JP3892435B2 - Cordless power supply method - Google Patents

Cordless power supply method Download PDF

Info

Publication number
JP3892435B2
JP3892435B2 JP2003406061A JP2003406061A JP3892435B2 JP 3892435 B2 JP3892435 B2 JP 3892435B2 JP 2003406061 A JP2003406061 A JP 2003406061A JP 2003406061 A JP2003406061 A JP 2003406061A JP 3892435 B2 JP3892435 B2 JP 3892435B2
Authority
JP
Japan
Prior art keywords
power
floor
signal
power supply
transmission electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003406061A
Other languages
Japanese (ja)
Other versions
JP2005168232A (en
Inventor
健一 原川
健二 影山
一克 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2003406061A priority Critical patent/JP3892435B2/en
Publication of JP2005168232A publication Critical patent/JP2005168232A/en
Application granted granted Critical
Publication of JP3892435B2 publication Critical patent/JP3892435B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L5/00Current collectors for power supply lines of electrically-propelled vehicles
    • B60L5/005Current collectors for power supply lines of electrically-propelled vehicles without mechanical contact between the collector and the power supply line
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/51Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells characterised by AC-motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/30Constructional details of charging stations
    • B60L53/35Means for automatic or assisted adjustment of the relative position of charging devices and vehicles
    • B60L53/38Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer
    • B60L53/39Means for automatic or assisted adjustment of the relative position of charging devices and vehicles specially adapted for charging by inductive energy transfer with position-responsive activation of primary coils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L9/00Electric propulsion with power supply external to the vehicle
    • B60L9/16Electric propulsion with power supply external to the vehicle using ac induction motors
    • B60L9/24Electric propulsion with power supply external to the vehicle using ac induction motors fed from ac supply lines
    • B60L9/28Electric propulsion with power supply external to the vehicle using ac induction motors fed from ac supply lines polyphase motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M1/00Power supply lines for contact with collector on vehicle
    • B60M1/36Single contact pieces along the line for power supply
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/10Driver interactions by alarm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/16Driver interactions by display
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/12Electric charging stations

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electric Cable Arrangement Between Relatively Moving Parts (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Description

本発明は、床面上に位置した自走する電気製品である床上物体に対して、コードレスに電力を供給するコードレス電力供給方法に関するものである。   The present invention relates to a cordless power supply method for supplying power in a cordless manner to an object on the floor, which is a self-propelled electric product located on the floor surface.

自動電気掃除機、ロボット等の自走移動する移動電気製品への電力の供給は、壁に設けたコンセントと電気製品とをケーブルで接続することにより達成されるが、このため電気製品の移動できる範囲は、このケーブルの長さで制限されてしまい、フレキシブルに模様替えを行うことができず、かつ移動電気製品に必ず付帯するケーブルが、時として取扱いおよび外観体裁の邪魔となる、と云う不満があった。   Power supply to self-propelled mobile electrical appliances such as automatic vacuum cleaners and robots can be achieved by connecting the electrical outlet with a wall outlet using a cable. The range is limited by the length of this cable, and there is a complaint that it cannot be flexibly redesigned, and that the cable that always comes with mobile electrical products sometimes interferes with handling and appearance. there were.

また、ケーブルを設けることなく、バッテリーを電源とする移動電気製品は、搭載したバッテリーが重くかつ嵩張るため、その小型化、軽量化に、満足し得ない限界がある、と云う不満があった。   In addition, mobile electric products that use a battery as a power source without providing a cable have been unsatisfactory because the mounted battery is heavy and bulky, and there is an unsatisfactory limit in reducing the size and weight.

この不満を解消するものとして、床面に、多数の電極板を所定間隔にて配設すると共に、この電極板の各々を交互に極性を変えて電源に接続し、床面上の電気製品に、相互に絶縁された複数の電極子を設け、この電極子は、一部の電極子が一方の極性の電極板に接触し、同時に他の一部の電極子が他方の極性の電極板に接触可能に配置し、1つの電極子が極性を異にする2枚の電極板に同時に接触しないように、電極板相互の間隔を電極子の接触範囲より大きく設けて構成して、床面上の電気製品に、ワイヤレスで電力を供給することのできる床が開示されている。
特公平2−16090号公報
In order to eliminate this dissatisfaction, a large number of electrode plates are arranged at predetermined intervals on the floor, and each of these electrode plates is alternately changed in polarity and connected to a power source so that the electrical products on the floor can be used. A plurality of electrode elements insulated from each other are provided, and in this electrode element, some electrode elements are in contact with one polarity electrode plate, and at the same time, some other electrode elements are in contact with the other polarity electrode plate. Arranged so that the distance between the electrode plates is larger than the contact range of the electrodes so that one electrode does not contact two electrode plates of different polarities at the same time. A floor capable of wirelessly supplying power to electrical appliances is disclosed.
Japanese Patent Publication No.2-160990

しかしながら、上記した従来技術にあっては、床面に配設された多数の電極板は、電源に接続された状態のままであるので、目的とする電気製品とは別の床面上の他の物品により、漏電や短絡事故の発生する恐れがあるだけではなく、そのままでは人が感電する危険があるので、一般の家庭やオフィスで使用することはできない、と云う問題があった。   However, in the above-described prior art, a large number of electrode plates arranged on the floor surface remain connected to the power source, and therefore other than the target electrical product on the floor surface. In addition to the risk of electrical leakage and short circuit accidents, there is a risk that humans may get an electric shock as it is, and there is a problem that it cannot be used in ordinary homes or offices.

また、床面に配設された電極板と、床上物体に設けた電極との位置関係を、床上物体の移動に関係なく、一定範囲内に保つ必要があることから、極めて多数の電極板を、床面に一定間隔および一定配列で配置しなければならず、このため電力供給床の製造価格が、極めて高いものとなる、と云う問題があった。   In addition, since it is necessary to keep the positional relationship between the electrode plate disposed on the floor surface and the electrode provided on the object on the floor within a certain range regardless of the movement of the object on the floor, an extremely large number of electrode plates are provided. However, it has to be arranged on the floor surface at regular intervals and in a regular arrangement, which causes a problem that the production price of the power supply floor becomes extremely high.

そこで、本発明は、上記した従来技術における問題点を解消すべく創案されたもので、床面に多数配設された電極板(送電電極)の電源への接続を、給電を必要とする床面上の電気製品である床上物体の電極子(受電電極)との接触もしくは接近により与えられる給電要求信号に従って達成し、また床上物体に送電電極の位置を認識させることを技術的課題とし、もって漏電や短絡事故さらには感電の恐れのない、高い安全性で床上物体にコードレスで電力を供給すると共に、送電電極を、必要とする箇所に、所望する一定の配列で配設することにより、その数を少なくして、電力供給床を、構造が簡単で安価に製造することができるものとすることを目的とする。   Therefore, the present invention was devised to solve the above-described problems in the prior art, and the connection to the power source of a large number of electrode plates (power transmission electrodes) arranged on the floor surface is required for power supply. Achieved according to the power supply request signal given by contact with or approaching the electrode element (receiving electrode) of the object on the floor, which is an electrical product on the surface, and making the object on the floor recognize the position of the power transmission electrode By supplying cordless power to objects on the floor with high safety and without fear of electric leakage, short circuit accidents, or electric shock, and by arranging the power transmission electrodes in the required fixed arrangement at the required locations, The object is to reduce the number and to make the power supply floor simple in structure and inexpensive to manufacture.

上記技術的課題を解決する本発明の内、請求項1記載の発明の構成は、
床面に多数の送電電極を配設し、少なくとも電力線を有する床下配線を設け、送電電極毎に、この送電電極を床下配線に対して、個々に切換え可能に接続するセレクタを設け、各送電電極の間隔を、床面上に位置する床上物体に設けた一対の受電電極に対して、隣り合った送電電極が別々にそして同時に接触し、かつ一つの受電電極が、同時に二つの送電電極と接触しない値に設定し、セレクタを、送電電極と受電電極との接触もしくは接近により、床上物体から与えられる給電要求信号に従って、内蔵した切換え接点を切替えて、受電電極と接触もしくは接近している送電電極を電力線に接続するものとした電力供給床から、床面を自走する床上物体に電力を供給するコードレス電力供給方法であること、
搭載した蓄電回路に蓄えた電力により負荷の一部であるモータを稼動させて自走する床上物体にセンサーを設け、このセンサーの検知信号から目的とする送電電極の位置を検出しながら床上物体を移動させること、
組合せが選ばれた一対の送電電極に受電電極を接触もしくは接近させて、床上物体からセレクタに給電要求信号を送り、セレクタを給電要求信号の受信によりオン状態とし、これにより送電電極と電力線とを接続して、電力線から、床上物体の負荷に電力を供給すると共に、蓄電回路に充電電力を供給すること、
セレクタに給電要求信号の受信が無くなったならば、セレクタをオフ状態として、送電電極と電力線との接続を遮断すること、
にある。
Among the present invention for solving the above technical problems, the configuration of the invention according to claim 1 is:
Arranged a number of transmission electrodes on the floor, provided with underfloor wiring having at least a power line, for each transmission electrodes, the transmission electrodes relative underfloor wiring, provided with a selector for individually connected switchably, each transmission With respect to a pair of power receiving electrodes provided on an object on the floor located on the floor, the distance between the electrodes is such that adjacent power transmitting electrodes are in contact with each other separately and simultaneously, and one power receiving electrode is simultaneously connected to two power transmitting electrodes. Set to a value that does not contact, and the selector switches the built-in switching contact according to the power supply request signal given from the object on the floor by the contact or approach between the power transmission electrode and the power reception electrode, and power transmission that is in contact with or close to the power reception electrode A cordless power supply method for supplying power to an object on the floor that is self-propelled on the floor surface from a power supply floor in which electrodes are connected to a power line;
A sensor is installed on the object on the floor that runs by operating the motor that is part of the load with the electric power stored in the installed storage circuit, and the object on the floor is detected while detecting the position of the target power transmission electrode from the detection signal of this sensor. Moving,
The power receiving electrode is brought into contact with or close to the pair of power transmitting electrodes selected for the combination , a power supply request signal is sent from the object on the floor to the selector, and the selector is turned on by receiving the power supply request signal, thereby connecting the power transmitting electrode and the power line. Connect and supply power from the power line to the load of the object on the floor and supply charging power to the storage circuit,
If the selector no longer receives the power supply request signal, turn off the selector and disconnect the connection between the power transmission electrode and the power line.
It is in.

この請求項1記載の発明において、各送電電極は、床面上に床上物体が位置して、その受電電極を接触もしくは接近させ、かつ給電要求信号を送出しない限り、電線と接続されないので、等しくグランド電位となっており、このため床上物体以外の物品が床面に置かれて接触したとしても、漏電および短絡を引き起こすことはなく、ましてや人が接触しても感電することは全くない。 In the invention as claimed in claim 1, wherein each power transmission electrodes floor object on the floor surface is located, the power receiving electrode contact or to close, and unless sends a power supply request signal, since it is not connected to the power line Even if an object other than an object on the floor is in contact with the floor surface, it will not cause an electric leakage or short circuit, and even if a person touches it, there will be no electric shock at all. .

各送電電極は、その間隔を、床上物体の一対の受電電極に対して、隣り合った送電電極が別々にそして同時に接触し、かつ一つの受電電極が、同時に二つの送電電極と接触しない値に設定しているので、複数の送電電極が単一の受電電極により短絡されることなく、必ず一対の送電電極と受電電極とが、一対一で同時に接触することになり、床上物体に対する安全で確実な給電を達成する。   Each power transmission electrode has a distance between a pair of power receiving electrodes of the object on the floor, such that adjacent power transmitting electrodes are in contact with each other separately and simultaneously, and one power receiving electrode is not in contact with two power transmitting electrodes at the same time. Because it is set, a plurality of power transmitting electrodes are not short-circuited by a single power receiving electrode, but a pair of power transmitting electrodes and power receiving electrodes are always in one-to-one contact at the same time. To achieve a stable power supply.

床上物体は、必要とする送電電極を選択しながら走行移動するので、不要な場所および領域に送電電極を配置する必要がなく、その分、電力供給床の構造が単純化することになる。   Since the object on the floor travels while selecting the necessary power transmission electrode, it is not necessary to arrange the power transmission electrode in an unnecessary place and region, and the structure of the power supply floor is simplified accordingly.

床上物体は、蓄電回路を有し、この蓄電回路の電力により自走移動可能となっているので、その受電電極の送電電極との接続を、断続的なものとすることが許容されることになり、これにより設置しなければならない送電電極の数を少なくすることが可能となり、その分、電力供給床の構造を簡単化できる。   Since the object on the floor has a power storage circuit and is capable of self-propelled movement by the power of this power storage circuit, it is allowed to intermittently connect the power reception electrode to the power transmission electrode. As a result, the number of power transmission electrodes that must be installed can be reduced, and the structure of the power supply floor can be simplified accordingly.

請求項2記載の発明は、請求項1記載の発明における給電要求信号を、コード信号に特定したものである。   According to the second aspect of the present invention, the power supply request signal in the first aspect of the invention is specified as a code signal.

この請求項2記載の発明において、給電要求信号がコード信号であるので、セレクタは入力されてきた給電要求信号のコードを、予め記録されているコードと照合し、適合している場合にだけ、送電電極を電力線に接続するので、送電電極が妄りに電力線に接続されることがなく、これにより電力供給床の安全性が飛躍的に高められる。   In the invention according to claim 2, since the power supply request signal is a code signal, the selector compares the code of the input power supply request signal with a pre-recorded code, and only when it is compatible. Since the power transmission electrode is connected to the power line, the power transmission electrode is not unreasonably connected to the power line, thereby dramatically improving the safety of the power supply floor.

請求項3記載の発明は、請求項1記載の発明における給電要求信号を、直流電流信号に特定したものである。   According to a third aspect of the invention, the power supply request signal in the first aspect of the invention is specified as a direct current signal.

この請求項3記載の発明において、給電要求信号が単純な直流電流信号であるので、セレクタは、単に直流電流を検出することができる構成であれば良く、このためセレクタを簡単で安価なものとすることができる。   In the third aspect of the present invention, since the power supply request signal is a simple DC current signal, the selector only needs to have a configuration capable of simply detecting a DC current. Therefore, the selector is simple and inexpensive. can do.

請求項4記載の発明は、請求項1、2または3記載の発明の構成に、センサーの検知信号から目的とする送電電極の位置を検出する手段を、センサーの検知信号から、目的とする送電電極に対する方向と距離を算出して検出するものとした、ことを加えたものである。   According to a fourth aspect of the present invention, in the configuration of the first, second, or third aspect, the means for detecting the position of the target power transmission electrode from the detection signal of the sensor, It is added that the direction and distance to the electrode are calculated and detected.

この請求項4記載の発明において、床上物体による目的とする送電電極の位置検出は、センサーの検知信号を直接位置信号として処理するので、位置検出のための信号処理が簡単であり、これにより床上物体における送電電極の位置検出のための演算部分の構成を簡単なものとすることができる。   In the invention according to claim 4, since the position detection of the target power transmission electrode by the object on the floor processes the detection signal of the sensor as a direct position signal, the signal processing for position detection is simple, thereby The configuration of the calculation part for detecting the position of the power transmission electrode in the object can be simplified.

請求項5記載の発明は、請求項1、2または3記載の発明の構成に、センサーの検知信号から目的とする送電電極の位置を検出する手段を、センサーの検知信号から送電電極の配列パターンを作成し、この作成した配列パターンと予め記録した送電電極の配列パターンとを比較して、目的とする送電電極の位置を計算して検出するものとした、ことを加えたものである。   According to a fifth aspect of the invention, in the configuration of the first, second or third aspect of the invention, means for detecting the position of the target power transmission electrode from the detection signal of the sensor is provided. Is added, and the created array pattern is compared with the previously recorded array pattern of power transmission electrodes, and the position of the target power transmission electrode is calculated and detected.

この請求項5記載の発明において、床上物体による目的とする送電電極の位置検出は、センサーの検知信号に従って作成した送電電極の配列パターンと、予め記録した送電電極の配列パターンとの比較から計算して達成するものであるので、その実体は予測検出となり、このため蓄電回路の電力により走行移動できる範囲内において、床上物体の走行移動に有利である送電電極を、目的とする送電電極として選択して決定することが可能となる。   In this invention, the position detection of the target power transmission electrode by the object on the floor is calculated from a comparison between the power transmission electrode array pattern created according to the sensor detection signal and the power transmission electrode array pattern recorded in advance. As a result, the entity becomes predictive detection.For this reason, the power transmission electrode that is advantageous for the traveling movement of the object on the floor is selected as the target power transmission electrode within the range in which the traveling movement can be performed by the power of the power storage circuit. Can be determined.

請求項6記載の発明は、請求項1、2、3、4または5記載の発明の構成に、床上物体を、搭載したエネルギー放射体から報知信号を前方に放射しながら自走させ、エネルギー受容体で報知信号を受信したセレクタは、電力線からアクティブ回路に電力を供給して、送電電極と同位置に取付けたアクティブ素子を稼動させて接近信号を放射し、床上物体のセンサーは、接近信号を受信して検知信号を出力すること、を加えたものである。   According to a sixth aspect of the present invention, in the configuration of the first, second, third, fourth, or fifth aspect, an object on the floor is caused to self-run while emitting a notification signal forward from the mounted energy radiator, and energy reception is performed. The selector that receives the notification signal by the body supplies power from the power line to the active circuit, operates the active element installed at the same position as the power transmission electrode and emits an approach signal, and the sensor of the object on the floor outputs the approach signal. Receiving and outputting a detection signal.

この請求項6記載の発明においては、自走移動している床上物体からの報知信号の受信により、この床上物体の前方、すなわち移動方向側に位置している送電電極が、自己の存在を顕示する接近信号を放射するので、送電電極側は、床上物体が接近した時にだけ電力を消費することになり、これにより電力供給床の消費電力はきわめて小さいものとなる。   In the invention according to claim 6, by receiving a notification signal from a floor object that is moving self-propelled, the power transmission electrode located in front of the floor object, that is, on the moving direction side, reveals the existence of self. Therefore, the power transmission electrode side consumes power only when an object on the floor approaches, so that the power consumption of the power supply floor becomes extremely small.

また、送電電極側からの接近信号は、床上物体からの報知信号の受信に従って放射されるもの、すなわち床上物体が送電電極に接近した状態で放射されるものであるので、周囲に電波障害や電磁障害等の悪影響を与える恐れのない状態で、床上物体に安定して確実に受信される。   In addition, the approach signal from the power transmission electrode side is radiated in response to the reception of the notification signal from the object on the floor, that is, the signal radiated when the object on the floor is close to the power transmission electrode. The object on the floor is stably and reliably received in a state where there is no possibility of adverse effects such as obstacles.

請求項7記載の発明は、請求項1、2、3、4または5記載の発明の構成に、セレクタに、送電電極と同位置に取付けた永久磁石をアクティブ素子として設け、このアクティブ素子が送電電極の周囲に形成する直流磁場を接近信号とし、床上物体の複数のピックアップコイルで構成されるセンサーは、接近信号を受信して検知信号を出力すること、を加えたものである。   According to a seventh aspect of the invention, in the configuration of the first, second, third, fourth, or fifth aspect of the invention, the selector is provided with a permanent magnet attached at the same position as the power transmission electrode, and the active element transmits power. A sensor composed of a plurality of pickup coils of an object on the floor uses a direct-current magnetic field formed around the electrodes as an approach signal, and adds a sensor signal and outputs a detection signal.

この請求項7記載の発明においては、接近信号を、送電電極に取付けた永久磁石が形成する直流磁場としたので、接近信号を放射するための電力が不要となり、これにより待機中の電力供給床が電力を消費することは全くない。   In the seventh aspect of the present invention, since the approach signal is a DC magnetic field formed by the permanent magnet attached to the power transmission electrode, no power is required to radiate the approach signal, thereby waiting the power supply floor. Does not consume power at all.

また、電力供給床は、各送電電極に永久磁石を組付けるだけで、報知信号を受信するエネルギー受容体や、アクティブ素子である永久磁石の動作を制御するアクティブ回路が不要であり、同様に、床上物体は、報知信号を放射する必要がないので、エネルギー放射体が不要となり、その分、全体構成が簡単となる。   In addition, the power supply floor does not require an energy receiver that receives a notification signal or an active circuit that controls the operation of the permanent magnet that is an active element, by simply assembling a permanent magnet to each power transmission electrode. Since the object on the floor does not need to emit a notification signal, an energy radiator is not required, and the overall configuration is simplified correspondingly.

請求項8記載の発明は、請求項1、2、3、4または5記載の発明の構成に、床上物体のセンサーは、送電電極を直接センシングして検知信号を出力すること、を加えたものである。   The invention according to claim 8 is obtained by adding, to the configuration of the invention according to claim 1, 2, 3, 4 or 5, that the sensor of the object on the floor directly senses the power transmission electrode and outputs a detection signal. It is.

この請求項8記載の発明においては、床上物体側が、送電電極をセンサーで直接センシングするので、電力供給床は、エネルギー受容体、アクティブ回路そしてアクティブ素子から成る接近信号を放射するための構成部分が不要となり、その分、構成が簡単となると共に、床上物体に電力を供給しているとき以外は、電力を消費することは全くない。   In the invention according to claim 8, since the object on the floor directly senses the power transmission electrode with the sensor, the power supply floor has a component for emitting an approach signal composed of an energy receiver, an active circuit and an active element. It becomes unnecessary, and the configuration is simplified accordingly, and no power is consumed except when power is supplied to the object on the floor.

請求項9記載の発明は、請求項8記載の発明の構成に、センサーによる送電電極のセンシングを、イメージ素子による画像イメージ、床面の導電率パターン分布を測定する熊手状プローブおよび渦電流による金属探知コイルアレイによる導電率イメージ、超音波素子のアレイによる音響反射率イメージの何れか一つにより行うものとしたこと、を加えたものである。   A ninth aspect of the invention is the same as that of the eighth aspect of the invention, in which the power transmission electrode is sensed by the sensor, the image by the image element, the rake probe for measuring the conductivity pattern distribution on the floor, and the metal by eddy current. This is in addition to the fact that one of the conductivity image by the detection coil array and the acoustic reflectance image by the array of ultrasonic elements is used.

この請求項9記載の発明においては、画像イメージの場合は、画像解析により、また導電率イメージの場合は、導電率分布を解析することにより、そして音響反射率イメージの場合は音響反射率を解析することにより、送電電極の位置を検出する。   In the invention described in claim 9, in the case of an image, the image analysis is performed. In the case of a conductivity image, the conductivity distribution is analyzed. In the case of an acoustic reflectance image, the acoustic reflectance is analyzed. By doing so, the position of the power transmission electrode is detected.

本発明は、上記した構成としたので、以下に示す効果を奏する。
請求項1記載の発明にあっては、各送電電極は、床上物体に電力を供給している時以外は、等しくグランド電位となっているので、床上物体以外の物品が接触したとしても、漏電および短絡を引き起こすことはなく、また受電電極で二つの送電電極が短絡されることもなく、ましてや人が接触しても感電することは全くなく、きわめて高い安全性を安定して発揮する。
Since the present invention has the above-described configuration, the following effects can be obtained.
In the invention according to claim 1, each power transmission electrode is equally ground potential except when power is supplied to the object on the floor. In addition, no short circuit is caused, and the two power transmission electrodes are not short-circuited by the power receiving electrode. Furthermore, no electric shock is caused even if a person touches, and extremely high safety is stably exhibited.

床上物体は、蓄電回路に蓄えた電力による自走と、センサーによる送電電極の位置の検出とにより、受電電極の送電電極への接触を確実にかつ正確に達成して、必要とする給電を確実に得ることができるので、床上物体の安全で安定した運用を得ることができる。   The object on the floor achieves contact with the power transmission electrode reliably and accurately by self-running with the power stored in the power storage circuit and detection of the position of the power transmission electrode by the sensor, ensuring the necessary power supply Therefore, safe and stable operation of objects on the floor can be obtained.

床上物体は、必要とする送電電極を選択しながら走行移動するので、必要とする場所および領域だけに送電電極を配置すればよく、またその受電電極の送電電極との接続を、断続的なものとすることが許容されるので、設置しなければならない送電電極の数を少なくすることが可能であり、その分、電力供給床の構造が単純化して、電力供給床の製造経費の大幅な削減を得ることができる。   Since the object on the floor travels while selecting the required power transmission electrode, it is only necessary to arrange the power transmission electrode only in the required place and area, and the connection of the power reception electrode with the power transmission electrode is intermittent. Therefore, it is possible to reduce the number of transmission electrodes that must be installed, thereby simplifying the structure of the power supply floor and greatly reducing the manufacturing cost of the power supply floor. Can be obtained.

床上物体による目的とする送電電極の検出は、予測検出であるので、蓄電回路の電力により走行移動できる範囲内において、床上物体の走行移動に有利である送電電極を、目的とする送電電極として選択決定することが可能であり、これにより床上物体を安全にそして円滑に走行移動させることができる。   Since the detection of the target power transmission electrode by the object on the floor is predictive detection, the power transmission electrode that is advantageous for the traveling movement of the object on the floor is selected as the target power transmission electrode within the range that can be traveled by the power of the power storage circuit. Can be determined, which allows the object on the floor to travel safely and smoothly.

請求項2記載の発明にあっては、電力供給床の安全性が飛躍的に高められるので、この電力供給床を人間の日常的な行動領域内に使用することが可能となる。   In the invention according to claim 2, since the safety of the power supply floor is dramatically improved, it is possible to use the power supply floor in a daily human action area.

請求項3記載の発明にあっては、セレクタを簡単で安価なものとすることができるので、電力供給床そのものを、簡単にかつ安価に提供することができる。   In the invention described in claim 3, since the selector can be made simple and inexpensive, the power supply floor itself can be provided easily and inexpensively.

請求項4記載の発明にあっては、送電電極の位置検出のための信号処理が簡単であり、その分、床上物体における送電電極の位置検出のための演算部分を、簡単にかつ安価に構成することが可能となる。   In the invention of claim 4, the signal processing for detecting the position of the power transmission electrode is simple, and accordingly, the calculation part for detecting the position of the power transmission electrode in the object on the floor is configured easily and inexpensively. It becomes possible to do.

請求項5記載の発明にあっては、床上物体は、必要とする送電電極を、この送電電極の記憶した配列パターンに従って検出するので、最適な送電電極を予測選択することができ、これにより床上物体を、より効率的に移動させることが可能となる。   In the invention according to claim 5, since the object on the floor detects the necessary power transmission electrode in accordance with the stored arrangement pattern of the power transmission electrode, the optimal power transmission electrode can be predicted and selected. It becomes possible to move the object more efficiently.

請求項6記載の発明にあっては、各送電電極が、床上物体が接近してきた時にだけ接近信号を出力すれば良いので、電力供給床の消費電力を充分に小さく抑えることができる。   According to the sixth aspect of the present invention, each power transmission electrode needs to output an approach signal only when an object on the floor approaches, so that the power consumption of the power supply floor can be sufficiently reduced.

また、送電電極側からの接近信号は、床上物体からの報知信号の受信に従って放射されるものであるので、周囲に電波障害や電磁障害等の悪影響を与える恐れのない状態で、安定して確実に受信され、充分な安全性が確保される。   Also, since the approach signal from the power transmission electrode side is radiated in response to the reception of the notification signal from the object on the floor, it is stable and reliable in a state where there is no possibility of adverse effects such as radio interference and electromagnetic interference around the surroundings. To ensure sufficient safety.

請求項7記載の発明にあっては、接近信号を永久磁石が形成する直流磁場としたので、電力供給床における消費電力を大幅に低減させることができると共に、電力供給床自体の構造を簡単化することができ、同様に床上物体の構造も簡単化することができる。   In the seventh aspect of the invention, since the approach signal is a DC magnetic field formed by a permanent magnet, power consumption in the power supply floor can be greatly reduced and the structure of the power supply floor itself is simplified. Similarly, the structure of the object on the floor can be simplified.

請求項8記載の発明にあっては、電力供給床側に、送電電極の存在を顕示する機能部分を設ける必要がないと共に、床上物体側も、電力供給床からの信号を受信する機能部分を設ける必要がないのでは、設備全体の構成を大幅に簡略化することができ、実施に要する経費を充分に低減させることができる。   In the invention described in claim 8, it is not necessary to provide a functional part that reveals the presence of the power transmission electrode on the power supply floor side, and a functional part that receives a signal from the power supply floor is also provided on the object side on the floor. If it is not necessary to provide it, the configuration of the entire facility can be greatly simplified, and the cost required for implementation can be sufficiently reduced.

請求項9記載の発明にあっては、センサーによる送電電極のセンシングを、画像イメージで行う場合は、センサーを構成が簡単で安価なものとすることができ、また導電率イメージで行う場合には、事前に送電電極の電力線との接続の有無を検出することができ、高い安全性を得ることができ、さらに音響反射率イメージで行う場合には、硬さの違いから送電電極を検出することができるので、床面がカーペット等の柔らかい床材料で構成された場合に有効に機能する。   In the invention of claim 9, when sensing the power transmission electrode by a sensor using an image, the sensor can be configured with a simple and inexpensive structure. , The presence or absence of connection with the power line of the power transmission electrode can be detected in advance, high safety can be obtained, and when performing with an acoustic reflectance image, the power transmission electrode should be detected from the difference in hardness Therefore, it functions effectively when the floor surface is made of a soft floor material such as carpet.

以下、本発明の実施の態様を、図面を参照しながら説明する。
図1は、本発明の基本的な実施態様の全体構成例を示すもので、床面2に多数の送電電極3を一定配列パターンで配置して設け、各送電電極3を、セレクタ4により、電源18に接続された電力線16を有する床下配線15に断続可能に接続する電力供給床1と、この電力供給床1の床面2上に、電力により自走移動可能に載置され、送電電極3に受電電極24を接触させて給電される床上物体19との組合せで構成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows an example of the overall configuration of a basic embodiment of the present invention. A large number of power transmission electrodes 3 are arranged on a floor 2 in a fixed arrangement pattern, and each power transmission electrode 3 is provided by a selector 4. A power supply floor 1 connected to an underfloor wiring 15 having a power line 16 connected to a power supply 18 in an intermittent manner, and a power supply floor 1 mounted on the floor surface 2 of the power supply floor 1 so as to be capable of self-propelled movement. 3 is configured in combination with the object 19 on the floor that is fed with the power receiving electrode 24 in contact therewith.

電力供給床1は、床面2に、例えば図2に示すように、一定間隔で行列配列となった、一定配列パターンで設けられた多数の導電材料製平円板状の送電電極3と、電力線16とグランド線17とから成る床下配線15と、各送電電極3を床下配線15に断続可能に接続する多数のセレクタ4とから構成されている。   The power supply floor 1 has, on the floor surface 2, for example, as shown in FIG. 2, a large number of conductive material flat disk-shaped power transmission electrodes 3 provided in a fixed arrangement pattern in a matrix arrangement at fixed intervals, An underfloor wiring 15 composed of a power line 16 and a ground line 17 and a large number of selectors 4 that connect each power transmission electrode 3 to the underfloor wiring 15 in an intermittent manner.

各セレクタ4は、送電電極3と床下配線15との接続を断続する切替え接点5と、床上物体19から送電電極3に送信された給電要求信号H3を、検出子11で検出する信号検出部7と、この信号検出部7からの信号に従って、切替え接点5の切替え状態を切替え設定するリレードライブ6の動作を制御する制御回路8とを有している。   Each selector 4 includes a switching contact 5 that intermittently connects the power transmission electrode 3 and the underfloor wiring 15, and a signal detection unit 7 that detects the power supply request signal H <b> 3 transmitted from the floor object 19 to the power transmission electrode 3 with the detector 11. And a control circuit 8 that controls the operation of the relay drive 6 that switches and sets the switching state of the switching contact 5 in accordance with a signal from the signal detection unit 7.

また、セレクタ4には、床上物体19からの報知信号H1を受信するためのエネルギー受容体12が設けられていると共に、送電電極3に取付けた、接近信号H2を放射するアクティブ素子13を稼動させるアクティブ回路14が設けられており、エネルギー受容体12は、その受信信号を制御回路8に入力させ、アクティブ回路14は、制御回路8により、その動作が制御されるように設定されている。   In addition, the selector 4 is provided with an energy receiver 12 for receiving the notification signal H1 from the object 19 on the floor, and operates the active element 13 that emits the approach signal H2 attached to the power transmission electrode 3. An active circuit 14 is provided, the energy receiver 12 inputs the received signal to the control circuit 8, and the active circuit 14 is set so that its operation is controlled by the control circuit 8.

すなわち、セレクタ4は、床上物体19からの給電要求信号H3に従って、送電電極3の床下配線15に対する断続を切替え制御するのを基本的動作とし、これに加えて、アクティブ素子13を稼動させて、床上物体19に接近信号H2を放射する動作、さらにはエネルギー受容体12で報知信号H1を受信する動作を行うものとなっている。   That is, the selector 4 performs a basic operation of switching and controlling the intermittent connection of the power transmission electrode 3 to the underfloor wiring 15 according to the power supply request signal H3 from the object 19 on the floor, and in addition to this, the active element 13 is operated, The operation of radiating the approach signal H2 to the object 19 on the floor and the operation of receiving the notification signal H1 by the energy receiver 12 are performed.

床上物体19は、床面2を車輪35により走行する本体20に、モータを含む負荷21と、電気二重層コンデンサや小型バッテリーで構成される蓄電回路22と、電力供給床1から電力の供給を受けるべく、送電電極3と接触可能に設けられた受電電極24と、給電要求信号発生回路26と、接近信号H2を感知する等して送電電極3を検出するセンサー33と、報知信号H1を放射するエネルギー放射体34と、そして各構成部分の動きを制御する制御装置25とを有している。   An object 19 on the floor is supplied with power from a main body 20 that travels on a floor surface 2 by wheels 35, a load 21 including a motor, a storage circuit 22 including an electric double layer capacitor and a small battery, and a power supply floor 1. In order to receive, the power receiving electrode 24 provided so as to be in contact with the power transmitting electrode 3, the power supply request signal generating circuit 26, the sensor 33 for detecting the power transmitting electrode 3 by sensing the approach signal H2 and the like, and the notification signal H1 are emitted. Energy radiator 34, and a control device 25 for controlling the movement of each component.

受電電極24は、本体20の下面に、隣り合った二つの送電電極3に対して、別々にかつ同時に接触する位置関係で、二つ設けられており、この受電電極24の大きさは、二つの送電電極3間を短絡することのないものとなっている。   Two power receiving electrodes 24 are provided on the lower surface of the main body 20 in contact with two adjacent power transmitting electrodes 3 separately and simultaneously. The size of the power receiving electrode 24 is two. The two power transmission electrodes 3 are not short-circuited.

負荷21と蓄電回路22は、二つの受電電極24間に並列に接続されているが、この負荷21と蓄電回路22との並列回路と受電電極24との間には、整流回路23を設けるのが、実施上便利である。   The load 21 and the power storage circuit 22 are connected in parallel between the two power receiving electrodes 24. A rectifier circuit 23 is provided between the power receiving electrode 24 and the parallel circuit of the load 21 and the power storage circuit 22. However, it is convenient for implementation.

また、両受電電極24間には、給電要求信号発生回路26が設けられていて、受電電極24を介して、セレクタ4に給電要求信号H3を発信している。   A power supply request signal generation circuit 26 is provided between the power receiving electrodes 24, and transmits a power supply request signal H <b> 3 to the selector 4 through the power receiving electrode 24.

本体20の前面には、電力供給床1の各セレクタ4に、床上物体19が近づいてきたことを知らせる報知信号H1を放射するエネルギー放射体34と、アクティブ素子13からの接近信号H2を感知する等して送電電極3を検出するセンサー33とが、取付けられている。   An energy radiator 34 that emits a notification signal H1 that informs each selector 4 of the power supply floor 1 that the object 19 on the floor is approaching, and an approach signal H2 from the active element 13 are detected on the front surface of the main body 20. A sensor 33 for detecting the power transmission electrode 3 is attached.

モータを含めた負荷21の稼動動作、蓄電回路22の負荷21への電力供給動作、給電要求信号発生回路26の信号発生動作、エネルギー放射体34の信号放射動作、そしてセンサー33の信号受信動作等の検出動作の全ては、制御装置25で制御されている。   Operation operation of the load 21 including the motor, power supply operation to the load 21 of the storage circuit 22, signal generation operation of the power supply request signal generation circuit 26, signal emission operation of the energy radiator 34, signal reception operation of the sensor 33, etc. All of the detection operations are controlled by the control device 25.

センサー33の検知信号は、演算部32で位置信号として演算処理されて、直接送電電極3に対する方向と距離とを算出して、目的とする送電電極3の位置を決定するか、または送電電極3の配列パターンに作成され、制御装置25で、この送電電極3の作成した配列パターンと、予め記録した配列パターンとを比較して、受電電極24を接触させるための、目的とする送電電極3の位置を予測決定する。   The detection signal of the sensor 33 is arithmetically processed as a position signal by the arithmetic unit 32, and the direction and distance to the direct power transmission electrode 3 are calculated to determine the position of the target power transmission electrode 3, or the power transmission electrode 3 The control device 25 compares the array pattern created by the power transmission electrode 3 with the previously recorded array pattern and makes the power receiving electrode 24 contact with the target power transmission electrode 3. Predict the position.

図3は、本発明の基本的な動作態様を説明するフローチャート図で、スタートであるステップs1にあっては、床上物体19の蓄電回路22には、電力が蓄えられた状態となっている。   FIG. 3 is a flowchart for explaining the basic operation mode of the present invention. In step s1, which is the start, power is stored in the power storage circuit 22 of the object 19 on the floor.

この状態から、ステップs2においては、床上物体19は、蓄電回路22の電力により、負荷21のモータを駆動させて、床面2を自走移動する。   From this state, in step s2, the on-floor object 19 drives the motor of the load 21 by the electric power of the power storage circuit 22 and moves on the floor 2 in a free-running manner.

床上物体19は、ステップs3において、目的とする送電電極3の位置を検出するのであるが、このステップs3における送電電極3の位置検出手法としては、ステップs3aによる検出手法と、ステップs3b1とステップs3b2との組合わせによる検出手法とがある。   The object on the floor 19 detects the position of the target power transmission electrode 3 in step s3. As a method for detecting the position of the power transmission electrode 3 in step s3, the detection method in step s3a, steps s3b1, and steps s3b2 are performed. And a detection method using a combination.

ステップs3aにおいては、センサー33の検知信号から、目的とする送電電極3に対する方向と距離とを算出し、これにより目的とする送電電極3の位置を検出する。   In step s3a, the direction and distance with respect to the target power transmission electrode 3 are calculated from the detection signal of the sensor 33, and thereby the position of the target power transmission electrode 3 is detected.

ステップs3b1とステップs3b2との組合わせにおいては、ステップs3b1で、センサー33の検知信号から、送電電極3の配列パターンを作成し、次いでステップs3b2において、送電電極3の、作成した配列パターンと予め記録した配列パターンとを比較して、目的とする送電電極3の位置を計算により検出する。   In the combination of step s3b1 and step s3b2, in step s3b1, an array pattern of the power transmission electrode 3 is created from the detection signal of the sensor 33, and then in step s3b2, the created array pattern of the power transmission electrode 3 is recorded in advance. The position of the target power transmission electrode 3 is detected by comparison with the arranged pattern.

床上物体19は、ステップs4で、その受電電極24を目的とする送電電極3に接触もしくは接近させたならば、ステップs5で、目的とする送電電極3に接続しているセレクタ4に給電要求信号H3を送信する。   When the object 19 on the floor makes the power receiving electrode 24 contact or approach the target power transmission electrode 3 in step s4, a power supply request signal is sent to the selector 4 connected to the target power transmission electrode 3 in step s5. H3 is transmitted.

ステップs6において、セレクタ4は、給電要求信号H3を解読して、適合していると判断したならば、送電電極3と電力線16とを結合して、床上物体19に電力を供給する。   In step s 6, the selector 4 decodes the power supply request signal H 3 and determines that the power supply request signal H 3 is suitable. The selector 4 combines the power transmission electrode 3 and the power line 16 to supply power to the object 19 on the floor.

ステップs7で、床上物体19は、電力供給床1からの電力を負荷21に供給すると共に、この電力で蓄電回路22を充電する。   In step s7, the on-floor object 19 supplies power from the power supply floor 1 to the load 21 and charges the storage circuit 22 with this power.

ステップs8で、セレクタ4は、床上物体19からの給電要求信号H3の入力の有無をチェックし、給電要求信号H3の入力が有る場合には、ステップs6に戻り、電力の供給を継続し、給電要求信号H3の入力が無い場合には、ステップs9に進む。   In step s8, the selector 4 checks whether or not the power supply request signal H3 is input from the object 19 on the floor. If there is an input of the power supply request signal H3, the selector 4 returns to step s6 and continues to supply power. If the request signal H3 is not input, the process proceeds to step s9.

ステップs9においては、セレクタ4は、給電要求信号H3が無くなったことに従って、電力の供給を停止し、ステップs2に戻る。   In step s9, the selector 4 stops supplying power according to the absence of the power supply request signal H3, and returns to step s2.

すなわち、給電要求信号H3の入力が無くなったことは、床上物体19の自走移動により、送電電極3と受電電極24とが離反したことを意味しているので、床上物体19は、次の給電を受けるための動作を開始するのである。   That is, the absence of the input of the power supply request signal H3 means that the power transmitting electrode 3 and the power receiving electrode 24 are separated from each other due to the self-propelled movement of the object 19 on the floor. The action to receive is started.

以下、本発明の実施形態例を説明するが、各実施形態におけるフローチャートは、ステップs3を、ステップs3b1とステップs3b2の組合わせで構成した場合を例として示している。   Hereinafter, exemplary embodiments of the present invention will be described, but the flowchart in each embodiment shows an example in which step s3 is configured by a combination of step s3b1 and step s3b2.

図4は、本発明の第1の実施態様を示す簡略構成図で、電力供給床1は、エネルギー受容体12としてコイルを、またアクティブ素子13として発光ダイオードを使用しており、床上物体19は、センサー33としてカメラを、またエネルギー放射体34として電磁コイルを使用している。   FIG. 4 is a simplified configuration diagram showing the first embodiment of the present invention. The power supply floor 1 uses a coil as the energy receiver 12 and a light emitting diode as the active element 13. The sensor 33 is a camera, and the energy radiator 34 is an electromagnetic coil.

図5は、本発明の第1の実施態様の動作を説明するフローチャート図で、図3に示した基本フローチャートのステップs2とs3との間に、ステップs10からs12が挿入されると共に、ステップs9の後にステップs13を設けている。   FIG. 5 is a flowchart for explaining the operation of the first embodiment of the present invention. Steps s10 to s12 are inserted between steps s2 and s3 of the basic flowchart shown in FIG. Is followed by step s13.

ステップs10において、床上物体19は、エネルギー放射体34から報知信号H1を放射しながら自走移動する。   In step s10, the object 19 on the floor moves by itself while emitting the notification signal H1 from the energy radiator 34.

ステップs11において、セレクタ4は、エネルギー受容体12により報知信号H1を受信して、アクティブ回路14を作動させて、アクティブ素子13から光信号である接近信号H2を放射する。   In step s11, the selector 4 receives the notification signal H1 from the energy receiver 12, operates the active circuit 14, and emits an approach signal H2 that is an optical signal from the active element 13.

床上物体19は、ステップs12で、センサー33により接近信号H2を検知してから、ステップs3b1に進んで送電電極3の配列パターンを作成する。   The object 19 on the floor detects the approach signal H2 by the sensor 33 in step s12, and then proceeds to step s3b1 to create an array pattern of the power transmission electrodes 3.

また、ステップs9で床上物体19に対する給電を停止したセレクタ4は、ステップs13に移行して、送電電極3の電位をグランドレベルとし、安全性を確保する。   In addition, the selector 4 that stopped supplying power to the object 19 on the floor in step s9 proceeds to step s13, sets the potential of the power transmission electrode 3 to the ground level, and ensures safety.

図6は、本発明の第2の実施態様を示す簡略構成図で、電力供給床1は、電電極3の直下に永久磁石を使用したアクティブ素子13を配置して、直流磁場を接近信号H2として放射し、エネルギー受容体12およびアクティブ回路14を設けておらず、これに対して床上物体19は、センサー33として磁気センサー(接近信号H2が直流磁場であるため、フラックスゲート磁気センサー、アモルファス磁気センサー、回転コイル等が利用される)を設け、エネルギー放射体34を設けていない。 Figure 6 is a simplified schematic diagram showing a second embodiment of the present invention, the power supply floor 1, by arranging the active element 13 using a permanent magnet directly below the feed Denden electrode 3, close signal DC magnetic field The energy receptor 12 and the active circuit 14 are not provided, and the object on the floor 19 is a magnetic sensor as the sensor 33 (because the approach signal H2 is a DC magnetic field, a fluxgate magnetic sensor, amorphous A magnetic sensor, a rotating coil, etc. are used, and the energy radiator 34 is not provided.

図7は、本発明の第2の実施態様の動作を説明するフローチャート図で、図5に示した第1の実施態様の動作を説明するフローチャートにおけるステップs10からs12の代わりにステップs14とs15を挿入している。   FIG. 7 is a flowchart for explaining the operation of the second embodiment of the present invention. Steps s14 and s15 are substituted for steps s10 to s12 in the flowchart for explaining the operation of the first embodiment shown in FIG. Inserting.

ステップs14において、電力供給床1は、送電電極3の位置に永久磁石をアクティブ素子13として設け、この永久磁石であるアクティブ素子13から直流磁場を接近信号H2として、常時放射する。   In step s14, the power supply floor 1 provides a permanent magnet as an active element 13 at the position of the power transmission electrode 3, and constantly radiates a DC magnetic field as an approach signal H2 from the active element 13 which is a permanent magnet.

ステップs15において、床上物体19は、直流磁場である接近信号H2を、磁気センサーを使用したセンサー33で検知してから、ステップs3b1に進んで送電電極3の配列パターンを作成する。   In step s15, the on-floor object 19 detects the approach signal H2 that is a DC magnetic field by the sensor 33 using a magnetic sensor, and then proceeds to step s3b1 to create an array pattern of the power transmission electrodes 3.

図8は、本発明の第3の実施態様を示す簡略構成図で、電力供給床1は、エネルギー受容体12、アクティブ素子13そしてアクティブ回路14を設けておらず、これに対して床上物体19は、センサー33として、送電電極3を直接センシングするカメラを設け、エネルギー放射体34を設けていない。   FIG. 8 is a simplified configuration diagram showing a third embodiment of the present invention, and the power supply floor 1 is not provided with the energy receiver 12, the active element 13, and the active circuit 14, but on the other hand, the object 19 on the floor. The sensor 33 is provided with a camera that directly senses the power transmission electrode 3 and is not provided with the energy radiator 34.

図9は、本発明の第3の実施態様の動作を説明するフローチャート図で、図5に示した第1の実施態様の動作を説明するフローチャートにおけるステップs10からs12の代わりにステップs16を挿入している。   FIG. 9 is a flowchart for explaining the operation of the third embodiment of the present invention. In the flowchart for explaining the operation of the first embodiment shown in FIG. 5, step s16 is inserted instead of steps s10 to s12. ing.

ステップs16において、床上物体19は、センサー33であるカメラで、送電電極3を直接センシングして検知してから、ステップs3b1に進んで送電電極3の配列パターンを作成する。   In step s16, the on-floor object 19 is detected by directly sensing the power transmission electrode 3 with the camera as the sensor 33, and then the process proceeds to step s3b1 to create an array pattern of the power transmission electrode 3.

図10は、給電要求信号H3の送受信構成の第1の例を示すもので、セレクタ4は、送電電極3に、コイルを検出子11として取付けた信号検出部7を有しており、制御回路8内に、信号検出部7で検出された信号を復調する信号復調部9と、この信号復調部9で復調された信号のコードが、予め記録されたコードと一致するか否かを判断する信号照合部10を設けている。   FIG. 10 shows a first example of a transmission / reception configuration of the power supply request signal H3. The selector 4 includes a signal detection unit 7 in which a coil is attached as a detector 11 to the power transmission electrode 3, and a control circuit. 8, a signal demodulator 9 that demodulates the signal detected by the signal detector 7, and determines whether or not the code of the signal demodulated by the signal demodulator 9 matches a prerecorded code. A signal verification unit 10 is provided.

これに対し、床上物体19には、信号発生部29と、この信号発生部29からの信号を変調して、受電電極24に設けた発信コイルである信号発信部31から発信させる信号変調部30とを有する給電要求信号発生回路26が設けられている。   On the other hand, on the object 19 on the floor, a signal generating unit 29 and a signal modulating unit 30 that modulates a signal from the signal generating unit 29 and transmits the signal from a signal transmitting unit 31 that is a transmitting coil provided on the power receiving electrode 24. Is provided.

給電要求信号発生回路26は、制御装置25からの指令に従って、一定時間間隔で、給電要求信号H3を信号発信部31から発信している。   The power supply request signal generation circuit 26 transmits a power supply request signal H3 from the signal transmission unit 31 at regular time intervals in accordance with a command from the control device 25.

床上物体19の自走移動により、受電電極24が送電電極3に接触する程度に接近すると、信号発信部31からの給電要求信号H3を、信号検出部7が検出子11で検出し、この信号を信号復調部9で復調してから、信号照合部10で照合する。   When the power receiving electrode 24 approaches the power transmission electrode 3 due to the self-propelled movement of the object 19 on the floor, the signal detection unit 7 detects the power supply request signal H3 from the signal transmission unit 31 with the detector 11, and this signal Is demodulated by the signal demodulator 9 and then verified by the signal verification unit 10.

信号照合部10での照合が適合して、入力された信号が給電要求信号H3であると判断されたならば、リレードライブ6を作動させて、切替え接点5を“続”状態に切替えて、送電電極3を電力線16に接続して、床上物体19に対する給電を行う。   If it is determined that the verification in the signal verification unit 10 matches and the input signal is the power supply request signal H3, the relay drive 6 is operated to switch the switching contact 5 to the “continuous” state, The power transmission electrode 3 is connected to the power line 16 to supply power to the object 19 on the floor.

床上物体19に給電された電力は、整流回路23で全波整流されて、直流電力となって負荷21および蓄電回路22に供給される。   The electric power supplied to the object 19 on the floor is full-wave rectified by the rectifier circuit 23 to be supplied to the load 21 and the storage circuit 22 as DC power.

この図10に示した、給電要求信号H3の送受信構成の第1の例にあっては、給電要求信号H3を、変調してから発信してセレクタ4側に受信させるので、送電電極3と受電電極24との接触に先立って、セレクタ4を給電可能状態にスタンバイさせておくことが可能となり、これにより走行移動中の床上物体19に対する給電を、効率良く実施することが可能となる。   In the first example of the transmission / reception configuration of the power supply request signal H3 shown in FIG. 10, the power supply request signal H3 is modulated and transmitted and received by the selector 4 side. Prior to the contact with the electrode 24, the selector 4 can be put on standby in a power supply enabled state, whereby the power supply to the on-floor object 19 that is traveling can be efficiently performed.

また、セレクタ4における送電電極3と電力線16との接続は、受信した検出信号のコードが適合している場合にだけ達成されるので、給電要求信号H3以外の信号により送電電極3と電力線16とを接続することは全くなく、このためきわめて高い安全性を発揮することになる。   Further, since the connection between the power transmission electrode 3 and the power line 16 in the selector 4 is achieved only when the code of the received detection signal is compatible, the power transmission electrode 3 and the power line 16 are connected by a signal other than the power supply request signal H3. Are not connected at all, and therefore, extremely high safety is exhibited.

図11は、給電要求信号H3の送受信構成の第2の例を示すもので、セレクタ4は、送電電極3に流入した電流信号である給電要求信号H3を検出する信号検出部7と、この信号検出部7からの検出信号の入力により切替え接点5を“続”状態に切替えるリレードライブ6を有している。   FIG. 11 shows a second example of the transmission / reception configuration of the power supply request signal H3. The selector 4 detects the power supply request signal H3 that is a current signal flowing into the power transmission electrode 3, and this signal. A relay drive 6 is provided for switching the switching contact 5 to the “continuous” state by the input of a detection signal from the detection unit 7.

これに対し、床上物体19に設けられた給電要求信号発生回路26は、信号用蓄電器27と信号用整流器28との直列回路を主要構成部分として構成されている。   On the other hand, the power supply request signal generation circuit 26 provided on the floor object 19 is configured with a series circuit of a signal capacitor 27 and a signal rectifier 28 as a main component.

給電要求信号発生回路26は、交流電源である電源18からの電力の一部を、信号用整流器28により一定の極性にして信号用蓄電器27に充電し、床上物体19の移動により、受電電極24が送電電極3に接触した当初に、信号用蓄電器27の充電電力を給電要求信号H3としてセレクタ4に送出する。   The power supply request signal generation circuit 26 charges a part of the electric power from the power source 18, which is an AC power source, to the signal capacitor 27 with a certain polarity by the signal rectifier 28, and moves the power receiving electrode 24 by moving the object 19 on the floor. At the beginning of contact with the power transmission electrode 3, the charging power of the signal capacitor 27 is sent to the selector 4 as a power supply request signal H3.

図12は、この給電要求信号発生回路26の具体例を示すもので、信号用蓄電器27と信号用整流器28との直列回路と直列に、電流制限用の制限抵抗Rを接続し、信号用整流器28と並列にスイッチSを接続し、さらに信号用蓄電器27と信号用整流器28との直列回路と並列に、スイッチSを励磁する励磁コイルLを接続した構成となっている。   FIG. 12 shows a specific example of the power supply request signal generating circuit 26. A current limiting current resistor R is connected in series with a series circuit of a signal capacitor 27 and a signal rectifier 28, and a signal rectifier is shown. The switch S is connected in parallel with the switch 28, and the exciting coil L for exciting the switch S is connected in parallel with the series circuit of the signal capacitor 27 and the signal rectifier 28.

スイッチSは、常閉接点型で、励磁コイルLの励磁によりオフ状態となるので、床上物体19に対して電源18から電力が供給されている状態ではオフとなっており、このため信号用整流器28が働いて、信号用蓄電器27に、図示した極性の電力が充電される。   The switch S is a normally closed contact type, and is turned off by excitation of the exciting coil L. Therefore, the switch S is turned off when power is supplied from the power source 18 to the object 19 on the floor. 28 is activated, and the signal capacitor 27 is charged with electric power having the polarity shown in the figure.

受電電極24が送電電極3から離れ、床上物体19に対する電源18からの電力の供給がなくなると、励磁コイルLの励磁力がなくなるので、スイッチSはオン状態となり、何時でも信号用蓄電器27の充電電力を給電要求信号H3として放電することができる状態となる。   When the power receiving electrode 24 moves away from the power transmitting electrode 3 and the supply of power from the power source 18 to the object on the floor 19 is stopped, the exciting power of the exciting coil L is lost, so that the switch S is turned on and the signal capacitor 27 is charged at any time. The power can be discharged as the power supply request signal H3.

なお、励磁コイルLは、信号用蓄電器27と信号用整流器28そして制限抵抗Rとの直列回路と並列に接続することもできるが、スイッチSと励磁コイルLの組合わせをリードスイッチで構成する場合には、このリードスイッチの安全性を考慮して、図示の接続構造とするのが良い。   The exciting coil L can be connected in parallel with the series circuit of the signal capacitor 27, the signal rectifier 28, and the limiting resistor R, but the combination of the switch S and the exciting coil L is constituted by a reed switch. In view of the safety of the reed switch, the illustrated connection structure is preferable.

また、制限抵抗Rは、電流の制限だけではなく、信号用蓄電器27の放電時定数を設定制御するものでもあり、信号用蓄電器27の充電電荷が瞬時に放電され尽くすのを防止している。   Further, the limiting resistor R is not only for limiting the current but also for setting and controlling the discharge time constant of the signal capacitor 27, and prevents the charged charge of the signal capacitor 27 from being discharged instantly.

床上物体19の自走移動により、受電電極24が送電電極3に接触すると、給電要求信号発生回路26の信号用蓄電器27から電流信号である給電要求信号H3が送電電極3に流入し、これをセレクタ4が検出して、切替え接点5を“続”状態にして、床上物体19への給電、すなわち負荷21、蓄電回路22そして信号用蓄電器27への給電を行う。   When the power receiving electrode 24 comes into contact with the power transmission electrode 3 due to the self-propelled movement of the object 19 on the floor, a power supply request signal H3 that is a current signal flows into the power transmission electrode 3 from the signal capacitor 27 of the power supply request signal generation circuit 26. The selector 4 detects the power supply to the on-floor object 19, that is, to the load 21, the power storage circuit 22, and the signal capacitor 27, with the switching contact 5 in the “continuous” state.

床上物体19の自走移動により、受電電極24が送電電極3から離れると、セレクタ4に対する給電要求信号H3の流入がなくなるので、セレクタ4は、切替え接点5を“断”状態に切替えて、送電電極3をグランド線17に接続する。   When the power receiving electrode 24 moves away from the power transmission electrode 3 due to the self-propelled movement of the object 19 on the floor, the power supply request signal H3 does not flow into the selector 4, so the selector 4 switches the switching contact 5 to the “OFF” state to transmit power. The electrode 3 is connected to the ground line 17.

図13は、給電要求信号H3の送受信構成の第3の例を示すもので、電源18は直流電源であり、セレクタ4の信号検出部7は、直流電流信号である給電要求信号H3の向き判別する能力を有しており、この判別結果に従って、切替え接点5の接続位置を、リレードライブ6により切替え設定する。   FIG. 13 shows a third example of the transmission / reception configuration of the power supply request signal H3. The power supply 18 is a DC power supply, and the signal detector 7 of the selector 4 determines the direction of the power supply request signal H3 that is a DC current signal. The connection position of the switching contact 5 is switched and set by the relay drive 6 according to the determination result.

セレクタ4は、床上物体19からの給電要求信号H3の向きに従って、切替え接点5の接続位置を切替えるものであるので、受電電極24が送電電極3に接触していない状態、すなわち床上物体19からに給電要求信号H3がない状態では、切替え接点5を中立位置であるグランド線17に接続する接点に位置させ、これにより送電電極3をグランド線17に接続させた状態を確保する。   The selector 4 switches the connection position of the switching contact 5 in accordance with the direction of the power supply request signal H3 from the object 19 on the floor, so that the power receiving electrode 24 is not in contact with the power transmitting electrode 3, that is, from the object 19 on the floor. In a state where there is no power supply request signal H3, the switching contact 5 is positioned at a contact point connected to the ground line 17 which is a neutral position, thereby securing a state where the power transmission electrode 3 is connected to the ground line 17.

床上物体19は、蓄電回路22が給電要求信号発生機能部分をも兼ねているので、給電要求信号発生回路26を設けておらず、また電力供給床1から供給される直流電力は、セレクタ4による切替え接点5の切替え設定により、その方向性が一定しているので、整流回路23が不要となっている。   The floor object 19 is not provided with the power supply request signal generation circuit 26 because the power storage circuit 22 also serves as a power supply request signal generation function part, and the DC power supplied from the power supply floor 1 is supplied by the selector 4. Since the directionality is constant by the switching setting of the switching contact 5, the rectifier circuit 23 is not necessary.

本発明の基本的な実施態様の、全体構成例図である。It is a whole block diagram of a basic embodiment of the present invention. 送電電極の配列パターンの一例を示す図である。It is a figure which shows an example of the arrangement pattern of a power transmission electrode. 基本的な実施態様の動作のフローチャート図である。It is a flowchart figure of operation | movement of a basic embodiment. 本発明の第1の実施態様を示す、簡略構成図である。It is a simplified block diagram which shows the 1st embodiment of this invention. 第1の実施態様の動作のフローチャート図である。It is a flowchart figure of operation | movement of a 1st embodiment. 本発明の第2の実施態様を示す、簡略構成図である。It is a simplified block diagram which shows the 2nd embodiment of this invention. 第2の実施態様の動作のフローチャート図である。It is a flowchart figure of operation | movement of a 2nd embodiment. 本発明の第3の実施態様を示す、簡略構成図である。It is a simplified block diagram which shows the 3rd embodiment of this invention. 第3の実施態様の動作のフローチャート図である。It is a flowchart figure of operation | movement of a 3rd embodiment. 給電要求信号の送受信構成の第1の例を示す、構成例図である。It is a structural example figure which shows the 1st example of the transmission / reception structure of an electric power feeding request signal. 給電要求信号の送受信構成の第2の例を示す、構成例図である。It is a structural example figure which shows the 2nd example of the transmission / reception structure of an electric power feeding request signal. 給電要求信号発生回路の具体例の一つを示す、回路図である。It is a circuit diagram which shows one of the specific examples of a power supply request signal generation circuit. 給電要求信号の送受信構成の第3の例を示す、構成例図である。It is a structural example figure which shows the 3rd example of the transmission / reception structure of an electric power feeding request signal.

符号の説明Explanation of symbols

1 ; 電力供給床
2 ; 床面
3 ; 送電電極
4 ; セレクタ
5 ; 切替え接点
6 ; リレードライブ
7 ; 信号検出部
8 ; 制御回路
9 ; 信号復調部
10 ; 信号照合部
11 ; 検出子
12 ; エネルギー受容体
13 ; アクティブ素子
14 ; アクティブ回路
15 ; 床下配線
16 ; 電力線
17 ; グランド線
18 ; 電源
19 ; 床上物体
20 ; 本体
21 ; 負荷
22 ; 蓄電回路
23 ; 整流回路
24 ; 受電電極
25 ; 制御装置
26 ; 給電要求信号発生回路
27 ; 信号用蓄電器
28 ; 信号用整流器
S ; スイッチ
L ; 励磁コイル
R ; 制限抵抗
29 ; 信号発生部
30 ; 信号変調部
31 ; 信号発信部
32 ; 演算部
33 ; センサー
34 ; エネルギー放射体
35 ; 車輪
H1 ; 報知信号
H2 ; 接近信号
H3 ; 給電要求信号
DESCRIPTION OF SYMBOLS 1; Power supply floor 2; Floor surface 3; Power transmission electrode 4; Selector 5; Switching contact 6; Relay drive 7; Signal detection part 8; Control circuit 9: Signal demodulation part 10; Receptor 13; Active element 14; Active circuit 15; Underfloor wiring 16; Power line 17; Ground line 18; Power source 19; Floor object 20; Main body 21; Load 22; Power storage circuit 23; Rectifier circuit 24; 26; Power supply request signal generation circuit 27; Signal capacitor 28; Signal rectifier S; Switch L; Excitation coil R; Limiting resistor 29; Signal generator 30; Signal modulator 31; Signal transmitter 32; Arithmetic unit 33; 34; Energy radiator 35; Wheel H1; Notification signal H2; Approach signal H ; Feed request signal

Claims (9)

床面(2)に多数の送電電極(3)を配設し、少なくとも電力線(16)を有する床下配線(15)を設け、前記送電電極(3)毎に、該送電電極(3)を床下配線(15)に対して、個々に切替え可能に接続するセレクタ(4)を設け、前記各送電電極(3)の間隔を、前記床面(2)上に位置する床上物体(19)に設けた一対の受電電極(24)に対して、隣り合った前記送電電極(3)が別々にそして同時に接触し、かつ一つの前記受電電極(24)が、同時に二つの送電電極(3)と接触しない値に設定し、前記セレクタ(4)を、前記送電電極(3)と受電電極(24)との接触もしくは接近により、前記床上物体(19)から与えられる給電要求信号(H3)に従って、内蔵した切替え接点(5)を切替えて、前記受電電極(24)と接触もしくは接近している送電電極(3)を電力線(16)に接続するものとした電力供給床(1)から、前記床面(2)を自走する床上物体(19)に電力を供給するコードレス電力供給方法であって、搭載した蓄電回路(22)に蓄えた電力により負荷(21)の一部であるモータを稼動させて自走する前記床上物体(19)にセンサー(33)を設け、該センサー(33)の検知信号から目的とする送電電極(3)の位置を検出しながら前記床上物体(19)を移動させて、組合せが選ばれた一対の前記送電電極(3)に受電電極(24)を接触もしくは接近させて、前記床上物体(19)からセレクタ(4)に給電要求信号(H3)を送り、前記セレクタ(4)を給電要求信号(H3)の受信によりオン状態とし、これにより前記送電電極(3)と電力線(16)とを接続して、前記電力線(16)から、前記床上物体(19)の負荷(21)に電力を供給すると共に、前記蓄電回路(22)に充電電力を供給し、前記給電要求信号(H3)の受信が無くなったならば、前記セレクタ(4)をオフ状態として、前記送電電極(3)と電力線(16)との接続を遮断するコードレス電力供給方法。 A large number of power transmission electrodes (3) are arranged on the floor (2), and an underfloor wiring (15) having at least a power line (16) is provided.For each power transmission electrode (3 ), the power transmission electrode (3 ) is provided. respect underfloor wiring (15), provided the selector (4) for switchably individually, the interval between the transmission electrode (3), the floor object (19) located on the floor (2) The adjacent power transmitting electrodes (3) are in contact with the pair of power receiving electrodes (24) provided separately and simultaneously, and one power receiving electrode (24) is connected to two power transmitting electrodes (3) at the same time. Set to a value that does not contact, the selector (4), according to the power supply request signal (H3) given from the object on the floor (19) by the contact or approach of the power transmission electrode (3) and the power reception electrode (24), By switching the built-in switching contact (5) to connect the power transmission electrode (3) in contact with or close to the power receiving electrode (24) to the power line (16) from the power supply floor (1), the floor surface( 2) A cordless power supply method for supplying power to a floor object (19) that is self-propelled, which operates a motor that is part of the load (21) by the power stored in the installed storage circuit (22). A sensor (33) is provided on the floor object (19) that is self-propelled, and the floor object (19) is moved while detecting the position of the target power transmission electrode (3) from the detection signal of the sensor (33). A power receiving request signal (H3) is sent from the object on the floor (19) to the selector (4) by bringing the power receiving electrode (24) into contact with or approaching the pair of power transmitting electrodes (3) of which the combination is selected, and the selector (4) is turned on by receiving the power supply request signal (H3), thereby connecting the power transmission electrode (3) and the power line (16), from the power line (16) to the object on the floor (19). When power is supplied to the load (21) and charging power is supplied to the storage circuit (22), and the power supply request signal (H3) is no longer received, the A cordless power supply method for cutting off the connection between the power transmission electrode (3) and the power line (16) by turning the rectifier (4) off. 給電要求信号(H3)を、コード信号とした、請求項1記載のコードレス電力供給方法。   The cordless power supply method according to claim 1, wherein the power supply request signal (H3) is a code signal. 給電要求信号(H3)を、直流電流信号とした、請求項1記載のコードレス電力供給方法。   The cordless power supply method according to claim 1, wherein the power supply request signal (H3) is a direct current signal. センサー(33)の検知信号から目的とする送電電極(3)の位置を検出する手段を、前記センサー(33)の検知信号から、目的とする送電電極(3)に対する方向と距離を算出して検出するものとした、請求項1、2または3記載のコードレス電力供給方法。   The means for detecting the position of the target power transmission electrode (3) from the detection signal of the sensor (33) is calculated from the detection signal of the sensor (33) by calculating the direction and distance to the target power transmission electrode (3). The cordless power supply method according to claim 1, 2, or 3, which is detected. センサー(33)の検知信号から目的とする送電電極(3)の位置を検出する手段を、前記センサー(33)の検知信号から送電電極(3)の配列パターンを作成し、該作成した配列パターンと予め記録した前記送電電極(3)の配列パターンとを比較して、目的とする送電電極(3)の位置を計算して検出するものとした、請求項1、2または3記載のコードレス電力供給方法。   The means for detecting the position of the target power transmission electrode (3) from the detection signal of the sensor (33), the array pattern of the power transmission electrode (3) is created from the detection signal of the sensor (33), and the created array pattern The cordless power according to claim 1, 2 or 3, wherein the position of the target power transmission electrode (3) is calculated and detected by comparing the pre-recorded arrangement pattern of the power transmission electrode (3) Supply method. 床上物体(19)を、搭載したエネルギー放射体(34)から報知信号(H1)を前方に放射しながら自走させ、エネルギー受容体(12)で前記報知信号(H1)を受信したセレクタ(4)は、電力線(16)からアクティブ回路(14)に電力を供給して、送電電極(3)と同位置に取付けたアクティブ素子(13)を稼動させて接近信号(H2)を放射し、前記床上物体(19)のセンサー(33)は、前記接近信号(H2)を受信して検知信号を出力する請求項1、2、3、4または5記載のコードレス電力供給方法。   A selector (4) that has self-propelled the object (19) on the floor while emitting the notification signal (H1) forward from the mounted energy radiator (34) and received the notification signal (H1) by the energy receiver (12). ) Supplies power from the power line (16) to the active circuit (14), operates the active element (13) mounted at the same position as the power transmission electrode (3), and emits an approach signal (H2), The cordless power supply method according to claim 1, 2, 3, 4, or 5, wherein the sensor (33) of the object on the floor (19) receives the approach signal (H2) and outputs a detection signal. セレクタ(4)に、送電電極(3)と同位置に取付けた永久磁石をアクティブ素子(13)として設け、該アクティブ素子(13)が前記送電電極(3)周囲に形成する直流磁場を接近信号(H2)とし、床上物体(19)の複数のピックアップコイルで構成されるセンサー(33)は、前記接近信号(H2)を受信して検知信号を出力する請求項1、2、3、4または5記載のコードレス電力供給方法。   The selector (4) is provided with a permanent magnet attached at the same position as the power transmission electrode (3) as an active element (13), and a DC magnetic field formed by the active element (13) around the power transmission electrode (3) is an approach signal. The sensor (33) configured by (H2) and a plurality of pickup coils of the object on the floor (19) receives the approach signal (H2) and outputs a detection signal. 5. The cordless power supply method according to 5. 床上物体(19)のセンサー(33)は、送電電極(3)を直接センシングして検知信号を出力する請求項1、2、3、4または5記載のコードレス電力供給方法。   The cordless power supply method according to claim 1, 2, 3, 4, or 5, wherein the sensor (33) of the object on the floor (19) directly senses the power transmission electrode (3) and outputs a detection signal. センサー(33)による送電電極(3)のセンシングを、イメージ素子による画像イメージ、床面(2)の導電率パターン分布を測定する熊手状プローブおよび渦電流による金属探知コイルアレイによる導電率イメージ、超音波素子のアレイによる音響反射率イメージの何れか一つにより行うものとした請求項8記載のコードレス電力供給方法。   Sensing of the power transmission electrode (3) by the sensor (33), image image by the image element, conductivity image by the metal detector coil array by rake probe and eddy current measuring the conductivity pattern distribution on the floor (2), super 9. The cordless power supply method according to claim 8, wherein the cordless power supply method is performed using any one of acoustic reflectance images obtained by an array of acoustic wave elements.
JP2003406061A 2003-12-04 2003-12-04 Cordless power supply method Expired - Fee Related JP3892435B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003406061A JP3892435B2 (en) 2003-12-04 2003-12-04 Cordless power supply method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003406061A JP3892435B2 (en) 2003-12-04 2003-12-04 Cordless power supply method

Publications (2)

Publication Number Publication Date
JP2005168232A JP2005168232A (en) 2005-06-23
JP3892435B2 true JP3892435B2 (en) 2007-03-14

Family

ID=34728550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003406061A Expired - Fee Related JP3892435B2 (en) 2003-12-04 2003-12-04 Cordless power supply method

Country Status (1)

Country Link
JP (1) JP3892435B2 (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4999089B2 (en) * 2006-09-29 2012-08-15 一般財団法人電力中央研究所 Contactless power transmission system for moving objects
JP2008280783A (en) * 2007-05-11 2008-11-20 Takenaka Komuten Co Ltd Power communication floor structure, and supply panel and functional module for the same
JP2009089520A (en) * 2007-09-28 2009-04-23 Takenaka Komuten Co Ltd Power supply system
KR101489971B1 (en) * 2008-11-05 2015-02-06 한국과학기술원 Automatic charging method for Remote control mobile unit
JP2010148287A (en) * 2008-12-19 2010-07-01 Takenaka Komuten Co Ltd Power supply system
JP5415780B2 (en) 2009-02-20 2014-02-12 健一 原川 Power supply system, and movable body and fixed body therefor
JP2010213554A (en) * 2009-03-12 2010-09-24 Takenaka Komuten Co Ltd Power supply system
WO2010122598A1 (en) * 2009-04-21 2010-10-28 株式会社竹中工務店 Power supply system
DE102009033239C5 (en) 2009-07-14 2023-05-17 Conductix-Wampfler Gmbh Device for the inductive transmission of electrical energy
JP5051257B2 (en) * 2010-03-16 2012-10-17 トヨタ自動車株式会社 vehicle
JP5459024B2 (en) * 2010-04-05 2014-04-02 株式会社豊田自動織機 Control device, supply device control method and supply system
KR101640772B1 (en) * 2010-06-10 2016-07-19 삼성전자주식회사 Apparatus and method inducing wireless power receiver to power transmission area
JP6238224B2 (en) * 2013-05-22 2017-11-29 国立大学法人豊橋技術科学大学 Power transmission line
JP6127777B2 (en) 2013-06-28 2017-05-17 ソニー株式会社 Power supply device and power supply system
CN106464015B (en) * 2014-06-26 2018-10-30 艾格电子工程责任有限公司 Method and apparatus for transmitting electrical power
FR3029145B1 (en) * 2014-12-01 2018-04-13 Patrice Christian Philippe Charles Chevalier INTEGRATED SYSTEM FOR MOVING ALL MOBILE ENGINE BY CAPTURING ELECTRIC ENERGY ON POWER SUPPLY INFRASTRUCTURE AND ASSOCIATED METHODS
DE102016212900A1 (en) * 2016-07-14 2018-01-18 Robert Bosch Gmbh Method for operating a charging device for inductive energy transmission
DE102016121229A1 (en) * 2016-11-07 2018-05-09 Paul Vahle Gmbh & Co. Kg Contactless detection of battery charging contacts
JP6986712B2 (en) 2016-12-22 2021-12-22 パナソニックIpマネジメント株式会社 Mobile and wireless power transfer systems
DE102017115909B4 (en) * 2017-07-14 2024-02-22 Easelink Gmbh Method for establishing an electrical connection of a vehicle contact unit, vehicle connection device for electrically connecting a vehicle contact unit and vehicle with a vehicle connection device

Also Published As

Publication number Publication date
JP2005168232A (en) 2005-06-23

Similar Documents

Publication Publication Date Title
JP3892435B2 (en) Cordless power supply method
JP5793963B2 (en) Non-contact power feeding device
JP5879748B2 (en) Non-contact power supply device, vehicle and non-contact power supply system
KR100645814B1 (en) Automatic charging return system of moving robot and method for thereof
JP5021948B2 (en) Obstacle detection device, energy supply device, and energy supply system
US8415834B2 (en) Power feeding system, power feeder, power-receiving equipment, and positioning control method
US20050281653A1 (en) Automated trash delivery system
US9590455B2 (en) Wireless charging system
KR100734676B1 (en) Apparatus for wireless charging having multi-charge cell and Method for controlling the same
JP2008137451A (en) Automatic charging method and device of automated guided vehicle
CN102971179A (en) Measuring a temperature during contactless transmission of energy
JP2021141753A (en) Charging mobile device and charging system
JP5765141B2 (en) Contactless power supply system and contactless power supply stand
US10892653B1 (en) System and method for simultaneous inductive recharging of multiple electronic devices
JP2021112028A (en) Cart power supply device
KR20140002850A (en) Wireless charging apparatus
KR101782878B1 (en) Wireless power transfer apparatus and method the same
KR200483224Y1 (en) Wireless power charging apparatus of vehicle
JP2020162310A (en) Non-contact power supply system, power transmission device and power reception device
JP6438927B2 (en) Power transmission equipment
JP3829308B2 (en) Power supply floor
KR101179250B1 (en) Power Supply System capable of providing the moving electronic equipment with the power by wireless
CN210077560U (en) Charging equipment and recharging system for nearby cruising large-area sweeping robot
CN112636485A (en) Wireless power transmission device and wireless power transmission system
JP6672547B2 (en) Non-contact power transmission system and power receiving device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060411

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061206

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091215

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees