JP3893938B2 - Hybrid vehicle drive structure with transmission - Google Patents

Hybrid vehicle drive structure with transmission Download PDF

Info

Publication number
JP3893938B2
JP3893938B2 JP2001323578A JP2001323578A JP3893938B2 JP 3893938 B2 JP3893938 B2 JP 3893938B2 JP 2001323578 A JP2001323578 A JP 2001323578A JP 2001323578 A JP2001323578 A JP 2001323578A JP 3893938 B2 JP3893938 B2 JP 3893938B2
Authority
JP
Japan
Prior art keywords
transmission
motor generator
vehicle
internal combustion
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001323578A
Other languages
Japanese (ja)
Other versions
JP2003127681A5 (en
JP2003127681A (en
Inventor
正清 小島
俊文 高岡
豊 多賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2001323578A priority Critical patent/JP3893938B2/en
Priority to US10/261,411 priority patent/US7223200B2/en
Priority to CA002548815A priority patent/CA2548815C/en
Priority to CA2704802A priority patent/CA2704802C/en
Priority to CA2632448A priority patent/CA2632448C/en
Priority to CA2704805A priority patent/CA2704805A1/en
Priority to CA2704804A priority patent/CA2704804C/en
Priority to CA002406817A priority patent/CA2406817C/en
Priority to DE60223850T priority patent/DE60223850T2/en
Priority to EP04028725A priority patent/EP1514716B1/en
Priority to ES02023460T priority patent/ES2269583T3/en
Priority to ES04028725T priority patent/ES2294422T3/en
Priority to EP04028726A priority patent/EP1520743B1/en
Priority to DE60227711T priority patent/DE60227711D1/en
Priority to ES04028726T priority patent/ES2308093T3/en
Priority to DE60214104T priority patent/DE60214104T2/en
Priority to EP02023460A priority patent/EP1304248B1/en
Priority to KR10-2002-0064574A priority patent/KR100501062B1/en
Priority to CNB021471347A priority patent/CN1286681C/en
Publication of JP2003127681A publication Critical patent/JP2003127681A/en
Publication of JP2003127681A5 publication Critical patent/JP2003127681A5/ja
Application granted granted Critical
Publication of JP3893938B2 publication Critical patent/JP3893938B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Arrangement Of Transmissions (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Retarders (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent a second motor generator MG2 from being large and to obtain required axle torque characteristics against speed while properly maintaining the fuel consumption of an internal combustion engine, in hybrid vehicle drive structure in which an output shaft of the internal combustion engine is connected to a first motor generator and a wheel drive shaft through a power distribution mechanism, and a second motor generator is connected to the wheel drive shaft. SOLUTION: Transmissions (100, 101, 102) are provided at least either at the middle of a wheel drive shaft or at the middle of the connection of the second motor generator to the wheel drive shaft.

