has poor reversibility in the charge / discharge cycle and does not return to the original manganese dioxide even after charging after the first discharge, so that the discharge capacity rapidly decreases in the charge / discharge cycle. In addition, since the oxygen overvoltage of manganese dioxide is low, oxygen gas (due to electrolysis of water) is generated on the positive electrode side during charging, the battery internal pressure increases, and accordingly the adhesion at the joint of the battery exterior member decreases. Therefore, the electrolyte is likely to leak out. Further, when a mixture of acetylene black and phosphorus graphite is used as the conductive agent, it is difficult to obtain a high discharge capacity because the conductivity of the active material particles cannot be sufficiently increased.
[0004]
As a positive electrode active material capable of solving such a problem, the present applicant has proposed γ-type nickel oxyhydroxide in which manganese is dissolved (see JP-A-10-214621). By using gamma-type nickel oxyhydroxide with solid solution of manganese as the positive electrode active material, a highly reliable sealed alkaline storage battery with a discharge start that is difficult for the electrolyte to leak out over the long period of the charge / discharge cycle is obtained. be able to.
[0005]
In such a sealed alkaline storage battery, when zinc is used as a negative electrode active material, a so-called inside-out structure in which a negative electrode is disposed at the center of a battery can and a positive electrode is disposed around the negative electrode is generally employed. According to such a storage battery structure, since the active material filling amount can be increased, a high discharge capacity can be obtained, but a device for further increasing the discharge capacity is required.
[0006]
SUMMARY OF THE INVENTION An object of the present invention is to provide a highly reliable discharge start sealed alkaline storage battery that has a high discharge capacity and is difficult to leak an electrolyte over the long term of a charge / discharge cycle.
[0007]
[Means for Solving the Problems]
A sealed alkaline storage battery according to the present invention includes a battery can, a hollow positive electrode using γ-type nickel oxyhydroxide as a positive electrode active material, disposed in the battery can so as to be in electrical contact with the battery can, and a positive electrode A negative electrode using zinc as a negative electrode active material, a separator disposed between the positive electrode and the negative electrode, a negative electrode current collector disposed in the negative electrode, a positive electrode, a negative electrode, And a sealed alkaline storage battery having an electrolyte impregnated in the separator, wherein γ-type nickel oxyhydroxide is a solid solution of 5 to 50% by weight of manganese with respect to the total amount of nickel and manganese, and a positive electrode all SANYO the conductive agent to be mixed is heated at 150 to 1000 ° C. the powder obtained by oxidizing graphite C. in a mixed aqueous solution of an inorganic acid oxidizing agent in an average particle size of the graphite is, 3-20μm, solid manganese The γ-type nickel oxyhydroxide and the conductive agent are mixed in the positive electrode in a weight ratio (γ-type nickel oxyhydroxide: conductive agent) in a ratio of 97: 3 to 85:15. valence of nickel atoms in the nickel hydroxide is characterized by 3.4 to 3.8 Ataidea Rukoto.
[0008]
In the present invention, the γ-type nickel oxyhydroxide used as the positive electrode active material has a solid solution of 5 to 50% by weight of manganese (Mn).
The solid solution amount of manganese in the present invention is defined by the following formula.
[0009]
Solid solution amount of manganese (% by weight) = (Amount of manganese in γ-type nickel oxyhydroxide) / (Total amount of nickel and manganese in γ-type nickel oxyhydroxide) × 100
According to the present invention, oxygen overvoltage can be increased by dissolving manganese in γ-type nickel oxyhydroxide. When the solid solution amount of manganese is less than 5% by weight, the oxygen overvoltage cannot be increased sufficiently, and thus electrolyte leakage occurs when charging and discharging are repeated. If the solid solution amount of manganese exceeds 50% by weight, the amount of γ-type nickel oxyhydroxide as an active material is relatively reduced, so that a sufficient discharge capacity cannot be obtained.
[0010]
In the present invention, the conductive agent mixed in the positive electrode is a powder obtained by subjecting graphite to an oxidation treatment in a mixed aqueous solution of an inorganic acid and an oxidant and heat-treating it at 150 to 1000 ° C. In this way, by subjecting graphite to an oxidation treatment using an inorganic acid and an oxidizing agent followed by a heat treatment, so-called swollen graphite in which inorganic acid ions are inserted between graphite layers can be obtained. Such swollen graphite has high conductivity, and in the present invention, a high discharge capacity is realized by using such graphite as a conductive agent mixed in the positive electrode.
[0011]
In this invention, the temperature which heat-processes the powder obtained by oxidizing the graphite is 150-1000 degreeC as mentioned above. Outside this temperature range, graphite having high conductivity cannot be obtained, so that a high discharge capacity cannot be obtained.
[0012]
Examples of inorganic acids used for oxidizing graphite include sulfuric acid (H 2 SO 4 ), nitric acid (HNO 3 ), and selenic acid (H 2 SeO 4 ). Examples thereof include sodium chlorite (NaClO), potassium permanganate (KMnO 4 ), hydrogen peroxide (H 2 O 2 ), potassium perchlorate (KClO 4 ), and perchloric acid (HClO 4 ).
[0013]
Moreover, as an average particle diameter of the graphite used as the object of the said oxidation process, 3-20 micrometers is preferable. If it is less than 3 μm, secondary aggregation tends to occur, and if it exceeds 20 μm, the surface area becomes small and the contact area with the active material decreases, so that in any case, a high discharge capacity may not be obtained.
[0014]
