JP3891977B2 - Optical frequency comb generator and optical modulator - Google Patents

Optical frequency comb generator and optical modulator Download PDF

Info

Publication number
JP3891977B2
JP3891977B2 JP2003385450A JP2003385450A JP3891977B2 JP 3891977 B2 JP3891977 B2 JP 3891977B2 JP 2003385450 A JP2003385450 A JP 2003385450A JP 2003385450 A JP2003385450 A JP 2003385450A JP 3891977 B2 JP3891977 B2 JP 3891977B2
Authority
JP
Japan
Prior art keywords
light
modulation signal
propagating
optical
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003385450A
Other languages
Japanese (ja)
Other versions
JP2005148390A (en
JP2005148390A5 (en
Inventor
元伸 興梠
一宏 今井
ウイディヤトモコ バンバン
Original Assignee
株式会社 光コム
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 光コム filed Critical 株式会社 光コム
Priority to JP2003385450A priority Critical patent/JP3891977B2/en
Priority to PCT/JP2004/016325 priority patent/WO2005047965A1/en
Priority to EP04818455A priority patent/EP1684110A4/en
Priority to US10/579,262 priority patent/US7551342B2/en
Publication of JP2005148390A publication Critical patent/JP2005148390A/en
Publication of JP2005148390A5 publication Critical patent/JP2005148390A5/ja
Application granted granted Critical
Publication of JP3891977B2 publication Critical patent/JP3891977B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Description

本発明は、光周波数コム発生器並びに光変調器に関し、光通信、光CT、光周波数標準器など多波長でコヒーレンス性の高い標準光源、又は、各波長間のコヒーレンス性も利用できる光源を必要とする分野に適用される。   The present invention relates to an optical frequency comb generator and an optical modulator, and requires a multi-wavelength, high-coherence standard light source such as optical communication, optical CT, and optical frequency standard, or a light source that can also use coherence between wavelengths. It is applied to the field.

光周波数を高精度に測定する場合には、測定する光を他の光と干渉させ、発生する光ビート周波数の電気信号を検出するヘテロダイン検波を行う。このヘテロダイン検波において測定可能な光の帯域は、検波系に使用される受光素子の帯域に制限され、概ね数十GHz程度である。   In the case of measuring the optical frequency with high accuracy, heterodyne detection is performed in which the light to be measured is made to interfere with other light and an electric signal having a generated optical beat frequency is detected. The band of light that can be measured in this heterodyne detection is limited to the band of the light receiving element used in the detection system, and is about several tens of GHz.

一方、近年の光エレクトロニクスの発展に伴い、周波数多重通信のための光制御や、広範囲に分布する吸収線の周波数測定を行うため、光の測定可能帯域を更に拡大する必要がある。   On the other hand, with the recent development of optoelectronics, it is necessary to further expand the measurable band of light in order to perform optical control for frequency division multiplexing and frequency measurement of absorption lines distributed over a wide range.

かかる測定可能帯域の拡大化の要請に応えるべく、従来において光周波数コム発生器(例えば、特許文献1参照。)を用いた広帯域なヘテロダイン検波系が提案されている。この光周波数コム発生器は、周波数軸上で等間隔に配置された櫛状のサイドバンドを広帯域にわたり発生させるものであり、このサイドバンドの周波数安定度は、入射光の周波数安定度とほぼ同等である。この生成したサイドバンドと被測定光をヘテロダイン検波することにより、数THzに亘る広帯域なヘテロダイン検波系を構築することが可能となる。   In order to meet the demand for an increase in the measurable bandwidth, a wideband heterodyne detection system using an optical frequency comb generator (see, for example, Patent Document 1) has been proposed. This optical frequency comb generator generates comb-like sidebands arranged at equal intervals on the frequency axis over a wide band, and the frequency stability of this sideband is almost equal to the frequency stability of incident light. It is. By heterodyne detection of the generated sideband and light to be measured, a wideband heterodyne detection system over several THz can be constructed.

図6は、この従来における光周波数コム発生器3の原理的な構造を示している。   FIG. 6 shows the basic structure of this conventional optical frequency comb generator 3.

この光周波数コム発生器3は、光位相変調器31と、この光位相変調器31を介して互いに対向するように設置された反射鏡32,33を備える光共振器100が使用されている。   The optical frequency comb generator 3 uses an optical resonator 100 including an optical phase modulator 31 and reflecting mirrors 32 and 33 installed so as to face each other with the optical phase modulator 31 interposed therebetween.

この光共振器100は、反射鏡32を介して僅かな透過率で入射した光Linを、反射鏡32,33間で共振させ、その一部の光Loutを反射鏡33を介して出射させる。光位相変調器31は、電界を印加することにより屈折率が変化する光位相変調のための電気光学結晶からなり、この光共振器100を通過する光に対して、電極36に印加される周波数fmの電気信号に応じて位相変調をかける。   The optical resonator 100 resonates light Lin incident through the reflecting mirror 32 with a small transmittance between the reflecting mirrors 32 and 33, and emits a part of the light Lout through the reflecting mirror 33. The optical phase modulator 31 is made of an electro-optic crystal for optical phase modulation whose refractive index changes when an electric field is applied, and the frequency applied to the electrode 36 with respect to the light passing through the optical resonator 100. Phase modulation is applied according to the electric signal of fm.

この光周波数コム発生器3において、光が光共振器100内を往復する時間に同期した電気信号を電極36から光位相変調器31へ駆動入力することにより、光位相変調器31を1回だけ通過する場合に比べ、数十倍以上の深い位相変調をかけることが可能となる。これにより、高次のサイドバンドを数百本生成することができ、隣接したサイドバンドの周波数間隔fm は全て入力された電気信号の周波数fmと同等になる。   In this optical frequency comb generator 3, an electric signal synchronized with the time when the light reciprocates in the optical resonator 100 is driven and input from the electrode 36 to the optical phase modulator 31, so that the optical phase modulator 31 is only once. Compared with the case of passing, it becomes possible to apply deep phase modulation of several tens of times or more. As a result, hundreds of higher-order sidebands can be generated, and the frequency interval fm between adjacent sidebands is all equal to the frequency fm of the input electrical signal.

また、従来における光周波数コム発生器は、上述のバルク型に限定されるものではない。例えば図7に示すように、導波路を用いた導波路型光周波数コム発生器200にも適用可能である。   Further, the conventional optical frequency comb generator is not limited to the above-described bulk type. For example, as shown in FIG. 7, the present invention is also applicable to a waveguide type optical frequency comb generator 200 using a waveguide.

この導波路型光周波数コム発生器20は、導波路型光変調器200から構成される。導波路型光変調器200は、基板201と、導波路202と、電極203と、入射側反射膜204と、出射側反射膜205と、発振器206とを備える。   The waveguide type optical frequency comb generator 20 includes a waveguide type optical modulator 200. The waveguide type optical modulator 200 includes a substrate 201, a waveguide 202, an electrode 203, an incident side reflection film 204, an emission side reflection film 205, and an oscillator 206.

基板201は、例えば引き上げ法により育成された3〜4インチ径のLiNbOやGaAs等の大型結晶をウェハ状に切り出したものである。この切り出した基板201上に導波路202層をエピタキシャル成長させるため、通常、機械研磨や化学研磨等の処理を施す。 The substrate 201 is obtained by cutting a large crystal such as LiNbO 3 or GaAs having a diameter of 3 to 4 inches grown by a pulling method into a wafer shape. In order to epitaxially grow the waveguide 202 layer on the cut substrate 201, processing such as mechanical polishing or chemical polishing is usually performed.

導波路202は、光を伝搬させるために配されたものであり、導波路202を構成する層の屈折率は、基板等の他層よりも高く設定されている。導波路202に入射した光は、導波路202の境界面で全反射しながら伝搬する。   The waveguide 202 is arranged for propagating light, and the refractive index of the layer constituting the waveguide 202 is set higher than that of other layers such as a substrate. The light incident on the waveguide 202 propagates while being totally reflected at the boundary surface of the waveguide 202.

電極203は、例えばAlやCu、Pt、Au等の金属材料からなり、外部から供給された周波数fmの電気信号を導波路202に駆動入力する。また、導波路における光の伝搬方向と変調電界の進行方向は同一となる。   The electrode 203 is made of a metal material such as Al, Cu, Pt, or Au, for example, and drives and inputs an electric signal having a frequency fm supplied from the outside to the waveguide 202. Further, the propagation direction of light in the waveguide and the traveling direction of the modulation electric field are the same.

入射側反射膜204及び出射側反射膜205は、導波路202に入射した光を共振させるため設けられたものであり、導波路202を通過する光を往復反射させることにより共振させる。発振器206は、電極203に接続され、周波数fmの電気信号を供給する。   The incident-side reflection film 204 and the emission-side reflection film 205 are provided to resonate light incident on the waveguide 202 and resonate by reciprocally reflecting light passing through the waveguide 202. The oscillator 206 is connected to the electrode 203 and supplies an electric signal having a frequency fm.

入射側反射膜204は、導波路型光変調器200の光入射側に配され、図示しない光源から周波数νの光が入射される。また、この入射側反射膜204は、出射側反射膜205により反射されて、かつ導波路202を通過した光を反射する。
出射側反射膜205は、導波路型光変調器200の光出射側に配され、導波路202を通過した光を反射する。またこの出射側反射膜205は、導波路202を通過した光を一定の割合で外部に出射する。
The incident-side reflection film 204 is disposed on the light incident side of the waveguide type optical modulator 200, and light having a frequency ν 1 is incident from a light source (not shown). Further, the incident-side reflection film 204 reflects light reflected by the emission-side reflection film 205 and having passed through the waveguide 202.
The exit-side reflection film 205 is disposed on the light exit side of the waveguide type optical modulator 200 and reflects light that has passed through the waveguide 202. The exit-side reflection film 205 emits light that has passed through the waveguide 202 to the outside at a constant rate.

上述の構成からなる導波路型光周波数コム発生器20において、光が導波路202内を往復する時間に同期した電気信号を電極203から導波路型光変調器200へ駆動入力とすることにより、光位相変調器111を1回だけ通過する場合に比べ、数十倍以上の深い位相変調をかけることが可能となる。これにより、バルク型光周波数コム発生器10と同様に、広帯域にわたるサイドバンドを有する光周波数コムを生成することができ、隣接したサイドバンドの周波数間隔は、全て入力された電気信号の周波数fmと同等になる。   In the waveguide-type optical frequency comb generator 20 having the above-described configuration, an electric signal synchronized with the time when the light reciprocates in the waveguide 202 is used as a drive input from the electrode 203 to the waveguide-type optical modulator 200. Compared with the case where the optical phase modulator 111 is passed only once, deep phase modulation several tens of times or more can be applied. Thereby, like the bulk type optical frequency comb generator 10, an optical frequency comb having a wide sideband can be generated, and the frequency interval between adjacent sidebands is the frequency fm of the inputted electric signal. Become equivalent.

特開2003−202609号公報。JP2003-202609A.

しかしながら、上記従来の導波路型光周波数コム発生器20では、その構造に基づく制約により、内部を共振する光のうち図7に示す往路方向へ伝搬する光のみしか位相変調をかけることができない。このため、往路方向へ伝搬する光に加えて復路方向へ伝搬する光について位相変調を施す場合(以下、往復変調という。)と比較して変調効率がいきおい低くなるという問題点があった。   However, in the conventional waveguide type optical frequency comb generator 20 described above, only the light propagating in the forward direction shown in FIG. For this reason, there has been a problem that the modulation efficiency is remarkably lowered as compared with the case where phase modulation is applied to light propagating in the backward direction in addition to light propagating in the forward direction (hereinafter referred to as reciprocal modulation).

また、往復変調と同様の変調度を得るためには、電極203から導波路202へ駆動入力する電気信号の強度を増加させなければならず、位相変調時において多大な印加電圧が必要になる。必要な電力が増加すれば、電極203を含む駆動回路にかかる負担は大きくなり、上述したヘテロダイン検波系全体の大型化やそれに基づくコスト上昇を招く。更に、この印加電圧の増大は、導波路型光周波数コム発生器20自体の故障の要因ともなり得る。   Also, in order to obtain the same degree of modulation as in the reciprocal modulation, the intensity of the electric signal that is driven and input from the electrode 203 to the waveguide 202 must be increased, and a large applied voltage is required during phase modulation. If the required power increases, the burden on the drive circuit including the electrode 203 increases, leading to an increase in the size of the entire heterodyne detection system described above and an increase in cost based thereon. Furthermore, this increase in the applied voltage may cause a failure of the waveguide type optical frequency comb generator 20 itself.

そこで本発明は、上述した問題点に鑑みて案出されたものであり、その目的とするところは、光共振器内を共振する光につき簡単な構成で往復変調を施すことにより、位相変調に必要な電力を増加させることなく、変調効率を改善させることができる光周波数コム発生器並びに光変調器を提供することにある。   Therefore, the present invention has been devised in view of the above-described problems, and the object of the present invention is to perform phase modulation by performing reciprocal modulation with a simple configuration for light resonating in the optical resonator. An object of the present invention is to provide an optical frequency comb generator and an optical modulator that can improve modulation efficiency without increasing the required power.

本発明を適用した光周波数コム発生器は、上述した問題点を解決するために、所定の周波数の変調信号を発振する発振手段と、互いに平行な入射側反射鏡及び出射側反射鏡から構成され、入射側反射鏡を介して入射された光を往路方向又は復路方向へ伝搬させることにより共振させる共振手段と、上記入射側反射鏡と上記出射側反射鏡との間に配され、上記発振手段から供給された上記変調信号に応じて上記共振手段において共振された光の位相を変調し、上記入射された光の周波数を中心としたサイドバンドを上記変調信号の周波数の間隔で生成する光変調手段とを備え、上記光変調手段は、少なくとも電気光学効果を有する基板にて形成された光導波路と、上記光導波路上に形成され上記発振手段から発振された変調信号を往路方向又は復路方向へ伝搬させるための電極からなり、上記発振手段から上記電極の一端側に供給された変調信号を反射する反射手段が上記電極の他端側にのみ設けられており、上記発振手段から供給された変調信号を共振させることなく、上記往路方向へ伝搬する光の位相を上記往路方向へ伝搬する変調信号によって変調し、また、上記復路方向へ伝搬する光の位相を上記復路方向へ伝搬する変調信号によって変調する。 An optical frequency comb generator to which the present invention is applied includes an oscillating means that oscillates a modulated signal having a predetermined frequency, and an incident-side reflecting mirror and an emitting-side reflecting mirror that are parallel to each other. A resonance means for resonating the light incident through the incident-side reflecting mirror by propagating it in the forward or backward direction, and the oscillation means disposed between the incident-side reflecting mirror and the emitting-side reflecting mirror. Optical modulation that modulates the phase of the light resonated in the resonance means in accordance with the modulation signal supplied from, and generates a side band centered on the frequency of the incident light at the frequency interval of the modulation signal The optical modulation means includes at least an optical waveguide formed of a substrate having an electro-optic effect, and a modulation signal formed on the optical waveguide and oscillated from the oscillation means in a forward direction or Consists electrode for propagating the road direction, reflection means for reflecting the modulated signal supplied to one end of said electrode from said oscillating means is provided only on the other side of the electrode, supplied from the oscillation means Without resonating the modulated signal, the phase of light propagating in the forward direction is modulated by the modulation signal propagating in the forward direction, and the phase of light propagating in the backward direction is propagated in the backward direction. Modulate with modulation signal.

また、本発明を適用した光変調器は、上述した問題点を解決するために、所定の周波数の変調信号を発振する発振手段と、何れか一の端面を介して入射された光を往路方向又は復路方向へ伝搬させる光伝搬手段と、上記端面間に配され、上記発振手段から供給された上記変調信号に応じて上記伝搬する光の位相を変調する光変調手段とを備え、上記光変調手段は、少なくとも電気光学効果を有する基板にて形成された光導波路と、上記光導波路上に形成され上記発振手段から発振された変調信号を往路方向又は復路方向へ伝搬させるための電極からなり、上記発振手段から上記電極の一端側に供給された変調信号を反射する反射手段が上記電極の他端側にのみ設けられており、上記発振手段から供給された変調信号を共振させることなく、上記往路方向へ伝搬する光の位相を上記往路方向へ伝搬する変調信号によって変調し、また、上記復路方向へ伝搬する光の位相を上記復路方向へ伝搬する変調信号によって変調する。
さらに、本発明に係る光変調器は、上述した問題点を解決するために、所定の周波数の変調信号を発振する発振手段と、何れか一の端面を介して入射された光を往路方向又は復路方向へ伝搬させる光伝搬手段と、上記光伝搬手段を含む光路上にある少なくとも1つの反射鏡からなり、入射端から光路方向へ伝搬する光を入射側へ戻す光反射手段と、入射端と上記反射鏡との間に配され、上記発振手段から供給された上記変調信号に応じて上記伝搬する光の位相を変調する光変調手段とを備え、上記光変調手段は、少なくとも電気光学効果を有する基板にて形成された光導波路と、上記光導波路上に形成され上記発振手段から発振された変調信号を往路方向又は復路方向へ伝搬させるための電極からなり、上記発振手段から上記電極の一端側に供給された変調信号を反射する反射手段が上記電極の他端側にのみ設けられており、上記発振手段から供給された変調信号を共振させることなく、上記往路方向へ伝搬する光の位相を上記往路方向へ伝搬する変調信号によって変調し、また、上記復路方向へ伝搬する光の位相を上記復路方向へ伝搬する変調信号によって変調する。
Further, in order to solve the above-described problems, an optical modulator to which the present invention is applied has an oscillating unit that oscillates a modulation signal of a predetermined frequency and light incident through any one end face in the forward direction. Or an optical propagation means for propagating in the backward direction, and an optical modulation means arranged between the end faces and modulating the phase of the propagating light according to the modulation signal supplied from the oscillation means, and The means comprises at least an optical waveguide formed on a substrate having an electro-optic effect, and an electrode for propagating a modulation signal formed on the optical waveguide and oscillated from the oscillation means in the forward direction or the backward direction, reflecting means for reflecting the modulated signal supplied to one end of said electrode from said oscillating means is provided only on the other side of the electrode, without resonating the modulated signal supplied from the oscillation means, on The phase of the light propagating in the outward direction modulated by a modulation signal propagating into the forward direction, modulated by a modulation signal propagating through the phase of the light propagating to the backward direction to the backward direction.
Further, in order to solve the above-described problems, the optical modulator according to the present invention is configured to oscillate a modulation signal having a predetermined frequency and light incident through any one end face in the forward direction or A light propagation means for propagating in the return path direction, at least one reflecting mirror on the optical path including the light propagation means, a light reflection means for returning light propagating in the optical path direction from the incident end to the incident side, and an incident end; And an optical modulation means that modulates the phase of the propagating light according to the modulation signal supplied from the oscillation means, and the optical modulation means has at least an electro-optic effect. And an electrode for propagating a modulated signal formed on the optical waveguide and oscillated from the oscillating means in the forward direction or the backward direction, and from the oscillating means to one end of the electrode. On the side Reflecting means for reflecting the paper modulated signal is provided only on the other side of the electrode, without resonating the modulated signal supplied from the oscillation means, the phase of the light propagating to the forward direction Modulation is performed by the modulation signal propagating in the forward direction, and the phase of light propagating in the backward direction is modulated by the modulation signal propagating in the backward direction.

本発明を適用した光周波数コム発生器並びに光変調器では、導波路を往路方向へ伝搬する光のみならず、復路方向へ伝搬する光についても位相変調を施すことができるため変調効率を増加させることができる。   In the optical frequency comb generator and the optical modulator to which the present invention is applied, not only the light propagating in the waveguide direction but also the light propagating in the backward direction can be phase-modulated, so that the modulation efficiency is increased. be able to.

以下、本発明を実施するための最良の形態について図面を参照しながら詳細に説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

図1は、本発明を適用した光周波数コム発生器1の構成を示す図である。この光周波数コム発生器1は、導波路型光変調器2から構成される。導波路型光変調器2は、基板11と、基板11上に形成されてなり伝搬する光の位相を変調する導波路12と、変調電界の方向が光の伝搬方向に対して略垂直になるように導波路12の上面に設けられた電極13と、導波路12を介して互いに対向するように設置された入射側反射膜14並びに出射側反射膜15と、電極13の一端側に配設され、周波数fmの変調信号を発振する発振器16と、電極13の他端側に配設されてなる移相器18、反射器19とを備えている。   FIG. 1 is a diagram showing a configuration of an optical frequency comb generator 1 to which the present invention is applied. The optical frequency comb generator 1 includes a waveguide type optical modulator 2. The waveguide type optical modulator 2 includes a substrate 11, a waveguide 12 that is formed on the substrate 11 and modulates the phase of propagating light, and the direction of the modulation electric field is substantially perpendicular to the light propagation direction. In this manner, the electrode 13 provided on the upper surface of the waveguide 12, the incident-side reflection film 14 and the emission-side reflection film 15 disposed so as to face each other via the waveguide 12, and one end side of the electrode 13 are disposed. And an oscillator 16 that oscillates a modulation signal having a frequency fm, and a phase shifter 18 and a reflector 19 disposed on the other end side of the electrode 13.

基板11は、例えば引き上げ法により育成された3〜4インチ径のLiNbOやGaAs等の大型結晶をウェハ状に切り出したものである。この切り出した基板11上に導波路12層をエピタキシャル成長させるため、通常、機械研磨や化学研磨等の処理を施す。 The substrate 11 is obtained by cutting a large crystal such as LiNbO 3 or GaAs having a diameter of 3 to 4 inches grown by a pulling method into a wafer shape. In order to epitaxially grow the waveguide 12 layer on the cut substrate 11, a process such as mechanical polishing or chemical polishing is usually performed.

導波路12は、光を伝搬させるために配されたものであり、導波路12を構成する層の屈折率は、基板等の他層よりも高く設定されている。導波路12に入射した光は、導波路12の境界面で全反射しながら伝搬する。この導波路12は、屈折率が電界に比例して変化するポッケルス効果や、屈折率が電界の自乗に比例して変化するカー効果等の物理現象を利用し、通過する光の変調を行う。   The waveguide 12 is arranged for propagating light, and the refractive index of the layer constituting the waveguide 12 is set higher than that of other layers such as a substrate. The light incident on the waveguide 12 propagates while being totally reflected at the boundary surface of the waveguide 12. The waveguide 12 modulates light passing through physical phenomena such as the Pockels effect in which the refractive index changes in proportion to the electric field and the Kerr effect in which the refractive index changes in proportion to the square of the electric field.

電極13は、例えばTiやPt、Au等の金属材料からなり、外部から供給された周波数fmの変調信号を導波路12に駆動入力する。この電極13に対して、発振器16から供給される周波数fmの変調信号により、導波路12内を伝搬する光に位相変調がかけられる。   The electrode 13 is made of a metal material such as Ti, Pt, or Au, for example, and drives and inputs a modulation signal having a frequency fm supplied from the outside to the waveguide 12. With respect to the electrode 13, phase modulation is applied to light propagating in the waveguide 12 by a modulation signal having a frequency fm supplied from the oscillator 16.

入射側反射膜14並びに出射側反射膜15は、導波路12に入射した光を図1に示す往路方向又は復路方向へ伝搬させることにより共振させる。入射側反射膜14は、導波路12の光入射側に配され、この外部から供給される光がこの入射側反射膜14を介して入射される。出射側反射膜15は、導波路12の光出射側に配され、導波路12内部を伝搬した一部の光を外部へ出射させる。   The incident side reflection film 14 and the emission side reflection film 15 resonate by propagating the light incident on the waveguide 12 in the forward direction or the backward direction shown in FIG. The incident-side reflection film 14 is disposed on the light incident side of the waveguide 12, and light supplied from the outside enters through the incident-side reflection film 14. The exit-side reflection film 15 is disposed on the light exit side of the waveguide 12 and emits a part of the light propagating through the waveguide 12 to the outside.

反射器19は、発振器16より発振された変調信号を反射させる。また移相器18は、反射された変調信号の位相を調整する。   The reflector 19 reflects the modulation signal oscillated from the oscillator 16. The phase shifter 18 adjusts the phase of the reflected modulation signal.

次に本発明を適用した光周波数コム発生器1における電極13の構成につき更に詳細に説明する。   Next, the configuration of the electrode 13 in the optical frequency comb generator 1 to which the present invention is applied will be described in more detail.

図2は、電極13の上面図である。この図2に示すように、電極13は、発振器16が設けられた一端側から、移相器18、反射器19が設けられている他端側に至るまでコ字状の形状で構成されている。この電極13を高周波の変調信号のいわゆる伝送路として考えたとき、角部分13a,bにおいていわゆる直角曲がり部が存在すると、変調信号の波長依存性により伝送特性が著しく悪化してしまう。このため、直角曲がり部が生じないように、角部分13a,bを丸めるようにしてもよい。   FIG. 2 is a top view of the electrode 13. As shown in FIG. 2, the electrode 13 is configured in a U-shape from one end side where the oscillator 16 is provided to the other end side where the phase shifter 18 and the reflector 19 are provided. Yes. When this electrode 13 is considered as a so-called transmission path for a high-frequency modulation signal, if there are so-called right-angled bent portions in the corner portions 13a and 13b, the transmission characteristics are significantly deteriorated due to the wavelength dependence of the modulation signal. For this reason, you may make it round corner part 13a, b so that a right-angled bending part may not arise.

このような形状からなる電極13に対して発振器16より発振された周波数fmの変調信号を供給すると、当該変調信号は、電極13を往路方向へ伝搬することになり、導波路12内を往路方向へ伝搬する光につき位相を変調させることができる。電極13上を往路方向へ伝搬した変調信号は、そのまま反射器19を反射し、移相器18により位相調整された上で、今度は電極13を復路方向へ伝搬することになる。これにより、導波路12内を復路方向へ伝搬する光につき位相変調させることができる。ちなみに、この移相器18により調整される位相は、導波路12内を復路方向へ伝搬する光につき施される位相変調が、往路方向へ伝搬する光に対する移相変調と同様になるようにしてもよい。   When a modulation signal having a frequency fm oscillated from the oscillator 16 is supplied to the electrode 13 having such a shape, the modulation signal propagates through the electrode 13 in the forward direction, and travels through the waveguide 12 in the forward direction. The phase of the light propagating to can be modulated. The modulated signal that has propagated on the electrode 13 in the forward direction is reflected by the reflector 19 as it is, and after being phase-adjusted by the phase shifter 18, is then propagated through the electrode 13 in the backward direction. As a result, the phase of the light propagating in the backward direction in the waveguide 12 can be modulated. Incidentally, the phase adjusted by the phase shifter 18 is set so that the phase modulation applied to the light propagating in the backward direction in the waveguide 12 is the same as the phase shift modulation for the light propagating in the forward direction. Also good.

即ち、本発明を適用した光周波数コム発生器1では、導波路12を往路方向へ伝搬する光のみならず、復路方向へ伝搬する光についても位相変調を施すことができるため変調効率を増加させることができる。   That is, in the optical frequency comb generator 1 to which the present invention is applied, not only the light propagating through the waveguide 12 in the forward direction but also the light propagating in the backward direction can be phase-modulated, so that the modulation efficiency is increased. be able to.

また上述の構成からなる光周波数コム発生器1において、光が導波路12内を往復する時間に同期した電気信号を電極13から駆動入力とすることにより、導波路12を1回だけ通過する場合に比べ、数十倍以上の深い位相変調をかけることが可能となる。これにより、広帯域にわたるサイドバンドを有する光周波数コムを生成することができ、隣接したサイドバンドの周波数間隔は、全て入力された電気信号の周波数fmと同等になる。   Further, in the optical frequency comb generator 1 having the above-described configuration, when an electric signal synchronized with the time when the light reciprocates in the waveguide 12 is used as a driving input from the electrode 13, the optical frequency comb generator 1 passes through the waveguide 12 only once. Compared to the above, it becomes possible to apply deep phase modulation several tens of times or more. As a result, an optical frequency comb having sidebands over a wide band can be generated, and the frequency intervals between adjacent sidebands are all equal to the frequency fm of the input electrical signal.

また、この光周波数コム発生器1は、光を狭小な導波路12に押し込めて変調させることができるため、変調指数を大きくすることができ、バルク型の光周波数コム発生器と比較して発生するサイドバンド数やサイドバンドの光量を多くすることができる。   In addition, since the optical frequency comb generator 1 can modulate light by pushing light into a narrow waveguide 12, the modulation index can be increased, and the optical frequency comb generator is generated in comparison with a bulk type optical frequency comb generator. The number of sidebands to be performed and the amount of sideband light can be increased.

なお、本発明を適用した光周波数コム発生器1における移相器18では、反射器19より反射される変調信号の位相を以下に説明するように調整してもよい。   In the phase shifter 18 in the optical frequency comb generator 1 to which the present invention is applied, the phase of the modulation signal reflected from the reflector 19 may be adjusted as described below.

図2に示すように、電極13における角部分13aから出射側反射膜15までの長さをΔlとし、また導波路12における群屈折率をnとするとき、光が角部分13aから導波路12に沿って伝搬して出射側反射膜15を反射し、再び角部分13aへ戻ってくるまでの時間tは、以下の式1で表される。
t=2nΔl/c (c:光速)・・・・・・・・式1
ここで、変調周波数をωとするとき、以下の式2
ω+θ=2mπ (m=0,1,2,・・・・) ・・・・式2
を満たすように移相器18を調整することにより、θを変化させると、復路方向へ伝搬する変調信号の位相が、導波路12内を復路方向へ伝搬する光の位相と一致することになる。即ち、この移相器18は、変調信号の位相につき、以下の式3を満たすように調整する。
θ=2mπ−2nΔl (但しk=ω/c) ・・・・式3
このように、移相器18により調整される変調信号の位相を電極13の形状、変調信号の周波数fm、並びに導波路12の群屈折率nに応じて調整することにより、これを光の位相に高精度に合わせ込むことができる。
As shown in FIG. 2, when the length from the corner portion 13a of the electrode 13 to the exit-side reflection film 15 is Δl and the group refractive index in the waveguide 12 is ng , light is transmitted from the corner portion 13a to the waveguide. A time t required to propagate along 12 and reflect the reflection film 15 on the emission side and return to the corner portion 13a is expressed by the following equation (1).
t = 2n g Δl / c (c: speed of light)...
Here, when the modulation frequency is ω m ,
ω m + θ = 2mπ (m = 0, 1, 2,...) Equation 2
When θ is changed by adjusting the phase shifter 18 so as to satisfy the condition, the phase of the modulation signal propagating in the backward direction matches the phase of light propagating in the waveguide 12 in the backward direction. . That is, the phase shifter 18 adjusts the phase of the modulation signal so as to satisfy the following Expression 3.
θ = 2mπ-2n g k 0 Δl (where k 0 = ω m / c)
Thus, by adjusting the phase of the modulation signal adjusted by the phase shifter 18 according to the shape of the electrode 13, the frequency fm of the modulation signal, and the group refractive index ng of the waveguide 12, The phase can be adjusted with high accuracy.

このため、光周波数コム発生器1では、導波路12を往路方向へ伝搬する光のみならず、復路方向へ伝搬する光についても高効率に位相変調を施すことができるため変調効率を最大2倍近くまで増加させることができる。また、電極13へ印加する電圧を上げることなく、変調効率を効果的に向上させることができるため、消費電力を削減でき、光周波数コム発生器1を配設するヘテロダイン検波系自体をスリムにすることができ、コストを大幅に削減することができる。   For this reason, in the optical frequency comb generator 1, not only the light propagating through the waveguide 12 in the forward direction but also the light propagating in the backward direction can be phase-modulated with high efficiency, so that the modulation efficiency is doubled at maximum. It can be increased to near. Further, since the modulation efficiency can be effectively improved without increasing the voltage applied to the electrode 13, the power consumption can be reduced, and the heterodyne detection system itself in which the optical frequency comb generator 1 is disposed is made slim. And cost can be greatly reduced.

なお、本発明を適用した光周波数コム発生器1は、上述した実施の形態に限定されるものではなく、以下の図3に示すL字状の電極を有する光周波数コム発生器7に適用してもよい。この光周波数コム発生器7において、光周波数コム発生器1と同一の構成については、同一番号を付して説明を省略する。   The optical frequency comb generator 1 to which the present invention is applied is not limited to the embodiment described above, and is applied to the optical frequency comb generator 7 having an L-shaped electrode shown in FIG. May be. In this optical frequency comb generator 7, the same components as those of the optical frequency comb generator 1 are denoted by the same reference numerals and description thereof is omitted.

この光周波数コム発生器7は、図3の上面図に示すように、変調電界の方向が光の伝搬方向に対して略垂直になるように導波路12の上面に設けられた電極73と、導波路12を介して互いに対向するように設置された入射側反射膜14並びに出射側反射膜15と、電極73の一端側に配設され、周波数fmの変調信号を発振する発振器16とを備えている。   As shown in the top view of FIG. 3, the optical frequency comb generator 7 includes an electrode 73 provided on the top surface of the waveguide 12 so that the direction of the modulation electric field is substantially perpendicular to the light propagation direction, An incident-side reflection film 14 and an emission-side reflection film 15 installed so as to face each other via the waveguide 12, and an oscillator 16 that is disposed on one end side of the electrode 73 and oscillates a modulation signal having a frequency fm. ing.

電極73は、他端から供給された変調信号を反射させるための切断点73aが設けられている。   The electrode 73 is provided with a cutting point 73a for reflecting the modulation signal supplied from the other end.

このような形状からなる電極73に対して発振器16より発振された周波数fmの変調信号を供給すると、当該変調信号は、電極73上を往路方向へ伝搬することになり、導波路12内を往路方向へ伝搬する光につき位相を変調させることができる。この電極73上を往路方向へ伝搬した変調信号は、切断点73aを反射して今度は復路方向へ伝搬することになる。これにより導波路12内を復路方向へ伝搬する光につき位相を変調することができ、光周波数コム発生器1と同様に変調効率を向上させることができる。特にこの光周波数コム発生器7では、移相器や反射器19を配設する必要がないことから、変調信号の損失を抑えることができる点において有利である。   When a modulation signal having a frequency fm oscillated from the oscillator 16 is supplied to the electrode 73 having such a shape, the modulation signal propagates on the electrode 73 in the forward direction, and travels in the waveguide 12. The phase of the light propagating in the direction can be modulated. The modulated signal that has propagated on the electrode 73 in the forward direction is reflected by the cut point 73a and is then propagated in the backward direction. As a result, the phase of light propagating in the waveguide 12 in the backward direction can be modulated, and the modulation efficiency can be improved in the same manner as the optical frequency comb generator 1. In particular, this optical frequency comb generator 7 is advantageous in that it is not necessary to dispose a phase shifter or a reflector 19, so that loss of the modulation signal can be suppressed.

ちなみに、この切断点73aの位置は、以下に説明するように調整されていてもよい。   Incidentally, the position of the cutting point 73a may be adjusted as described below.

図3に示すように、電極73における切断点73aから出射側反射膜15までの長さをΔlとし、また導波路12における群屈折率をnとするとき、光が切断点73aから導波路12に沿って伝搬して出射側反射膜15を反射し、再び角部分73aへ戻ってくるまでの時間tは、以下の式4で表される。
=2nΔl/c (c:光速)・・・・・・・・式4
ここで、変調周波数をωとするとき、以下の式5
ω=2mπ (m=0,1,2,・・・・) ・・・・式5
を満たすとき、復路方向へ伝搬する光は、往路方向と同じ位相で変調されることになる。ここで変調周波数ω=2πfmとするとき、長さをΔlは、以下の式6を満たすように調整される。
Δl=mπ/n (但しk=ω/c) ・・・・式6
このように電極73における切断点73aを、変調信号の周波数、並びに導波路12の群屈折率に応じて調整することにより、高効率な位相変調を施すことが可能となる。
As shown in FIG. 3, when the length from the cut point 73a of the electrode 73 to the exit side reflection film 15 is Δl 2 and the group index of refraction in the waveguide 12 is ng , light is guided from the cut point 73a. A time t 2 from propagation along the waveguide 12 to reflection on the exit-side reflection film 15 and return to the corner portion 73a is expressed by the following Expression 4.
t 2 = 2ng g Δl 2 / c (c: speed of light) (4)
Here, when the modulation frequency is ω m ,
ω m t 2 = 2mπ (m = 0, 1, 2,...) Equation 5
When the condition is satisfied, the light propagating in the backward direction is modulated with the same phase as the forward direction. Here, when the modulation frequency ω m = 2πfm, the length Δl 2 is adjusted so as to satisfy Equation 6 below.
Δl = mπ / n g k 0 (where k 0 = ω m / c)
Thus, by adjusting the cut point 73 a in the electrode 73 according to the frequency of the modulation signal and the group refractive index of the waveguide 12, highly efficient phase modulation can be performed.

また本発明は、図4に示す光変調器に適用してもよい。この光変調器8は、何れの端面84,85を介して光が入射されてもよく、入射された各光は、上述の如くそれぞれ変調されつつ導波路12内を往路方向又は復路方向へ伝搬し、対向する端面85,84を介して外部へ出射する。このため、この光変調器8は、光が入射する端面によらず、伝搬する光の位相のみならず、強度、偏波等についても効率よく変調することが可能となる。   The present invention may be applied to the optical modulator shown in FIG. The optical modulator 8 may receive light through any of the end faces 84 and 85, and each incident light propagates in the waveguide 12 in the forward or backward direction while being modulated as described above. Then, the light is emitted to the outside through the opposed end surfaces 85 and 84. For this reason, the optical modulator 8 can efficiently modulate not only the phase of the propagating light but also the intensity, the polarization, etc., regardless of the end face on which the light is incident.

なおこの光変調器8は、上述した実施の形態に限定されるものではなく、L字状の電極を有する光周波数コム発生器7の構成をそのまま光変調器として適用してもよい。   The optical modulator 8 is not limited to the above-described embodiment, and the configuration of the optical frequency comb generator 7 having an L-shaped electrode may be applied as it is as an optical modulator.

ちなみに、本実施例では、光コムを生成する光周波数コム発生器400を例に挙げて説明をしたが、かかる場合に限定されるものではなく、導波路412内を伝搬する光の変調のみを行う導波路型光変調器402として適用するようにしてもよいことは勿論である。   Incidentally, in this embodiment, the optical frequency comb generator 400 that generates an optical comb has been described as an example. However, the present invention is not limited to such a case, and only modulation of light propagating in the waveguide 412 is performed. Of course, it may be applied as the waveguide type optical modulator 402 to be performed.

本発明を適用した光周波数コム発生器の構成を示す図である。It is a figure which shows the structure of the optical frequency comb generator to which this invention is applied. 本発明を適用した光周波数コム発生器における電極の構成につき説明するための図である。It is a figure for demonstrating about the structure of the electrode in the optical frequency comb generator to which this invention is applied. L字状の電極を有する光周波数コム発生器の構成につき説明するための図である。It is a figure for demonstrating per structure of the optical frequency comb generator which has an L-shaped electrode. 光が入射する端面によらず、伝搬する光の位相を効率よく変調することが可能な光周波数コム発生器につき説明するための図である。It is a figure for demonstrating about the optical frequency comb generator which can modulate the phase of the light to propagate efficiently irrespective of the end surface into which light injects. 従来における光周波数コム発生器の原理的な構造を示す図である。It is a figure which shows the fundamental structure of the conventional optical frequency comb generator. 従来における導波路型光周波数コム発生器の原理的な構造を示す図である。It is a figure which shows the fundamental structure of the conventional waveguide type optical frequency comb generator.

符号の説明Explanation of symbols

1 光周波数コム発生器、2 導波路型光変調器、11 基板、12 導波路、13 電極、14 入射側反射膜、15 出射側反射膜、16 発振器、18 移相器、19 反射器   DESCRIPTION OF SYMBOLS 1 Optical frequency comb generator, 2 Waveguide type optical modulator, 11 Substrate, 12 Waveguide, 13 Electrode, 14 Incident side reflective film, 15 Outgoing side reflective film, 16 Oscillator, 18 Phase shifter, 19 Reflector

Claims (8)

所定の周波数の変調信号を発振する発振手段と、
互いに平行な入射側反射鏡及び出射側反射鏡から構成され、入射側反射鏡を介して入射された光を往路方向又は復路方向へ伝搬させることにより共振させる共振手段と、
上記入射側反射鏡と上記出射側反射鏡との間に配され、上記発振手段から供給された上記変調信号に応じて上記共振手段において共振された光の位相を変調し、上記入射された光の周波数を中心としたサイドバンドを上記変調信号の周波数の間隔で生成する光変調手段とを備え、
上記光変調手段は、少なくとも電気光学効果を有する基板にて形成された光導波路と、上記光導波路上に形成され上記発振手段から発振された変調信号を往路方向又は復路方向へ伝搬させるための電極からなり、上記発振手段から上記電極の一端側に供給された変調信号を反射する反射手段が上記電極の他端側にのみ設けられており、上記発振手段から供給された変調信号を共振させることなく、上記往路方向へ伝搬する光の位相を上記往路方向へ伝搬する変調信号によって変調し、また、上記復路方向へ伝搬する光の位相を上記復路方向へ伝搬する変調信号によって変調すること
を特徴とする光周波数コム発生器。
Oscillating means for oscillating a modulation signal of a predetermined frequency;
Resonating means that is composed of an entrance-side reflecting mirror and an exit-side reflecting mirror that are parallel to each other, and resonates by propagating light incident through the entrance-side reflecting mirror in the forward direction or the backward direction;
The incident light is arranged between the incident-side reflecting mirror and the emitting-side reflecting mirror and modulates the phase of the light resonated in the resonance means in accordance with the modulation signal supplied from the oscillation means. Optical modulation means for generating a sideband centered at the frequency of the modulation signal at intervals of the frequency of the modulation signal,
The light modulating means includes an optical waveguide formed on a substrate having at least an electro-optic effect, and an electrode formed on the optical waveguide for propagating a modulation signal oscillated from the oscillating means in a forward direction or a backward direction. The reflection means for reflecting the modulation signal supplied from the oscillation means to the one end side of the electrode is provided only on the other end side of the electrode, and resonates the modulation signal supplied from the oscillation means. The phase of light propagating in the forward direction is modulated by the modulation signal propagating in the forward direction, and the phase of light propagating in the backward direction is modulated by the modulation signal propagating in the backward direction. An optical frequency comb generator.
上記入射側反射鏡及び上記出射側反射鏡は、上記光変調手段の入射側端面及び/又は出射側端面に形成された反射膜である
ことを特徴とする請求項1記載の光周波数コム発生器。
2. The optical frequency comb generator according to claim 1, wherein the incident-side reflecting mirror and the emitting-side reflecting mirror are reflecting films formed on the incident-side end face and / or the exit-side end face of the light modulation means. .
上記反射手段として、上記電極の一端には、他端から供給された変調信号を反射させるための反射器、並びに当該反射された変調信号の位相を調整するための移相器が配設されてなることを特徴とする請求項1記載の光周波数コム発生器。 As the reflection means, one end of the electrode is provided with a reflector for reflecting the modulation signal supplied from the other end, and a phase shifter for adjusting the phase of the reflected modulation signal. The optical frequency comb generator according to claim 1, wherein 上記移相器は、上記反射された変調信号の位相を上記電極の形状、上記変調信号の周波数、並びに上記導波路の群屈折率に応じて調整することを特徴とする請求項3記載の光周波数コム発生器。   4. The light according to claim 3, wherein the phase shifter adjusts the phase of the reflected modulated signal in accordance with the shape of the electrode, the frequency of the modulated signal, and the group refractive index of the waveguide. Frequency comb generator. 上記反射手段として、上記電極の一端は、他端から供給された変調信号を反射させるための切断点が設けられてなることを特徴とする請求項1記載の光周波数コム発生器。 2. The optical frequency comb generator according to claim 1 , wherein the reflection means is provided with a cutting point for reflecting a modulation signal supplied from the other end at one end of the electrode. 上記電極における切断点は、上記変調信号の周波数、並びに上記導波路の群屈折率に応じて調整されていることを特徴とする請求項5記載の光周波数コム発生器。   6. The optical frequency comb generator according to claim 5, wherein a cut point in the electrode is adjusted according to a frequency of the modulation signal and a group refractive index of the waveguide. 所定の周波数の変調信号を発振する発振手段と、
何れか一の端面を介して入射された光を往路方向又は復路方向へ伝搬させる光伝搬手段と、
上記端面間に配され、上記発振手段から供給された上記変調信号に応じて上記伝搬する光の位相を変調する光変調手段とを備え、
上記光変調手段は、少なくとも電気光学効果を有する基板にて形成された光導波路と、上記光導波路上に形成され上記発振手段から発振された変調信号を往路方向又は復路方向へ伝搬させるための電極からなり、上記発振手段から上記電極の一端側に供給された変調信号を反射する反射手段が上記電極の他端側にのみ設けられており、上記発振手段から供給された変調信号を共振させることなく、上記往路方向へ伝搬する光の位相を上記往路方向へ伝搬する変調信号によって変調し、また、上記復路方向へ伝搬する光の位相を上記復路方向へ伝搬する変調信号によって変調すること
を特徴とする光変調器。
Oscillating means for oscillating a modulation signal of a predetermined frequency;
A light propagation means for propagating the light incident through any one end face in the forward direction or the backward direction;
An optical modulation unit that is arranged between the end faces and modulates the phase of the propagating light according to the modulation signal supplied from the oscillation unit;
The light modulating means includes an optical waveguide formed on a substrate having at least an electro-optic effect, and an electrode formed on the optical waveguide for propagating a modulation signal oscillated from the oscillating means in a forward direction or a backward direction. The reflection means for reflecting the modulation signal supplied from the oscillation means to the one end side of the electrode is provided only on the other end side of the electrode, and resonates the modulation signal supplied from the oscillation means. The phase of light propagating in the forward direction is modulated by the modulation signal propagating in the forward direction, and the phase of light propagating in the backward direction is modulated by the modulation signal propagating in the backward direction. An optical modulator.
所定の周波数の変調信号を発振する発振手段と、
何れか一の端面を介して入射された光を往路方向又は復路方向へ伝搬させる光伝搬手段と、
上記光伝搬手段を含む光路上にある少なくとも1つの反射鏡からなり、入射端側から光路方向へ伝搬する光を入射側へ戻す光反射手段と、
入射端と上記反射鏡との間に配され、上記発振手段から供給された上記変調信号に応じて上記伝搬する光の位相を変調する光変調手段とを備え、
上記光変調手段は、少なくとも電気光学効果を有する基板にて形成された光導波路と、上記光導波路上に形成され上記発振手段から発振された変調信号を往路方向又は復路方向へ伝搬させるための電極からなり、上記発振手段から上記電極の一端側に供給された変調信号を反射する反射手段が上記電極の他端側にのみ設けられており、上記発振手段から供給された変調信号を共振させることなく、上記往路方向へ伝搬する光の位相を上記往路方向へ伝搬する変調信号によって変調し、また、上記復路方向へ伝搬する光の位相を上記復路方向へ伝搬する変調信号によって変調すること
を特徴とする光変調器。
Oscillating means for oscillating a modulation signal of a predetermined frequency;
A light propagation means for propagating the light incident through any one end face in the forward direction or the backward direction;
A light reflecting means comprising at least one reflecting mirror on an optical path including the light propagating means, and returning light propagating in the optical path direction from the incident end side to the incident side;
An optical modulation unit that is arranged between the incident end and the reflecting mirror and modulates the phase of the propagating light according to the modulation signal supplied from the oscillation unit;
The light modulating means includes an optical waveguide formed on a substrate having at least an electro-optic effect, and an electrode formed on the optical waveguide for propagating a modulation signal oscillated from the oscillating means in a forward direction or a backward direction. The reflection means for reflecting the modulation signal supplied from the oscillation means to the one end side of the electrode is provided only on the other end side of the electrode, and resonates the modulation signal supplied from the oscillation means. The phase of light propagating in the forward direction is modulated by the modulation signal propagating in the forward direction, and the phase of light propagating in the backward direction is modulated by the modulation signal propagating in the backward direction. An optical modulator.
JP2003385450A 2003-11-14 2003-11-14 Optical frequency comb generator and optical modulator Expired - Lifetime JP3891977B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003385450A JP3891977B2 (en) 2003-11-14 2003-11-14 Optical frequency comb generator and optical modulator
PCT/JP2004/016325 WO2005047965A1 (en) 2003-11-14 2004-11-04 Optical frequency comb generator and optical modulator
EP04818455A EP1684110A4 (en) 2003-11-14 2004-11-04 Optical frequency comb generator and optical modulator
US10/579,262 US7551342B2 (en) 2003-11-14 2004-11-04 Optical frequency comb generator and optical modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003385450A JP3891977B2 (en) 2003-11-14 2003-11-14 Optical frequency comb generator and optical modulator

Publications (3)

Publication Number Publication Date
JP2005148390A JP2005148390A (en) 2005-06-09
JP2005148390A5 JP2005148390A5 (en) 2006-05-18
JP3891977B2 true JP3891977B2 (en) 2007-03-14

Family

ID=34693508

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003385450A Expired - Lifetime JP3891977B2 (en) 2003-11-14 2003-11-14 Optical frequency comb generator and optical modulator

Country Status (1)

Country Link
JP (1) JP3891977B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125007A1 (en) 2019-12-17 2021-06-24 株式会社Xtia Method for producing optical resonator and optical modulator, optical resonator, optical modulator, optical frequency comb generator, and optical oscillator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120072214A (en) 2010-12-23 2012-07-03 한국전자통신연구원 Terahertz continuous wave generator
JP2020086136A (en) * 2018-11-26 2020-06-04 株式会社Xtia Light modulator and optical comb generator
JP7152761B2 (en) * 2018-11-26 2022-10-13 株式会社Xtia Optical comb generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021125007A1 (en) 2019-12-17 2021-06-24 株式会社Xtia Method for producing optical resonator and optical modulator, optical resonator, optical modulator, optical frequency comb generator, and optical oscillator
US11726254B2 (en) 2019-12-17 2023-08-15 Xtia Ltd Method for producing optical resonator and optical modulator, optical resonator, optical modulator, optical frequency comb generator, and optical oscillator

Also Published As

Publication number Publication date
JP2005148390A (en) 2005-06-09

Similar Documents

Publication Publication Date Title
US7463664B2 (en) Coherent light source and optical device
EP0485187B1 (en) Second harmonic generator using a laser as a fundamental wave source
JP7152802B2 (en) Optical comb generator
US7039077B2 (en) Optical wavelength converting apparatus, and optical wavelength converting method
WO2005047965A1 (en) Optical frequency comb generator and optical modulator
JP4781648B2 (en) Optical resonator
JP2000250083A (en) Light wavelength conversion module and image recording method
JP3525273B2 (en) Submillimeter wave generator
JP3891977B2 (en) Optical frequency comb generator and optical modulator
JP3708892B2 (en) Optical frequency comb generator and manufacturing method thereof
JP3848883B2 (en) Optical resonator and optical frequency comb generator
JPH0933962A (en) Wavelength conversion device and wavelength conversion method
JP3891976B2 (en) Light modulator
JPH06194708A (en) Shg element, shg device and method for deciding effective refraction factor of shg element
JP3910834B2 (en) Optical frequency comb generator
JP2000338531A (en) Wavelength conversion laser device and laser radar device
JP4002917B2 (en) Optical resonator measuring apparatus and method
JPH11249183A (en) Optical wavelength converting module
CN111262122B (en) Optical frequency comb generating system
JP2005148390A5 (en)
US6671425B1 (en) Method and system for acoustically tuning a light source
JP5695590B2 (en) Harmonic generator
JP2015132774A (en) wavelength conversion light source
JP2003098497A (en) Optical waveguide type light frequency comb generator
KR20060123954A (en) Apparatus for generating harmonic wave of laser

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060329

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20060329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060330

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20060421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060523

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060724

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060815

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061205

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3891977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term