Description

【0001】
【発明の属する技術分野】
本発明は、内燃機関と電動機の組合せにより車輪を駆動するハイブリッド車の駆動構造に係る。
【0002】
【従来の技術】
近年、ますます高まりつつある大気環境保全と燃料資源の節約の重要性の認識の下に、内燃機関と電動機の組合せにより車輪が駆動されるハイブリッド車が脚光を浴びてきている。多様な回転数と駆動トルクの組合せが求められる自動車の車輪を内燃機関と電動機により駆動する場合に、その駆動態様をどのようにするかについては、種々の態様が可能であろうが、自動車は元来専ら内燃機関のみによって駆動されてきたものであり、また自動車の分野に於けるハイブリッド車は、従来の内燃機関のみによる駆動の一部を状況が許す限り電動駆動にて置き換えることから出発しているので、ハイブリッド車といえども、内燃機関のみによる駆動が可能となっていることは当然と考えられている。特開平11−198669には、内燃機関のクランク軸に第一の電動発電機を直列に接続して内燃機関または電動機のいずれか一方または両方により駆動される動力軸を構成し、かかる動力軸と第二の電動発電機の出力軸とをそれぞれ遊星歯車機構のリングギヤとサンギヤとに接続して組み合わせ、遊星歯車機構のキャリアを出力軸として、これに変速機を接続してなるハイブリッド車駆動構造が示されている。かかるハイブリッド車駆動構造によれば、内燃機関のみを原動機として働かせても、変速機の変速機能を得て、従来の内燃機関車と同様に自動車に求められる多様な運行態様に対応できる。これは上記の如きハイブリッド車の由来を反映する一つの典型であると思われる。
【0003】
しかし、一方、自動車の原動機として内燃機関と電動機とを組み合わせる機会に、車輪に求められる回転数対駆動トルクと内燃機関より得られる回転数対駆動トルクの間の乖離に起因する内燃機関出力軸と車軸の間の回転数の差を電動機により差動的に吸収し、内燃機関出力軸と車軸の間に従来から必要とされていた変速機を無くすことが本件出願人と同一人により提案された。添付の図1は、そのようなハイブリッド車の駆動構造を示す概略図である。
【0004】
図1に於いて、1は内燃機関であり、図には示されていない車体に取り付けられている。2はその出力軸(クランク軸)である。3は遊星歯車装置であり、4はそのサンギヤ、5はリングギヤ、6はプラネタリピニオン、7はキャリアである。クランク軸2はキャリア7に連結されている。8は第一の電動発電機(MG1)であり、コイル9と回転子10と有し、回転子10はサンギヤ4と連結されている。コイル9は車体より支持されている。リングギヤ5にはプロペラ軸11の一端が連結されている。かくして、遊星歯車装置3は、内燃機関の出力軸2に現れる内燃機関の出力を第一の電動発電機3と車輪駆動軸をなすプロペラ軸11とに分配する動力分配機構を構成している。プロペラ軸11の途中には第二の電動発電機(MG2)12が連結されている。第二の電動発電機12はコイル13と回転子14と有し、コイル13は車体より支持されている。プロペラ軸11に対する回転子14の連結は任意の構造であってよいが、図示の例では、プロペラ軸11に設けられた歯車15に回転子14により支持されて回転する歯車16が噛み合う構造とされている。プロペラ軸11の他端はディファレンシャル装置17を介して一対の車軸18に連結されている。車軸18の各々には車輪19が取り付けられている。
【0005】
図示の駆動構造に於いて、クランク軸2の回転とキャリア7の回転とは同じであり、今この回転数をNcで表すものとする。また第一の電動発電機8の回転とサンギヤ4の回転とは同じであり、今この回転数をNsで表すものとする。一方、リングギヤ5の回転と第二の電動発電機12の回転と車輪19の回転とは互いに対応し、最終的には車速に対応するものであるが、それぞれの回転数は歯車15と16の間の歯数の比、ディファレンシャル装置17に於ける減速比、およびタイヤ径によって異なる。しかし、今ここでは便宜上これらの部分の回転数をリングギヤ5の回転数にて代表するものとし、それをNrとする。そうすると、内燃機関と二つの電動発電機とを遊星歯車装置にて図示の如く組み合わせたハイブリッド車駆動構造に於ける内燃機関と二つの電動発電機MG1、MG2の回転数Nc、Ns、Nrの間の関係は、遊星歯車装置の原理に基づき、図2に示す線図により表される。図にてρはリングギヤの歯数に対するサンギヤの歯数である(ρ<1)。Ncは機関回転数により定まり、Nrは車速により定まるので、Nsは機関回転数と車速の如何により
Ns=(1+1/ρ)Nc−(1/ρ)Nr
として定まる。
【0006】
一方、キャリアとサンギヤとリングギヤのトルクをTc、Ts、Trとすると、これらは
Ts:Tc:Tr=ρ/(1+ρ):1:1/(1+ρ)
の比にて互いに平衡し、従ってまた、これら3要素のいずれかがトルクを発生しあるいは吸収するときには、上記の平衡が成り立つまで相互間にトルクのやりとりが行なわれる。
【0007】
以上の如き駆動構造を備えたハイブリッド車に於いて、内燃機関、MG1、MG2の作動は、図には示されていない車輌運転制御装置により、運転者からの運転指令と車輌の運行状態とに基づいて制御される。即ち、車輌運転制御装置はマイクロコンピュータを備え、運転者からの運転指令と種々のセンサにより検出される車輌の運行状態とに基づいて目標車速および目標車輪駆動トルクを計算すると共に、蓄電装置の充電状態に基づいて蓄電装置に許される電流出力あるいは蓄電装置の充電のために必要な発電量を計算し、これらの計算結果に基づいて、内燃機関を休止を含む如何なる運転状態にて運転すべきか、またMG1およびMG2をいかなる電動状態あるいは発電状態にて運転すべきかを計算し、その計算結果に基づいて内燃機関、MG1、MG2の作動を制御する。
【0008】
【発明が解決しようとする課題】
以上の如く内燃機関の出力軸が動力分配機構を経て第一の電動発電機と車輪駆動軸とに連結され、該車輪駆動軸に第二の電動発電機が連結されたハイブリッド車駆動構造によれば、図2より理解される通り、内燃機関出力軸の回転数Ncと車速に対応する回転数Nrの各々の値およびその間の相対関係は、その変化を第一の電動発電機の回転数Nsにて吸収することにより大幅に変えることができるので、かかるハイブリッド車駆動構造に於いては、これまで変速機は不要とされていた。即ち、動力分配機構の調節次第で、NcとNrの間の関係を自由に変えることができ、また停車中(Nr=0)であっても機関運転(Nc>0)すること、逆に、前進中(Nr>0)であっても機関停止(Nc=0)すること、あるいは機関の運転または停止(Nc≧0)にかかわらず後進(Nr<0)することができる。
【0009】
しかし、MG2の回転数は車速の如何によって左右され、蓄電装置の充電度は車速とは一応無関係であるため、MG2が蓄電装置の充電のための発電機として作動するには大きな制約がある。そこで蓄電装置の充電は専らMG1に頼ることとなり、逆に車輪の電動駆動は専らMG2に頼ることとなる。そのため変速機を備えない上記の如きハイブリッド車駆動構造に於いて、低車速領域にても必要に応じて高い車輪駆動トルクを得ることができる車輌運転性能を確保しておくためには、畢竟MG2は大型化せざるを得ない。
【0010】
これを車速に対する車軸トルクの能力特性線図で示せば、図3の通りである。即ち、今、車輌の内燃機関を広い車速域に亙って高燃費にて運転し、しかも車輌の車速対車軸トルク性能として望まれる限界性能として線Aにて示す如き性能を車輌に持たせようとすれば、高燃費を得る内燃機関の車速対車軸トルク性能は領域Bの如くほぼ平らになるので、残りを専らMG2にて補わなければならず、その車速対車軸トルク性能は領域Cを賄うものでなければなない。そのためMG2は低回転速度にて高トルクを発生することができるよう、それ相当の大型のものとされなければならない。
【0011】
しかし、図3を吟味すれば、領域Cの深さは領域Bの深さに対比して些か深すぎるのではないかとの疑問がもたれる。これは、観点を変えれば、内燃機関と第一および第二の電動発電機なる三つの原動装置の大きさの相対的釣合い、特に内燃機関と第二の電動発電機の大きさの釣合いの問題である。本発明は、かかる疑問に端を発し、この点に関し上記の如きハイブリッド車輌駆動構造を更に改良することを課題としている。
【0012】
【課題を解決するための手段】
かかる課題を解決するものとして、本発明は、内燃機関の出力軸が動力分配機構を経て第一の電動発電機と車輪駆動軸とに連結され、該車輪駆動軸に第二の電動発電機が連結されたハイブリッド車駆動構造に於いて、前記車輪駆動軸への前記第二の電動発電機の連結の途中に変速機を設け、該変速機の入力軸が前記第二の電動発電機のみに連結されており、前記変速機は後進段を含んでおり、前記変速機の後進段による車輌後進駆動と前記動力分配機構の調節による車輌後進駆動との間の選択を行う手段を含んでいること、または前記車輪駆動軸は一端にて前記動力分配機構に連結されまた他端にてディファレンシャル装置に連結されており、前記車輪駆動軸への前記第二の電動発電機の連結の途中に変速機を設け、前記変速機は後進段を含んでおり、前記変速機の後進段による車輌後進駆動と前記動力分配機構の調節による車輌後進駆動との間の選択を行う手段を含んでいること、または前記車輪駆動軸への前記第二の電動発電機の連結の途中に後進段を含む変速機を設け、前記変速機の後進段による車輌後進駆動と前記動力分配機構の調節による車輌後進駆動との間の選択を行う手段を含んでいること、または前記車輪駆動軸の途中または該車輪駆動軸への前記第二の電動発電機の連結の途中の少なくとも一方に後進段を含む変速機を設け、前記変速機の後進段による車輌後進駆動と前記動力分配機構の調節による車輌後進駆動との間の選択を行う手段を含んでいることを特徴とするハイブリッド車駆動構造を提案するものである。
【0013】
尚、電動発電機なる語は、電動機および発電機の両機能を有する手段を指すが、本願発明は、内燃機関の出力軸が動力分配機構を経て第一の電動発電機と車輪駆動軸とに連結され、該車輪駆動軸に第二の電動発電機が連結されたハイブリッド車駆動構造の、短期的車輌駆動性能に関するものであり、換言すれば、車輌のハイブリッド駆動における内燃機関駆動と、電動駆動と、蓄電装置に対する自己充電作用の相互関係が関与する長期的車輌駆動性能に関するものではないので、本願発明の作用および効果に関する限り、第一および第二の電動発電機は、いずれも単なる電動機であってよいものである。確かに、実働する車輌駆動装置としては、既に記した通り、第二の電動発電機は専ら電動機として作動せざるを得ず(しかし発電機として作動することも可能)、従って長期的に作動可能な車輌駆動装置を構成するためには、第一の電動発電機は発電機能を有している必要があるが、この必要性は本願発明の技術的思想とは関係ないことである。従って、本発明の構成に於いて、電動発電機と記載された手段は、発電機能を有しない電動機をその均等物として含むものとする。
【0014】
上記の如きハイブリッド車駆動構造に於いて、前記変速機は前記車輪駆動軸の途中に前記第二の電動発電機の連結部より前記内燃機関の側に設けられてよい。
【0015】
あるいはまた、上記の如きハイブリッド車駆動構造に於いて、前記変速機は前記車輪駆動軸の途中に前記第二の電動発電機の連結部より前記内燃機関とは隔たる側に設けられてよい。
【0016】
更に、上記の如きハイブリッド車駆動構造に於いて、前記変速機は後進段を含んでいてよい。この場合、ハイブリッド車駆動構造は、更に、前記変速機の後進段による車輌後進駆動と前記動力分配機構の調節による車輌後進駆動との間の選択を行う手段を含んでいてよい。
【0017】
【発明の作用及び効果】
上記の如く内燃機関の出力軸が動力分配機構を経て第一の電動発電機と車輪駆動軸とに連結され、該車輪駆動軸に第二の電動発電機が連結されたハイブリッド車駆動構造に於いて、前記車輪駆動軸の途中または該車輪駆動軸への前記第二の電動発電機の連結の途中の少なくとも一方に変速機が設けられれば、低車速にて高車軸トルクが求められたとき、該変速機が前記車輪駆動軸の途中であって前記第二の電動発電機の連結部より内燃機関の側に設けられていれば、前記動力分配機構を調節して内燃機関の回転数を車速に対比して高め、該変速機の減速比を高めることにより、求められた高車軸トルクのより多くを内燃機関により賄い、前記第二の電動発電機に求めるトルクを減じてこの要求に応ずることができ、また該変速機が前記車輪駆動軸の途中であって前記第二の電動発電機の連結部より内燃機関とは隔たる側に設けられていれば、前記動力分配機構を調節して内燃機関の回転数を車速に対比して高め、該変速機の減速比を高めることにより、この高められた減速比にて車輪を内燃機関と前記第二の電動発電機との共働により駆動し、第二の電動発電機に求めるトルクを減じてこの要求に応ずることができ、また該変速機が前記第二の電動発電機の連結の途中に設けられれば、前記動力分配機構の調節の如何に拘らず前記第二の電動発電機より得られる車輪駆動トルクを該変速機の減速比を高めることにより増大し、前記第二の電動発電機を程々の大きさにしておいてもこの要求に応ずることができ、かくして内燃機関と第一および第二の電動発電機の三者の相対的大きさに好ましい釣合いを保ち、内燃機関を常に高燃費にて運転しつつ、図3の線Aにより示されている如き車速対車軸トルク性能を得ることができ、更に変速機が後進段を含み、変速機の後進段による車輌後進駆動と動力分配機構の調節による車輌後進駆動との間の選択を行う手段が設けられていれば、車輌後進駆動に要する駆動トルクの大きさに応じて適宜両者間の選択を行ってより適切な車輌運転を行うことができる。
【0018】
更に、上記の如きハイブリッド車駆動構造に於いて、変速機が後進段を含むよう構成されていれば、車輌の後進に際して、動力分配機構を調節しなくても、変速機を後進段に切り替えることにより容易に車輌の後進が可能となる。この場合、更に変速機の後進段による車輌後進駆動と動力分配機構の調節による車輌後進駆動との間の選択を行う手段が設けられていれば、特に坂道での登り後進や駆動輪が窪みに陥没したときのように高い車軸トルクによる車輌後進が必要なときには、変速機の後進段による車輌後進駆動を選択することにより十分な駆動トルクにてそれに対処し、通常の平地での車輌後進のように左程の車軸トルクが必要とされないときには、動力分配機構の調節による車輌後進駆動を選択することにより変速機切換え操作のない速やかな後進を達成することができる。
【0019】
更にまた、上記の変速機はそれ自身既に種々の態様にて公知のオーバドライブ段を最高速段とするものであってもよく、それによってハイブリッド車に於いても車輌高速運転に対し内燃機関の運転を従来のオーバドライブ付き内燃機関車に於けると同様に最適化することができる。
【0020】
【発明の実施の形態】
図4、図5、図6は、図1に示す如く内燃機関の出力軸が動力分配機構を経て第一の電動発電機と車輪駆動軸とに連結され、該車輪駆動軸に第二の電動発電機が連結されたハイブリッド車駆動構造に、本発明により変速機を組み込む三つの実施例を示す図1と同様の概略図である。図4、図5、図6に於いて、図1に示す部分に対応する部分は対応する符号により示されている。
【0021】
図4に示す第一の実施例に於いては、変速機100は車輪駆動軸の途中であって第二の電動発電機MG2の連結部より内燃機関の側に設けられており、図1についての説明の文言でいえば、車輪駆動軸の一部をなすプロペラ軸11の一部であってMG2の連結部をなす歯車15よりも内燃機関の側に設けられている。変速機100は2段ないし3段のものであってよく、更に後進段を含むものであってよい。そのような変速機は既に公知の技術により種々の態様にて得られるが、前進3段と後進段を有するものについてその一例を解図的に示せば、図7の通りである。
【0022】
図7に於いて、20、22、24、26は一つの遊星歯車機構を構成するサンギヤ、リングギヤ、プラネタリピニオン、キャリアであり、また21、23、25、27は他の一つの遊星歯車機構を構成するサンギヤ、リングギヤ、プラネタリピニオン、キャリアであり、28(C1)、29(C2)はクラッチであり、30(B1)、31(B2)はブレーキであり、32(F1)はワンウェイクラッチである。そしてこれらの回転要素が、33を入力軸とし、34を出力軸として、その間に図示の如く組み合わされていると、クラッチC1が係合されることにより減速比が最も大きい第1速段が達成され、クラッチC1とブレーキB1とが係合されることにより減速比が中程の第2速段が達成され、クラッチC1とC2とが係合されることにより減速比が最も小さい(減速比=1)第3速段が達成され、クラッチC2とブレーキB2とが係合されることにより後進段が達成される。
【0023】
図4の実施例に於いて、変速機100が3段の変速を与えるようになっているとすると、車速対車軸トルクの能力特性線図は、かかる変速機がない場合の図3に対比して、図8の如く変更される。この線図に於いて、領域B1、B2、B3が、それぞれ変速機を第1速段、第2速段、第3速段にすることにより主として内燃機関(場合によって内燃機関およびMG1)によって賄われる領域であり、残る領域Cが第二の電動発電機MG2によって賄われる領域である。図8より、MG2に求められる最大トルクが、図3の場合に比して大幅に低減されることが理解されよう。
【0024】
図5に示す第二の実施例に於いては、変速機101は車輪駆動軸の途中であって第二の電動発電機MG2の連結部より内燃機関とは隔たる側に設けられており、図1についての説明の文言でいえば、車輪駆動軸の一部をなすプロペラ軸11の一部であってMG2の連結部をなす歯車15よりも内燃機関とは隔たる側に設けられている。変速機101もまた2段ないし3段のものであってよく、更に後進段を含むものであってよく、図7に示す如きものであってよい。
【0025】
図5の実施例に於いて、変速機101が3段の変速を与えるようになっているとすると、車速対車軸トルクの能力特性線図は、かかる変速機がない場合の図3に比して、図9の如く変更される。この線図に於いては、領域B1+C1、B2+C2、B3+C3が、それぞれ変速機を第1速段、第2速段、第3速段にすることにより主として内燃機関(場合によって内燃機関およびMG1)およびMG2によって賄われる領域である。この場合にも、図9より分かる通り、MG2に求められる最大トルクは、図3の場合に比して大幅に低減される。
【0026】
図6に示す第3の実施例に於いては、変速機102は車輪駆動軸への第二の電動発電機MG2の連結の途中に設けられており、図1についての説明の文言でいえば、車輪駆動軸の一部をなすプロペラ軸11へのMG2の連結部に設けられている。変速機102もまた2段ないし3段のものであってよい。この場合、MG2の逆転駆動は電気回路の切換えにより簡単に行なえるので、変速機102には後進段はなくてもよい。しかし、変速機102もまた後進段を備えていてもよく、図7に示す如きものであってよい。
【0027】
図6の実施例に於いて、変速機102が3段の変速を与えるようになっているとすると、車速対車軸トルクの能力特性線図は、かかる変速機がない場合の図3に比して、図10の如く変更される。この線図に於いては、領域Bが主として内燃機関(場合によって内燃機関およびMG1)によって賄われる領域であり、領域C1、C2、C3が、それぞれ変速機を第1速段、第2速段、第3速段にすることによりMG2によって賄われる領域である。図10に於いて、領域C1は内燃機関により領域Bに相当するトルクを得た上でMG2の出力トルクを第1速段の変速機により増大したトルクを加算することにより賄えるトルク領域を示す。領域C2、C3も同様のことを示す。図10より分かる通り、MG2自身に求められる最大トルクは、図3の場合に比して大幅に低減される。
【0028】
尚、図8〜図10は、上記の通り車速対車軸トルクの座標系で見て主として内燃機関(場合によって内燃機関およびMG1)および第二の電動発電機MG2により賄うことができるトルクの大きさを車速に対して示す能力特性線図であり、かかる変速機付きハイブリッド車駆動構造に於いては変速線図でない。即ち、図4および図5の実施例に於いて、車軸トルクに対する要求が低い場合にも、車速が低車速から高車速へと増大するにつれて、変速機は必ず第1速段から第2速段、第3速段へと切り換えられることを意味するものではない。これらの実施例に於いて、平地での通常の車輌発進時の如くさしたる高車軸トルクが必要とされないときには、変速機を第3速段に設定したままとして動力分配機構の制御により図3の領域Bを用い、第2速段、第1速段は、それぞれ要求車軸トルクが増大したときあるいはシフトレバーが2位置、L位置へ切り換えられることに応じて使用されるようにしてよい。
【0029】
また、以上のいずれの実施例においても、車輌を後進駆動することは、図2で見てNrを負の値にすることであり、それには内燃機関が運転されているか(Nc>0)いないか(Nc=0)にかかわらず、MG2の回転数Nrが所望の負の値になるよう、内燃機関回転数Ncに応じてMG1の回転数NsおよびMG2の回転数Nrを調整することにより達成される。かかるMG1およびMG2の回転数の調整制御は、無段で迅速に行なえるが、この場合、車輌を後進駆動するトルクは電動発電機のみによってしか賄えないので、得られる後進駆動トルクの大きさは限られる。これに対し、変速機が図4または5に示す実施例における如く車輪駆動軸の途中に設けられていて後進段を備えているときには、これを後進段に切り換えて内燃機関により車輪を後進駆動するようにすれば、変速機の切換えに幾分かの時間を要するが、大きな駆動トルクにて車輌を後進駆動することができる。そこで、図には示されていないが、変速機の後進段による車輌後進駆動と動力分配機構の調節による車輌後進駆動との間の選択を行う手段が設けられていれば、車輌後進駆動に要する駆動トルクの大きさに応じて適宜両者間の選択を行ってより適切な車輌運転を行うことができる。かかる選択を行う手段は、現今のコンピュータを備えた車輌運転制御装置によれば、ほとんどソフトウェア的に達成される。
【0030】
以上に於いては本発明をいくつかの実施例について詳細に説明したが、本発明がこれらの実施例にのみ限られるものではなく、本発明の範囲内にて他に種々の実施例が可能であることは当業者にとって明らかであろう。
【図面の簡単な説明】
【図1】本発明による改良の対象となるハイブリッド車の駆動構造を示す概略図。
【図2】図1に示すハイブリッド車駆動構造に於ける内燃機関と二つの電動発電機MG1、MG2の回転数Nc、Ns、Nrの間の関係を示す線図。
【図3】図1に示すハイブリッド車駆動構造に於いて内燃機関および電動発電機MG2の各々により分担されるべき車軸トルクを車速に対し示す線図。
【図4】図1に示すハイブリッド車駆動構造について本発明によりなされる改良の第一の実施例を示す概略図。
【図5】図1に示すハイブリッド車駆動構造について本発明によりなされる改良の第二の実施例を示す概略図。
【図6】図1に示すハイブリッド車駆動構造について本発明によりなされる改良の第三の実施例を示す概略図。
【図7】三つの変速段と後進段とを提供する変速機の一例を示す概略図。
【図8】図4に示すハイブリッド車駆動構造に於いて内燃機関および電動発電機MG2の各々により分担されるべき車軸トルクを車速に対し示す線図。
【図9】図5に示すハイブリッド車駆動構造に於いて内燃機関および電動発電機MG2の各々により分担されるべき車軸トルクを車速に対し示す線図。
【図10】図6に示すハイブリッド車駆動構造に於いて内燃機関および電動発電機MG2の各々により分担されるべき車軸トルクを車速に対し示す線図。
【符号の説明】
1…内燃機関
2…内燃機関の出力軸
3…遊星歯車装置
4…サンギヤ
5…リングギヤ
6…プラネタリピニオン
7…キャリア
8…第一の電動発電機(MG1)
9…コイル
10…回転子
11…プロペラ軸
12…第二の電動発電機(MG2)
13…コイル
14…回転子
15,16…歯車
17…ディファレンシャル装置
18…車軸
19…車輪
20…サンギヤ
22…リングギヤ
24…プラネタリピニオン
26…キャリア
21…サンギヤ
23…リングギヤ
25…プラネタリピニオン
27…キャリア
28,29…クラッチ
28,29…ブレーキ
32…ワンウェイクラッチ
100,101,102…変速機
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a drive structure of a hybrid vehicle that drives wheels by a combination of an internal combustion engine and an electric motor.
[0002]
[Prior art]
In recent years, under the recognition of the increasing importance of conservation of the air environment and saving of fuel resources, hybrid vehicles in which wheels are driven by a combination of an internal combustion engine and an electric motor have been in the spotlight. When driving an automobile wheel that requires various combinations of rotational speeds and driving torques with an internal combustion engine and an electric motor, various modes will be possible as to how to drive the vehicle. It was originally driven exclusively by internal combustion engines, and hybrid vehicles in the field of automobiles started by replacing part of the drive by conventional internal combustion engines only with electric drive as the situation allows. Therefore, it is natural that even a hybrid vehicle can be driven only by an internal combustion engine. In JP-A-11-198669, a power shaft driven by one or both of an internal combustion engine and an electric motor is configured by connecting a first motor generator in series to a crankshaft of the internal combustion engine, A hybrid vehicle drive structure in which the output shaft of the second motor generator is connected to the ring gear and sun gear of the planetary gear mechanism, combined, and the carrier of the planetary gear mechanism is used as the output shaft to which the transmission is connected. It is shown. According to such a hybrid vehicle drive structure, even if only the internal combustion engine is operated as a prime mover, the transmission function of the transmission can be obtained and the various operation modes required for the automobile can be dealt with in the same manner as the conventional internal combustion engine vehicle. This seems to be a typical example that reflects the origin of the hybrid vehicle as described above.
[0003]
However, on the other hand, on the occasion of combining an internal combustion engine and an electric motor as a motor for an automobile, the internal combustion engine output shaft resulting from the difference between the rotational speed required for wheels and the driving torque obtained from the internal combustion engine, and It was proposed by the same applicant as the present applicant to differentially absorb the difference in rotational speed between the axles by the electric motor and eliminate the conventionally required transmission between the output shaft of the internal combustion engine and the axle. . FIG. 1 attached herewith is a schematic diagram showing the driving structure of such a hybrid vehicle.
[0004]
In FIG. 1, reference numeral 1 denotes an internal combustion engine, which is attached to a vehicle body not shown in the drawing. 2 is the output shaft (crankshaft). 3 is a planetary gear unit, 4 is its sun gear, 5 is a ring gear, 6 is a planetary pinion, and 7 is a carrier. The crankshaft 2 is connected to the carrier 7. A first motor generator (MG 1) 8 has a coil 9 and a rotor 10, and the rotor 10 is connected to the sun gear 4. The coil 9 is supported from the vehicle body. One end of a propeller shaft 11 is connected to the ring gear 5. Thus, the planetary gear device 3 constitutes a power distribution mechanism that distributes the output of the internal combustion engine that appears on the output shaft 2 of the internal combustion engine to the first motor generator 3 and the propeller shaft 11 that forms the wheel drive shaft. A second motor generator (MG2) 12 is connected in the middle of the propeller shaft 11. The second motor generator 12 has a coil 13 and a rotor 14, and the coil 13 is supported by the vehicle body. The rotor 14 may be connected to the propeller shaft 11 with an arbitrary structure, but in the illustrated example, a gear 16 that is supported by the rotor 14 and rotates with a gear 15 provided on the propeller shaft 11 is engaged. ing. The other end of the propeller shaft 11 is connected to a pair of axles 18 via a differential device 17. A wheel 19 is attached to each axle 18.
[0005]
In the illustrated driving structure, the rotation of the crankshaft 2 and the rotation of the carrier 7 are the same, and this rotation number is represented by Nc. Further, the rotation of the first motor generator 8 and the rotation of the sun gear 4 are the same, and this rotation number is now represented by Ns. On the other hand, the rotation of the ring gear 5, the rotation of the second motor generator 12, and the rotation of the wheel 19 correspond to each other and finally correspond to the vehicle speed. It depends on the ratio of the number of teeth between them, the reduction ratio in the differential device 17 and the tire diameter. However, here, for the sake of convenience, the rotational speed of these portions is represented by the rotational speed of the ring gear 5 and is Nr. Then, between the rotational speeds Nc, Ns, and Nr of the internal combustion engine and the two motor generators MG1 and MG2 in the hybrid vehicle drive structure in which the internal combustion engine and the two motor generators are combined as shown in the drawing with a planetary gear device. Is represented by the diagram shown in FIG. 2 based on the principle of the planetary gear device. In the figure, ρ is the number of teeth of the sun gear with respect to the number of teeth of the ring gear (ρ <1). Since Nc is determined by the engine speed and Nr is determined by the vehicle speed, Ns is determined by Ns = (1 + 1 / ρ) Nc− (1 / ρ) Nr depending on the engine speed and the vehicle speed.
Determined as
[0006]
On the other hand, assuming that the torques of the carrier, the sun gear, and the ring gear are Tc, Ts, and Tr, these are Ts: Tc: Tr = ρ / (1 + ρ): 1: 1 / (1 + ρ)
Therefore, when any of these three elements generate or absorb torque, torque is exchanged between them until the above equilibrium is established.
[0007]
In the hybrid vehicle having the drive structure as described above, the operation of the internal combustion engine, MG1, and MG2 is performed by the vehicle operation control device (not shown in the figure) according to the operation command from the driver and the operation state of the vehicle. Controlled based on. That is, the vehicle operation control device includes a microcomputer, calculates the target vehicle speed and the target wheel drive torque based on the operation command from the driver and the operation state of the vehicle detected by various sensors, and charges the power storage device. Calculate the current output allowed for the power storage device based on the state or the amount of power generation required for charging the power storage device, and on the basis of these calculation results, what operating state should be operated including the shutdown, Further, it is calculated in which electric state or power generation state the MG1 and MG2 should be operated, and the operation of the internal combustion engine, MG1, MG2 is controlled based on the calculation result.
[0008]
[Problems to be solved by the invention]
As described above, according to the hybrid vehicle drive structure in which the output shaft of the internal combustion engine is connected to the first motor generator and the wheel drive shaft through the power distribution mechanism, and the second motor generator is connected to the wheel drive shaft. For example, as can be understood from FIG. 2, the values of the rotational speed Nc of the output shaft of the internal combustion engine and the rotational speed Nr corresponding to the vehicle speed and the relative relationship therebetween change the rotational speed Ns of the first motor generator. Therefore, in such a hybrid vehicle drive structure, a transmission has been made unnecessary. That is, depending on the adjustment of the power distribution mechanism, the relationship between Nc and Nr can be freely changed, and even when the vehicle is stopped (Nr = 0), the engine is operated (Nc> 0). Even when the vehicle is moving forward (Nr> 0), the engine can be stopped (Nc = 0), or the vehicle can move backward (Nr <0) regardless of whether the engine is operating or stopped (Nc ≧ 0).
[0009]
However, since the rotational speed of MG2 depends on the speed of the vehicle, and the degree of charge of the power storage device is irrelevant to the vehicle speed, there is a great restriction on the operation of MG2 as a generator for charging the power storage device. Therefore, charging of the power storage device depends exclusively on MG1, and conversely, electric driving of the wheels depends exclusively on MG2. Therefore, in the hybrid vehicle drive structure as described above that does not include a transmission, in order to ensure vehicle driving performance that can obtain high wheel drive torque as required even in the low vehicle speed region, 畢竟 MG2 Must be enlarged.
[0010]
This is shown in FIG. 3 as an ability characteristic diagram of axle torque with respect to vehicle speed. That is, now, the internal combustion engine of the vehicle is operated with high fuel efficiency over a wide vehicle speed range, and the vehicle has the performance shown by the line A as the limit performance desired as the vehicle speed vs. axle torque performance of the vehicle. If this is the case, the vehicle speed vs. axle torque performance of the internal combustion engine that obtains high fuel efficiency becomes almost flat as in region B, so the rest must be supplemented exclusively by MG2, and the vehicle speed vs. axle torque performance covers region C. Must be a thing. Therefore, MG2 must be made large in size so that high torque can be generated at a low rotational speed.
[0011]
However, if FIG. 3 is examined, it will be questioned that the depth of the area | region C may be a little too deep compared with the depth of the area | region B. FIG. From a different point of view, this is a problem of the relative balance of the sizes of the three prime movers, the internal combustion engine and the first and second motor generators, particularly the balance of the sizes of the internal combustion engine and the second motor generator. It is. The present invention originates from such a question, and an object of the present invention is to further improve the hybrid vehicle drive structure as described above.
[0012]
[Means for Solving the Problems]
In order to solve such a problem, in the present invention, an output shaft of an internal combustion engine is connected to a first motor generator and a wheel drive shaft through a power distribution mechanism, and a second motor generator is connected to the wheel drive shaft. In the connected hybrid vehicle drive structure, a transmission is provided in the middle of the connection of the second motor generator to the wheel drive shaft, and the input shaft of the transmission is provided only for the second motor generator. Connected , the transmission includes a reverse gear, and includes means for selecting between vehicle reverse drive by the reverse gear of the transmission and vehicle reverse drive by adjustment of the power distribution mechanism. Or the wheel drive shaft is connected to the power distribution mechanism at one end and to the differential device at the other end, and the transmission is in the middle of the connection of the second motor generator to the wheel drive shaft. The transmission includes a reverse gear. And means for selecting between vehicle reverse drive by the reverse gear of the transmission and vehicle reverse drive by adjustment of the power distribution mechanism, or the second electric drive to the wheel drive shaft A transmission including a reverse gear is provided in the middle of the generator connection, and includes means for selecting between vehicle reverse drive by the reverse gear of the transmission and vehicle reverse drive by adjustment of the power distribution mechanism. Or at least one of the wheel drive shaft or the connection of the second motor generator to the wheel drive shaft is provided with a transmission including a reverse gear, and the vehicle reverse drive by the reverse gear of the transmission; The present invention proposes a hybrid vehicle drive structure including means for selecting between vehicle reverse drive by adjusting the power distribution mechanism .
[0013]
The term “motor generator” refers to a means having both functions of an electric motor and a generator. However, in the present invention, the output shaft of the internal combustion engine passes through a power distribution mechanism into the first motor generator and the wheel drive shaft. The present invention relates to a short-term vehicle drive performance of a hybrid vehicle drive structure in which a second motor generator is connected to the wheel drive shaft. In other words, the internal combustion engine drive and the electric drive in the hybrid drive of the vehicle And the long-term vehicle drive performance that involves the interrelationship of the self-charging action with respect to the power storage device, the first and second motor generators are simply electric motors as far as the actions and effects of the present invention are concerned. It can be. Certainly, as already mentioned, as the actual vehicle drive system, the second motor generator must operate exclusively as an electric motor (but can also operate as a generator), so it can operate in the long term. In order to construct a simple vehicle drive device, the first motor generator needs to have a power generation function, but this necessity is not related to the technical idea of the present invention. Therefore, in the structure of this invention, the means described as a motor generator shall include the motor which does not have a power generation function as the equivalent.
[0014]
In the hybrid vehicle drive structure as described above, the transmission may be provided in the middle of the wheel drive shaft and closer to the internal combustion engine than the connecting portion of the second motor generator.
[0015]
Alternatively, in the hybrid vehicle drive structure as described above, the transmission may be provided on the side away from the internal combustion engine from the connecting portion of the second motor generator in the middle of the wheel drive shaft.
[0016]
Furthermore, in the hybrid vehicle drive structure as described above, the transmission may include a reverse gear. In this case, the hybrid vehicle drive structure may further include means for selecting between vehicle reverse drive by the reverse gear of the transmission and vehicle reverse drive by adjustment of the power distribution mechanism.
[0017]
[Action and effect of the invention]
As described above, in the hybrid vehicle drive structure in which the output shaft of the internal combustion engine is connected to the first motor generator and the wheel drive shaft through the power distribution mechanism, and the second motor generator is connected to the wheel drive shaft. If a transmission is provided in at least one of the wheel drive shaft or the connection of the second motor generator to the wheel drive shaft, when high axle torque is obtained at low vehicle speed, If the transmission is provided in the middle of the wheel drive shaft and closer to the internal combustion engine than the connecting portion of the second motor generator, the power distribution mechanism is adjusted to adjust the rotational speed of the internal combustion engine to the vehicle speed. To meet the demand by increasing the reduction ratio of the transmission to cover the required high axle torque by the internal combustion engine and reducing the torque required for the second motor generator. And the transmission can be used for the wheel drive. If it is provided in the middle of the shaft and on the side separated from the internal combustion engine from the connecting portion of the second motor generator, the power distribution mechanism is adjusted to compare the rotational speed of the internal combustion engine with the vehicle speed. The torque required for the second motor generator is increased by increasing the reduction ratio of the transmission so that the wheels are driven by the cooperation of the internal combustion engine and the second motor generator at the increased reduction ratio. can of meeting this demand by subtracting, also if we provided in the middle speed change machine of the connection of the second motor generator, irrespective the second motor generator of the regulation of the power distribution mechanism The wheel drive torque obtained from the machine can be increased by increasing the speed reduction ratio of the transmission, and this requirement can be met even if the second motor generator is moderately sized. The relative size of the first and second motor generators Maintaining the balance preferred, while operating an internal combustion engine always at high fuel efficiency, it can be obtained which such vehicle speed versus axle torque performance is indicated by line A in FIG. 3, further comprising a transmission reverse gear, the transmission If there is a means to select between the vehicle reverse drive by the reverse gear and the vehicle reverse drive by adjusting the power distribution mechanism, the selection between the two is appropriately performed according to the magnitude of the drive torque required for the vehicle reverse drive Ru can do a more appropriate vehicle operation carried out.
[0018]
Furthermore, in the hybrid vehicle drive structure as described above, if the transmission is configured to include a reverse gear, the transmission can be switched to the reverse gear without adjusting the power distribution mechanism when the vehicle moves backward. This makes it possible to easily reverse the vehicle. In this case, if there is further provided a means for selecting between the vehicle reverse drive by the reverse gear of the transmission and the vehicle reverse drive by adjusting the power distribution mechanism, the reverse of the climb on the slope and the drive wheel are depressed. When it is necessary to reverse the vehicle with a high axle torque, such as when it is depressed, it is possible to cope with it with a sufficient driving torque by selecting the vehicle reverse drive with the reverse gear of the transmission, so that the vehicle reverses on a normal flat ground. When the left-hand axle torque is not required, it is possible to achieve rapid reverse without a transmission switching operation by selecting vehicle reverse drive by adjusting the power distribution mechanism.
[0019]
Furthermore, the above-described transmission itself may be the one with the known overdrive stage having the highest speed stage in various aspects, so that even in a hybrid vehicle, the internal combustion engine can be used for high-speed driving. Operation can be optimized as in a conventional overdrive internal combustion locomotive.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
4, 5, and 6, the output shaft of the internal combustion engine is connected to the first motor generator and the wheel drive shaft through the power distribution mechanism as shown in FIG. 1, and the second electric motor is connected to the wheel drive shaft. FIG. 2 is a schematic view similar to FIG. 1 showing three embodiments incorporating a transmission according to the present invention in a hybrid vehicle drive structure to which a generator is connected. 4, 5, and 6, portions corresponding to the portions shown in FIG. 1 are indicated by the corresponding reference numerals.
[0021]
In the first embodiment shown in FIG. 4, the transmission 100 is provided in the middle of the wheel drive shaft and closer to the internal combustion engine than the connecting portion of the second motor generator MG2. In other words, it is provided on the side of the internal combustion engine with respect to the gear 15 that is a part of the propeller shaft 11 that forms a part of the wheel drive shaft and forms the connecting portion of the MG2. The transmission 100 may have two to three stages, and may further include a reverse stage. Such a transmission can be obtained in various modes by a known technique. FIG. 7 shows an example of a transmission having three forward speeds and a reverse speed.
[0022]
In FIG. 7, 20, 22, 24 and 26 are sun gears, ring gears, planetary pinions and carriers constituting one planetary gear mechanism, and 21, 23, 25 and 27 are other planetary gear mechanisms. The sun gear, the ring gear, the planetary pinion, and the carrier are configured, 28 (C1) and 29 (C2) are clutches, 30 (B1) and 31 (B2) are brakes, and 32 (F1) is a one-way clutch. . When these rotating elements are combined as shown in the figure with 33 as an input shaft and 34 as an output shaft, the first speed stage having the largest reduction ratio is achieved by engaging the clutch C1. When the clutch C1 and the brake B1 are engaged, the second speed with a medium reduction ratio is achieved, and when the clutches C1 and C2 are engaged, the reduction ratio is the smallest (reduction ratio = 1) The third speed is achieved, and the reverse speed is achieved by engaging the clutch C2 and the brake B2.
[0023]
In the embodiment of FIG. 4, if the transmission 100 is designed to give three speeds, the performance characteristic diagram of the vehicle speed vs. axle torque is in contrast to FIG. 3 when there is no such transmission. Thus, the change is made as shown in FIG. In this diagram, regions B1, B2, and B3 are mainly covered by the internal combustion engine (in some cases, the internal combustion engine and MG1) by setting the transmission to the first speed stage, the second speed stage, and the third speed stage, respectively. The remaining area C is an area covered by the second motor generator MG2. It will be understood from FIG. 8 that the maximum torque required for MG2 is significantly reduced as compared to the case of FIG.
[0024]
In the second embodiment shown in FIG. 5, the transmission 101 is provided in the middle of the wheel drive shaft and on the side away from the internal combustion engine from the connecting portion of the second motor generator MG2. In terms of the description of FIG. 1, the propeller shaft 11 is a part of the wheel drive shaft and is provided on the side farther from the internal combustion engine than the gear 15 that forms the connecting portion of the MG 2. . The transmission 101 may also be of two to three stages, may further include a reverse stage, and may be as shown in FIG.
[0025]
In the embodiment of FIG. 5, if the transmission 101 is designed to give three speeds, the performance characteristic diagram of the vehicle speed vs. axle torque is compared to FIG. 3 without such a transmission. Thus, it is changed as shown in FIG. In this diagram, regions B1 + C1, B2 + C2, and B3 + C3 are mainly internal combustion engines (in some cases, the internal combustion engine and MG1) by setting the transmission to the first speed stage, the second speed stage, and the third speed stage, respectively. This is an area covered by MG2. Also in this case, as can be seen from FIG. 9, the maximum torque required for MG2 is significantly reduced compared to the case of FIG.
[0026]
In the third embodiment shown in FIG. 6, the transmission 102 is provided in the middle of the connection of the second motor generator MG2 to the wheel drive shaft, and in terms of the explanation for FIG. The MG2 is connected to the propeller shaft 11 that forms part of the wheel drive shaft. The transmission 102 may also be of two to three stages. In this case, since the reverse drive of MG2 can be easily performed by switching the electric circuit, the transmission 102 may not have the reverse gear. However, the transmission 102 may also have a reverse gear and may be as shown in FIG.
[0027]
In the embodiment of FIG. 6, assuming that the transmission 102 provides three speeds, the performance characteristic diagram of vehicle speed vs. axle torque is compared to FIG. 3 without such a transmission. Thus, it is changed as shown in FIG. In this diagram, the region B is a region mainly covered by the internal combustion engine (in some cases, the internal combustion engine and MG1), and the regions C1, C2, and C3 are the first and second speed gears, respectively. This is an area covered by MG2 by setting the third speed. In FIG. 10, a region C <b> 1 indicates a torque region in which the torque corresponding to the region B is obtained by the internal combustion engine and then the output torque of MG <b> 2 is added by the torque increased by the first speed transmission. Regions C2 and C3 show the same thing. As can be seen from FIG. 10, the maximum torque required for MG2 itself is significantly reduced compared to the case of FIG.
[0028]
8 to 10 show the magnitude of torque that can be provided mainly by the internal combustion engine (in some cases, the internal combustion engine and MG1) and the second motor generator MG2 in the coordinate system of vehicle speed versus axle torque as described above. Is a performance characteristic diagram showing the speed with respect to the vehicle speed, and is not a shift diagram in such a hybrid vehicle drive structure with a transmission. That is, in the embodiment shown in FIGS. 4 and 5, even when the demand for the axle torque is low, the transmission always shifts from the first speed to the second speed as the vehicle speed increases from the low vehicle speed to the high vehicle speed. It does not mean that the vehicle can be switched to the third gear. In these embodiments, when the high axle torque, which is the same as when starting a normal vehicle on a flat ground, is not required, the transmission is maintained at the third speed stage, and the region shown in FIG. Using B, the second speed and the first speed may be used when the required axle torque increases or when the shift lever is switched to the 2 position or the L position, respectively.
[0029]
Further, in any of the above embodiments, driving the vehicle in reverse means that Nr is set to a negative value as seen in FIG. 2, which is whether the internal combustion engine is operated (Nc> 0). This is achieved by adjusting the rotation speed Ns of MG1 and the rotation speed Nr of MG2 according to the internal combustion engine rotation speed Nc so that the rotation speed Nr of MG2 becomes a desired negative value regardless of (Nc = 0). Is done. Such control for adjusting the rotational speeds of MG1 and MG2 can be performed quickly and continuously. In this case, the torque for driving the vehicle backward can be provided only by the motor generator, and therefore the magnitude of the reverse drive torque obtained is large. Is limited. In contrast, when the transmission is provided with a reverse gear be provided in the middle of the wheel drive shaft as in the embodiment shown in FIG. 4 or 5, the the Rikuruma wheels by the internal combustion engine is switched to the reverse gear which If the vehicle is driven backward, it takes some time to switch the transmission, but the vehicle can be driven backward with a large driving torque. Therefore, although not shown in the figure, if a means for selecting between vehicle reverse drive by the reverse gear of the transmission and vehicle reverse drive by adjustment of the power distribution mechanism is provided, the vehicle reverse drive is required. More appropriate vehicle operation can be performed by appropriately selecting between the two according to the magnitude of the driving torque. The means for making such a selection is achieved almost by software according to a vehicle operation control apparatus equipped with a current computer.
[0030]
Although the present invention has been described in detail with respect to several embodiments, the present invention is not limited to these embodiments, and various other embodiments are possible within the scope of the present invention. It will be apparent to those skilled in the art.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a drive structure of a hybrid vehicle to be improved by the present invention.
2 is a diagram showing the relationship between the internal combustion engine and the rotational speeds Nc, Ns, Nr of two motor generators MG1, MG2 in the hybrid vehicle drive structure shown in FIG.
3 is a diagram showing an axle torque to be shared by an internal combustion engine and a motor generator MG2 with respect to vehicle speed in the hybrid vehicle drive structure shown in FIG.
FIG. 4 is a schematic view showing a first embodiment of the improvement made by the present invention with respect to the hybrid vehicle drive structure shown in FIG. 1;
FIG. 5 is a schematic view showing a second embodiment of the improvement made by the present invention with respect to the hybrid vehicle drive structure shown in FIG. 1;
FIG. 6 is a schematic diagram showing a third embodiment of the improvement made by the present invention with respect to the hybrid vehicle drive structure shown in FIG. 1;
FIG. 7 is a schematic view showing an example of a transmission that provides three shift speeds and a reverse speed.
8 is a diagram showing an axle torque to be shared by each of the internal combustion engine and the motor generator MG2 with respect to the vehicle speed in the hybrid vehicle drive structure shown in FIG.
9 is a diagram showing an axle torque to be shared by an internal combustion engine and a motor generator MG2 with respect to vehicle speed in the hybrid vehicle drive structure shown in FIG.
10 is a diagram showing axle torque with respect to vehicle speed to be shared by the internal combustion engine and the motor generator MG2 in the hybrid vehicle drive structure shown in FIG. 6;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Internal combustion engine 2 ... Output shaft 3 of internal combustion engine ... Planetary gear apparatus 4 ... Sun gear 5 ... Ring gear 6 ... Planetary pinion 7 ... Carrier 8 ... First motor generator (MG1)
9 ... Coil 10 ... Rotor 11 ... Propeller shaft 12 ... Second motor generator (MG2)
DESCRIPTION OF SYMBOLS 13 ... Coil 14 ... Rotor 15, 16 ... Gear 17 ... Differential device 18 ... Axle 19 ... Wheel 20 ... Sun gear 22 ... Ring gear 24 ... Planetary pinion 26 ... Carrier 21 ... Sun gear 23 ... Ring gear 25 ... Planetary pinion 27 ... Carrier 28, 29 ... Clutch 28, 29 ... Brake 32 ... One-way clutch 100, 101, 102 ... Transmission

Claims (6)

内燃機関の出力軸が動力分配機構を経て第一の電動発電機と車輪駆動軸とに連結され、該車輪駆動軸に第二の電動発電機が連結されたハイブリッド車駆動構造に於いて、前記車輪駆動軸への前記第二の電動発電機の連結の途中に変速機を設け、該変速機の入力軸が前記第二の電動発電機のみに連結されており、前記変速機は後進段を含んでおり、前記変速機の後進段による車輌後進駆動と前記動力分配機構の調節による車輌後進駆動との間の選択を行う手段を含んでいることを特徴とするハイブリッド車駆動構造。  In the hybrid vehicle drive structure in which the output shaft of the internal combustion engine is connected to the first motor generator and the wheel drive shaft through a power distribution mechanism, and the second motor generator is connected to the wheel drive shaft. A transmission is provided in the middle of the connection of the second motor generator to the wheel drive shaft, the input shaft of the transmission is connected only to the second motor generator, and the transmission has a reverse gear. A hybrid vehicle drive structure comprising: means for selecting between vehicle reverse drive by a reverse gear of the transmission and vehicle reverse drive by adjustment of the power distribution mechanism. 内燃機関の出力軸が動力分配機構を経て第一の電動発電機と車輪駆動軸とに連結され、該車輪駆動軸に第二の電動発電機が連結されたハイブリッド車駆動構造に於いて、前記車輪駆動軸は一端にて前記動力分配機構に連結されまた他端にてディファレンシャル装置に連結されており、前記車輪駆動軸への前記第二の電動発電機の連結の途中に変速機を設け、前記変速機は後進段を含んでおり、前記変速機の後進段による車輌後進駆動と前記動力分配機構の調節による車輌後進駆動との間の選択を行う手段を含んでいることを特徴とするハイブリッド車駆動構造。  In the hybrid vehicle drive structure in which the output shaft of the internal combustion engine is connected to the first motor generator and the wheel drive shaft through a power distribution mechanism, and the second motor generator is connected to the wheel drive shaft. The wheel drive shaft is connected to the power distribution mechanism at one end and to the differential device at the other end, and a transmission is provided in the middle of the connection of the second motor generator to the wheel drive shaft. The hybrid includes a reverse gear, and includes means for selecting between a vehicle reverse drive by a reverse gear of the transmission and a vehicle reverse drive by adjustment of the power distribution mechanism. Car drive structure. 内燃機関の出力軸が動力分配機構を経て第一の電動発電機と車輪駆動軸とに連結され、該車輪駆動軸に第二の電動発電機が連結されたハイブリッド車駆動構造に於いて、前記車輪駆動軸への前記第二の電動発電機の連結の途中に後進段を含む変速機を設け、前記変速機の後進段による車輌後進駆動と前記動力分配機構の調節による車輌後進駆動との間の選択を行う手段を含んでいることを特徴とするハイブリッド車駆動構造。  In the hybrid vehicle drive structure in which the output shaft of the internal combustion engine is connected to the first motor generator and the wheel drive shaft through a power distribution mechanism, and the second motor generator is connected to the wheel drive shaft. A transmission including a reverse gear is provided in the middle of the connection of the second motor generator to the wheel drive shaft, and the vehicle reverse drive by the reverse gear of the transmission and the vehicle reverse drive by adjustment of the power distribution mechanism A hybrid vehicle drive structure comprising means for selecting 内燃機関の出力軸が動力分配機構を経て第一の電動発電機と車輪駆動軸とに連結され、該車輪駆動軸に第二の電動発電機が連結されたハイブリッド車駆動構造に於いて、前記車輪駆動軸の途中または該車輪駆動軸への前記第二の電動発電機の連結の途中の少なくとも一方に後進段を含む変速機を設け、前記変速機の後進段による車輌後進駆動と前記動力分配機構の調節による車輌後進駆動との間の選択を行う手段を含んでいることを特徴とするハイブリッド車駆動構造。  In the hybrid vehicle drive structure in which the output shaft of the internal combustion engine is connected to the first motor generator and the wheel drive shaft through a power distribution mechanism, and the second motor generator is connected to the wheel drive shaft. A transmission including a reverse gear is provided in the middle of the wheel drive shaft or in the middle of the connection of the second motor generator to the wheel drive shaft, and the vehicle reverse drive and the power distribution by the reverse gear of the transmission are provided. A hybrid vehicle drive structure comprising means for selecting between vehicle reverse drive by adjusting a mechanism. 前記変速機は前記車輪駆動軸の途中に前記第二の電動発電機の連結部より前記内燃機関の側に設けられていることを特徴とする請求項4に記載のハイブリッド車駆動構造。  5. The hybrid vehicle drive structure according to claim 4, wherein the transmission is provided on a side of the internal combustion engine from a connecting portion of the second motor generator in the middle of the wheel drive shaft. 前記変速機は前記車輪駆動軸の途中に前記第二の電動発電機の連結部より前記内燃機関とは隔たる側に設けられていることを特徴とする請求項4に記載のハイブリッド車駆動構造。  5. The hybrid vehicle drive structure according to claim 4, wherein the transmission is provided in the middle of the wheel drive shaft on a side away from the internal combustion engine from a connecting portion of the second motor generator. .
JP2001323578A 2001-10-22 2001-10-22 Hybrid vehicle drive structure with transmission Expired - Lifetime JP3893938B2 (en)

Priority Applications (19)

Application Number Priority Date Filing Date Title
JP2001323578A JP3893938B2 (en) 2001-10-22 2001-10-22 Hybrid vehicle drive structure with transmission
US10/261,411 US7223200B2 (en) 2001-10-22 2002-10-02 Hybrid-vehicle drive system and operation method with a transmission
CA2704802A CA2704802C (en) 2001-10-22 2002-10-08 Hybrid-vehicle drive system with a transmission
CA2632448A CA2632448C (en) 2001-10-22 2002-10-08 Operation method of a hybrid-vehicle drive system with a transmission
CA2704805A CA2704805A1 (en) 2001-10-22 2002-10-08 Hybrid-vehicle drive system with a transmission
CA2704804A CA2704804C (en) 2001-10-22 2002-10-08 Hybrid-vehicle drive system with a transmission
CA002406817A CA2406817C (en) 2001-10-22 2002-10-08 Hybrid-vehicle drive system and operation method with a transmission
CA002548815A CA2548815C (en) 2001-10-22 2002-10-08 Hybrid-vehicle drive system and operation method with a transmission
ES04028725T ES2294422T3 (en) 2001-10-22 2002-10-21 METHOD OF OPERATION OF A TRACTION SYSTEM FOR HYBRID VEHICLE.
ES02023460T ES2269583T3 (en) 2001-10-22 2002-10-21 HYBRID TRANSMISSION SYSTEM OF A VEHICLE AND METHOD OF OPERATION WITH A TRANSMISSION.
DE60223850T DE60223850T2 (en) 2001-10-22 2002-10-21 Method for operating a drive system of a hybrid vehicle
EP04028726A EP1520743B1 (en) 2001-10-22 2002-10-21 Method of operating a hybrid-vehicle drive system
DE60227711T DE60227711D1 (en) 2001-10-22 2002-10-21 Method for operating a drive system of a hybrid vehicle
ES04028726T ES2308093T3 (en) 2001-10-22 2002-10-21 METHOD OF OPERATION OF A MOTOR SYSTEM OF A HYBRID VEHICLE.
DE60214104T DE60214104T2 (en) 2001-10-22 2002-10-21 Drive system for hybrid vehicle and method of operation with a transmission
EP02023460A EP1304248B1 (en) 2001-10-22 2002-10-21 Hybrid-vehicle drive system and operation method with a transmission
EP04028725A EP1514716B1 (en) 2001-10-22 2002-10-21 Method of operating a hybrid-vehicle drive system
KR10-2002-0064574A KR100501062B1 (en) 2001-10-22 2002-10-22 Hybrid-vehicle drive system and operation method with a transmission
CNB021471347A CN1286681C (en) 2001-10-22 2002-10-22 Mixed power vehicle drive system with speed changing box and operating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001323578A JP3893938B2 (en) 2001-10-22 2001-10-22 Hybrid vehicle drive structure with transmission

Publications (3)

Publication Number Publication Date
JP2003127681A JP2003127681A (en) 2003-05-08
JP2003127681A5 JP2003127681A5 (en) 2005-06-23
JP3893938B2 true JP3893938B2 (en) 2007-03-14

Family

ID=19140447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001323578A Expired - Lifetime JP3893938B2 (en) 2001-10-22 2001-10-22 Hybrid vehicle drive structure with transmission

Country Status (1)

Country Link
JP (1) JP3893938B2 (en)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3650089B2 (en) 2002-08-02 2005-05-18 トヨタ自動車株式会社 Hybrid drive device and automobile equipped with the same
JP4130154B2 (en) 2003-05-29 2008-08-06 トヨタ自動車株式会社 Vehicle drive device
JP3845400B2 (en) 2003-08-18 2006-11-15 本田技研工業株式会社 Hybrid vehicle
US7822524B2 (en) 2003-12-26 2010-10-26 Toyota Jidosha Kabushiki Kaisha Vehicular drive system
JP3783716B2 (en) 2004-01-22 2006-06-07 トヨタ自動車株式会社 Control device for hybrid vehicle
JP4306597B2 (en) 2004-02-25 2009-08-05 トヨタ自動車株式会社 Control device for vehicle drive device
JP4168954B2 (en) * 2004-02-26 2008-10-22 トヨタ自動車株式会社 Control device for vehicle drive device
DE602005026646D1 (en) 2004-04-27 2011-04-14 Toyota Motor Co Ltd VEHICLE CONTROL SPEED STEPS
US7322902B2 (en) 2004-05-10 2008-01-29 Toyota Jidosha Kabushiki Kaisha Control device for vehicular transmission mechanism
JP4155230B2 (en) 2004-06-03 2008-09-24 トヨタ自動車株式会社 Control device for vehicle drive device
JP4046103B2 (en) * 2004-06-07 2008-02-13 トヨタ自動車株式会社 Control device for vehicle drive device
JP4315087B2 (en) * 2004-09-27 2009-08-19 トヨタ自動車株式会社 Vehicle drive device
JP3860593B2 (en) * 2004-12-20 2006-12-20 トヨタ自動車株式会社 Hybrid drive device and automobile equipped with the same
JP4549923B2 (en) 2005-05-20 2010-09-22 トヨタ自動車株式会社 Load driving device and electric vehicle equipped with the same
KR100704788B1 (en) 2005-08-18 2007-04-10 현대자동차주식회사 Hybrid vehicles
JP4358178B2 (en) * 2005-10-26 2009-11-04 トヨタ自動車株式会社 Engine start control device
JP4216843B2 (en) 2005-10-26 2009-01-28 トヨタ自動車株式会社 Electric vehicle drive control device and control method thereof
JP2007120586A (en) * 2005-10-26 2007-05-17 Toyota Motor Corp Control device for automatic transmission for vehicle
JP4063294B2 (en) 2005-10-26 2008-03-19 トヨタ自動車株式会社 Control device for vehicle drive device
US7976428B2 (en) 2005-10-26 2011-07-12 Toyota Jidosha Kabushiki Kaisha Control system for drive unit of vehicle
JP4052329B2 (en) 2005-10-26 2008-02-27 トヨタ自動車株式会社 Shift control device for automatic transmission
JP4069941B2 (en) 2005-10-26 2008-04-02 トヨタ自動車株式会社 Control device for vehicle drive device
JP4063295B2 (en) * 2005-10-26 2008-03-19 トヨタ自動車株式会社 Control device for drive device for hybrid vehicle
JP4200999B2 (en) 2005-10-26 2008-12-24 トヨタ自動車株式会社 Control device for vehicle drive device
JP4077003B2 (en) 2005-10-26 2008-04-16 トヨタ自動車株式会社 Electric vehicle drive control device and control method thereof
JP4234710B2 (en) 2005-10-26 2009-03-04 トヨタ自動車株式会社 Electric vehicle drive control device and control method thereof
JP4371099B2 (en) * 2005-10-26 2009-11-25 トヨタ自動車株式会社 Power transmission control device
JP4525613B2 (en) 2006-02-28 2010-08-18 トヨタ自動車株式会社 Control device for vehicle power transmission device
JP4297918B2 (en) 2006-03-23 2009-07-15 トヨタ自動車株式会社 Power transmission device and assembly method thereof
JP4584171B2 (en) 2006-03-23 2010-11-17 トヨタ自動車株式会社 Power transmission device and assembly method thereof
JP4059276B2 (en) 2006-03-24 2008-03-12 トヨタ自動車株式会社 Power transmission device and assembly method thereof
JP4192967B2 (en) * 2006-06-15 2008-12-10 トヨタ自動車株式会社 Vehicle drive device
JP4957104B2 (en) * 2006-07-19 2012-06-20 株式会社豊田中央研究所 Starting device
JP5066905B2 (en) * 2006-12-04 2012-11-07 トヨタ自動車株式会社 Control device for vehicle drive device
JP2008155802A (en) 2006-12-25 2008-07-10 Toyota Motor Corp Control device of vehicle driving device
JP4339374B2 (en) 2007-04-27 2009-10-07 本田技研工業株式会社 Power equipment
JP2009227268A (en) * 2008-02-26 2009-10-08 Nissan Motor Co Ltd Vehicular drive apparatus
WO2009106941A1 (en) * 2008-02-26 2009-09-03 Nissan Motor Co., Ltd. Vehicle drive apparatus
JP4610654B2 (en) * 2009-02-09 2011-01-12 本田技研工業株式会社 Power transmission device
JP5874335B2 (en) * 2011-11-15 2016-03-02 トヨタ自動車株式会社 Drive device for hybrid vehicle
CN102922981B (en) * 2012-10-29 2015-06-03 长城汽车股份有限公司 Hybrid power drive device and vehicle

Also Published As

Publication number Publication date
JP2003127681A (en) 2003-05-08

Similar Documents

Publication Publication Date Title
JP3893938B2 (en) Hybrid vehicle drive structure with transmission
JP3852321B2 (en) HV drive structure and method with cranking support torque increasing means
CA2632448C (en) Operation method of a hybrid-vehicle drive system with a transmission
US8177004B2 (en) Control system for drive unit of hybrid vehicle
US7108630B2 (en) Control system for hybrid drive unit
US10315507B2 (en) Hybrid vehicle
JP3757845B2 (en) Driving method of hybrid vehicle drive structure with transmission
JP3852322B2 (en) Driving method of hybrid vehicle drive structure with transmission
CN109720333B (en) Control device for hybrid vehicle
US20050252703A1 (en) Hybrid powertrain
JP2003269596A (en) Speed control device for hybrid transmission
US10759413B2 (en) Control system for hybrid vehicle
JP2008120233A (en) Hybrid driving device
JP2007198438A (en) Vehicle control device and vehicle
US20160214598A1 (en) Driving force control system for a vehicle
JPH11227476A (en) Driving device for automobile
JP3861803B2 (en) Power transmission device for vehicle
JP3758650B2 (en) Control device for hybrid drive
JP2000220731A (en) Electro-motive vehicle
JP3747842B2 (en) Driving method of hybrid vehicle drive structure equipped with transmission
JP3646963B2 (en) Hybrid car
JP4005589B2 (en) Power output device, automobile equipped with the same, and power transmission device
CA2548815C (en) Hybrid-vehicle drive system and operation method with a transmission
JP3648720B2 (en) Hybrid car
JP2003166633A (en) Method of operating hybrid vehicle driving structure with transmission

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041005

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061013

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20061020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061204

R151 Written notification of patent or utility model registration

Ref document number: 3893938

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

EXPY Cancellation because of completion of term