In the present invention, the mixing ratio of the γ-type nickel oxyhydroxide in which manganese is dissolved and the conductive agent is 97: 3 to 85:15 by weight ratio (γ-type nickel oxyhydroxide: conductive agent). Preferably there is. That is, the addition amount of the conductive agent is preferably 3 to 15% by weight. If the added amount of the conductive agent is less than 3% by weight, a sufficient discharge capacity may not be obtained because the added amount is small. If the added amount exceeds 15% by weight, the active material γ-type nickel oxyhydroxide Since the amount is relatively small, a sufficient discharge capacity may not be obtained.
[0015]
In the present invention, the valence of nickel atoms in the γ-type nickel oxyhydroxide is preferably 3.4 to 3.8 before the first discharge, that is, in a fully charged state. If the valence of nickel atoms is less than 3.4, it is difficult to obtain a sufficient discharge capacity, and since the oxygen overvoltage is low, leakage of the electrolyte may occur during charging. In general, there is no nickel oxyhydroxide having a valence of nickel atoms larger than 3.8. Therefore, even if charging is continued after the full charge state, water is only decomposed and oxygen gas is generated, and the valence of nickel atoms does not exceed 3.8.
[0016]
The γ-type nickel oxyhydroxide used in the present invention can be obtained, for example, by oxidizing nickel hydroxide with an oxidizing agent such as sodium hypochlorite (NaClO). Moreover, the valence of nickel can be adjusted with the addition amount of the oxidizing agent made to react.
[0017]
In addition to manganese, γ-type nickel oxyhydroxide used in the present invention further contains at least one element selected from the group consisting of zinc, cobalt, bismuth, aluminum, yttrium, erbium, ytterbium, gadolinium and calcium as a solid solution. May be. By using γ-type nickel oxyhydroxide in which these elements are dissolved, the oxygen overvoltage of the positive electrode can be further increased. The solid solution amount of these elements is preferably about 0.5 to 5% by weight. This solid solution amount is defined by the following equation.
[0018]
Solid solution amount of other elements (% by weight) = (Amount of other elements in γ-type nickel oxyhydroxide) / (Total amount of nickel and other elements in γ-type nickel oxyhydroxide) × 100 In the present invention, the positive electrode, the negative electrode, the separator, the negative electrode current collector, and the electrolytic solution preferably occupy 75% by volume or more of the volume in the battery can. Thereby, the filling amount of the active material in a battery can can be raised, and it can be set as a sealed alkaline storage battery with a high discharge capacity. Moreover, in such a sealed alkaline storage battery having a high discharge capacity, it is possible to suppress an increase in the internal pressure of the battery and to prevent the electrolyte from leaking to the outside when charging and discharging are repeated.
[0019]
The conductive agent for a sealed alkaline storage battery of the present invention is a conductive agent added to the electrode of the sealed alkaline storage battery, and 150 powders obtained by oxidizing graphite in a mixed aqueous solution of an inorganic acid and an oxidizing agent. It is characterized by being heat treated at ~ 1000 ° C.
[0020]
By adding the conductive agent of the present invention to the electrode, the conductivity of the electrode can be increased and a high discharge capacity can be obtained.
[0021]
【Example】
EXAMPLES Hereinafter, although this invention is demonstrated further in detail based on an Example, this invention is not limited by a following example.
[0022]
(Experiment 1)
In this experiment, batteries A1 to A10 in which powder obtained by oxidizing and heat-treating graphite was added to and mixed with γ-type nickel oxyhydroxide in which manganese was dissolved, and a mixture of phosphorus graphite and acetylene black as a conductive agent was added. The discharge capacity at the first cycle, the discharge capacity retention rate at the 25th cycle, and the number of leaked batteries were examined for the comparative battery X and the comparative battery Y using manganese dioxide as the positive electrode active material.
[0023]
[Preparation of conductive agent]
1000 ml of an aqueous solution in which concentrated sulfuric acid and potassium permanganate were mixed at a weight ratio of 9: 1 was prepared. This aqueous solution was kept at 100 ° C., and 50 g of graphite having an average particle size of 10 μm was added and mixed for 1 hour. After filtration, washing with water and drying, heat treatment was performed at 300 ° C. for 5 hours. The average particle size of graphite is measured with a laser diffraction particle size distribution measuring device.
[0024]
[Production of positive electrode]
40.4 g of manganese sulfate and 154.8 g of nickel sulfate were dissolved in water to make a total amount of 5000 ml. To this aqueous solution, a mixed aqueous solution of 10 wt% ammonia and 10 wt% sodium hydroxide was added dropwise to maintain the pH at 9.5 ± 0.3. When the pH was lowered, the mixed aqueous solution was added dropwise to make the pH constant, followed by mixing for 1 hour. After mixing, it was filtered, washed with water, and dried at 80 ° C.
[0025]
100 g of nickel hydroxide powder in which manganese is obtained as a solid solution was added to a mixed solution of 500 ml of 10 mol / liter sodium hydroxide aqueous solution and 1500 ml of 10 wt% sodium hypochlorite aqueous solution while stirring, and stirred for 1 hour. After mixing, filtration, washing with water and drying at 60 ° C. gave γ-type nickel oxyhydroxide. At this time, it was confirmed by atomic absorption method that manganese was dissolved in 20 wt% with respect to the total amount of nickel and manganese in γ-type nickel oxyhydroxide. Further, the valence of the nickel atom at this time was 3.6 as a result of measurement by divalent / trivalent oxidation-reduction titration of iron.
[0026]
100 parts by weight of powder obtained by mixing γ-type nickel oxyhydroxide (positive electrode active material) thus obtained and graphite powder prepared in [Preparation of Conductive Agent] at a weight ratio of 90:10, and 30% by weight hydroxide 10 parts by weight of an aqueous potassium solution was mixed for 30 minutes with a milling machine and pressure molded to produce a cylindrical hollow molded body having an outer diameter of 1.3 cm, an inner diameter of 0.95 cm, and a height of 1.15 cm.
[0027]
Thus, 10% by weight of the conductive agent is added to the total amount of γ-type nickel oxyhydroxide and the conductive agent. In manufacturing the battery, three cylindrical hollow positive electrodes were stacked in series and used as a single cylindrical hollow body as a whole.
[0028]
(Production of negative electrode)
65 parts by weight of zinc powder as a negative electrode active material, 34 parts by weight of a 40 wt% aqueous potassium hydroxide solution containing a saturated amount of zinc oxide (ZnO), and an acrylic resin as a gelling agent (trade name, manufactured by Nippon Pure Chemical Co., Ltd.) “Junron PW150”) 1 part by weight was mixed to prepare a gelled negative electrode.
[0029]
[Production of battery]
Using the above positive electrode and negative electrode, the structure is commonly called “inside-out type” (the battery can side is the positive electrode side, the battery lid side is the negative electrode side: also called “outside / positive electrode type”), AA size sealed Type alkaline storage battery (present invention battery) A1 was produced. In order to define the discharge capacity in terms of the positive electrode capacity, the electrochemical capacity of the positive electrode and the negative electrode was set to 1: 1.2 (all the following batteries have the same capacity ratio). In addition, the volume occupied by the power generation element body composed of the negative electrode, the positive electrode, the separator, the negative electrode current collector, and the electrolyte is 80% by volume with respect to the volume in the battery can (the following batteries are all filled in the same manner) Rate).
[0030]
FIG. 1 is a partial cross-sectional view showing the produced sealed alkaline storage battery. The illustrated sealed alkaline storage battery includes a bottomed cylindrical positive electrode can (positive electrode external terminal) 1, a negative electrode lid (negative electrode external terminal) 2, an insulation packing 3, a negative electrode current collector rod 4 made of brass, a cylindrical hollow positive electrode (nickel) Electrode) 5, a cylindrical film-shaped separator 6 mainly composed of vinylon, a gelled negative electrode (zinc electrode) 7, and the like.
[0031]
A positive electrode 5 is accommodated in the positive electrode can 1 in contact with the inner peripheral surface of the cylindrical portion of the positive electrode can 1, and a separator 6 abuts the outer peripheral surface of the inner peripheral surface of the cylindrical hollow positive electrode 5. A gelled negative electrode 7 is filled inside the separator 6. A negative electrode current collector rod (negative electrode current collector) 4 having one end supported by an insulating packing 3 that electrically insulates the positive electrode can 1 and the negative electrode lid 2 is inserted into the center of the negative electrode 7. The opening of the positive electrode can 1 is closed by a negative electrode lid 2. The inside of the battery is sealed by fitting the insulating packing 3 into the opening of the positive electrode can 1 and placing the negative electrode lid 2 thereon, and then caulking the closed end of the positive electrode can 1 inside. In the sealed alkaline storage battery of this embodiment, the electrode can is composed of a positive electrode can 1, a negative electrode lid 2, and an insulating packing 3.
[0032]
In the sealed alkaline storage battery of the above embodiment, a cylindrical positive electrode is used as the hollow positive electrode. However, the present invention is not limited to this, and is, for example, a hollow positive electrode such as a rectangular tube. May be.
[0033]
(Experiment 2)
A battery A2 was produced in the same manner except that the amount of manganese sulfate was 5.1 g in producing the positive electrode. At this time, it was confirmed by atomic absorption method that the solid solution amount of manganese was 2.5% by weight. The valence of nickel atoms was 3.6.
[0034]
(Experiment 3)
A battery A3 was produced in the same manner except that the amount of manganese sulfate was 10.2 g in producing the positive electrode. At this time, it was confirmed by atomic absorption method that the solid solution amount of manganese was 5% by weight. The valence of nickel atoms was 3.6.
[0035]
(Experiment 4)
A battery A4 was produced in the same manner except that the amount of manganese sulfate was 20.2 g in producing the positive electrode. At this time, it was confirmed by atomic absorption method that the solid solution amount of manganese was 10% by weight. The valence of nickel atoms was 3.6.
[0036]
(Experiment 5)
A battery A5 was produced in the same manner except that the amount of manganese sulfate was 101 g in producing the positive electrode. At this time, it was confirmed by atomic absorption method that the solid solution amount of manganese was 50% by weight. The valence of nickel atoms was 3.6.
[0037]
(Experiment 6)
A battery A6 was produced in the same manner except that the amount of manganese sulfate was 121 g in producing the positive electrode. At this time, it was confirmed by atomic absorption method that the solid solution amount of manganese was 60% by weight. The valence of nickel atoms was 3.6.
[0038]
(Experiment 7)
A battery A7 was produced in the same manner as in Experiment 1 except that the heating temperature was 120 ° C. in the production of the conductive agent. At this time, the solid solution amount of manganese was 20% by weight, and the valence of nickel atoms was 3.6.
[0039]
(Experiment 8)
A battery A8 was produced in the same manner as in Experiment 1 except that the heating temperature was 150 ° C. in the production of the conductive agent. At this time, the solid solution amount of manganese was 20% by weight, and the valence of nickel atoms was 3.6.
[0040]
(Experiment 9)
A battery A9 was produced in the same manner as in Experiment 1 except that the heating temperature was 1000 ° C. in the production of the conductive agent. At this time, the solid solution amount of manganese was 20% by weight, and the valence of nickel atoms was 3.6.
[0041]
(Experiment 10)
A battery A10 was produced in the same manner as in Experiment 1 except that the heating temperature was 1100 ° C. in the production of the conductive agent. At this time, the solid solution amount of manganese was 20% by weight, and the valence of nickel atoms was 3.6.
[0042]
(Comparative Example 1)
In the production of the positive electrode, except that 10% by weight of a mixture of phosphorous graphite and acetylene black in a weight ratio of 9: 1 was added as a conductive agent with respect to the total amount of γ-type nickel oxyhydroxide. Comparative battery X was manufactured.
[0043]
(Comparative Example 2)
A positive electrode was produced by pressure molding a mixture of 150 parts by weight of manganese dioxide powder, 27 parts by weight of phosphorus-like graphite, 3 parts by weight of acetylene black and 0.06 parts by weight of paraffin. A comparative battery Y was produced in the same manner except that this positive electrode was used.
[0044]
(Capacity maintenance ratio and number of leaked batteries in each charge / discharge cycle of each battery)
About the 12 types of sealed alkaline storage batteries that differ only in the positive electrode active material, the battery is discharged at 100 mA until the battery voltage reaches 1 V, and then charged at 100 mA until the battery voltage reaches 1.95 V (comparative battery Y is 1.65 V). A charge / discharge cycle test was carried out with the step of performing 1 cycle as a cycle, and the discharge capacity at the first cycle, the capacity retention rate at the 25th cycle, and the number of leaked batteries were examined. In addition, ten batteries were produced for each.
[0045]
The results are shown in Table 1. The discharge capacity at the first cycle in Table 1 is an index with the capacity at the first cycle of the battery A1 as 100. The capacity maintenance rate at the 25th cycle is a ratio (%) to the discharge capacity at the first cycle of each battery, and is the average value of the capacity maintenance rates of the batteries in which the electrolyte did not leak.
[0046]
[Table 1]
Figure 0003913412
[0047]
As is apparent from the results shown in Table 1, graphite obtained by heat-treating graphite at 150 to 1000 ° C. was added as a conductive agent to γ-type nickel oxyhydroxide in which 5 to 50% by weight of manganese was dissolved. It can be seen that the batteries A1, A3, A4, A5, A8, and A9 using the positive electrode can obtain a high discharge capacity even after the initial stage and the charge / discharge cycle.
[0048]
The reason why the leakage resistance characteristic of the battery A2 is poor is considered that the oxygen overvoltage cannot be increased sufficiently because the solid solution amount of manganese is small. The low discharge capacity of the battery A6 seems to be due to the fact that the amount of manganese hydroxide as an active material is small because the amount of manganese dissolved is large.
[0049]
In addition, the reason why the discharge capacities of the batteries A7 and A10 are low is considered to be that the temperature of the heat treatment of graphite is too low or too high and the conductivity as a conductive agent is low.
[0050]
The reason why the discharge capacity of the comparative battery X is low seems to be because the conductivity of the conductive agent is low. Moreover, it is thought that the discharge capacity of the comparative battery Y is low because the crystal structure of the positive electrode active material has changed. Moreover, it seems that the liquid leakage resistance is poor because the oxygen overvoltage of the positive electrode is low.
[0051]
(Experiment 2)
In this experiment, the influence of the average particle size of graphite on the discharge capacity was examined. Batteries B1, B2, B3, and B4 were fabricated in the same manner as in Experiment 1 except that graphite having an average particle diameter of 2 μm, 3 μm, 20 μm, and 25 μm was used. The heat treatment temperature of graphite was 300 ° C., and 10% by weight was added to the total amount of γ-type nickel oxyhydroxide (nickel valence 3.6) in which 20% by weight of manganese was dissolved and graphite. The average particle size of graphite was measured with a laser diffraction particle size distribution measuring device.
[0052]
For each of these B1 to B4 batteries, a charge / discharge cycle test was performed under the same conditions as in Experiment 1, and the discharge capacity at the first cycle, the discharge capacity maintenance rate at the 25th cycle, and the number of leaked batteries were examined. It was.
[0053]
The results are shown in Table 2. The discharge capacity at the first cycle in Table 2 is an index with the discharge capacity at the first cycle of the battery A1 as 100. The capacity maintenance rate at the 25th cycle is the ratio (%) to the discharge capacity at the first cycle of each battery. A1 is the same battery as A1 in Table 1.
[0054]
[Table 2]
Figure 0003913412
[0055]
As is apparent from the results shown in Table 2, it can be seen that a higher discharge capacity can be obtained by setting the average particle diameter of graphite within the range of 3 to 20 μm. Compared to these, the reason why the discharge capacity of the battery B1 is low seems to be that secondary aggregation occurs because the average particle diameter is too small. Further, the reason why the discharge capacity of the battery B4 is low seems to be that the average particle diameter of graphite is increased, the specific surface area is decreased, and the contact area with the active material is decreased.
[0056]
(Experiment 3)
In this experiment, the amount of conductive agent added was examined. Except that the mixing ratio of γ-type nickel oxyhydroxide (nickel valence 3.6) in which 20% by weight of manganese is dissolved and the conductive agent is 98: 2, 97: 3, 85:15, 80:20. Produced the batteries C1 to C4 in the same manner as in Experiment 1. The average particle size of graphite is 10 μm, and the heat treatment temperature is 300 ° C.
[0057]
For each of these C1 to C4 batteries, a charge / discharge cycle test was performed under the same conditions as in Experiment 1, and the discharge capacity at the first cycle, the discharge capacity retention rate at the 25th cycle, and the number of leaked batteries were examined. .
[0058]
The results are shown in Table 3. The discharge capacity at the first cycle in Table 3 is an index with the discharge capacity at the first cycle of the battery A1 as 100. The capacity maintenance rate at the 25th cycle is the ratio (%) to the discharge capacity at the first cycle of each battery. A1 is the same battery as A1 in Table 1.
[0059]
[Table 3]
Figure 0003913412
[0060]
As is apparent from the results shown in Table 3, it can be seen that the addition amount of the conductive agent is particularly preferably in the range of 3 to 15% by weight. The reason why the discharge capacity of the battery C1 is low seems to be because the amount of the conductive agent added is small. Further, the low discharge capacity of the battery C4 seems to be due to the fact that the amount of the conductive material added is large, so that the filling amount of the active material is relatively lowered.
[0061]
(Experiment 4)
In this experiment, the relationship between the valence of nickel atoms in γ-type nickel oxyhydroxide, the discharge capacity, and the liquid leakage resistance was investigated.
[0062]
In the production of the positive electrode of Experiment 1, the battery A1 was produced except that the amount of the 10 wt% sodium hypochlorite aqueous solution mixed with 500 ml of the sodium hydroxide aqueous solution was changed to 1500 ml instead of 1350 ml, 1400 ml, or 1600 ml. Similarly, sealed alkaline storage batteries D1 to D3 were produced. At this time, the valences of the nickel atoms are 3.3, 3.4, and 3.8, respectively.
[0063]
As the conductive agent, graphite having an average particle diameter of 10 μm was oxidized and heat-treated at 300 ° C. in the same manner as described above. And 10 weight% was added with respect to the total amount with the gamma-type nickel oxyhydroxide which solid-dissolved 20 weight% of manganese. For each of the batteries D1 to D3, a charge / discharge cycle test was performed under the same conditions as in Experiment 1, and the discharge capacity at the first cycle, the discharge capacity retention rate at the 25th cycle, and the number of leaked batteries were examined. .
[0064]
The results are shown in Table 4 below. The discharge capacity at the first cycle in Table 4 is an index with the capacity at the first cycle of the battery A1 as 100. The capacity maintenance rate at the 25th cycle is a ratio (%) to the discharge capacity at the first cycle of each battery, and is the average value of the capacity maintenance rates of the batteries in which the electrolyte did not leak. A1 is the same battery as A1 in Table 1.
[0065]
[Table 4]
Figure 0003913412
[0066]
As is apparent from the results shown in Table 4, in order to obtain a battery having a large discharge capacity and excellent leakage resistance, γ having a nickel valence of 3.4 to 3.8 as the positive electrode active material It can be seen that it is preferable to use type nickel oxyhydroxide.
[0067]
(Experiment 5)
In this experiment, the influence of elements dissolved in addition to manganese was examined. The definition of the solid solution amount is shown below.
Solid solution amount (% by weight) = (amount of solid solution elements other than manganese in γ-type nickel oxyhydroxide) / (amount of nickel in γ-type nickel oxyhydroxide + amount of solid solution elements other than manganese) × 100
[0068]
(Experiment 5-1)
A battery E1 was produced in the same manner except that 1.46 g of zinc sulfate (ZnSO 4 ) was dissolved in addition to manganese sulfate and nickel sulfate in the production of the positive electrode in Experiment 1. At this time, it was confirmed by atomic absorption method that the solid solution amount of zinc was 1% by weight and the solid solution amount of manganese was 20% by weight. In this battery E1, the conductive agent used was an oxide treated with graphite having an average particle diameter of 10 μm and heat-treated at 300 ° C. Then, 10% by weight of a conductive agent was added to the total amount of γ-type nickel oxyhydroxide (nickel valence 3.6) in which 20% by weight of manganese was dissolved.
[0069]
(Experiment 5-2)
A battery E2 was produced in the same manner except that 1.55 g of cobalt sulfate (CoSO 4 ) was dissolved in addition to manganese sulfate and nickel sulfate in the production of the positive electrode in Experiment 1. At this time, it was confirmed by atomic absorption spectrometry that the solid solution amount of cobalt was 1 wt% and the solid solution amount of manganese was 20 wt%. In this battery E2, the conductive agent used was an oxide treated with graphite having an average particle diameter of 10 μm and heat-treated at 300 ° C. Then, 10% by weight of a conductive agent was added to the total amount of γ-type nickel oxyhydroxide (nickel valence 3.6) in which 20% by weight of manganese was dissolved.
[0070]
(Experiment 5-3)
A battery E3 was produced in the same manner except that 0.81 g of bismuth nitrate (Bi (NO 3 ) 3 ) was dissolved in addition to manganese sulfate and nickel sulfate in the production of the positive electrode in Experiment 1. At this time, it was confirmed by atomic absorption spectrometry that the solid solution amount of bismuth was 1% by weight and the solid solution amount of manganese was 20% by weight. In this battery E3, a conductive agent obtained by oxidizing graphite having an average particle diameter of 10 μm and heat-treating at 300 ° C. was used. Then, 10% by weight of a conductive agent was added to the total amount of γ-type nickel oxyhydroxide (nickel valence 3.6) in which 20% by weight of manganese was dissolved.
[0071]
(Experiment 5-4)
A battery E4 was produced in the same manner except that 3.74 g of aluminum sulfate (Al 2 (SO 4 ) 3 ) was dissolved in addition to manganese sulfate and nickel sulfate in the production of the positive electrode in Experiment 1. At this time, it was confirmed by atomic absorption spectrometry that the solid solution amount of aluminum was 1% by weight and the solid solution amount of manganese was 20% by weight. In this battery E4, the conductive agent used was an oxide treated with graphite having an average particle diameter of 10 μm and heat-treated at 300 ° C. Then, 10% by weight of a conductive agent was added to the total amount of γ-type nickel oxyhydroxide (nickel valence 3.6) in which 20% by weight of manganese was dissolved.
[0072]
(Experiment 5-5)
A battery E5 was produced in the same manner except that 1.55 g of yttrium sulfate (Y 2 (SO 4 ) 3 ) was dissolved in addition to manganese sulfate and nickel sulfate in the production of the positive electrode in Experiment 1. At this time, it was confirmed by emission spectrometry (ICP) that the solid solution amount of yttrium was 1% by weight. Further, it was confirmed by atomic absorption method that the solid solution amount of manganese was 20% by weight. In this battery E5, a conductive agent obtained by oxidizing graphite having an average particle diameter of 10 μm and heat-treating at 300 ° C. was used. Then, 10% by weight of a conductive agent was added to the total amount of γ-type nickel oxyhydroxide (nickel valence 3.6) in which 20% by weight of manganese was dissolved.
[0073]
(Experiment 5-6)
A battery E6 was similarly produced except that 1.10 g of erbium sulfate (Er 2 (SO 4 ) 3 ) was dissolved in addition to manganese sulfate and nickel sulfate in the production of the positive electrode in Experiment 1. At this time, it was confirmed by emission spectrometry (ICP) that the solid solution amount of erbium was 1% by weight. Further, it was confirmed by atomic absorption method that the solid solution amount of manganese was 20% by weight. In this battery E6, a conductive agent obtained by oxidizing graphite having an average particle diameter of 10 μm and heat-treating at 300 ° C. was used. Then, 10% by weight of a conductive agent was added to the total amount of γ-type nickel oxyhydroxide (nickel valence 3.6) in which 20% by weight of manganese was dissolved.
[0074]
(Experiment 5-7)
A battery E7 was produced in the same manner except that 1.08 g of ytterbium sulfate (Yb 2 (SO 4 ) 3 ) was dissolved in addition to manganese sulfate and nickel sulfate in the production of the positive electrode in Experiment 1. At this time, it was confirmed by emission spectrometry (ICP) that the solid solution amount of ytterbium was 1% by weight. Further, it was confirmed by atomic absorption method that the solid solution amount of manganese was 20% by weight. In this battery E7, a conductive agent obtained by oxidizing graphite having an average particle diameter of 10 μm and heat-treating at 300 ° C. was used. Then, 10% by weight of a conductive agent was added to the total amount of γ-type nickel oxyhydroxide (nickel valence 3.6) in which 20% by weight of manganese was dissolved.
[0075]
(Experiment 5-8)
A battery E8 was produced in the same manner except that 1.13 g of gadolinium sulfate (Gd 2 (SO 4 ) 3 ) was dissolved in addition to manganese sulfate and nickel sulfate in the production of the positive electrode in Experiment 1. At this time, it was confirmed by emission spectrometry (ICP) that the solid solution amount of gadolinium was 1% by weight. Further, it was confirmed by atomic absorption method that the solid solution amount of manganese was 20% by weight. In this battery E8, a conductive agent obtained by oxidizing graphite having an average particle diameter of 10 μm and heat-treating at 300 ° C. was used. Then, 10% by weight of a conductive agent was added to the total amount of γ-type nickel oxyhydroxide (nickel valence 3.6) in which 20% by weight of manganese was dissolved.
[0076]
(Experiment 5-9)
A battery E9 was produced in the same manner except that 2.41 g of calcium nitrate (Ca (NO 3 ) 2 ) was dissolved in addition to manganese sulfate and nickel sulfate in the production of the positive electrode in Experiment 1. At this time, it was confirmed by emission spectrometry (ICP) that the solid solution amount of calcium was 1% by weight. Further, it was confirmed by atomic absorption method that the solid solution amount of manganese was 20% by weight. In this battery E9, the conductive agent used was an oxidation treatment of graphite having an average particle diameter of 10 μm and a heat treatment at 300 ° C. Then, 10% by weight of a conductive agent was added to the total amount of γ-type nickel oxyhydroxide (nickel valence 3.6) in which 20% by weight of manganese was dissolved.
[0077]
(Experiment 5-10)
Manganese sulfate in the preparation of the positive electrode of the experiment 1, except that was 3.74g dissolving 1.10g of sulfuric acid erbium other than nickel sulfate (Er 2 (SO 4) 3 ), aluminum sulfate (Al 2 (SO 4) 3 ) Produced a battery E10 in the same manner. At this time, it was confirmed by emission spectrometry (ICP) that the solid solution amount of erbium was 1% by weight. Further, it was confirmed by atomic absorption spectrometry that the solid solution amount of aluminum was 1% by weight and the solid solution amount of manganese was 20% by weight. In this battery E10, a conductive agent obtained by oxidizing graphite having an average particle diameter of 10 μm and heat-treating at 300 ° C. was used. Then, 10% by weight of a conductive agent was added to the total amount of γ-type nickel oxyhydroxide (nickel valence 3.6) in which 20% by weight of manganese was dissolved.
[0078]
For each of these batteries E1 to E10, a charge / discharge cycle test was performed under the same conditions as in Experiment 1 above, and the discharge capacity at the first cycle, the discharge capacity retention rate at the 25th cycle, and the number of leaked batteries were examined. It was.
[0079]
The results are shown in Table 5. In Table 5, the discharge capacity at the first cycle is an index (average value of 10 batteries) with the capacity at the first cycle of the battery A1 being 100, and the capacity retention rate at the 25th cycle is 1 for each battery. It is the ratio (%) to the discharge capacity at the cycle, and is the average value of the capacity retention rate of the battery in which the electrolyte did not leak.
[0080]
[Table 5]
Figure 0003913412
[0081]
As is clear from the results shown in Table 5, in addition to manganese, at least one element selected from the group consisting of zinc, cobalt, bismuth, aluminum, yttrium, erbium, ytterbium, gadolinium, and calcium may be dissolved. It can be seen that excellent characteristics can be obtained.
[0082]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to this invention, it can be set as the highly reliable sealed alkaline storage battery of the discharge start with which high discharge capacity is obtained and it is hard to leak electrolyte outside over the long term of a charging / discharging cycle.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing a sealed alkaline storage battery of one embodiment according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Positive electrode can 2 ... Negative electrode cover 3 ... Insulation packing 4 ... Negative electrode collector rod 5 ... Positive electrode 6 ... Separator 7 ... Gel-like negative electrode

Claims (2)

電池缶と、前記電池缶と電気的に接触するように前記電池缶内に配置される、γ型オキシ水酸化ニッケルを正極活物質とした中空状の正極と、前記正極の内側に配置される、亜鉛を負極活物質とした負極と、前記正極と前記負極の間に配置されるセパレータと、前記負極内に挿入された状態で配置される負極集電体と、前記正極、前記負極、及び前記セパレータ内に含浸される電解液とを備える密閉型アルカリ蓄電池であって、
前記γ型オキシ水酸化ニッケルがマンガンをニッケルとマンガンの総量に対して5〜50重量%固溶しており、かつ前記正極中に混合される導電剤が黒鉛を無機酸と酸化剤との混合水溶液中にて酸化処理して得られる粉末を150〜1000℃で加熱処理したものであり、
前記黒鉛の平均粒子径が、3〜20μmであり、
前記マンガンを固溶したγ型オキシ水酸化ニッケルと前記導電剤が重量比(γ型オキシ水酸化ニッケル:導電剤)で97:3〜85:15の割合で前記正極中に混合されており、
初回放電前の前記γ型オキシ水酸化ニッケル中のニッケル原子の価数が3.4〜3.8価であることを特徴とする密閉型アルカリ蓄電池。
A battery can, a hollow positive electrode made of γ-type nickel oxyhydroxide as a positive electrode active material, disposed in the battery can so as to be in electrical contact with the battery can, and disposed inside the positive electrode A negative electrode using zinc as a negative electrode active material, a separator disposed between the positive electrode and the negative electrode, a negative electrode current collector disposed in the negative electrode, the positive electrode, the negative electrode, and A sealed alkaline storage battery comprising an electrolytic solution impregnated in the separator,
The γ-type nickel oxyhydroxide is a solid solution of 5 to 50% by weight of manganese with respect to the total amount of nickel and manganese, and the conductive agent mixed in the positive electrode is graphite mixed with an inorganic acid and an oxidizing agent. all SANYO that the powder obtained by oxidizing heat treatment at 150 to 1000 ° C. in an aqueous solution,
The average particle diameter of the graphite is 3 to 20 μm,
The γ-type nickel oxyhydroxide in which the manganese is dissolved, and the conductive agent are mixed in the positive electrode in a weight ratio (γ-type nickel oxyhydroxide: conductive agent) in a ratio of 97: 3 to 85:15,
Sealed alkaline storage battery valence of nickel atoms of the γ-type oxy-nickel hydroxide before the first discharge is characterized from 3.4 to 3.8 Ataidea Rukoto.
前記γ型オキシ水酸化ニッケルに、マンガン以外に、さらに亜鉛、コバルト、ビスマス、アルミニウム、イットリウム、エルビウム、イッテルビウム、ガドリニウム及びカルシウムよりなる群から選ばれた少なくとも1種の元素が固溶していることを特徴とする請求項1に記載の密閉型アルカリ蓄電池。In addition to manganese, at least one element selected from the group consisting of zinc, cobalt, bismuth, aluminum, yttrium, erbium, ytterbium, gadolinium, and calcium is dissolved in the γ-type nickel oxyhydroxide. The sealed alkaline storage battery according to claim 1 .
JP23227999A 1999-08-19 1999-08-19 Sealed alkaline storage battery Expired - Fee Related JP3913412B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23227999A JP3913412B2 (en) 1999-08-19 1999-08-19 Sealed alkaline storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23227999A JP3913412B2 (en) 1999-08-19 1999-08-19 Sealed alkaline storage battery

Publications (2)

Publication Number Publication Date
JP2001057229A JP2001057229A (en) 2001-02-27
JP3913412B2 true JP3913412B2 (en) 2007-05-09

Family

ID=16936750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23227999A Expired - Fee Related JP3913412B2 (en) 1999-08-19 1999-08-19 Sealed alkaline storage battery

Country Status (1)

Country Link
JP (1) JP3913412B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070009799A1 (en) * 2005-07-07 2007-01-11 Eveready Battery Company, Inc. Electrochemical cell having a partially oxidized conductor

Also Published As

Publication number Publication date
JP2001057229A (en) 2001-02-27

Similar Documents

Publication Publication Date Title
JP2730121B2 (en) Alkaline secondary battery and manufacturing method thereof
US7635512B2 (en) Nickel electrode material, and production method therefor, and nickel electrode and alkaline battery
JP4496704B2 (en) Manufacturing method of nickel metal hydride battery
JP3429741B2 (en) Paste positive electrode for alkaline storage batteries and nickel-metal hydride storage batteries
JP3239076B2 (en) Sealed alkaline storage battery
JP4556315B2 (en) Alkaline storage battery
JP2002216752A (en) Cobalt compound, method for manufacturing the same, positive electrode plate for alkaline storage battery using the same and alkaline storage battery
JP3913412B2 (en) Sealed alkaline storage battery
JP3389252B2 (en) Alkaline storage battery and charging method thereof
JP2000067910A (en) Sealed alkaline zing storage battery
JP3653410B2 (en) Sealed alkaline zinc storage battery
KR100404658B1 (en) Nickel-Metal Hydride Batteries and Manufacturing Method
JP3663071B2 (en) Sealed alkaline zinc storage battery
JP3902351B2 (en) Sealed alkaline storage battery
JP2006313678A (en) Alkaline primary cell and its manufacturing method
JP3663072B2 (en) Sealed alkaline zinc storage battery
JP2001093525A (en) Sealed alkaline battery
JP2003077468A (en) Manufacturing method of nickel electrode material
JP3433035B2 (en) Sealed alkaline storage battery
JP2000277104A (en) Sealed type alkaline storage battery
JP3728143B2 (en) Sealed alkaline storage battery
JPH1167264A (en) Manufacture of nickel-hydrogen storage battery
JP2001093569A (en) Sealed alkaline storage battery
JP2003077469A (en) Nickel electrode material, its manufacturing method, nickel electrode and alkaline battery
JP3338361B2 (en) Alkaline secondary battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051108

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070131

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140209

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees