JP3911838B2 - Method for manufacturing piezoelectric vibrator - Google Patents

Method for manufacturing piezoelectric vibrator Download PDF

Info

Publication number
JP3911838B2
JP3911838B2 JP08941998A JP8941998A JP3911838B2 JP 3911838 B2 JP3911838 B2 JP 3911838B2 JP 08941998 A JP08941998 A JP 08941998A JP 8941998 A JP8941998 A JP 8941998A JP 3911838 B2 JP3911838 B2 JP 3911838B2
Authority
JP
Japan
Prior art keywords
electrode
diaphragm
piezoelectric
bump
metal bump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08941998A
Other languages
Japanese (ja)
Other versions
JPH11266135A (en
Inventor
暁 治田
宏治 石橋
進 平尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daishinku Corp
Original Assignee
Daishinku Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daishinku Corp filed Critical Daishinku Corp
Priority to JP08941998A priority Critical patent/JP3911838B2/en
Publication of JPH11266135A publication Critical patent/JPH11266135A/en
Application granted granted Critical
Publication of JP3911838B2 publication Critical patent/JP3911838B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は電子機器に用いられる水晶振動子等の圧電振動子に関するものであり、さらに詳しくは圧電振動板と電極パッドの電気的機械的接合構造に関するものである。
【0002】
【従来の技術】
圧電振動子は、圧電振動板(電子素子)をパッケージに収納してなるが、素子が振動体であるために、如何に支持するかはその電気的特性を決定づける重要な要素となる。特にQ値の高い水晶振動子においては支持構造が重要となる。
【0003】
圧電振動板と外部導出用の電極との接続は、例えば導電性接合材によって行われる。図8に導電性接合材を用いて電気的機械的接合を行っている表面実装型の水晶振動子の例をしめす。セラミック基板7の上面には電極パッド74が形成され、ビア電極73を介して導出電極71と電気的に接続されている。また導出電極72は、図示していないが他の電極パッドと電気的機械的に接続されている。表裏面に励振電極81,82が形成された水晶振動板8は導電性接合材S1上に搭載され、さらにその上部に導電性接合材S2が塗布され、水晶振動板が電気的機械的接続される。そして蓋9で水晶振動板等を被覆し、ガラスGにより気密封止して圧電振動子が完成する。
【0004】
導電性接合材は例えば導電フィラーが混練された樹脂ペーストであるが、取り扱いは面倒な側面を有している。すなわち、導電性接合材の接合部分への供給はディスペンサによって行われるが、その粘性等が温度、湿度の周囲雰囲気の影響を受けやすく、周囲環境によっては接合材の供給過多、供給過少、液だれの不具合が生じる。このような接合材供給の不安定は、水晶振動子の電気的特性のバラツキにつながり、また液だれが電極間等の短絡事故の原因となることがあった。
【0005】
また、接合時は導電性接合材のためのスペースを必要とするため、水晶振動板8と蓋9間の間隔hがどうしても大きくなり、圧電振動子の低背化に対応できないという問題を有していた。
【0006】
このような不具合を解決する目的で、例えば、特開平8−8684号公報には半田バンプや金バンプを電極パッドに形成し、熱圧着により水晶振動板を電気的機械的接合する方法が考えられている。このような接合構造は導電性接合材を用いないので、接合材の供給過多、供給過少、液だれ等の従来生じていた不具合が発生しないという利点を有していた。
【0007】
ところが、上述の方法によれば、圧電振動子に形成された電極に工夫が必要となる。すなわち、2つの電極はいずれも電極パッド側(圧電振動子の裏面側)で電気的な接合を行わなければならないが、例えば、厚みすべり振動を励振させる圧電振動板においては励振用の主電極を表裏に形成する必要があり、このため表面の主電極を裏面の電極パッド側へ引き回す必要があった。このような引き回し電極の形成は、真空蒸着法等による電極薄膜形成時に使用する蒸着マスク形状を引き回し電極が形成されるようにすることにより比較的容易にできる。しかしながら、形成された引き回し電極が圧電振動子のエッジ部分で切断されることがあり、特にコンベックス加工等の面取り加工の必要な圧電振動板においては、エッジがより鋭利になり断線事故の確率が高くなっていた。
【0008】
また、上述の構成について、電極パッドと上面側の主電極をワイヤボンディングにより電気的接続する方法も考えられるが、電極パッドと下面側の主電極との接合とは別の工程で接続作業を行う必要があるため、製造工数が増加する問題点を有していた。また、ワイヤのたわみ部分の存在により、パッケージの薄型化の弊害となっていた。
【0009】
【発明が解決しようとする課題】
本発明は上記問題点を解決するためになされたもので、絶縁基板側の電極パッドと圧電振動板の電極の接合が安定して行え、圧電振動子の各種特性に悪影響を与えず、かつ複雑な接合方法も必要としない圧電振動子を提供することを目的とするものである。
【0010】
【課題を解決するための手段】
本発明は、請求項1に示すように、上面に少なくとも2つの電極パッドが形成され、下面に前記各電極パッドと電気的に接続され外部と接続される2以上の導出電極の形成された絶縁基板を作業ステージに設置し、
前記各電極パッドの所定の位置にワイヤボンディング法を用いて、各々複数の金属バンプを形成するとともに、各金属バンプのうち圧電振動板が搭載されない部位の金属バンプについてワイヤを伸長させた状態で切断することにより伸長部を形成し、
その後、前記金属バンプの上部に、表裏面に電極形成された圧電振動板を搭載し、
そして、前記伸長部と圧電振動板の表面に形成された電極、および金属バンプと圧電振動板の裏面に形成された電極とを、超音波熱圧着法あるいは超音波溶着法により接合したことを特徴としている。
【0011】
上記製造方法により、伸長部と圧電振動板の上面の電極、並びに圧電振動板の下面に位置する電極と金属バンプとが、圧着あるいは溶着されるので、各電極等は強固に金属間接合される。また、導電性接合材のスペースを必要としないので、水晶振動板と蓋間の間隔を小さくでき、パッケージの薄型化にも対応できる。
【0012】
さらに、樹脂ペーストを用いた導電性接合材を用いた場合のように、接合材の供給量に起因する問題の発生や、接合材の硬化を行う工程を必要としない。
【0013】
また請求項2に示すように、上記圧電振動子の製造方法において、前記電極パッドおよび引出電極の最上層、並びに前記金属バンプおよび金属バンプの伸長部は金(Au)であることを特徴とする構成としてもよい。これにより同一金属による接合を行うことができ、特に金は酸化の問題が無く、接合性に優れているという利点を有している。
【0014】
【発明の実施の形態】
本発明の実施の形態を表面実装型の水晶振動子を例にとり図1,図2、図3、図4、図5とともに説明する。図1は表面実装型水晶振動子の内部断面図であり、図2において圧電振動板を搭載し蓋にて封止した際のA−A断面図である。図2は水晶振動板と絶縁基板を分解した平面図であり、図3、図4、図5は製造工程を示す図である。
【0015】
表面実装型水晶振動子は、絶縁基板1と、絶縁基板1上に形成された電極パッド14,14に搭載され、電気的接合される水晶振動板2と、絶縁基板1の電極パッド14,14と水晶振動板2間に介在する各金属バンプ31,32、33と、水晶振動板2を気密封止する蓋4とからなる。
【0016】
絶縁基板1は、矩形のアルミナ等のセラミック薄板からなり、表面に電極パッド14,14が絶縁基板の幅方向(短辺方向)に並んで形成されている。また、裏面には導出電極11,12が形成されており、それぞれ前記電極パッド14,14とビア電極13を介して電気的に対応接続されている。これら各電極は周知のメタライズ技術、メッキ技術等を用いて形成され、例えば下層にタングステン層、上層に金層が施されている。各電極パッドの上面には金ワイヤを用いたワイヤバンプからなる金属バンプ31,32,33が形成されている。これらワイヤバンプはスタッドバンプとも称され、ワイヤボンディング技術を用いて、例えば直径50ミクロン程度の金ワイヤの先端を加熱することによりボール状にし、電極パッドに接続後、ワイヤの切断をバンプ直近部分で行うことにより得られる。得られた金属バンプは例えば幅約100ミクロン、高さ60ミクロン程度の外形寸プとなるが、この大きさは、ワイヤの線径。圧着力、圧着時間等を選択、調整することにより適宜変更することができる。これら金属バンプのうち金属バンプ31,32は、ワイヤの切断がバンプ直近部分で行われているが、水晶振動板2が搭載されない金属バンプ33はワイヤの切断が例えば0.5〜2mm上方で行われ、ワイヤによる伸長部33aが形成されている。
【0017】
水晶振動板2は矩形ATカット水晶板からなり、例えば厚みすべり振動を励振するよう表裏面各々に励振電極21,22が形成され、また各励振電極21,22から引出電極21a,22aが水晶振動板の長手方向に導出されている。また、引出電極21aに対応する裏面の一部には引出電極21bが形成され、かつ引出電極22aに対応する表面の一部には引出電極22bが形成されている。なお、この実施例では水晶振動板の外形寸法は、長さ4mm、幅1.6mmで32MHzの周波数を得る厚さに構成されており、また各励振電極および引出電極は下層がクロム、上層が金で構成されている。
【0018】
蓋4はセラミック等の絶縁材からなり、断面形状が逆凹形状となっており、水晶振動板2が気密封止される空間を形成する。
【0019】
次に、絶縁基板1に金属バンプを形成し、電極形成された水晶振動板2を絶縁基板1に搭載し、電気的機械的接続する方法の例を図3,図4、図5とともに説明する。図3に示すように、絶縁基板1は作業ステージW上に設置され、電極パッド14上には複数の金属バンプ(金ワイヤバンプ)が、熱圧着等のワイヤボンディング技術を用いたバンプボンダにより連続して形成される。このうち水晶振動板の長手方向端部側の金属バンプ33には伸長部33aが形成されている。この伸長部33aの形成は、金属バンプを形成したあと、バンプ直上でワイヤ切断せず、所定寸法のワイヤを引き出した後溶断することにより形成されている。なお、図3中Tはボンディングツール(キャピラリ)である。次に、各金属バンプ31,32上にそれぞれ引出電極21b,22aが接するように水晶振動板2を搭載する。なお、この作業を自動搭載機により行う場合は、例えばバンプの数、位置等をマーカーとして伸長部を有するバンプ上に搭載されないよう制御することが可能である。
【0020】
その後、超音波ウェルダにより、伸長部33aと水晶振動板上の引出電極、金属バンプ31,32と水晶振動板の引出電極とを超音波溶着する。より詳しくは、超音波ウェルダの溶接チップCにより、直立している伸長部33aを水晶振動板上の引出電極に折り曲げて接触させ、そのまま水晶振動板をバンプ上に押しつけ、静圧力を印加する。そして、超音波チップを所定の周波数で振動させることにより、伸長部33aと水晶振動板上の引出電極、金属バンプ31,32と水晶振動板の引出電極が超音波溶着される。
【0021】
なお、本実施例のように表裏に主電極が各々1つ形成された構成においては、必ずしも各引出電極に対応した伸長部を形成する必要はなく、主電極が表面(電極パッドのない側)にある部分の接続に対応する側のみに形成されていてもよい。
【0022】
絶縁基板1の電極パッド上に超音波溶着された水晶振動板2は、蓋4により気密封止される。絶縁基板1蓋4との接合はガラス41によって行われるが、例えば抵抗溶接等の他の気密封止手段を用いてもよい。
【0023】
本発明の他の実施の形態を図6とともに説明する。図6はバンプ構成の変形例を示している。基本構成は上記実施の形態と同じであるので、同じ構造部分は同番号を用いて説明するとともに、一部説明を割愛する。
【0024】
電極パッド14には圧電振動板2の搭載に関連するバンプ群51と、搭載に関与せず電気的接続に関連する伸長部を有する複数のバンプからなるバンプ群52が形成されている。バンプ群51は微小バンプが2列に並んだ構成であり、またバンプ群52も複数の伸長部52aを有している。複数の伸長部はそれぞれ矢印D方向に折り曲げられ、圧電振動板の引出電極と接続されている。これら伸長部52aは超音波ウェルダにより引出電極の表面に溶着される。
【0025】
本発明のもう一つの他の実施の形態を図7とともに説明する。図7はバンプ構成のもう一つの変形例を示している。基本構成は上述の2実施の形態と同じであるので、同じ構造部分は同番号を用いて説明するとともに、一部説明を割愛する。
【0026】
電極パッド14は矩形圧電振動板の対角に位置するように形成されている。このように本発明は圧電振動板を片持ち支持する場合のみならず、両端支持する場合にも適用できるものである。この実施例では、圧電振動板2の搭載に関連するバンプ群53と、搭載に関与せず電気的接続に関連する伸長部を有する複数のバンプからなるバンプ群54が形成されて、圧電振動板の短辺方向(幅方向)の端部にバンプ群53、54が偏って配置されている。複数の伸長部はそれぞれ矢印D1,D2方向に折り曲げられ、圧電振動板の引出電極と接続されている。これら伸長部52aは超音波ウェルダにより引出電極の表面に溶着される。
【0027】
なお、上記実施例で使用する金属バンプは金のみならず、銅、アルミニウム等の他の材料を用いてもよいが、用いる材料によっては、酸化還元雰囲気を必要とすることがある。また、電極パッド、引出電極等の被接続電極は金属バンプと同材料を用いることが好ましいが、例えば、最初の実施例において引出電極の上層を銀とし、金バンプを用いた異種金属による接合も可能であることが実験的に確認できている。
【0028】
また金属バンプの形成は、熱圧着法、超音波熱圧着法、超音波溶着法等により形成すればよい。また、上記各実施例では厚みすべり振動を用いた圧電振動板を例示したが、例えば、屈曲振動を用いる音叉型振動子を片持ち支持する場合等、他の振動モードの圧電振動板に適用してもよい。
【0029】
【発明の効果】
以上、本発明によれば、伸長部と圧電振動板の上面の電極、並びに圧電振動板の下面に位置する電極と金属バンプとが、圧着あるいは溶着されるので、各電極等は強固に金属間接合される。また、エッジ部分の切断の問題を考慮する必要が無くなる。従って、従来発生していた接合の不安定が解消され、電気的特性の安定した圧電振動子を得ることができる。またパッケージの薄型化にも対応できるとともに、接合材の硬化を行う工程を必要としないので、製造工数も削減され、生産性が向上する。
【0030】
そして、前記各電極パッドの所定の位置にワイヤボンディング法を用いて、各々複数の金属バンプを形成するとともに、各電極パッドにおいて、圧電振動板が搭載されない部位のバンプについてワイヤを伸長させた状態で切断することにより伸長部を形成する製造方法であるので、金属バンプ及び伸長部の形成がきわめて効率よく確実に形成することができる。また、前記ワイヤの伸長部と圧電振動板の表面に形成された電極、および金属バンプと圧電振動板の裏面に形成された電極とを熱圧着法あるいは超音波溶着法により接合するので、接合が比較的小さな領域で確実に行うことができる。
【0031】
また、請求項2によれば、上記効果に加えて、同一金属による接合を行うことができ、特に金は酸化の問題が無く、接合性が向上する。
【図面の簡単な説明】
【図1】 第1の実施の形態による内部断面図。
【図2】 第1の実施の形態による平面図。
【図3】 製造工程を示す図。
【図4】 製造工程を示す図。
【図5】 製造工程を示す図。
【図6】 他の実施の形態を示す平面図。
【図7】 もう一つの他の実施の形態を示す平面図。
【図8】 従来例を示す図
【符号の説明】
1 絶縁基板
2 圧電振動板(水晶振動板)
31,32、33 金属バンプ(ワイヤバンプ)
33a 伸長部
4 蓋
51、52、53,54 バンプ群
52a 伸長部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a piezoelectric vibrator such as a crystal vibrator used in an electronic apparatus, and more particularly to an electromechanical joint structure between a piezoelectric diaphragm and an electrode pad.
[0002]
[Prior art]
A piezoelectric vibrator has a piezoelectric diaphragm (electronic element) housed in a package. Since the element is a vibrating body, how it is supported is an important factor that determines its electrical characteristics. In particular, a support structure is important for a crystal unit having a high Q value.
[0003]
The connection between the piezoelectric diaphragm and the electrode for external derivation is performed by, for example, a conductive bonding material. FIG. 8 shows an example of a surface-mount type crystal resonator in which electromechanical bonding is performed using a conductive bonding material. An electrode pad 74 is formed on the upper surface of the ceramic substrate 7 and is electrically connected to the lead-out electrode 71 via the via electrode 73. The lead-out electrode 72 is electrically and mechanically connected to another electrode pad (not shown). The quartz diaphragm 8 having the excitation electrodes 81 and 82 formed on the front and back surfaces is mounted on the conductive bonding material S1, and further, the conductive bonding material S2 is applied on the top thereof, and the quartz diaphragm is electrically and mechanically connected. The The lid 9 covers the quartz diaphragm and the like, and the glass G is hermetically sealed to complete the piezoelectric vibrator.
[0004]
The conductive bonding material is, for example, a resin paste in which a conductive filler is kneaded, but handling has troublesome side surfaces. In other words, the supply of the conductive bonding material to the bonded portion is performed by a dispenser, but the viscosity and the like are easily affected by the ambient atmosphere of temperature and humidity, and depending on the surrounding environment, the supply of the bonding material is excessive, insufficient, or dripping. The problem occurs. Such instability of the bonding material supply leads to variations in the electrical characteristics of the crystal resonator, and dripping may cause a short circuit accident between the electrodes.
[0005]
Further, since a space for the conductive bonding material is required at the time of bonding, there is a problem that the distance h between the quartz crystal vibrating plate 8 and the lid 9 is inevitably large, and cannot cope with the low profile of the piezoelectric vibrator. It was.
[0006]
In order to solve such problems, for example, Japanese Patent Laid-Open No. 8-8684 discloses a method in which solder bumps or gold bumps are formed on electrode pads and the quartz diaphragm is electromechanically bonded by thermocompression bonding. ing. Since such a joining structure does not use a conductive joining material, it has the advantage that conventional problems such as excessive supply, insufficient supply, and dripping of the joining material do not occur.
[0007]
However, according to the above-described method, it is necessary to devise an electrode formed on the piezoelectric vibrator. That is, both of the two electrodes must be electrically joined on the electrode pad side (the back side of the piezoelectric vibrator). For example, in a piezoelectric diaphragm that excites thickness shear vibration, the main electrode for excitation is used. It was necessary to form on the front and back, and for this reason, the main electrode on the front surface had to be routed to the electrode pad side on the back surface. Such a lead-out electrode can be formed relatively easily by forming a lead-off mask shape used when forming an electrode thin film by a vacuum vapor deposition method or the like. However, the formed lead electrode may be cut at the edge portion of the piezoelectric vibrator, and particularly in a piezoelectric diaphragm that requires chamfering such as convex machining, the edge becomes sharper and the probability of a disconnection accident is high. It was.
[0008]
In addition, for the above-described configuration, a method of electrically connecting the electrode pad and the main electrode on the upper surface side by wire bonding is also conceivable, but the connection work is performed in a process different from the bonding of the electrode pad and the main electrode on the lower surface side Since it was necessary, there was a problem that the number of manufacturing steps increased. In addition, the presence of the bent portion of the wire has been an adverse effect of making the package thinner.
[0009]
[Problems to be solved by the invention]
The present invention has been made to solve the above problems, and can stably bond the electrode pad on the insulating substrate side and the electrode of the piezoelectric diaphragm, does not adversely affect various characteristics of the piezoelectric vibrator, and is complicated. An object of the present invention is to provide a piezoelectric vibrator that does not require a simple bonding method.
[0010]
[Means for Solving the Problems]
In the present invention, at least two electrode pads are formed on the upper surface, and the insulation is formed on the lower surface with two or more lead electrodes that are electrically connected to the electrode pads and connected to the outside. Place the board on the work stage,
A plurality of metal bumps are formed at a predetermined position of each electrode pad by using a wire bonding method, and a portion of each metal bump where the piezoelectric diaphragm is not mounted is cut in a state where the wire is extended. To form an extension,
After that, on the upper part of the metal bump, a piezoelectric diaphragm having electrodes formed on the front and back surfaces is mounted,
The extension portion and the electrode formed on the surface of the piezoelectric diaphragm, and the metal bump and the electrode formed on the back surface of the piezoelectric diaphragm are joined by an ultrasonic thermocompression bonding method or an ultrasonic welding method. It is said.
[0011]
By the above manufacturing method, the extension part and the electrode on the upper surface of the piezoelectric vibration plate, and the electrode located on the lower surface of the piezoelectric vibration plate and the metal bump are pressed or welded, so that each electrode and the like are firmly bonded to each other between metals. . In addition, since the space for the conductive bonding material is not required, the distance between the crystal diaphragm and the lid can be reduced, and the package can be made thinner.
[0012]
Furthermore, unlike the case where a conductive bonding material using a resin paste is used, there is no need to generate a problem due to the supply amount of the bonding material or to cure the bonding material.
[0013]
According to a second aspect of the present invention, in the method of manufacturing a piezoelectric vibrator, the uppermost layer of the electrode pad and the extraction electrode, and the extended portions of the metal bump and the metal bump are gold (Au). It is good also as a structure. As a result, bonding with the same metal can be performed, and gold, in particular, has the advantage that it has no problem of oxidation and has excellent bonding properties.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The embodiment of the present invention will be described with reference to FIGS. 1, 2, 3, 4, and 5, taking a surface-mounted crystal resonator as an example. FIG. 1 is an internal cross-sectional view of a surface-mounted crystal resonator, and is a cross-sectional view taken along line AA when a piezoelectric diaphragm is mounted and sealed with a lid in FIG. FIG. 2 is an exploded plan view of the quartz diaphragm and the insulating substrate, and FIGS. 3, 4, and 5 are diagrams showing the manufacturing process.
[0015]
The surface-mount type crystal resonator is mounted on the insulating substrate 1 and electrode pads 14 and 14 formed on the insulating substrate 1, and is electrically joined to the surface. The surface mounting type crystal resonator and the electrode pads 14 and 14 of the insulating substrate 1 are mounted. And metal bumps 31, 32, 33 interposed between the quartz diaphragm 2 and a lid 4 that hermetically seals the quartz diaphragm 2.
[0016]
The insulating substrate 1 is made of a rectangular ceramic thin plate such as alumina, and electrode pads 14 and 14 are formed on the surface side by side in the width direction (short side direction) of the insulating substrate. In addition, lead electrodes 11 and 12 are formed on the back surface, and are electrically connected to each other through the electrode pads 14 and 14 and via electrodes 13, respectively. Each of these electrodes is formed using a known metallization technique, plating technique, or the like. For example, a tungsten layer is provided as a lower layer and a gold layer is provided as an upper layer. Metal bumps 31, 32, and 33 made of wire bumps using gold wires are formed on the upper surface of each electrode pad. These wire bumps are also referred to as stud bumps. By using wire bonding technology, for example, the tip of a gold wire having a diameter of about 50 microns is heated to form a ball, and after being connected to the electrode pad, the wire is cut in the immediate vicinity of the bump. Can be obtained. The resulting metal bump has an outer dimension of, for example, a width of about 100 microns and a height of about 60 microns. This size is the wire diameter. The pressure can be changed as appropriate by selecting and adjusting the pressure, pressure and the like. Among these metal bumps, the metal bumps 31 and 32 are cut at the nearest portion of the bump, but the metal bump 33 on which the crystal diaphragm 2 is not mounted is cut by 0.5 to 2 mm above the wire, for example. In other words, an elongated portion 33a is formed by a wire.
[0017]
The quartz diaphragm 2 is a rectangular AT-cut quartz plate. For example, excitation electrodes 21 and 22 are formed on the front and back surfaces so as to excite thickness-shear vibration, and the extraction electrodes 21a and 22a are quartz-vibrated from the excitation electrodes 21 and 22, respectively. It is derived in the longitudinal direction of the plate. An extraction electrode 21b is formed on a part of the back surface corresponding to the extraction electrode 21a, and an extraction electrode 22b is formed on a part of the surface corresponding to the extraction electrode 22a. In this embodiment, the external dimensions of the quartz crystal plate are 4 mm long and 1.6 mm wide to obtain a frequency of 32 MHz, and each excitation electrode and extraction electrode has a lower layer made of chromium and an upper layer made of chromium. Composed of gold.
[0018]
The lid 4 is made of an insulating material such as ceramic and has a reverse concave shape in cross section, forming a space in which the quartz diaphragm 2 is hermetically sealed.
[0019]
Next, an example of a method of forming a metal bump on the insulating substrate 1 and mounting the electrode-formed crystal diaphragm 2 on the insulating substrate 1 and electrically and mechanically connecting it will be described with reference to FIGS. . As shown in FIG. 3, the insulating substrate 1 is placed on the work stage W, and a plurality of metal bumps (gold wire bumps) are continuously formed on the electrode pad 14 by a bump bonder using a wire bonding technique such as thermocompression bonding. It is formed. Among these, the extension part 33a is formed in the metal bump 33 of the longitudinal direction edge part side of a crystal diaphragm. The elongated portion 33a is formed by forming a metal bump, cutting the wire immediately above the bump, and cutting out a wire having a predetermined dimension and then fusing it. In FIG. 3, T is a bonding tool (capillary). Next, the crystal diaphragm 2 is mounted on the metal bumps 31 and 32 so that the extraction electrodes 21b and 22a are in contact with each other. When this operation is performed by an automatic mounting machine, for example, it is possible to control such that the number of bumps, the position, and the like are not mounted on the bumps having the extending portions using the markers.
[0020]
Thereafter, the extension portion 33a and the extraction electrode on the quartz diaphragm, and the metal bumps 31 and 32 and the extraction electrode of the quartz diaphragm are ultrasonically welded by an ultrasonic welder. More specifically, the elongating extension 33a is bent and brought into contact with the extraction electrode on the quartz diaphragm by the welding tip C of the ultrasonic welder, and the quartz diaphragm is pressed onto the bump as it is to apply a static pressure. Then, by vibrating the ultrasonic chip at a predetermined frequency, the extending portion 33a and the extraction electrode on the crystal diaphragm, and the metal bumps 31 and 32 and the extraction electrode of the crystal diaphragm are ultrasonically welded.
[0021]
In the configuration in which one main electrode is formed on each of the front and back surfaces as in this embodiment, it is not always necessary to form an extension corresponding to each extraction electrode, and the main electrode is on the surface (side without the electrode pad). It may be formed only on the side corresponding to the connection of the part in the.
[0022]
The crystal diaphragm 2 ultrasonically welded onto the electrode pad of the insulating substrate 1 is hermetically sealed by a lid 4. Joining to the insulating substrate 1 lid 4 is performed by the glass 41, but other airtight sealing means such as resistance welding may be used.
[0023]
Another embodiment of the present invention will be described with reference to FIG. FIG. 6 shows a modification of the bump configuration. Since the basic configuration is the same as that of the above-described embodiment, the same structural parts will be described using the same numbers, and a part of the description will be omitted.
[0024]
The electrode pad 14 is formed with a bump group 51 related to mounting of the piezoelectric diaphragm 2 and a bump group 52 composed of a plurality of bumps having extended portions related to electrical connection without being related to mounting. The bump group 51 has a configuration in which minute bumps are arranged in two rows, and the bump group 52 also has a plurality of extending portions 52a. Each of the plurality of extending portions is bent in the direction of arrow D and connected to the extraction electrode of the piezoelectric diaphragm. These elongated portions 52a are welded to the surface of the extraction electrode by an ultrasonic welder.
[0025]
Another embodiment of the present invention will be described with reference to FIG. FIG. 7 shows another modification of the bump configuration. Since the basic configuration is the same as that of the above-described two embodiments, the same structural parts will be described using the same numbers, and a part of the description will be omitted.
[0026]
The electrode pad 14 is formed so as to be located diagonally to the rectangular piezoelectric diaphragm. As described above, the present invention can be applied not only when the piezoelectric diaphragm is cantilevered but also when both ends are supported. In this embodiment, a bump group 53 related to mounting of the piezoelectric diaphragm 2 and a bump group 54 composed of a plurality of bumps having extended portions related to electrical connection without being related to mounting are formed, and the piezoelectric diaphragm is formed. Bump groups 53 and 54 are arranged in a biased manner at the end in the short side direction (width direction). The plurality of extending portions are bent in the directions of arrows D1 and D2, respectively, and connected to the extraction electrode of the piezoelectric diaphragm. These elongated portions 52a are welded to the surface of the extraction electrode by an ultrasonic welder.
[0027]
The metal bumps used in the above embodiments may be made of not only gold but also other materials such as copper and aluminum, but depending on the materials used, an oxidation-reduction atmosphere may be required. In addition, it is preferable to use the same material as the metal bump for the electrode to be connected such as an electrode pad and an extraction electrode. For example, in the first embodiment, the upper layer of the extraction electrode is made of silver, and bonding with a different metal using a gold bump It has been confirmed experimentally that this is possible.
[0028]
The metal bumps may be formed by a thermocompression bonding method, an ultrasonic thermocompression bonding method, an ultrasonic welding method, or the like. In each of the above embodiments, the piezoelectric diaphragm using the thickness shear vibration is illustrated. However, for example, when the tuning fork vibrator using bending vibration is cantilevered, the piezoelectric diaphragm can be applied to a piezoelectric diaphragm of another vibration mode. May be.
[0029]
【The invention's effect】
As described above, according to the present invention, the extension portion and the electrode on the upper surface of the piezoelectric vibration plate, and the electrode located on the lower surface of the piezoelectric vibration plate and the metal bump are bonded or welded. Combined. Further, it is not necessary to consider the problem of cutting the edge portion. Therefore, the instability of bonding that has occurred in the past is eliminated, and a piezoelectric vibrator having stable electrical characteristics can be obtained. In addition, the package can be made thinner, and a process for curing the bonding material is not required, so that the number of manufacturing steps is reduced and the productivity is improved.
[0030]
Then, a plurality of metal bumps are formed at predetermined positions of the respective electrode pads by using a wire bonding method, and the wires are extended with respect to the bumps in the portions where the piezoelectric diaphragm is not mounted in each electrode pad. Since it is a manufacturing method which forms an extended part by cut | disconnecting, formation of a metal bump and an extended part can be formed very efficiently and reliably. In addition, the wire extension and the electrode formed on the surface of the piezoelectric diaphragm, and the metal bump and the electrode formed on the back surface of the piezoelectric diaphragm are joined together by a thermocompression bonding method or an ultrasonic welding method. This can be performed reliably in a relatively small area.
[0031]
According to the second aspect, in addition to the above effect, bonding with the same metal can be performed. In particular, gold has no problem of oxidation, and the bonding property is improved.
[Brief description of the drawings]
FIG. 1 is an internal cross-sectional view according to a first embodiment.
FIG. 2 is a plan view according to the first embodiment.
FIG. 3 shows a manufacturing process.
FIG. 4 shows a manufacturing process.
FIG. 5 shows a manufacturing process.
FIG. 6 is a plan view showing another embodiment.
FIG. 7 is a plan view showing another embodiment.
[Fig. 8] Diagram showing a conventional example [Explanation of symbols]
1 Insulating substrate 2 Piezoelectric vibration plate (crystal vibration plate)
31, 32, 33 Metal bump (wire bump)
33a Extension part 4 Lid 51, 52, 53, 54 Bump group 52a Extension part

Claims (2)

上面に少なくとも2つの電極パッドが形成され、下面に前記各電極パッドと電気的に接続され外部と接続される2以上の導出電極の形成された絶縁基板を作業ステージに設置し、
前記各電極パッドの所定の位置にワイヤボンディング法を用いて、各々複数の金属バンプを形成するとともに、各金属バンプのうち圧電振動板が搭載されない部位の金属バンプについてワイヤを伸長させた状態で切断することにより伸長部を形成し、
その後、前記金属バンプの上部に、表裏面に電極形成された圧電振動板を搭載し、
そして、前記伸長部と圧電振動板の表面に形成された電極、および金属バンプと圧電振動板の裏面に形成された電極とを、超音波熱圧着法あるいは超音波溶着法により接合したことを特徴とする圧電振動子の製造方法。
An insulating substrate having at least two electrode pads formed on the upper surface and two or more lead electrodes formed on the lower surface and electrically connected to the electrode pads and connected to the outside;
A plurality of metal bumps are formed at a predetermined position of each electrode pad by using a wire bonding method, and a portion of each metal bump where the piezoelectric diaphragm is not mounted is cut in a state where the wire is extended. To form an extension,
After that, on the upper part of the metal bump, a piezoelectric diaphragm having electrodes formed on the front and back surfaces is mounted,
The extension portion and the electrode formed on the surface of the piezoelectric diaphragm, and the metal bump and the electrode formed on the back surface of the piezoelectric diaphragm are joined by an ultrasonic thermocompression bonding method or an ultrasonic welding method. A method for manufacturing a piezoelectric vibrator.
前記電極パッドおよび引出電極の最上層、並びに前記金属バンプおよび金属バンプの伸長部は金であることを特徴とする請求項1記載の圧電振動子の製造方法。2. The method of manufacturing a piezoelectric vibrator according to claim 1, wherein the uppermost layer of the electrode pad and the extraction electrode, and the metal bump and the extended portion of the metal bump are gold.
JP08941998A 1998-03-17 1998-03-17 Method for manufacturing piezoelectric vibrator Expired - Fee Related JP3911838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08941998A JP3911838B2 (en) 1998-03-17 1998-03-17 Method for manufacturing piezoelectric vibrator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08941998A JP3911838B2 (en) 1998-03-17 1998-03-17 Method for manufacturing piezoelectric vibrator

Publications (2)

Publication Number Publication Date
JPH11266135A JPH11266135A (en) 1999-09-28
JP3911838B2 true JP3911838B2 (en) 2007-05-09

Family

ID=13970146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08941998A Expired - Fee Related JP3911838B2 (en) 1998-03-17 1998-03-17 Method for manufacturing piezoelectric vibrator

Country Status (1)

Country Link
JP (1) JP3911838B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010187333A (en) * 2009-02-13 2010-08-26 Seiko Instruments Inc Piezoelectric vibrator, method for manufacturing piezoelectric vibrator, and oscillator

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100538654B1 (en) * 2001-10-18 2005-12-26 쌍신전자통신주식회사 Thin Film Piezoelectric Element and Manufacture Method of The Same
JP2004037181A (en) * 2002-07-02 2004-02-05 Hitachi Maxell Ltd Vibration sensor
JP2006284551A (en) * 2005-02-23 2006-10-19 Sony Corp Oscillating gyro sensor
JP5037819B2 (en) * 2005-03-04 2012-10-03 ソニー株式会社 Electronics
JP4770643B2 (en) 2005-10-12 2011-09-14 エプソントヨコム株式会社 Piezoelectric device and manufacturing method thereof
JP2007327758A (en) * 2006-06-06 2007-12-20 Nec Tokin Corp Piezoelectric single-crystal oscillator and piezoelectric vibration gyroscope
JP4978273B2 (en) * 2007-03-29 2012-07-18 ブラザー工業株式会社 Liquid ejection apparatus and liquid ejection apparatus manufacturing method
JP2009239412A (en) * 2008-03-26 2009-10-15 Epson Toyocom Corp Piezoelectric device
CN111692085B (en) * 2019-03-15 2023-06-06 研能科技股份有限公司 Micropump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010187333A (en) * 2009-02-13 2010-08-26 Seiko Instruments Inc Piezoelectric vibrator, method for manufacturing piezoelectric vibrator, and oscillator

Also Published As

Publication number Publication date
JPH11266135A (en) 1999-09-28

Similar Documents

Publication Publication Date Title
JP3826875B2 (en) Piezoelectric device and manufacturing method thereof
US6229249B1 (en) Surface-mount type crystal oscillator
JP4744213B2 (en) Manufacturing method of electronic parts
KR20060069312A (en) Surface acoustic wave device and manufacturing method thereof, ic card, and portable electronic device
JP2001196488A (en) Electronic component device and manufacturing method thereof
JP2001053178A (en) Electronic component with electronic circuit device sealed and mounted on circuit board, and manufacture of the electronic component
JP3911838B2 (en) Method for manufacturing piezoelectric vibrator
JP2008131167A (en) Package structure of piezoelectric device, and piezoelectric device
JP4051452B2 (en) Piezoelectric vibrator
JP2006211089A (en) Piezoelectric vibration device
US20060175939A1 (en) Piezoelectric device and method of producing the same
JPH11289238A (en) Piezoelectric vibrator
JP3401781B2 (en) Electronic component package and method of manufacturing electronic component package
JP5239782B2 (en) Piezoelectric vibration device
JP2006033413A (en) Piezoelectric vibration device
JP2008186917A (en) Electronic component housing package, electronic device, and manufacturing method thereof
JP3968782B2 (en) Electronic component package, piezoelectric vibration device using the package, and method of manufacturing piezoelectric vibration device
JP2002084159A (en) Surface-mounted piezoelectric vibrator
JP2009239475A (en) Surface mounting piezoelectric oscillator
JPH11274892A (en) Piezoelectric vibrator and production thereof
JP4144036B2 (en) Electronic component package and piezoelectric vibration device using the electronic component package
JP3878899B2 (en) Electronic device and manufacturing method thereof
JP3374395B2 (en) Package for electronic components
JP2003017604A (en) Package for housing semiconductor element and semiconductor device
JP4952083B2 (en) Piezoelectric oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110209

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120209

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130209

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees