JP3909312B2 - Heat pump water heater - Google Patents

Heat pump water heater Download PDF

Info

Publication number
JP3909312B2
JP3909312B2 JP2003178862A JP2003178862A JP3909312B2 JP 3909312 B2 JP3909312 B2 JP 3909312B2 JP 2003178862 A JP2003178862 A JP 2003178862A JP 2003178862 A JP2003178862 A JP 2003178862A JP 3909312 B2 JP3909312 B2 JP 3909312B2
Authority
JP
Japan
Prior art keywords
water
hot water
refrigerant
heat pump
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003178862A
Other languages
Japanese (ja)
Other versions
JP2005016758A (en
Inventor
シュウトン リム
哲信 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Appliances Inc
Original Assignee
Hitachi Appliances Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Appliances Inc filed Critical Hitachi Appliances Inc
Priority to JP2003178862A priority Critical patent/JP3909312B2/en
Publication of JP2005016758A publication Critical patent/JP2005016758A/en
Application granted granted Critical
Publication of JP3909312B2 publication Critical patent/JP3909312B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ヒートポンプ給湯機に関わり、ヒートポンプ給湯回路から直接出湯する瞬間式ヒートポンプ給湯機に関するものである。
【0002】
【従来の技術】
従来のヒートポンプ給湯機は電気温水器と同様に大容量の貯湯タンクを設け、夜間の安価な割引電力を使って夜中にヒートポンプ回路で湯を沸き上げて貯湯タンクに貯蔵して置き、上記貯蔵した湯を日中に使うものが一般的であった。
【0003】
しかし、上記給湯方式においては、貯湯タンクの湯量が一定で、使用量の多い日は湯量不足となり、使用量の少ない日は、残り湯の湯冷めによるエネルギー損失となっていた。
【0004】
また、風呂使用の場合、浴槽への湯張り後、湯冷めにより追焚が必要であるが、前記従来の給湯機方式においては貯湯タンクからの一方的な足し湯機能しかないため適切な対応ができなかった。
【0005】
上記の改善策として、追焚機能を付加したものが提案されている。このようなヒートポンプ給湯機として特開2002−106963号公報(特許文献1)に開示されたものがある。
【0006】
特許文献1の従来のヒートポンプ給湯機は、貯湯タンクに湯を大量に貯めておき、貯湯、給湯、風呂の湯張りおよび風呂追焚き運転を1台で実施できるようにしたものである。すなわち、従来のヒートポンプ給湯機は、夜間にヒートポンプ運転を行って貯湯タンクに高温水を満杯に溜めておき、その後はヒートポンプ運転を行なわず、貯湯タンク1杯の湯でもって風呂の湯張りや洗面所、台所等の給水をまかなっていた。
【0007】
そのため、貯湯タンクは300〜450Lもある大きなものが使用されている。また、貯湯温度も高温なほど水で薄めて多量に使用できるため、CO2冷媒を使用し90℃もの高温水にして貯湯している。
【0008】
【特許文献1】
特開2002−106963号
【0009】
【発明が解決しようとする課題】
前記説明の如く、従来のヒートポンプ式給湯機においては、大容量の貯湯タンクを必要とし、設置スペースや設置床面の充分な強度が必要となっていた。即ち、貯湯タンクの容量一杯に湯を溜めた場合を考えると、その質量は500kgにも達するため、設置場所の基礎工事を行なって充分な強度を確保しなければならず、また、アパートやマンションのベランダのような狭い場所や強度の不十分な場所に据付ることが困難であり、さらには、ヒートポンプ式給湯機を顧客の設置場所に運搬する際にもその費用や手間を多く要するものであった。
【0010】
また、従来のヒートポンプ給湯機は、夜間割引電気料金を利用して夜中にヒートポンプ運転し、高温の湯にして貯湯タンクに蓄えておき、日中はヒートポンプ運転をしないで、貯湯タンクに溜めた湯を使用するという使い方をしている。
【0011】
このため時には貯湯タンクの湯を使いきってしまい、直ぐには沸き上げることが出来ずに湯切れを起こすことがあった。また、周囲温度より高い温度の大量の湯を長時間貯蔵しておくため、貯湯タンクの大きな表面から熱が発散してエネルギーの無駄使いになり、それによって温度が下がる分を夜間に余裕をもって温めておく必要があった。
【0012】
即ち、従来のヒートポンプ給湯機は、夜間割引料金によるコストメリットは有するものの、省エネ、地球温暖化の点においては課題が残されていた。
【0013】
本発明の目的は、小型及び軽量で輸送性及び据付性に優れると共に、必要な時に必要な量だけの湯を沸かし、沸かした湯は冷めないうちに使う、省エネ、地球温暖化防止に優れたヒートポンプ給湯機を提供することにある。
【0014】
なお、本発明のその他の目的と特徴は以下の記述から明らかにされる。
【0015】
【課題を解決するための手段】
前記目的を達成する為に、本発明のヒートポンプ給湯機は、出湯時ヒートポンプ冷媒回路の水-冷媒熱交換器で水道水を暖め補助タンク給湯回路内の補助タンク内の湯を出来る限り少なく使用するようにし、使うのは上記ヒートポンプ冷媒回路の水-冷媒熱交換器温度が高くならない運転初期のみとしたものである。
【0016】
すなわち本発明のヒートポンプ給湯機は、圧縮機と、その圧縮機により圧縮された冷媒と給水された水との熱交換を行う水−冷媒熱交換器と、熱交換された冷媒を減圧する減圧装置と、減圧された冷媒と空気との熱交換を行う蒸発器とをそれぞれ冷媒管路で接続したヒートポンプ冷媒回路と、前記給水された給水水量を検出する水量検出手段と、前記給水された水を前記水−冷媒熱交換器によって加熱して温水にし、この温水を、出湯接続具を介して蛇口に直接給湯することができる瞬間給湯用の給湯回路と、前記直接給湯を補助するため、温水を蓄えた補助タンクと、を備えたヒートポンプ給湯機であって、前記出湯接続具から出湯するときに、前記給水水量が所定量よりも少ないときには前記補助タンク内の温水を出湯させることにより前記目的を達成するものである。
【0017】
このように給湯機の中で一番電力を消費する冷媒回路(圧縮機を含む冷凍サイクル)の運転を少量の湯の出湯がある毎に運転しなくとも良い構成とし、省エネ、地球温暖化防止を図るようにしたものである。
【0018】
また本発明のヒートポンプ給湯機は、圧縮機と、その圧縮機により圧縮された冷媒と給水された水との熱交換を行う水−冷媒熱交換器と、熱交換された冷媒を減圧する減圧装置と、減圧された冷媒と空気との熱交換を行う蒸発器とをそれぞれ冷媒管路で接続したヒートポンプ冷媒回路と、前記給水された給水水量を検出する水量検出手段と、前記給水された水を前記水−冷媒熱交換器によって加熱して温水にし、この温水を、出湯接続具を介して蛇口に直接給湯することができる瞬間給湯用の給湯回路と、前記直接給湯を補助するため、温水を蓄えた補助タンクと、を備えたヒートポンプ給湯機であって、前記出湯接続具から出湯するときに、前記給水水量が所定量を超えたときに前記ヒートポンプ冷媒回路を運転することにより前記目的を達成するものである。
【0019】
【発明の実施の形態】
以下、本発明の実施例を図1から図3を用いて説明する。
【0020】
以下、本発明の実施例を図1から図3を用いて説明する。図1に示されたヒートポンプ給湯機は、ヒートポンプ冷媒回路30、給湯回路40、および運転制御手段50を備えて構成されている。
【0021】
ヒートポンプ冷媒回路30は、二つの冷凍サイクルを備えている。それぞれのサイクルは、圧縮機1a、1b、水-冷媒熱交換器2a、2b、減圧装置3a、3b、蒸発器4a、4bが、それぞれ冷媒配管を介して順次接続されており、それぞれのサイクルの中には冷媒が封入されている。
【0022】
容量制御を可能とする圧縮機1a、1bは、多量の給湯を行なう場合に、大きな容量で運転される。圧縮機1a、1bはPWM制御、電圧制御(例えばPAM制御)及びこれらの組合せ制御により、低速回転(例えば2000回転/分)から高速回転(例えば8000回転/分)まで回転数制御される。
【0023】
水-冷媒熱交換器2は、冷媒側伝熱管2a、2b、及び給水側伝熱管2e、2fを備えている。例えば後述する構成により、冷媒側伝熱管2a、2bと給水側伝熱管2e、2fとの間で熱交換を行なう。
【0024】
また、蒸発器4a、4bは空気と冷媒との熱交換を行なう空気冷媒熱交換器で構成されている。
【0025】
除霜用電磁弁5a、5bは、備えられた電磁コイルに通電された間に開く開閉弁である。圧縮機1a、1bから吐出される高温高圧の冷媒ガスを、電磁弁5a、5bは蒸発器4a、4bの入口側にバイパスさせる。冬期に蒸発器4a、4bが着霜したとき、電磁弁5a、5bは開閉弁を開けることにより、圧縮機1a、1bから吐出される高温高圧の冷媒ガスが蒸発器4a、4bに冷媒配管を通って流れ込み霜を溶かす働きをする。
【0026】
給湯回路40は、貯湯、給湯、風呂湯張り、風呂追焚等を行なうために必要な水循環回路を、それぞれ管路を切り換えて実現する構成を備える。
【0027】
ヒートポンプ給湯回路は、本実施形態のヒートポンプ給湯機の主となる給湯回路である。上水道との接続口である給水接続具(給水接続金具)6から取り込まれた給水源からの水は減圧弁7で減圧されて給水水量センサ8に送られる。この給水水量センサ8から給水逆止弁23を通過した水は、給水配管2cを経て給水伝熱管2e、2fで温められる。温められた水は、途中で熱交換流量調整弁11を介して給湯配管2dを通じ、混合温度調整サーミスタ53で水温を監視され給湯配管2dと接続された出湯金具13からヒートポンプ給湯機の外部へ出湯する。それぞれの構成は水配管を介して順次接続されている。
【0028】
タンク給湯回路は補助タンク9を備え、この補助タンク9は、円筒状で縦長に形成された小容量のタンクで構成されおり、従来の貯湯方式給湯機に備えられた貯湯タンクに比べ1/3〜1/5程度の小さな貯湯タンクである。そして補助タンク9は、ヒートポンプ給湯回路によって供給される湯水の温度が低い場合に、ヒートポンプ給湯回路からの温水に混ぜることができる、ある程度高温の温水を貯留するものである。
【0029】
具体的には、補助タンク9に貯えられていた温水は、タンク流量調整弁12が開くことで分岐管2hを通じて出湯配管2dに流れ出て混合温度調整サーミスタ53を経た後、出湯接続具6を通じて出湯する。このとき温水が補助タンク9から送り出されるのは、給水接続具(給水接続金具)6を通じて供給された上水(給水源からの水)が、減圧弁7及び給水水量センサ弁8を介して水配管を通じて調整された水圧を伴い補助タンク9に注入されるからである。
【0030】
補助タンク9内の水を温めるときに使用される貯湯回路は、補助タンク9と水‐冷媒熱交換器2との間で構成される。すなわち、出湯配管2dから分岐した分岐管2hと接続するタンク流量調整弁12を開放し、タンク循環ポンプ10は補助タンク9の下部から水を引き出す。その引き出された水は給水配管2cを経て給水伝熱管2e、2fで熱交換される。給湯配管2dを通った温水は、熱交換流量調整弁11とタンク流量調整弁12を通過して補助タンク9へ導かれる。この貯湯回路は、補助タンク9内の湯水を再加熱、言い換えると補助タンク9内の温水を追焚きする場合にも使用される。
【0031】
尚、貯湯運転時にタンク循環ポンプ10が動作する関係上、風呂熱交換器にも熱交流量調整弁11を経た湯が水開閉弁21を通して回り込もうとする。これを防いでいるのは追焚逆止弁55である。若し、この追焚逆止弁55がないと水開閉弁21に完全密封のものが要求される。しかし現状市販品ではこれを達成するのが難しい。そこで追焚逆止弁55を設けているものである。この弁55は風呂熱交換器20と水冷媒熱交換器2間でショートサーキットをおこし、熱ロスが発生するのを防止するものである。
【0032】
浴槽へ湯水を供給する風呂湯張り回路は、基本的な構成はヒートポンプ給湯回路と同じで、出湯金具13から湯水を出湯する代わりに出湯配管2dから分岐した分岐管2jに湯水が配水される。その分岐管2jと接続する風呂注湯弁14を開けることで、風呂センサ金具15を通過して風呂出湯接続具16と接続する、浴槽18に湯水が注入される。当然ながら浴槽18へ湯張りするときに、水−冷媒熱交換器2からの直接給湯と共に、補助タンク9内の湯量が最小必要量以下にならない範囲において補助タンク9から浴槽18への補助タンク給湯を行なう。
【0033】
尚、風呂湯張り時には、冷凍サイクルの立上り時或いは周囲温度が低い時のように冷媒側伝熱管2a、2bの温度が十分に上がらない時には給水側伝熱管2e、2fの温度が設定値に達しない時がある。この時には上記風呂湯張り回路による直接給湯と共に、補助タンク9内の湯量が最小必要量以下にならない範囲において補助タンク9から浴槽18への補助タンク給湯を行なう。
【0034】
これを決めるのが混合温度調整サーミスタ53である。即ち、この混合温度調整サーミスタ53の検出結果に基づき運転制御手段50は熱交流量調整弁11、タンク流量調整弁12に指示を出し、例えば設定温度43℃であるのに対し、熱交流調整弁11を通る湯の温度が35℃の時には、この熱交流調整弁11を絞りタンク流量調整弁12を開け、補助タンク9内の例えば65℃の湯を多く出し、43℃の湯として浴槽18へ給湯するものである。
【0035】
浴槽18内の温水を再び温める風呂追焚回路は、浴槽18と水−水熱交換器20との間の水管路である。浴槽18から、入出湯接続具(入出湯接続金具)17を通じて風呂循環ポンプ19で引き出された水は、風呂伝熱管20bに送られて熱交換により加熱され、風呂センサ金具15を通過の際に湯水の温度が測定され後、風呂出湯接続具(出湯接続金具)16を通じて浴槽18に供給される。
【0036】
次に、本実施形態におけるヒートポンプ給湯機の制御に関して説明する。ヒートポンプ給湯機の運転制御手段50は、台所リモコン51及び風呂リモコン52の操作設定により、ヒートポンプ冷媒回路30の運転・停止並びに圧縮機1a、2bの回転数制御を行なうと共に、タンク循環ポンプ10、風呂循環ポンプ19の運転・停止及びバイパス弁8、熱交換流量調整弁11、タンク流量調整弁12、注湯電磁弁14、水開閉弁21を制御することにより、貯湯運転、給湯運転、風呂湯張り運転、追焚運転を行なうものである。
【0037】
運転制御手段50は、ヒートポンプ回路の運転開始直後には、加熱立上げ時間を早めるため、通常の給湯運転速度よりも速い高速回転数で運転するよう制御するのが好ましい。また、出湯端末における給湯使用後は、タンク貯湯運転を行ってから運転停止する毎回貯湯運転機能を有している。
【0038】
次に、本実施例におけるヒートポンプ給湯機に設けられた他の制御関連機器について説明する。風呂センサ金具15により浴槽18への給湯温度を検出したり、補助タンク9に蓄えられた水の温度を温度センサー(A、B、C)により検出したり、混合温度調整サーミスタ53により出湯する温水等の温度状態を検出するのと同様に水−冷媒熱交換器2で加熱された水やその他の各部の温度状態を検出する温度センサ、圧縮機1a、2bの吐出圧力を検知する圧力センサ、浴槽17内の水位を検出する水位センサ等(いずれも図示せず)が設けられ、各検出信号は運転制御手段50に入力される。運転制御手段50はこれらの信号に基づいて各機器を制御する。
【0039】
水開閉弁21は、給湯回路から分岐した分岐管2gとの接続位置であって、水-冷媒熱交換器2と風呂熱交換器20の間の位置に設けられている。風呂追焚時以外は風呂熱交換器20への水回路を閉じて水-冷媒熱交換器2から風呂熱交換器20への熱の漏洩を防ぐ。例えば、この水開閉弁21が設けられてなく、給湯回路の出湯配管2dと水‐水熱交換器である風呂熱交換器20とが管路内の水を通じて連続していると、給湯回路から分岐管2gへ水が流れていなくとも熱的に連続しているため、風呂熱交換器20から熱漏洩が進むことになる。同様に、出湯配管2dから分岐する分岐管2h、2i、2jにおいても、それらの先で接続するタンク流量調節弁12、バイパス弁8および風呂注湯弁14が必要に応じて開閉する管路構成により、給湯時の熱漏洩が非常に少なくなっている。なお、市販の水開閉弁21はなかなか水回路を完全閉にすることは難しい。本実施例ではこれを防ぐ為に追焚逆止弁55を設けているものである。
【0040】
また、風呂逆止弁22、給水逆止弁23は、それぞれ一方向にのみ水を流し、逆流を防止するものである。風呂注湯弁14にも同様の機能が求められる。すなわち、分岐管2jまでは上水や上水を温めた水であるが、風呂注湯弁14の先には浴槽18の水があり、分岐管2jよりも上流側に浴槽18の水が混入することはあってはならないからである。
【0041】
逃し弁24は、補助タンク内の湯圧が所定以上になった場合に作動して圧力に対する装置保護の働きをするものである。
【0042】
水-冷媒熱交換器2の実施例を図2により説明する。水-冷媒熱交換器2には、2本の冷媒伝熱管2a、2bと、2本の給水伝熱管2e、2fとがあり、冷媒伝熱管2a、2bと給水電熱管2e、2fを交互に接触させて円筒状に巻き上げた構造をしている。
【0043】
給水伝熱管2e、2fは、水−冷媒熱交換器2内にあって、給水金具6を通じて取り込んだ水または補助タンク9からの水が通る給水配管2cと、水−冷媒熱交換器2で加熱された水が通る出湯配管2dとの間を並列に2本に分けられた管路である。1本の場合に較べ、給水伝熱管2e、2fの通水面積及び冷媒伝熱管2a、2bとの接触面積が2倍となることにより、個々の長さを1/2にすることができ、通水時の内部抵抗を1/4に低減することことができる。従って、通水時の水-冷媒熱交換器2の内部圧損も1本の場合に比べて1/4になると共に、全体の高さを低くでき、製作、収納が容易になる。
【0044】
特にガスを用いた瞬間給湯の如き瞬間給湯をヒートポンプを用いて行なう場合に、給水源の水道圧によって水循環を行なおうとする。しかし水-冷媒熱交換器2の内部圧損が直接通水時の抵抗となって、出湯圧力にマイナスとなる。例えば、水道圧が、200kPaの場合、従来の水-冷媒熱交換器において100kPaの圧損があると、出湯圧力は100kPaとなり、水圧低下、出湯量不足の恐れがある。しかし、本実施例における水-冷媒熱交換器2の場合は、圧損が1/4の25kPaとなるため、出湯圧力は175kPaとなり、充分な水圧、出湯量を維持することができる。浴槽の水を追い焚きする機能を備えた上水を直接ヒートポンプで加熱して給湯するヒートポンプ給湯機において、本実施例における水-冷媒熱交換器2の構造は水と冷媒の熱交換を行うのに適し、風呂の追焚用熱交換器を水−冷媒熱交換器から分離することで、より水−冷媒熱交換器の熱交換効率が高まる。
【0045】
次に、風呂追焚用熱交換器20の一実施例を図3により説明する。風呂追焚用熱交換器20は2重管構造とし、銅管を用いた温水伝熱管20aの内側に、風呂水伝熱管20bにより仕切られた空間20cを設けられている。この空間20cには、温水伝熱管20aの両端側に接続した温水配管20dにより水-冷媒熱交換器2で加熱された温水が流れる。浴槽内の湯が流れる風呂水伝熱管20bは、温水伝熱管20aの両先端部20fから導出する風呂水配管20eと接続している。温水伝熱管20aは、一般に使用される銅直管で、その両先端部20fを絞って風呂水配管2eの外側に接合し密閉する。風呂水伝熱管20bは、温水との接触面積を大きく取るため、断面円周を凹凸状、星型状、または多葉管等にする。温水配管20dは、温水伝熱管20aの両端側内部に開口して、温水の流れる空間20cと導通する。
【0046】
風呂追焚用熱交換器20は、以上の如き2重管構造とすることにより、被加熱体である浴槽18内の水が流れる風呂水伝熱管20bが、加熱体である温水の流通空間内に設けられている。そのため風呂追焚用熱交換器20は、風呂水伝熱管20bがその全外周で伝熱され、コンパクトで伝熱性の良い水−水熱交換器とすることができた。
【0047】
なお、従来の風呂追焚用熱交換器においては、冷媒伝熱管と風呂水伝熱管で熱交換を行うため、万一内側管が破損した場合、高圧冷媒が水回路に浸入して給湯機の中の飲料水となる上水系統に影響を与える恐れがあり、一方の管が他方の内側を貫くような2重管構造は採用できず、図2に示すように冷媒管と水配管はそれぞれ独立した配管構造としなければならなかった。
【0048】
即ち、本発明においては、風呂追焚用熱交換器20を水冷媒熱交換器2から分離し、加熱循環水と風呂循環水との水−水熱交換を行うことにより2重管構造の採用が可能となったものである。
【0049】
又、この風呂追焚熱交換器20は次の点にも考慮している。即ち風呂水の循環水には不純物が含まれる可能性がある。この風呂水を空間20C側を流すと管表面の凹凸で不純物がひっかかり詰まりの原因になり兼ねない。従って、本実施例においては、この空間2Cには水冷媒熱交換器2を経た温水を流すようにしたものである。
【0050】
以上述べた構成により、本実施例におけるヒートポンプ給湯機は、給湯使用開始と同時にヒートポンプ運転を開始し、水-冷媒熱交換器2で沸上げた湯を直接出湯端末に供給可能とし、また、浴槽18の湯を2重管構造の風呂用熱交換器20で追焚きし、省エネ、温暖化防止効果を得るものである。
【0051】
次に、本ヒートポンプ給湯機の運転動作について、図1のヒートポンプ回路30及び給湯回路40を参照しながら図4〜図7のフローチャートに基づいて説明する。
【0052】
図4は、据付時の運転動作を示すフローチャートの一実施例である。ヒートポンプ給湯機は、製造場所から運搬されて使用者の希望する設置場所に据付られ(ステップ60)、給水金具6が水道等の給水源に接続され給水源の元栓が開放される(ステップ61)と、給水源から給水が開始され(ステップ62)、水は減圧弁7によって一定圧力に減圧調整された後、貯湯タンク9及び水-冷媒熱交換器2並びに各水配管内に流入し満水状態になるまで給水を続ける(ステップ63)。
【0053】
なお、ヒートポンプ給湯機の据付時の各機器は次のような初期状態に設定されている。バイパス弁8は補助タンク9側が開で出湯接続具13側である分岐管2i側が閉状態、熱交換流量調整弁11、タンク流量調整弁12、水開閉弁21はいずれも開状態、風呂注湯弁14は閉状態となっている。
【0054】
次にステップ63で満水が確認された場合に給水完了と判断し、電源スイッチが投入される(ステップ64)。すると運転制御手段50の制御によりヒートポンプ冷媒回路30および給湯回路40の運転が開始され、タンク貯湯運転が行なわれる(ステップ65)。このタンク貯湯運転では、圧縮機1a、1bの運転が開始され、圧縮機1a、1b内のガス状冷媒が圧縮加熱され高温高圧の冷媒となって水-冷媒熱交換器2に送り込まれる。
【0055】
これによって、水-冷媒熱交換器2では、冷媒伝熱管2a、2b内を流れる高温冷媒と給水伝熱管2e、2f内を流れる水とが熱交換し、冷媒は放熱し、水は加熱される。放熱された冷媒は減圧装置3a、3bで減圧され、更に蒸発器4a、4bで膨脹蒸発してガス状となり再び圧縮機1a、1bに戻る。このヒートポンプ運転を続けることにより、水-冷媒熱交換器2内を通過する水が加熱される。
【0056】
タンク貯湯運転においては、ヒートポンプ運転と共に、貯湯回路においてタンク循環ポンプ10の運転が開始され、補助タンク9の下部の通水口から引き出された水は、タンク循環ポンプ10、水-冷媒熱交換器2、熱交換流量調整弁11、そしてタンク流量調整弁12を経て、補助タンク9へ循環する。
【0057】
これにより、水-冷媒熱交換器2で加熱された温水が補助タンク9の上部より貯湯されてゆき、補助タンク9全体が沸き上がった状態に達すると貯湯完了と判定し(ステップ66)、運転を停止する(ステップ67)。
【0058】
なお、タンク満水判定は、例えば水位センサや圧力センサ等で満水状態を検知して判定を行い、貯湯完了判定は、例えばサーミスタ(温度センサー(A、B、C))で補助タンク9の上中下各部の水温を検知して判定するものである。
【0059】
図5は、湯水使用時の動作を示すフローチャートの一実施例である。
【0060】
出湯端末で蛇口が開けられ湯が使われる(ステップ70)と、運転制御手段50は、圧縮機1a、1bを起動させヒートポンプ回路30の運転を開始すると共に、給水金具6、減圧弁7、バイパス弁8、給水逆止弁23、水-冷媒熱交換器2、熱交換流量調整弁11、出湯接続具13の給湯回路により瞬間給湯運転(ステップ71)を行なう。同時に、給水金具6、減圧弁7、バイパス弁8、貯湯タンク9、タンク流量調整弁12、出湯接続具13の給湯回路によりタンク給湯運転を行なう(ステップ77)。
【0061】
ここで、ヒートポンプ冷媒回路30は、圧縮機1a、1bで圧縮された高温冷媒を水-冷媒熱交換器2に送り込み、給水配管2cから流入する水を加熱して給湯配管2dへ流出するが、運転立ち上り時は水-冷媒熱交換器2に送り込まれてくる冷媒が充分に高温高圧となり切らず温度が低く、かつ水-冷媒熱交換器2全体が冷えているため、水を加熱する加熱能力が充分でない。時間の経過と共に冷媒は高温高圧となり、それに従って発生する凝縮冷媒熱が増加し、水への加熱能力が増してゆく。
【0062】
しかし、ヒートポンプ運転の加熱能力が高温安定状態に達するまでの時間は通常約5、6分掛かる。そこで運転制御手段50は、運転開始直後の高温安定状態に達するまで、圧縮機の回転数を通常より高速回転にして運転制御し、先に述べた水伝熱管を水−冷媒熱交換器2内で複数路を並列に設けたことの相乗効果により、本実施例では立ち上がり時間を約1〜2分程度にすることができた。また、ヒートポンプ回路が安定するまで必要な湯水を貯湯する補助タンクの充分なる小形化を図れたと共にヒートポンプを用いた瞬間給湯方式を実現可能とするものである。
【0063】
そして、運転開始直後の所定時間(約1〜2分程度)補助タンクから湯を供給するタンク給湯運転を行なった後は、運転制御手段50が動作してタンク給湯運転を停止して、瞬間給湯運転のみに切換えられる(ステップ72、78、79)。このステップ78のタンク給湯判定は、ヒートポンプ回路の運転時間を計測する他に実際に出湯配管2dを流れる湯水の温度に基づいて判定しても良い。
【0064】
このように運転開始時のみ補助タンク9から過渡的に給湯し、その後は水-冷媒熱交換器2で加熱した温水を直接給湯するようにしているので、運転立ち上がり時の加熱遅れを解消できると共に、補助タンク9の容量を従来と比較して格段に小さくできる。なお、水-冷媒熱交換器2での加熱能力を出来るだけ速く安定状態まで上昇させて、補助タンク9の湯を使用する過渡的なタンク給湯運転の時間を短縮することが補助タンク9の容量を一層小さくすることに繋がる。
【0065】
そのためには、ヒートポンプ冷媒回路30の能力、特に圧縮機出力を従来一般に用いられている5kW程度より3倍以上の15kW程度まで大きくすることが望ましいが、新規圧縮機の開発が必要であるばかりでなく、ヒートポンプ冷媒回路30の各部品共新規検討が必要となり、極めて困難である。そこで本発明の一実施例においては、これまでの説明の如く2個の圧縮機を使用した2サイクルヒートポンプ方式とし、従来技術の活用と、実績による信頼性を確保したものである。
【0066】
なお、運転制御手段50は、補助タンク9の残湯量が所定値以下になった時には、タンク給湯運転を停止し、瞬間給湯運転のみにする(ステップ78,79)。
【0067】
次に、湯水使用が終了して出湯端末の蛇口が閉じられる(ステップ80)と、湯水使用直後でタンク給湯運転とヒートポンプ給湯運転が行われている場合は、ヒートポンプ給湯運転及びタンク給湯運転の両方を停止する。タンク給湯運転が停止していてヒートポンプ給湯運転のみであれば瞬間給湯運転を停止する。(ステップ73、79)
更に運転制御手段50は、タンク給湯運転及びヒートポンプ給湯運転を共に停止した後、必ずタンク貯湯運転を開始し(ステップ74)、そして温度センサー(A、B、C)、サーミスタ等によって貯湯完了を検知し貯湯完了を判定した(ステップ75)後に運転を終了する(ステップ76)。。
【0068】
但し、サーミスタによるタンク貯湯状態の検知は、常時行われており、極めて短時間使用のためヒートポンプ湯運転停止後でも補助タンクに湯温、湯量共に貯湯完了状態とほぼ同等に残っている場合(後述する洗顔手洗の場合)は貯湯完了と判定されタンク貯湯運転は行われない。
【0069】
以上によれば、運転制御手段50には、あらゆる運転において目的とする運転を終了した後に、必ず貯湯完了するまでタンク貯湯運転を行なう毎回貯湯運転機能を有しているので、貯湯タンクには常に所定温度の湯が満杯になっており、運転立上がり時の湯温低下や使用途中の湯切れの心配が解消できる。
【0070】
尚、出湯接続具(出湯接続金具)13の先に接続されている蛇口(図示省略)より、例えば毎分1.5L以下のお湯が消費される洗顔、手洗等時の本ヒートポンプ給湯機の動作は図6に示す太線実線の如くなる。
【0071】
即ち給湯量が少ない時には補助タンク9内の湯を使いヒートポンプ冷媒回路30は運転させないのが基本である。何故ならば、少しの量を消費した時でも本ヒートポンプ冷媒回路30を運転させるとなると消費電力が大きくなる為である。
【0072】
動作について、先ず出湯接続具13の先に接続されている蛇口(図示省略)を開にすると補助タンク9内の湯は水道の水圧がかかっていることより、タンク流量調整弁12を経由して出湯される。この時に補助タンク9内には消費された水量が給水源側よりわずかであるが補給される。勿論この給水源より補給される水は先ず減圧逆止弁7にて160kpaの水圧に調整され給水水量センサー8に至る。ここでは後述する構造のセンサーが例えば毎分1.5L以下の流量が消費されているかどうかを、給水源からの水の補給量をもって確認する。若し、1.5L/分以上の水量がここを通ると、給水水量センサー8からの信号を検出した運転制御手段50は、ヒートポンプ冷媒回路30の運転を指示する。この場合、給水水量センサー8を通過した水量が1.5L/分以下であることにより、ヒートポンプ冷媒回路30の運転は行なわないものであるが、この水量は適宜決められる数値である。
【0073】
従って、図6の太線点線の如く水冷媒熱交換器2側に回った水は水冷媒熱交換器2が止っていることより、単なる水配管とし、該水冷媒熱交換器2を通りそのままの状態(水道水)で熱交流量調整弁11を経て、途中で補助タンク9側から来る湯と一緒になって出湯接続具13側に出湯される。
【0074】
この時、熱交流量調整弁11とタンク流量調整弁12はそれぞれから来る水、或いはお湯の量を調整すべく弁の開度を調整する。この調整制御を実行するために混合温度調整サーミスタ53の検出結果が必要となる。即ち混合温度調整サーミスタ53の検出結果に基づいて、高い設定温度の湯を出す時には水が流れる熱交流量調整弁11を絞り、低い設定温度の湯を出す時にはタンク流量調整弁12を絞る制御をする。
【0075】
尚、補助タンク9内に多量の給水源からの水が入り、補助タンク9底部の水の温度が、例えば50℃以下となったことを温度センサーAの検出結果から検知すると、運転制御手段50は他の運転状態を考慮して、補助タンク9内の50℃の湯を温めるために、タンク循環ポンプ10を運転し水冷媒熱交換器2によるタンク貯湯運転を実行し、補助タンク9内の温度を常に設定温度に保持すべく制御する。
【0076】
図7、図8に示すものは本実施例における給水水量センサーの具体的構造を示すものである。給水水量センサー8は水が矢印H(補助タンク9側)方向に流れると、プロペラ8aが回りプロペラ8aが持つ磁石8bとホール素子8c(本体側に取付けられている)間で水量を検出し、回転数に相当するパルス信号、即ち、プロペラ8a一回転で一パルスの信号群を運転制御手段50に送る構成を備え、運転制御手段50で単位時間当りの水量を検出する関係となっている。尚、矢印I方向にはバイパス弁54が接続される。バイパス弁54は、給水水量センサ8から出湯する湯水の温度調節のために分岐管2iに配水することが可能な比例弁である。このバイパス弁54が開するのは、出湯接続具13を通して出湯される湯の温度が高い時に、給水源からの上水を加え湯の温度を下げて出湯させる時である。尚、このバイパス弁54を開にする指示は、図には示してないが出湯接続具13近くに設けたサーミスタ等の検知結果により運転制御手段50により実行される。
【0077】
図1に於ける補助タンク9に取付けられる温度センサーA.B.Cの取付位置は、例えば、温度センサーAが補助タンク底部より200mmの所に、温度センサーBが補助タンク中央に、そして温度センサーCが補助タンク上部より200mmの所に取付けられている。補助タンク9内の温度が設定値より下がると、タンク循環ポンプ10を運転すると共に水冷媒熱交換器2を運転し、設定値まで温めるようタンク貯湯運転が開始される。
【0078】
また、給水水量センサー8によって単位時間に流れる水の流量を検出して、ヒートポンプ冷媒回路中の圧縮機1a、1bを運転させても良いが、単位時間の累積流量を給水水量センサー8からの検出結果から計算して、圧縮機1a、1bを運転するように運転制御手段50は制御しても良いことは云うまでもない。更にこの給水水量センサー8はサーミスタ等を付加させ、給水源からの水温を測定し、圧縮機の回転数を可変させても良い。即ち給水された水の温度が低い時には圧縮機の回転数を上げるように制御を補正しても良い。
【0079】
【発明の効果】
以上説明したように本発明によれば、省エネ、地球温暖化防止に貢献可能なヒートポンプ給湯機を提供することができる。
【図面の簡単な説明】
【図1】 本発明のヒートポンプ給湯機におけるヒートポンプ冷媒回路、貯給湯回路、及び部品の概略構成の一実施例を示す模式図である。
【図2】 本発明の一実施例を示す水冷媒熱交換器の構造図である。
【図3】 本発明の一実施例を示す風呂用熱交換器の構造図である。
【図4】 本発明の一実施例のヒートポンプ給湯機における、据付及び補助タンク沸上げ時の動作を示すフローチャートである。
【図5】 本発明の一実施例のヒートポンプ給湯機における、給湯使用時の動作を示すフローチャートである。
【図6】 図1模式図の中で出湯量が少ない時の給水から出湯までの流れを示した図である。
【図7】 本発明の実施例に用いた給水水量センサーの一部断面正面図である。
【図8】 図7の一部断面側面図である。
【符号の説明】
1a,1b…圧縮機 2…水冷媒熱交換器 2a,2b…冷媒側伝熱管 2c…給水配管 2d…給湯配管 2e,2f…給水側伝熱管 3a,3b…減圧装置 4a,4b…蒸発器 5a,5b…除霜用電磁弁 6…給水接続具 7…減圧弁8…給水水量センサー 9…補助タンク 10…タンク循環ポンプ 11…熱交流量調整弁 12…タンク流量調整弁 13…出湯接続具(出湯接続金具) 14…風呂注湯弁 15…風呂センサー金具 16…風呂出湯接続具(出湯接続金具) 17…入出湯接続具(出湯接続金具) 18…浴槽 19…風呂循環ポンプ 20…風呂熱交換器 20a…温水電熱管 20b…風呂水伝熱管 21…水開閉弁 22…風呂逆止弁 22…給水逆止弁 24…逃がし弁 30…ヒートポンプ冷媒回路 40…給湯回路 50…運転制御手段 51…台所リモコン52…風呂リモコン 53…混合温度調整サーミスタ 54…バイパス弁 55…追焚逆止弁 A.B.C…温度センサー。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump water heater, and more particularly to an instantaneous heat pump water heater that discharges water directly from a heat pump hot water supply circuit.
[0002]
[Prior art]
A conventional heat pump water heater has a large-capacity hot water storage tank, just like an electric water heater, and uses cheap discount electricity at night to boil hot water in the heat pump circuit and store it in the hot water storage tank. It was common to use hot water during the day.
[0003]
However, in the above hot water supply system, the amount of hot water in the hot water storage tank is constant, the amount of hot water is insufficient on days when the amount of use is large, and the amount of energy lost due to cooling of the remaining hot water on days when the amount of use is small.
[0004]
In addition, when using a bath, it is necessary to make a memorial by cooling the hot water after filling the bathtub. However, the conventional hot water supply system has only a one-sided hot water function from the hot water storage tank, so it can respond appropriately. There wasn't.
[0005]
As a measure for improving the above, there has been proposed a memorial function added. One such heat pump water heater is disclosed in Japanese Patent Laid-Open No. 2002-106963 (Patent Document 1).
[0006]
The conventional heat pump water heater of Patent Document 1 stores a large amount of hot water in a hot water storage tank so that hot water storage, hot water supply, hot water filling of a bath, and bath renewal operation can be performed by one unit. That is, the conventional heat pump water heater performs heat pump operation at night to store hot water in a hot water storage tank, and then does not perform heat pump operation. The water supply for the place and kitchen was provided.
[0007]
Therefore, a large hot water storage tank having 300 to 450 L is used. In addition, since the hot water storage temperature is higher, it can be diluted with water and used in a large amount. Therefore, the hot water is stored at a high temperature of 90 ° C. using a CO 2 refrigerant.
[0008]
[Patent Document 1]
JP 2002-106963 A
[0009]
[Problems to be solved by the invention]
As described above, the conventional heat pump type hot water heater requires a large-capacity hot water storage tank, and sufficient installation space and installation floor surface are required. In other words, considering the case where hot water is stored to the full capacity of the hot water storage tank, the mass reaches 500 kg, so the foundation construction at the installation site must be carried out to ensure sufficient strength, and apartments and apartments It is difficult to install in a confined place such as a veranda in the country or in a place where the strength is insufficient, and furthermore, it takes a lot of cost and labor to transport the heat pump water heater to the customer's installation place. there were.
[0010]
In addition, conventional heat pump water heaters operate at night by using a discounted electricity charge at night, store hot water in hot water storage tanks and store hot water in hot water storage tanks during the day without heat pump operation. The usage is to use.
[0011]
For this reason, sometimes the hot water in the hot water storage tank was used up, and it was not possible to boil it up immediately, causing hot water to run out. In addition, because a large amount of hot water at a temperature higher than the ambient temperature is stored for a long time, heat is dissipated from the large surface of the hot water storage tank, resulting in wasted energy, so that the temperature drop can be warmed up at night. It was necessary to keep.
[0012]
That is, although the conventional heat pump water heater has the cost merit due to the night discount fee, there are still problems in terms of energy saving and global warming.
[0013]
The purpose of the present invention is small and light, excellent in transportability and installation, and boiled as much water as necessary when necessary, and used before the water is cooled. Excellent energy saving and prevention of global warming. It is to provide a heat pump water heater.
[0014]
Other objects and features of the present invention will become apparent from the following description.
[0015]
[Means for Solving the Problems]
In order to achieve the above object, the heat pump water heater of the present invention uses tap water in the auxiliary tank in the auxiliary tank hot water circuit by warming tap water in the water-refrigerant heat exchanger of the heat pump refrigerant circuit at the time of hot water as much as possible. Thus, only the initial operation in which the water-refrigerant heat exchanger temperature of the heat pump refrigerant circuit does not increase is used.
[0016]
That is, the heat pump water heater of the present invention is A compressor, a water-refrigerant heat exchanger that exchanges heat between the refrigerant compressed by the compressor and the supplied water, a decompression device that decompresses the heat-exchanged refrigerant, and the decompressed refrigerant and air. A heat pump refrigerant circuit in which an evaporator for performing heat exchange is connected by a refrigerant pipe, water amount detection means for detecting the amount of supplied water, and heating the supplied water by the water-refrigerant heat exchanger A hot water supply circuit for instantaneous hot water supply capable of directly supplying hot water to the faucet via a hot water connector, and an auxiliary tank storing hot water for assisting the direct hot water supply. A heat pump hot water supply device for discharging hot water in the auxiliary tank when the amount of the supplied water is smaller than a predetermined amount when the hot water is discharged from the hot water connector. Thus, the object is achieved.
[0017]
In this way, the refrigerant circuit (the refrigeration cycle including the compressor) that consumes the most power in the hot water supply system does not have to be operated every time there is a small amount of hot water to save energy and prevent global warming. It is intended to be illustrated.
[0018]
The heat pump water heater of the present invention is A compressor, a water-refrigerant heat exchanger that exchanges heat between the refrigerant compressed by the compressor and the supplied water, a decompression device that decompresses the heat-exchanged refrigerant, and the decompressed refrigerant and air. A heat pump refrigerant circuit in which an evaporator for performing heat exchange is connected by a refrigerant pipe, water amount detection means for detecting the amount of supplied water, and heating the supplied water by the water-refrigerant heat exchanger A hot water supply circuit for instantaneous hot water supply capable of directly supplying hot water to the faucet via a hot water connector, and an auxiliary tank storing hot water for assisting the direct hot water supply. The heat pump water heater is configured to operate the heat pump refrigerant circuit when the amount of the supplied water exceeds a predetermined amount when the hot water is discharged from the hot water connector. Thus, the object is achieved.
[0019]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to FIGS.
[0020]
Embodiments of the present invention will be described below with reference to FIGS. The heat pump water heater shown in FIG. 1 includes a heat pump refrigerant circuit 30, a hot water supply circuit 40, and operation control means 50.
[0021]
The heat pump refrigerant circuit 30 includes two refrigeration cycles. In each cycle, the compressors 1a and 1b, the water-refrigerant heat exchangers 2a and 2b, the decompression devices 3a and 3b, and the evaporators 4a and 4b are sequentially connected via the refrigerant pipes. A refrigerant is sealed inside.
[0022]
The compressors 1a and 1b capable of capacity control are operated with a large capacity when a large amount of hot water is supplied. The compressors 1a and 1b are controlled in rotational speed from low speed rotation (for example, 2000 rotations / minute) to high speed rotation (for example, 8000 rotations / minute) by PWM control, voltage control (for example, PAM control) and combination control thereof.
[0023]
The water-refrigerant heat exchanger 2 includes refrigerant side heat transfer tubes 2a and 2b and water supply side heat transfer tubes 2e and 2f. For example, heat exchange is performed between the refrigerant side heat transfer tubes 2a and 2b and the water supply side heat transfer tubes 2e and 2f by a configuration described later.
[0024]
The evaporators 4a and 4b are air refrigerant heat exchangers that exchange heat between air and refrigerant.
[0025]
The defrosting electromagnetic valves 5a and 5b are open / close valves that open while the electromagnetic coil provided is energized. The solenoid valves 5a and 5b bypass the high-temperature and high-pressure refrigerant gas discharged from the compressors 1a and 1b to the inlet side of the evaporators 4a and 4b. When the evaporators 4a and 4b are frosted in winter, the solenoid valves 5a and 5b open the on-off valves so that the high-temperature and high-pressure refrigerant gas discharged from the compressors 1a and 1b is connected to the evaporators 4a and 4b with refrigerant piping. It works by flowing through and melting frost.
[0026]
The hot water supply circuit 40 has a configuration that realizes a water circulation circuit necessary for hot water storage, hot water supply, hot water bathing, bath bathing, and the like by switching pipes.
[0027]
The heat pump hot water supply circuit is a main hot water supply circuit of the heat pump water heater of this embodiment. Water from a water supply source taken in from a water supply connector (water supply connector) 6 which is a connection port with the water supply is decompressed by a pressure reducing valve 7 and sent to a water supply amount sensor 8. The water that has passed through the feed water check valve 23 from the feed water amount sensor 8 is warmed by the feed water heat transfer tubes 2e and 2f via the feed water piping 2c. The warmed water passes through the hot water supply pipe 2d through the heat exchange flow rate adjusting valve 11 in the middle, and the temperature of the water is monitored by the mixed temperature adjusting thermistor 53. To do. Each configuration is sequentially connected through a water pipe.
[0028]
The tank hot water supply circuit includes an auxiliary tank 9, and this auxiliary tank 9 is formed of a cylindrical and small-sized tank formed in a vertically long shape, and is 1/3 of the hot water storage tank provided in a conventional hot water storage type hot water supply machine. It is a small hot water storage tank of ~ 1/5. And the auxiliary | assistant tank 9 stores the hot water of a certain high temperature which can be mixed with the warm water from a heat pump hot-water supply circuit, when the temperature of the hot water supplied by a heat pump hot-water supply circuit is low.
[0029]
Specifically, the hot water stored in the auxiliary tank 9 flows into the hot water supply pipe 2d through the branch pipe 2h when the tank flow rate adjustment valve 12 is opened, passes through the mixed temperature adjustment thermistor 53, and then passes through the hot water connection fitting 6. To do. At this time, the warm water is sent out from the auxiliary tank 9 when the clean water supplied through the water supply connector (water supply connector) 6 (water from the water supply source) is supplied through the pressure reducing valve 7 and the water supply amount sensor valve 8. It is because it is inject | poured into the auxiliary tank 9 with the water pressure adjusted through piping.
[0030]
The hot water storage circuit used when warming the water in the auxiliary tank 9 is configured between the auxiliary tank 9 and the water-refrigerant heat exchanger 2. That is, the tank flow rate adjustment valve 12 connected to the branch pipe 2h branched from the hot water supply pipe 2d is opened, and the tank circulation pump 10 draws water from the lower part of the auxiliary tank 9. The drawn water is subjected to heat exchange through the water supply pipe 2c and the water supply heat transfer pipes 2e and 2f. The hot water that has passed through the hot water supply pipe 2 d passes through the heat exchange flow rate adjustment valve 11 and the tank flow rate adjustment valve 12 and is guided to the auxiliary tank 9. This hot water storage circuit is also used when reheating hot water in the auxiliary tank 9, in other words, pursuing hot water in the auxiliary tank 9.
[0031]
In addition, since the tank circulation pump 10 operates during the hot water storage operation, the hot water that has passed through the heat AC amount adjusting valve 11 tends to enter the bath heat exchanger through the water opening / closing valve 21. A memorial check valve 55 prevents this. If the follow-up check valve 55 is not provided, the water on / off valve 21 must be completely sealed. However, this is difficult to achieve with current commercial products. Therefore, a memorial check valve 55 is provided. This valve 55 causes a short circuit between the bath heat exchanger 20 and the water / refrigerant heat exchanger 2 to prevent heat loss.
[0032]
The bath hot water supply circuit for supplying hot water to the bathtub is basically the same as the heat pump hot water supply circuit, and hot water is distributed to the branch pipe 2j branched from the hot water supply pipe 2d instead of hot water from the hot metal fitting 13. By opening the bath pouring valve 14 connected to the branch pipe 2j, hot water is injected into the bathtub 18 that passes through the bath sensor fitting 15 and is connected to the bath outlet connector 16. Of course, when hot water is filled in the bathtub 18, the auxiliary tank hot water supply from the auxiliary tank 9 to the bathtub 18 within the range where the amount of hot water in the auxiliary tank 9 does not fall below the minimum required amount together with the direct hot water supply from the water-refrigerant heat exchanger 2. To do.
[0033]
When the bath is filled with water, when the temperature of the refrigerant side heat transfer tubes 2a, 2b does not rise sufficiently, such as when the refrigeration cycle starts up or when the ambient temperature is low, the temperature of the water supply side heat transfer tubes 2e, 2f reaches the set value. There are times when I don't. At this time, along with the direct hot water supply by the bath hot water filling circuit, the auxiliary tank hot water is supplied from the auxiliary tank 9 to the bathtub 18 within a range where the amount of hot water in the auxiliary tank 9 does not become the minimum required amount or less.
[0034]
This is determined by the mixing temperature adjusting thermistor 53. That is, based on the detection result of the mixed temperature adjusting thermistor 53, the operation control means 50 gives an instruction to the thermal AC amount adjusting valve 11 and the tank flow rate adjusting valve 12, and for example, the set temperature is 43 ° C. When the temperature of the hot water passing through 11 is 35 ° C., the thermal AC regulating valve 11 is throttled and the tank flow rate regulating valve 12 is opened, for example, a large amount of hot water of 65 ° C. in the auxiliary tank 9 is taken out to the bathtub 18 as hot water of 43 ° C. Hot water is to be supplied.
[0035]
The bath remedy circuit that reheats the hot water in the bathtub 18 is a water conduit between the bathtub 18 and the water-water heat exchanger 20. The water drawn from the bathtub 18 through the hot-water hot-water connection fitting (hot-water hot-water connection fitting) 17 by the bath circulation pump 19 is sent to the bath heat transfer pipe 20b and heated by heat exchange, and passes through the bath sensor metal fitting 15. After the temperature of the hot water is measured, the hot water is supplied to the bathtub 18 through the bath hot water connector (outlet hot water connector) 16.
[0036]
Next, control of the heat pump water heater in this embodiment will be described. The operation control means 50 of the heat pump water heater performs the operation / stop of the heat pump refrigerant circuit 30 and the rotation speed control of the compressors 1a, 2b according to the operation settings of the kitchen remote controller 51 and the bath remote controller 52, and the tank circulation pump 10, bath By controlling the operation / stop of the circulation pump 19 and the bypass valve 8, the heat exchange flow rate adjustment valve 11, the tank flow rate adjustment valve 12, the hot water solenoid valve 14, and the water on / off valve 21, hot water storage operation, hot water supply operation, Driving and memorial operation.
[0037]
The operation control means 50 is preferably controlled to operate at a high rotational speed faster than the normal hot water supply operation speed in order to shorten the heating start-up time immediately after the heat pump circuit starts operation. In addition, after use of hot water supply at the hot water outlet terminal, the hot water storage operation function is provided every time the operation is stopped after the tank hot water storage operation is performed.
[0038]
Next, other control-related equipment provided in the heat pump water heater in the present embodiment will be described. Hot water supplied to the bathtub 18 is detected by the bath sensor fitting 15, the temperature of water stored in the auxiliary tank 9 is detected by the temperature sensor (A, B, C), or hot water is discharged from the mixed temperature adjusting thermistor 53. A temperature sensor that detects the temperature of water heated by the water-refrigerant heat exchanger 2 and other parts as well as a pressure sensor that detects the discharge pressure of the compressors 1a and 2b, A water level sensor or the like (not shown) for detecting the water level in the bathtub 17 is provided, and each detection signal is input to the operation control means 50. The operation control means 50 controls each device based on these signals.
[0039]
The water on-off valve 21 is connected to the branch pipe 2g branched from the hot water supply circuit, and is provided at a position between the water-refrigerant heat exchanger 2 and the bath heat exchanger 20. The water circuit to the bath heat exchanger 20 is closed except during bathing to prevent heat leakage from the water-refrigerant heat exchanger 2 to the bath heat exchanger 20. For example, if this water on-off valve 21 is not provided and the hot water supply piping 2d of the hot water supply circuit and the bath heat exchanger 20 that is a water-water heat exchanger are continuous through the water in the pipe, Even if water does not flow into the branch pipe 2g, it is thermally continuous, so heat leakage proceeds from the bath heat exchanger 20. Similarly, also in the branch pipes 2h, 2i, and 2j branched from the hot water supply pipe 2d, a pipe configuration in which the tank flow rate control valve 12, the bypass valve 8 and the bath pouring valve 14 connected at the ends of the branch pipes are opened and closed as necessary. As a result, heat leakage during hot water supply is extremely reduced. In addition, it is difficult for the commercially available water on-off valve 21 to completely close the water circuit. In this embodiment, a memorial check valve 55 is provided to prevent this.
[0040]
Moreover, the bath check valve 22 and the water supply check valve 23 flow water only in one direction, respectively, to prevent backflow. The bath pouring valve 14 is also required to have the same function. That is, the water up to the branch pipe 2j is water or warm water, but the water in the bathtub 18 is at the tip of the bath pouring valve 14, and the water in the bathtub 18 is mixed upstream of the branch pipe 2j. For there should not be anything to do.
[0041]
The relief valve 24 operates when the hot water pressure in the auxiliary tank exceeds a predetermined level, and functions to protect the device against pressure.
[0042]
An embodiment of the water-refrigerant heat exchanger 2 will be described with reference to FIG. The water-refrigerant heat exchanger 2 has two refrigerant heat transfer tubes 2a, 2b and two water supply heat transfer tubes 2e, 2f. The refrigerant heat transfer tubes 2a, 2b and the water supply electric heat tubes 2e, 2f are alternately arranged. The structure is rolled up in a cylindrical shape by contact.
[0043]
The feed water heat transfer pipes 2e and 2f are located in the water-refrigerant heat exchanger 2 and heated by the water feed pipe 2c through which water taken in through the water feed fitting 6 or water from the auxiliary tank 9 passes and the water-refrigerant heat exchanger 2 are heated. It is a pipe line divided into two in parallel with the outlet pipe 2d through which the water is passed. Compared to the case of one, the water flow area of the feed water heat transfer tubes 2e, 2f and the contact area with the refrigerant heat transfer tubes 2a, 2b are doubled, so that the individual length can be halved, The internal resistance during water flow can be reduced to ¼. Accordingly, the internal pressure loss of the water-refrigerant heat exchanger 2 during water flow is also reduced to ¼ compared to the case of one, and the overall height can be lowered, making manufacture and storage easy.
[0044]
In particular, when instantaneous hot water supply such as instantaneous hot water supply using gas is performed using a heat pump, water circulation is attempted by the water pressure of the water supply source. However, the internal pressure loss of the water-refrigerant heat exchanger 2 becomes a resistance during direct water flow and becomes negative to the tapping pressure. For example, when the water supply pressure is 200 kPa, if there is a pressure loss of 100 kPa in the conventional water-refrigerant heat exchanger, the hot water pressure becomes 100 kPa, and there is a risk that the water pressure will drop and the amount of hot water will be insufficient. However, in the case of the water-refrigerant heat exchanger 2 in the present embodiment, the pressure loss is ¼ 25 kPa, so that the tapping pressure is 175 kPa, and a sufficient water pressure and tapping amount can be maintained. In the heat pump water heater that heats hot water directly with a heat pump and supplies hot water with the function of chasing the water in the bathtub, the structure of the water-refrigerant heat exchanger 2 in this embodiment performs heat exchange between water and the refrigerant. The heat exchange efficiency of the water-refrigerant heat exchanger is further increased by separating the bath heat exchanger from the water-refrigerant heat exchanger.
[0045]
Next, an example of the heat exchanger 20 for bath remedy will be described with reference to FIG. The bath heat exchanger 20 has a double tube structure, and a space 20c partitioned by a bath water heat transfer tube 20b is provided inside a hot water heat transfer tube 20a using a copper tube. Warm water heated by the water-refrigerant heat exchanger 2 flows through the space 20c through hot water pipes 20d connected to both ends of the hot water heat transfer pipe 20a. The bath water heat transfer tube 20b through which hot water in the bathtub flows is connected to a bath water pipe 20e led out from both end portions 20f of the hot water heat transfer tube 20a. The hot water heat transfer pipe 20a is a copper straight pipe that is generally used, and squeezes both ends 20f of the hot water heat transfer pipe 20a so as to be joined and sealed to the outside of the bath water pipe 2e. The bath water heat transfer tube 20b has a concave / convex shape, a star shape, a multi-leaf tube or the like in order to increase the contact area with the hot water. The hot water pipe 20d opens to both ends of the hot water heat transfer pipe 20a and is electrically connected to the space 20c through which the hot water flows.
[0046]
The bath heat exchanger 20 has a double pipe structure as described above, so that the bath water heat transfer pipe 20b through which water in the bathtub 18 that is a heated body flows is in the circulation space of hot water that is a heated body. Is provided. Therefore, the bath water heat exchanger 20 has a bath water heat transfer tube 20b that transfers heat on the entire outer periphery thereof, and can be a compact water / water heat exchanger with good heat transfer.
[0047]
In the conventional heat exchanger for bath remedy, heat is exchanged between the refrigerant heat transfer tube and the bath water heat transfer tube.If the inner tube is damaged, the high pressure refrigerant enters the water circuit and the There is a risk of affecting the drinking water system that is the drinking water inside, and a double pipe structure in which one pipe penetrates the other inside cannot be adopted. As shown in FIG. It had to be an independent piping structure.
[0048]
That is, in the present invention, the double bath structure is adopted by separating the heat exchanger 20 for bath remedy from the water-refrigerant heat exchanger 2 and performing water-water heat exchange between the heated circulating water and the bath circulating water. Is now possible.
[0049]
In addition, the bath memory heat exchanger 20 considers the following points. That is, the circulating water of bath water may contain impurities. If this bath water flows through the space 20C side, impurities are trapped by irregularities on the tube surface, which may cause clogging. Therefore, in this embodiment, the hot water having passed through the water-refrigerant heat exchanger 2 is allowed to flow through the space 2C.
[0050]
With the configuration described above, the heat pump water heater in the present embodiment starts the heat pump operation simultaneously with the start of use of the hot water supply, and can directly supply the hot water boiled in the water-refrigerant heat exchanger 2 to the hot water outlet terminal. 18 hot water is chased by a heat exchanger 20 for baths having a double-pipe structure to obtain an energy saving and warming prevention effect.
[0051]
Next, the operation of the heat pump water heater will be described based on the flowcharts of FIGS. 4 to 7 with reference to the heat pump circuit 30 and the hot water circuit 40 of FIG.
[0052]
FIG. 4 is an example of a flowchart showing the operation during installation. The heat pump water heater is transported from the manufacturing site and installed at the installation location desired by the user (step 60), the water supply fitting 6 is connected to a water supply source such as water supply, and the main plug of the water supply source is opened (step 61). Then, water supply is started from the water supply source (step 62), and the water is decompressed and adjusted to a constant pressure by the pressure reducing valve 7, and then flows into the hot water storage tank 9, the water-refrigerant heat exchanger 2 and each water pipe and is full. Water supply is continued until it becomes (step 63).
[0053]
In addition, each apparatus at the time of installation of a heat pump water heater is set to the following initial states. The bypass valve 8 is open on the auxiliary tank 9 side and the branch pipe 2i side, which is the side of the hot water connector 13 is closed. The heat exchange flow rate adjustment valve 11, the tank flow rate adjustment valve 12, and the water on / off valve 21 are all open. The valve 14 is closed.
[0054]
Next, when full water is confirmed in step 63, it is determined that the water supply is completed, and the power switch is turned on (step 64). Then, the operation of the heat pump refrigerant circuit 30 and the hot water supply circuit 40 is started under the control of the operation control means 50, and the tank hot water storage operation is performed (step 65). In this tank hot water storage operation, the operation of the compressors 1a and 1b is started, and the gaseous refrigerant in the compressors 1a and 1b is compressed and heated to be a high-temperature and high-pressure refrigerant and sent to the water-refrigerant heat exchanger 2.
[0055]
As a result, in the water-refrigerant heat exchanger 2, the high-temperature refrigerant flowing in the refrigerant heat transfer tubes 2a and 2b and the water flowing in the feed water heat transfer tubes 2e and 2f exchange heat, the refrigerant dissipates heat, and the water is heated. . The radiated refrigerant is decompressed by the decompression devices 3a and 3b, and further expanded and evaporated by the evaporators 4a and 4b to become a gaseous state and return to the compressors 1a and 1b again. By continuing this heat pump operation, water passing through the water-refrigerant heat exchanger 2 is heated.
[0056]
In the tank hot water storage operation, the operation of the tank circulation pump 10 is started in the hot water storage circuit together with the heat pump operation, and the water drawn from the water inlet at the lower part of the auxiliary tank 9 is supplied to the tank circulation pump 10 and the water-refrigerant heat exchanger 2. Then, it circulates to the auxiliary tank 9 through the heat exchange flow rate adjustment valve 11 and the tank flow rate adjustment valve 12.
[0057]
As a result, the hot water heated by the water-refrigerant heat exchanger 2 is stored from the upper part of the auxiliary tank 9, and when the entire auxiliary tank 9 reaches the boiling state, it is determined that the hot water storage is completed (step 66), and the operation is started. Stop (step 67).
[0058]
In addition, the tank full determination is performed by detecting a full water state using, for example, a water level sensor or a pressure sensor, and the hot water storage completion determination is performed on the auxiliary tank 9 using a thermistor (temperature sensors (A, B, C)). The water temperature of each lower part is detected and determined.
[0059]
FIG. 5 is an example of a flowchart showing the operation when hot water is used.
[0060]
When the faucet is opened at the tap terminal and hot water is used (step 70), the operation control means 50 activates the compressors 1a and 1b to start the operation of the heat pump circuit 30, and the water supply fitting 6, the pressure reducing valve 7, and the bypass. An instantaneous hot water supply operation (step 71) is performed by the hot water supply circuit of the valve 8, the water supply check valve 23, the water-refrigerant heat exchanger 2, the heat exchange flow rate adjustment valve 11, and the hot water connector 13. At the same time, the tank hot water supply operation is performed by the hot water supply circuit of the water supply fitting 6, the pressure reducing valve 7, the bypass valve 8, the hot water storage tank 9, the tank flow rate adjusting valve 12, and the hot water connector 13 (step 77).
[0061]
Here, the heat pump refrigerant circuit 30 sends the high-temperature refrigerant compressed by the compressors 1a and 1b to the water-refrigerant heat exchanger 2, heats the water flowing in from the water supply pipe 2c, and flows out to the hot water supply pipe 2d. At the start of operation, since the refrigerant sent to the water-refrigerant heat exchanger 2 is sufficiently hot and high in pressure, the temperature is low, and the water-refrigerant heat exchanger 2 as a whole is cooled, so that the heating ability to heat water Is not enough. As the time elapses, the refrigerant becomes high temperature and pressure, and the heat generated by the condensed refrigerant is increased accordingly, and the ability to heat water increases.
[0062]
However, it usually takes about 5 to 6 minutes for the heating capacity of the heat pump operation to reach a high temperature stable state. Therefore, the operation control means 50 controls the operation by setting the rotation speed of the compressor at a higher speed than usual until the high temperature stable state is reached immediately after the start of operation, and the water heat transfer pipe described above is placed in the water-refrigerant heat exchanger 2. In this embodiment, the rise time can be reduced to about 1 to 2 minutes due to the synergistic effect of providing a plurality of paths in parallel. Further, the auxiliary tank for storing hot water required until the heat pump circuit is stabilized can be sufficiently miniaturized, and an instantaneous hot water supply system using a heat pump can be realized.
[0063]
Then, after performing a tank hot water supply operation for supplying hot water from the auxiliary tank for a predetermined time immediately after the start of operation (about 1 to 2 minutes), the operation control means 50 operates to stop the tank hot water supply operation, and instantaneous hot water supply Only operation is switched (steps 72, 78, 79). The determination of the tank hot water supply in step 78 may be made based on the temperature of the hot water actually flowing through the hot water supply pipe 2d in addition to measuring the operation time of the heat pump circuit.
[0064]
In this way, hot water is transiently supplied from the auxiliary tank 9 only at the start of operation, and then hot water heated by the water-refrigerant heat exchanger 2 is directly supplied, so that the heating delay at the start of operation can be eliminated. The capacity of the auxiliary tank 9 can be significantly reduced compared to the conventional case. It is to be noted that the capacity of the auxiliary tank 9 can be shortened by increasing the heating capacity of the water-refrigerant heat exchanger 2 to a stable state as quickly as possible and shortening the time of the transient tank hot water operation using the hot water of the auxiliary tank 9. Will lead to a further reduction in the size.
[0065]
For this purpose, it is desirable to increase the capacity of the heat pump refrigerant circuit 30, particularly the compressor output, to about 15 kW, which is about three times higher than the generally used 5 kW, but it is only necessary to develop a new compressor. However, each part of the heat pump refrigerant circuit 30 needs to be newly studied, which is extremely difficult. Therefore, in one embodiment of the present invention, as described above, a two-cycle heat pump system using two compressors is used, and the reliability of the conventional technology and the results are ensured.
[0066]
The operation control means 50 stops the tank hot water supply operation when the amount of remaining hot water in the auxiliary tank 9 becomes a predetermined value or less, and makes only the instantaneous hot water supply operation (steps 78 and 79).
[0067]
Next, when the hot water supply is finished and the faucet of the hot water supply terminal is closed (step 80), if the tank hot water supply operation and the heat pump hot water supply operation are performed immediately after the hot water is used, both the heat pump hot water supply operation and the tank hot water supply operation are performed. To stop. If the tank hot water supply operation is stopped and only the heat pump hot water supply operation is performed, the instantaneous hot water supply operation is stopped. (Steps 73 and 79)
Further, after stopping both the tank hot water supply operation and the heat pump hot water supply operation, the operation control means 50 always starts the tank hot water storage operation (step 74), and detects the completion of the hot water storage using a temperature sensor (A, B, C), thermistor, etc. After completion of hot water storage is determined (step 75), the operation is terminated (step 76). .
[0068]
However, the detection of the tank hot water storage state by the thermistor is always performed, and the hot water temperature and the amount of hot water remain in the auxiliary tank almost equal to the hot water storage completion state even after the heat pump hot water operation is stopped because it is used for an extremely short time (described later). In the case of face washing and hand washing), it is determined that the hot water storage is completed, and the tank hot water storage operation is not performed.
[0069]
According to the above, the operation control means 50 has a hot water storage operation function every time the hot water storage operation is performed until the hot water storage is completed after the intended operation is completed in every operation. The hot water of a predetermined temperature is full, so that the fear of a drop in hot water at the start of operation and running out of hot water during use can be solved.
[0070]
The operation of the heat pump water heater at the time of face washing, hand washing, etc., in which, for example, 1.5 L or less of hot water is consumed from a faucet (not shown) connected to the end of the hot water connector (hot water connector) 13 Is as shown by the thick solid line in FIG.
[0071]
That is, when the amount of hot water supply is small, the heat pump refrigerant circuit 30 is basically not operated by using hot water in the auxiliary tank 9. This is because even when a small amount is consumed, power consumption increases when the heat pump refrigerant circuit 30 is operated.
[0072]
Regarding the operation, when the faucet (not shown) connected to the tip of the hot water connector 13 is first opened, the hot water in the auxiliary tank 9 is subjected to the water pressure of the water supply, so that it passes through the tank flow rate adjustment valve 12. Hot water is poured out. At this time, the amount of water consumed in the auxiliary tank 9 is replenished although it is slightly smaller than that of the water supply source. Of course, the water supplied from this water supply source is first adjusted to a water pressure of 160 kpa by the pressure reducing check valve 7 and reaches the water supply amount sensor 8. Here, a sensor having a structure to be described later confirms, for example, whether or not a flow rate of 1.5 L or less per minute is consumed based on the amount of water supplied from the water supply source. If the amount of water of 1.5 L / min or more passes here, the operation control means 50 that has detected the signal from the feed water amount sensor 8 instructs the operation of the heat pump refrigerant circuit 30. In this case, the operation of the heat pump refrigerant circuit 30 is not performed because the amount of water that has passed through the feed water amount sensor 8 is 1.5 L / min or less, but this amount of water is a numerical value that is appropriately determined.
[0073]
Accordingly, the water that has turned to the water refrigerant heat exchanger 2 side as shown by the thick dotted line in FIG. 6 is simply a water pipe and passes through the water refrigerant heat exchanger 2 because the water refrigerant heat exchanger 2 is stopped. In the state (tap water), it passes through the heat exchange amount adjusting valve 11 and is discharged to the hot water connector 13 side along with hot water coming from the auxiliary tank 9 side.
[0074]
At this time, the thermal AC amount adjusting valve 11 and the tank flow rate adjusting valve 12 adjust the opening degree of the valve to adjust the amount of water or hot water coming from each. In order to execute this adjustment control, the detection result of the mixed temperature adjustment thermistor 53 is required. That is, based on the detection result of the mixed temperature adjustment thermistor 53, control is performed to throttle the heat AC amount adjustment valve 11 through which water flows when hot water having a high set temperature is discharged, and to throttle the tank flow rate adjustment valve 12 when hot water having a low set temperature is discharged. To do.
[0075]
When a large amount of water from the water supply source enters the auxiliary tank 9 and the temperature of the water at the bottom of the auxiliary tank 9 is detected to be, for example, 50 ° C. or less from the detection result of the temperature sensor A, the operation control means 50 In consideration of other operating conditions, in order to warm 50 ° C. hot water in the auxiliary tank 9, the tank circulation pump 10 is operated and the tank hot water storage operation by the water / refrigerant heat exchanger 2 is executed. Control to keep the temperature at the set temperature.
[0076]
7 and 8 show a specific structure of the water supply amount sensor in the present embodiment. When water flows in the direction of arrow H (auxiliary tank 9 side), the feed water amount sensor 8 detects the amount of water between the magnet 8b that the propeller 8a rotates and the hall element 8c (attached to the main body side). A pulse signal corresponding to the number of revolutions, that is, a configuration in which a signal group of one pulse is sent to the operation control means 50 by one rotation of the propeller 8a, and the operation control means 50 detects the amount of water per unit time. A bypass valve 54 is connected in the direction of arrow I. The bypass valve 54 is a proportional valve capable of distributing water to the branch pipe 2i in order to adjust the temperature of the hot water discharged from the feed water amount sensor 8. The bypass valve 54 is opened when the temperature of the hot water discharged through the hot-water supply connector 13 is high and hot water from the water supply source is added to lower the temperature of the hot water. The instruction to open the bypass valve 54 is executed by the operation control means 50 according to a detection result of a thermistor or the like provided near the hot water connector 13 (not shown).
[0077]
A temperature sensor attached to the auxiliary tank 9 in FIG. B. For example, the temperature sensor A is mounted at a position 200 mm from the bottom of the auxiliary tank, the temperature sensor B is mounted at the center of the auxiliary tank, and the temperature sensor C is mounted at a position 200 mm from the top of the auxiliary tank. When the temperature in the auxiliary tank 9 falls below the set value, the tank circulating pump 10 is operated and the water / refrigerant heat exchanger 2 is operated, and the tank hot water storage operation is started to warm up to the set value.
[0078]
Further, the flow rate of water flowing per unit time may be detected by the feed water amount sensor 8, and the compressors 1a and 1b in the heat pump refrigerant circuit may be operated. However, the accumulated flow rate per unit time is detected from the feed water amount sensor 8. It goes without saying that the operation control means 50 may be controlled so as to operate the compressors 1a and 1b, calculated from the results. Further, the water supply amount sensor 8 may be added with a thermistor or the like to measure the water temperature from the water supply source and vary the rotation speed of the compressor. That is, when the temperature of the supplied water is low, the control may be corrected so as to increase the rotational speed of the compressor.
[0079]
【The invention's effect】
As described above, according to the present invention, a heat pump water heater that can contribute to energy saving and prevention of global warming can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an embodiment of a schematic configuration of a heat pump refrigerant circuit, a hot water storage circuit, and components in a heat pump water heater of the present invention.
FIG. 2 is a structural diagram of a water-refrigerant heat exchanger showing an embodiment of the present invention.
FIG. 3 is a structural diagram of a heat exchanger for baths showing an embodiment of the present invention.
FIG. 4 is a flowchart showing operations during installation and boiling of the auxiliary tank in the heat pump water heater of one embodiment of the present invention.
FIG. 5 is a flowchart showing an operation when hot water is used in the heat pump water heater of one embodiment of the present invention.
FIG. 6 is a diagram showing a flow from water supply to tapping when the amount of tapping is small in the schematic diagram of FIG.
FIG. 7 is a partial cross-sectional front view of a water supply amount sensor used in an example of the present invention.
8 is a partial cross-sectional side view of FIG. 7;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1a, 1b ... Compressor 2 ... Water-refrigerant heat exchanger 2a, 2b ... Refrigerant side heat transfer pipe 2c ... Water supply pipe 2d ... Hot water supply pipe 2e, 2f ... Water supply side heat transfer pipe 3a, 3b ... Pressure-reducing device 4a, 4b ... Evaporator 5a , 5b ... Solenoid valve for defrosting 6 ... Feed water connector 7 ... Pressure reducing valve 8 ... Feed water sensor 9 ... Auxiliary tank 10 ... Tank circulation pump 11 ... Heat AC amount regulating valve 12 ... Tank flow rate regulating valve 13 ... Outlet connector ( 14 ... Bath pouring valve 15 ... Bath sensor fitting 16 ... Bath hot spring connection tool (hot spring connection fitting) 17 ... Bathing hot water connection tool (hot spring connection fitting) 18 ... Bathtub 19 ... Bath circulation pump 20 ... Bath heat exchange 20a ... Hot water electric heat pipe 20b ... Bath water heat transfer pipe 21 ... Water on / off valve 22 ... Bath check valve 22 ... Water supply check valve 24 ... Relief valve 30 ... Heat pump refrigerant circuit 40 ... Hot water supply circuit 50 ... Operation control means 51 ... Kitchen Mocon 52 ... bath remote controller 53 ... mixing temperature adjusting thermistor 54 ... bypass valve 55 ... add 焚逆 stop valve A. B. C: Temperature sensor.

Claims (5)

圧縮機と、その圧縮機により圧縮された冷媒と給水された水との熱交換を行う水−冷媒熱交換器と、熱交換された冷媒を減圧する減圧装置と、減圧された冷媒と空気との熱交換を行う蒸発器とをそれぞれ冷媒管路で接続したヒートポンプ冷媒回路と、
前記給水された給水水量を検出する水量検出手段と、
前記給水された水を前記水−冷媒熱交換器によって加熱して温水にし、この温水を、出湯接続具を介して蛇口に直接給湯することができる瞬間給湯用の給湯回路と、
前記直接給湯を補助するため、温水を蓄え補助タンクと、
を備えたヒートポンプ給湯機であって
前記出湯接続具から出るときに、前記給水水量が所定量よりも少ないときには前記補助タンク内の温水を出湯させるヒートポンプ給湯機。
A compressor, a water-refrigerant heat exchanger that exchanges heat between the refrigerant compressed by the compressor and the supplied water, a decompression device that decompresses the heat-exchanged refrigerant, and the decompressed refrigerant and air. A heat pump refrigerant circuit in which an evaporator for performing heat exchange of each is connected by a refrigerant pipe,
Water amount detecting means for detecting the amount of supplied water;
The supplied water before Kisui - the hot water heated by the refrigerant heat exchanger, the hot water, and hot water supply circuit for instant water heater that can be directly hot water to the faucet through a tapping fitting,
In order to assist the direct hot water supply, an auxiliary tank storing hot water,
A heat pump water heater equipped with
Wherein the tapping fitting or RaIzuru water to Rutoki, heat pump water heater for tapping hot water in the auxiliary tank when the water supply amount of water is less than a predetermined amount.
圧縮機と、その圧縮機により圧縮された冷媒と給水された水との熱交換を行う水−冷媒熱交換器と、熱交換された冷媒を減圧する減圧装置と、減圧された冷媒と空気との熱交換を行う蒸発器とをそれぞれ冷媒管路で接続したヒートポンプ冷媒回路と、
前記給水された給水水量を検出する水量検出手段と、
前記給水された水を前記水−冷媒熱交換器によって加熱して温水にし、この温水を、出湯接続具を介して蛇口に直接給湯することができる瞬間給湯用の給湯回路と、
前記直接給湯を補助するため、温水を蓄え補助タンクと、
を備えたヒートポンプ給湯機であって
前記出湯接続具から出るときに、前記給水水量が所定量を超えたときに前記ヒートポンプ冷媒回路を運転するヒートポンプ給湯機。
A compressor, a water-refrigerant heat exchanger that exchanges heat between the refrigerant compressed by the compressor and the supplied water, a decompression device that decompresses the heat-exchanged refrigerant, and the decompressed refrigerant and air. A heat pump refrigerant circuit in which an evaporator for performing heat exchange of each is connected by a refrigerant pipe,
Water amount detecting means for detecting the amount of supplied water;
The supplied water before Kisui - the hot water heated by the refrigerant heat exchanger, the hot water, and hot water supply circuit for instant water heater that can be directly hot water to the faucet through a tapping fitting,
In order to assist the direct hot water supply, an auxiliary tank storing hot water,
A heat pump water heater equipped with
Wherein the tapping fitting or RaIzuru water to Rutoki, heat pump water heater for operating the heat pump refrigerant circuit when the water supply amount of water exceeds a predetermined amount.
圧縮機と、その圧縮機により圧縮された冷媒と給水接続具を介して給水された水との熱交換を行う水−冷媒熱交換器と、熱交換された冷媒を減圧する減圧装置と、減圧された冷媒と空気との熱交換を行う蒸発器とをそれぞれ冷媒管路で接続したヒートポンプ冷媒回路と、
前記給水された給水水量を検出する水量検出手段と、
前記給水された水を前記水−冷媒熱交換器によって加熱して温水にし、この温水を、出湯接続具を介して蛇口に直接給湯することができる瞬間給湯用の給湯回路と、
前記直接給湯を補助するため、温水を蓄え補助タンクと、
を備えたヒートポンプ給湯機であって
前記出湯接続具から出るときに、前記給水水量が所定量よりも少ないときには前記補助タンク内の温水を出湯させ、前記給水水量が所定量を超えたときに前記ヒートポンプ冷媒回路を運転するヒートポンプ給湯機。
A compressor, a water-refrigerant heat exchanger for exchanging heat between the refrigerant compressed by the compressor and water supplied via a water supply connector, a decompressor for decompressing the heat-exchanged refrigerant, and a decompressor A heat pump refrigerant circuit in which an evaporator that performs heat exchange between the generated refrigerant and air is connected by a refrigerant pipe,
Water amount detecting means for detecting the amount of supplied water;
The supplied water before Kisui - the hot water heated by the refrigerant heat exchanger, the hot water, and hot water supply circuit for instant water heater that can be directly hot water to the faucet through a tapping fitting,
In order to assist the direct hot water supply, an auxiliary tank storing hot water,
A heat pump water heater equipped with
The tapping fitting or RaIzuru water to Rutoki, wherein when the water supply amount of water is less than the predetermined amount is tapped hot water in the auxiliary tank, operating the heat pump refrigerant circuit when the water supply amount of water exceeds a predetermined amount Heat pump water heater.
前記水量検出手段からの出力を受け、前記給水水量に基づいてヒートポンプ冷媒回路の運転開始及び運転停止を制御する運転制御手段を備えた請求項2または3記載のヒートポンプ給湯機。The amount of water receiving the output from the detection means, the water supply amount of water in the heat pump water heater according to claim 2 or 3, wherein with the operation control means for controlling the operation start and operation stop of the heat pump refrigerant circuit based. 前記水量検出手段は、流れる水で回るプロペラ側に磁石を取付け、本体側に設けられたホール素子間でプロペラの回転数をパルス信号として検出することを特徴とする請求項1乃至4の何れか1項に記載のヒートポンプ給湯機。5. The water amount detection unit according to claim 1, wherein a magnet is attached to a propeller side that rotates with flowing water, and the rotation speed of the propeller is detected as a pulse signal between hall elements provided on the main body side . The heat pump water heater according to item 1 .
JP2003178862A 2003-06-24 2003-06-24 Heat pump water heater Expired - Fee Related JP3909312B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003178862A JP3909312B2 (en) 2003-06-24 2003-06-24 Heat pump water heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003178862A JP3909312B2 (en) 2003-06-24 2003-06-24 Heat pump water heater

Publications (2)

Publication Number Publication Date
JP2005016758A JP2005016758A (en) 2005-01-20
JP3909312B2 true JP3909312B2 (en) 2007-04-25

Family

ID=34180321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003178862A Expired - Fee Related JP3909312B2 (en) 2003-06-24 2003-06-24 Heat pump water heater

Country Status (1)

Country Link
JP (1) JP3909312B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101392949A (en) * 2008-10-18 2009-03-25 侴乔力 Boiling water machine/water heater

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007205658A (en) * 2006-02-02 2007-08-16 Denso Corp Heat pump type water heater, and control device for heat pump-type water heater
JP2009270755A (en) * 2008-05-07 2009-11-19 Sumitomo Light Metal Ind Ltd Heat-transfer pipe for heat exchanger and heat exchanger using the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101392949A (en) * 2008-10-18 2009-03-25 侴乔力 Boiling water machine/water heater

Also Published As

Publication number Publication date
JP2005016758A (en) 2005-01-20

Similar Documents

Publication Publication Date Title
US9010281B2 (en) Hot water supply system
JP5228605B2 (en) Water heater
JP2007263517A (en) Heat pump water heater
JP4839141B2 (en) Heat pump water heater
JP3909311B2 (en) Heat pump water heater
JP3887781B2 (en) Heat pump water heater
JP4875970B2 (en) Heat pump water heater
JP4448488B2 (en) Hot water storage water heater
KR100563179B1 (en) Heat pump hot water supply device
JP3909312B2 (en) Heat pump water heater
JP2009127938A (en) Heat pump water heater
JP2007322084A (en) Heat pump water heater
JP2005315480A (en) Heat pump type water heater
JP3896378B2 (en) Heat pump water heater
JP3890322B2 (en) Heat pump water heater
JP3909310B2 (en) Heat pump water heater
JP2005016759A (en) Heat pump type water heater
JP5164634B2 (en) Heat pump water heater
JP4740284B2 (en) Heat pump water heater
JP4515883B2 (en) Hot water storage water heater
JP4148909B2 (en) Heat pump water heater / heater
JP2006010284A (en) Heat pump water heater
JP2006266592A (en) Heat pump water heater
JP4045266B2 (en) Heat pump water heater
JP2006266593A (en) Heat pump water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050610

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050610

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060511

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060511

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061005

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061017

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100126

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees