JP3890919B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device Download PDF

Info

Publication number
JP3890919B2
JP3890919B2 JP2001132320A JP2001132320A JP3890919B2 JP 3890919 B2 JP3890919 B2 JP 3890919B2 JP 2001132320 A JP2001132320 A JP 2001132320A JP 2001132320 A JP2001132320 A JP 2001132320A JP 3890919 B2 JP3890919 B2 JP 3890919B2
Authority
JP
Japan
Prior art keywords
coating film
etching
inspection pattern
boundary position
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001132320A
Other languages
Japanese (ja)
Other versions
JP2002050663A (en
Inventor
雅彦 名倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Corp
Original Assignee
Yamaha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Corp filed Critical Yamaha Corp
Priority to JP2001132320A priority Critical patent/JP3890919B2/en
Publication of JP2002050663A publication Critical patent/JP2002050663A/en
Application granted granted Critical
Publication of JP3890919B2 publication Critical patent/JP3890919B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Drying Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、半導体装置の製造方法に係り、配線等により段差が形成された面に塗布膜を形成してエッチングする技術の改良に関する。
【0002】
【従来の技術】
塗布膜をエッチングする技術は、主に、半導体集積回路の製造において多層配線を形成する場合に、配線段差を軽減するための平坦化技術として用いられる。例えば、素子が形成された半導体基板に第1層配線を形成し、その上に層間絶縁膜を堆積した後、この層間絶縁膜に転写された凹凸をなくすために、SOG(Spin On Glass)等のガラス膜を塗布し、ドライエッチング法により全面エッチング(エッチバック)する。これにより平坦化された基板に第2層配線を形成する(例えば、特公平5−87146号公報)。
【0003】
この様な塗布膜をエッチングする平坦化技術においては、塗布膜のエッチング量を最適制御することが必要である。そのための方法として、
▲1▼塗布膜のエッチング速度を予め測定しておき、エッチング時間によってエッチング量の適否判定を行う方法、
▲2▼塗布膜のエッチングをプラズマ中で行う場合に、その発光スペクトルの強度変化により塗布膜の残膜厚を判定する方法、
▲3▼平坦部での塗布膜の残膜厚をエリプソメータ等による光学膜厚測定を行う方法、等がある。
【0004】
【発明が解決しようとする課題】
▲1▼および▲2▼の方法は、いずれも間接的な膜厚測定法を利用するから、高精度のエッチング量制御が難しい。▲3▼の方法は、エッチング量が平坦部での塗布膜厚の範囲であれば有効であるが、平坦部の塗布膜厚以上の削り込みを行う場合には残膜厚測定ができないから、適用できない。
【0005】
エッチバック完了後に、電子顕微鏡等を用いた断面検査によりエッチング量の適否を評価する方法も考えられるが、これは完成後の検査となるため実際の処理へのフィードバックが遅れる、破壊検査になるため好ましくない、観測点を多くすることが難しくばらつきの評価が容易ではない、といった難点がある。
【0006】
この発明は、上記事情を考慮してなされたもので、光学的な非破壊検査で簡単にエッチング量の適否判定を可能とした技術を用いた半導体装置の製造方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
この発明は、所望の素子が形成された半導体基板上の段差のある面に塗布膜を形成し、この塗布膜をエッチングする工程を有する半導体装置の製造方法において、前記半導体基板の段差のある面上に、前記塗布膜の形成に先だって、互いに分離された一対の凸部を含むと共に前記一対の凸部で形成されるスペース部の幅が断続的に変化している平面形状を有する検査パターンを形成し、前記塗布膜のエッチング工程で前記検査パターン内のスペース部での前記塗布膜と前記基板の境界位置を検出して、予め測定されている境界位置とエッチング量の相関関係データに基づいてエッチング量の適否判定を行うことを特徴としている。
【0008】
この発明はまた、所望の素子が形成された半導体基板上の段差のある面に絶縁膜を堆積した後塗布膜を形成し、この塗布膜をエッチングする工程を有する半導体装置の製造方法において、前記半導体基板の段差のある面上に、前記絶縁膜の堆積に先だって、互いに分離された一対の凸部を含むと共に前記一対の凸部で形成されるスペース部の幅が断続的に変化している平面形状を有する検査パターンを形成し、前記塗布膜のエッチング工程で前記検査パターン内のスペース部での前記塗布膜と前記絶縁膜の境界位置を検出して、予め測定されている境界位置とエッチング量の相関関係データに基づいてエッチング量の適否判定を行うことを特徴としている。
【0009】
この発明においては、塗布膜のエッチング量の適否を判定するために、所定の厚みを有し且つ面内の複数箇所でライン幅とスペース幅の比(以下単に、ライン/スペース比という)を異ならせたライン部とスペース部をもつ凸形の検査パターンを利用する。この様な検査パターンを予め平坦面に形成して塗布膜を形成し、この塗布膜をエッチバックすると、ライン/スペース比の異なる箇所では塗布膜のエッチング量が異り、且つそのエッチング量に応じて塗布膜の下地との境界位置が変化する。この塗布膜と下地との境界位置は、光学顕微鏡等により容易に検出することができる。
【0010】
従って検査パターン内における塗布膜と下地との境界位置とエッチング量の相関関係データを例えば複数回の繰り返し測定によって予め求めておけば、実際の平坦化プロセスでは光学的に前述の境界位置検出を行うことにより、前記相関データに基づいてエッチング量の適否を判定することができる。
この発明によると、破壊観測を要せず、多点測定も容易であり、ばらつきのない正確なエッチング量制御が可能である。
【0011】
【発明の実施の形態】
以下、図面を参照して、この発明の実施例を説明する。
図1は、この発明の一実施例に用いる検査パターンを示す。この検査パターンは、例えば第1層配線により段差が形成された基板の面に、第1層配線と同時に形成されるものであって、(a)が平面図であり、(b),(c),(d),(e)はそれぞれ(a)のA−A′,B−B′,C−C′,D−D′位置の断面図である。
【0012】
図示のようにこの実施例の検査パターンは、所定厚みの1対の凸部11,12からなる。凸部11,12は所定基板10の平坦面の幅lの範囲内に形成され、この幅lの範囲でA−A′位置では両側にL1なる幅のライン部があり、その内側にS1なる幅のスペース部がある。B−B′位置では、ライン部の幅がL2と大きく、その分スペース部の幅がS2と小さくなっている。C−C′位置ではライン部の幅がL3,スペース部の幅がS3であり、D−D′位置ではライン部の幅がL4,スペース部の幅がS4である。即ちこの検査パターンは、ライン/スペース比が異なる複数箇所をもつ様に形成されている。
【0013】
この発明においては、この様な検査パターンを予め平坦面に形成して塗布膜を形成し、この塗布膜をエッチバックしたとき、ライン/スペース比の異なる箇所で塗布膜のエッチング量が異り、且つそのエッチング量に応じて塗布膜の下地との境界位置が変化することを利用する。そのようなエッチング量と境界位置の相関関係を求める為に、次のような予備測定を行う。
【0014】
図2は、図1に示す検査パターンを持つ基板にSOG等の塗布膜13を形成した状態、及びこれをエッチバックした時の所定時間後の残膜14の状態を、A−A′,B−B′,C−C′,D−D′各位置の断面図で示している。図示のように検査パターンの内側のスペース部でのエッチングの様子は、スペース部の幅によって異なる。残膜14の様子を平面図で見ると図3のようになり、スペース部の中心での残り膜14と下地との境界位置eは、エッチングの進行と共に移動する。図4はそのエッチングの進行に伴い境界位置がe1,e2,e3…と変化する様子を示している。この境界位置eが、検査パターン上のA−A′,B−B′,C−C′,D−D′のどの位置にあるかは、光学顕微鏡等により観測することができる。
【0015】
以上の測定から、エッチバック量(即ち塗布膜の削り込み量)と境界位置eの関係、具体的にはエッチバック量とそのときの残膜14が存在するスペース部の最大幅(臨界間隔)との関係が求められる。そして以上の工程を繰り返し行うことにより、図5に示すような、エッチバック量と臨界間隔の相関関係データが得られる。このデータを予め作成しておけば、実際の半導体素子の平坦化プロセスにおいて、同じような検査パターンを形成して、臨界間隔を検出することにより、図5から、臨界間隔がAの範囲にあればエッチバック量はBの範囲にあるという判定ができる。
【0016】
この発明を配線段差を軽減する平坦化技術として適用した具体的な実施例を説明すれば、図6に示すように、所望の素子が形成されたシリコン基板21の絶縁膜22で覆われた面に第1層Al配線23を形成する。このAl配線工程で同時に、図1で説明した検査パターン24を基板の平坦面に形成する。そして第1層Al配線23による段差をなくすための平坦化膜として例えばSOG膜25を塗布する。このSOG膜25をエッチバックして平坦化する際に、光学的な観測と図5のデータを用いることにより、エッチバック量が適正であるか否かを判断することができる。
この様なエッチバック量制御を行って平坦化した後、必要なら更に層間絶縁膜を堆積して、第2層Al配線を形成する。
【0017】
以上のようにこの実施例によれば、検査パターン内における塗布膜と下地との境界位置とエッチング量の相関関係データを複数回の繰り返し測定によって予め求めておき、実際の平坦化プロセスでは光学的に前述の境界位置検出を行うことにより、上の相関関係データに基づいてエッチング量の適否を判定することができる。この実施例によると、破壊観測を要せず多点測定も容易であり、ばらつきのない正確なエッチング量制御による平坦化が可能となる。
【0018】
図7は、図6に対して、第1層配線23を形成した後、SiO2膜等の絶縁膜26を堆積してから、平坦化用のSOG膜25を形成した場合を示している。絶縁膜26がステップカバレージのよいCVD膜等である場合には、検査パターン24は絶縁膜26に転写される。従って検査パターン24直接ではなく、絶縁膜26に転写された検査パターンにより、同様にエッチバック量の検出判定を行うことができる。但しこの場合、図5に示す相関関係データをとる際にも、図7と同様の膜構造を用いる。
【0019】
この発明に用いる検査パターンは、上記実施例に限られず、図8〜図13に示すような種々の平面パターンで表される検査パターンを用いることができる。図8は、一定幅の複数のライン部(凸部)81,82,83,84を異なる複数のスペース幅をもって配列したものであり、ライン/スペース比は図の矢印a方向に次第に小さくなる。先の実施例のように塗布膜を形成してエッチバックしたとき、各スペース部に応じて、塗布膜の残膜と下地の境界位置がe1,e2,e3のように異なる。従ってこれから、塗布膜の残膜と下地の境界位置とエッチバック量の相関関係データが得られる。
【0020】
図9の検査パターンは、一対の凸部91,92からなり、内側のスペース部がV字形となるように連続的に幅を変化させており、ライン/スペース比が図の矢印b方向に次第に大きくなる点は図1の実施例と同様である。図10の検査パターンはやはり一対の凸部101,102からなるが、スペース部の幅は一定で、位置に応じてライン部の幅を異ならせたものである。これも、図9と同様に矢印b方向にライン/スペース比が大きくなる。塗布膜の性質として、スペース一定であっても、これを挟むライン部の幅が広い程厚く形成される。即ち、ライン/スペース比の異なる位置で塗布膜の膜厚が異なる。従って塗布膜をエッチバックしたときの境界位置eにより、エッチバック量を検出することができる。
【0021】
図11の検査パターンは、一対の凸部111,112からなるが、ライン部の幅およびスペース部の幅をより複雑に変化させたものである。
以上に例示した検査パターンの二つの凸部は、分離されていることは必ずしも必要ではない。例えば図12の検査パターンは、図1の実施例の検査パターンを一体化して一つの凸部としたものである。また図13は、図9の実施例の検査パターンを一体化して一つの凸部としたものである。これらも、ライン/スペース比が異なる複数箇所を有するから、塗布膜の境界位置eとエッチバック量の相関関係データをとることができる。
【0022】
【発明の効果】
以上述べたようにこの発明によれば、塗布膜のエッチング量の適否を判定するために、所定の厚みを有し且つ面内の複数箇所でライン幅とスペース幅の比を異ならせたライン部とスペース部をもつ凸形の検査パターンを利用する。この様な検査パターンを予め平坦面に形成して塗布膜を形成し、この塗布膜をエッチバックすると、ライン/スペース比の異なる箇所では塗布膜のエッチング量が異り、且つそのエッチング量に応じて塗布膜の下地との境界位置が変化するから、予め検査パターン内における塗布膜と下地との境界位置とエッチング量の相関関係データを複数回の繰り返し測定によって求めておき、実際のプロセスでは光学的に前述の境界位置検出を行うことにより、相関データに基づいてエッチング量の適否を判断することができ、ばらつきのない正確なエッチング量制御が可能になる。
【図面の簡単な説明】
【図1】 この発明の一実施例における検査パターンを示す。
【図2】 同検査パターンと塗布膜の残膜膜厚の関係を示す断面図である。
【図3】 同検査パターンと残膜の関係を示す平面図である。
【図4】 塗布膜のエッチングによる残膜の下地との境界位置の変化を示す平面図である。
【図5】 エッチバック量と塗布膜が残る臨界間隔との相関関係を示すデータである。
【図6】 同実施例の平坦化工程を示す。
【図7】 他の実施例の平坦化工程を示す。
【図8】 他の実施例の検査パターンを示す。
【図9】 他の実施例の検査パターンを示す。
【図10】 他の実施例の検査パターンを示す。
【図11】 他の実施例の検査パターンを示す。
【図12】 他の実施例の検査パターンを示す。
【図13】 他の実施例の検査パターンを示す。
【符号の説明】
10…基板、11,12…凸部、13…塗布膜、14…残膜、21…シリコン基板、22…絶縁膜、23…第1層Al配線、24…検査パターン、26…絶縁膜、e…境界位置。
[0001]
BACKGROUND OF THE INVENTION
This invention relates to a method for manufacturing a semiconductor equipment, to form a coating film on the surface a step is formed to an improvement of the technique for etching the wiring or the like.
[0002]
[Prior art]
The technique of etching the coating film is mainly used as a planarization technique for reducing a wiring step when a multilayer wiring is formed in the manufacture of a semiconductor integrated circuit. For example, a first layer wiring is formed on a semiconductor substrate on which elements are formed, an interlayer insulating film is deposited thereon, and then SOG (Spin On Glass) or the like is used to eliminate the unevenness transferred to the interlayer insulating film. The glass film is applied, and the entire surface is etched (etched back) by a dry etching method. In this way, the second layer wiring is formed on the flattened substrate (for example, Japanese Patent Publication No. 5-87146).
[0003]
In the planarization technique for etching such a coating film, it is necessary to optimally control the etching amount of the coating film. As a method for that,
(1) A method of measuring the etching rate of the coating film in advance and determining the suitability of the etching amount according to the etching time,
(2) When etching the coating film in plasma, a method for determining the remaining film thickness of the coating film from the change in the intensity of the emission spectrum;
(3) There is a method of measuring the remaining film thickness of the coating film on the flat part by measuring the optical film thickness using an ellipsometer or the like.
[0004]
[Problems to be solved by the invention]
Since the methods (1) and (2) both use an indirect film thickness measurement method, it is difficult to control the etching amount with high accuracy. The method of (3) is effective as long as the etching amount is within the range of the coating film thickness in the flat part, but the residual film thickness cannot be measured when cutting more than the coating film thickness in the flat part. Not applicable.
[0005]
After etching back is complete, a method of evaluating the suitability of the etching amount by cross-sectional inspection using an electron microscope or the like is also conceivable, but this is a post-completion inspection, resulting in a destructive inspection that delays feedback to actual processing This is not preferable, and it is difficult to increase the number of observation points, and it is difficult to evaluate variation.
[0006]
The present invention has been made in consideration of the above situation, the purpose is to provide a method for manufacturing a semiconductor equipment using a technique which enables the propriety determination of easy etching amount by an optical non-destructive testing Yes.
[0007]
[Means for Solving the Problems]
The present invention provides a method for manufacturing a semiconductor device including a step of forming a coating film on a stepped surface on a semiconductor substrate on which a desired element is formed, and etching the coating film. An inspection pattern having a planar shape including a pair of protrusions separated from each other and the width of the space formed by the pair of protrusions intermittently changing prior to the formation of the coating film. Forming and detecting a boundary position between the coating film and the substrate in a space portion in the inspection pattern in the etching process of the coating film, and based on correlation data between the boundary position measured in advance and the etching amount It is characterized by determining the suitability of the etching amount.
[0008]
The present invention also provides a method for manufacturing a semiconductor device, comprising: forming a coating film after depositing an insulating film on a stepped surface on a semiconductor substrate on which a desired element is formed; and etching the coating film. Prior to the deposition of the insulating film, the width of the space portion formed by the pair of protrusions is intermittently changed on the stepped surface of the semiconductor substrate, including a pair of protrusions separated from each other. A test pattern having a planar shape is formed, and a boundary position between the coating film and the insulating film is detected in a space portion in the test pattern in the etching process of the coating film, and the boundary position and etching measured in advance are detected. It is characterized in that the suitability of the etching amount is determined based on the amount correlation data.
[0009]
In the present invention, in order to determine whether or not the etching amount of the coating film is appropriate, the ratio of the line width to the space width (hereinafter simply referred to as the line / space ratio) is different at a plurality of locations within the surface. A convex inspection pattern having a curved line portion and a space portion is used. When such a test pattern is formed on a flat surface in advance and a coating film is formed, and this coating film is etched back, the etching amount of the coating film differs at different line / space ratios, and the etching amount depends on the etching amount. As a result, the boundary position between the coating film and the base changes. The boundary position between the coating film and the base can be easily detected by an optical microscope or the like.
[0010]
Therefore, if the correlation data of the boundary position between the coating film and the base in the inspection pattern and the etching amount is obtained in advance by, for example, a plurality of repeated measurements, the above-described boundary position is optically detected in the actual planarization process. Accordingly, it is possible to determine the suitability of the etching amount based on the correlation data.
According to the present invention, fracture observation is not required, multipoint measurement is easy, and accurate etching amount control without variation is possible.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows an inspection pattern used in one embodiment of the present invention. This inspection pattern is formed simultaneously with the first layer wiring on the surface of the substrate on which the step is formed by the first layer wiring, for example, (a) is a plan view, and (b), (c) ), (D), and (e) are cross-sectional views at positions AA ', BB', CC ', and DD' in (a), respectively.
[0012]
As shown in the figure, the inspection pattern of this embodiment is composed of a pair of convex portions 11 and 12 having a predetermined thickness. The convex portions 11 and 12 are formed within the range of the width l of the flat surface of the predetermined substrate 10, and in the range of the width l, there are line portions having a width of L1 on both sides at the position AA ′, and S1 is inside thereof. There is a space part of width. At the BB ′ position, the width of the line portion is as large as L2, and the width of the space portion is as small as S2. At the CC ′ position, the width of the line portion is L3 and the width of the space portion is S3, and at the DD ′ position, the width of the line portion is L4 and the width of the space portion is S4. That is, this inspection pattern is formed so as to have a plurality of locations with different line / space ratios.
[0013]
In this invention, such an inspection pattern is formed in advance on a flat surface to form a coating film, and when this coating film is etched back, the etching amount of the coating film is different at different line / space ratios. In addition, the fact that the boundary position of the coating film with the base changes according to the etching amount is utilized. In order to obtain the correlation between the etching amount and the boundary position, the following preliminary measurement is performed.
[0014]
FIG. 2 shows a state in which the coating film 13 such as SOG is formed on the substrate having the inspection pattern shown in FIG. 1 and a state of the remaining film 14 after a predetermined time when this is etched back. -B ', CC' and DD 'are shown in cross-sectional views at respective positions. As shown in the drawing, the state of etching in the space portion inside the inspection pattern varies depending on the width of the space portion. When the state of the remaining film 14 is seen in a plan view, it becomes as shown in FIG. 3, and the boundary position e between the remaining film 14 and the base at the center of the space portion moves with the progress of etching. FIG. 4 shows how the boundary position changes as e1, e2, e3... As the etching progresses. It can be observed with an optical microscope or the like which position of the boundary position e is AA ′, BB ′, CC ′, DD ′ on the inspection pattern.
[0015]
From the above measurement, the relationship between the etch back amount (that is, the coating film cutting amount) and the boundary position e, specifically, the etch back amount and the maximum width (critical interval) of the space where the remaining film 14 exists at that time. Relationship is required. By repeating the above steps, correlation data between the etch back amount and the critical interval as shown in FIG. 5 is obtained. If this data is prepared in advance, the critical interval is within the range A from FIG. 5 by forming a similar inspection pattern and detecting the critical interval in the actual planarization process of the semiconductor element. In other words, it can be determined that the etchback amount is in the range of B.
[0016]
Explaining a specific embodiment in which the present invention is applied as a planarization technique for reducing a wiring step, as shown in FIG. 6, a surface covered with an insulating film 22 of a silicon substrate 21 on which a desired element is formed. First layer Al wiring 23 is formed. Simultaneously with this Al wiring process, the inspection pattern 24 described in FIG. 1 is formed on the flat surface of the substrate. Then, for example, an SOG film 25 is applied as a planarizing film for eliminating a step due to the first layer Al wiring 23. When the SOG film 25 is etched back and planarized, it is possible to determine whether or not the etch back amount is appropriate by using optical observation and the data shown in FIG.
After flattening by performing such an etch back amount control, an interlayer insulating film is further deposited if necessary to form a second layer Al wiring.
[0017]
As described above, according to this embodiment, the correlation data between the boundary position between the coating film and the base in the inspection pattern and the etching amount is obtained in advance by a plurality of repeated measurements. In addition, by performing the above-described boundary position detection, it is possible to determine the suitability of the etching amount based on the above correlation data. According to this embodiment, it is easy to perform multipoint measurement without observing destruction, and flattening by precise etching amount control without variation is possible.
[0018]
FIG. 7 shows a case where the planarizing SOG film 25 is formed after the first layer wiring 23 is formed and the insulating film 26 such as a SiO 2 film is deposited. When the insulating film 26 is a CVD film or the like with good step coverage, the inspection pattern 24 is transferred to the insulating film 26. Therefore, the detection determination of the etchback amount can be performed in the same manner based on the inspection pattern transferred to the insulating film 26 instead of directly on the inspection pattern 24. However, in this case, the same film structure as that in FIG. 7 is used when obtaining the correlation data shown in FIG.
[0019]
The inspection pattern used for this invention is not restricted to the said Example, The inspection pattern represented by various plane patterns as shown in FIGS. 8-13 can be used. In FIG. 8, a plurality of line portions (convex portions) 81, 82, 83, and 84 having a constant width are arranged with different space widths, and the line / space ratio gradually decreases in the direction of arrow a in the figure. When the coating film is formed and etched back as in the previous embodiment, the boundary position between the remaining film of the coating film and the base varies as e1, e2, and e3 depending on each space portion. Therefore, correlation data between the remaining position of the coating film and the boundary position between the base and the etch back amount can be obtained from this.
[0020]
The inspection pattern of FIG. 9 is composed of a pair of convex portions 91 and 92, and the width is continuously changed so that the inner space portion is V-shaped, and the line / space ratio gradually increases in the direction of arrow b in the figure. The increase is the same as in the embodiment of FIG. The inspection pattern shown in FIG. 10 is also composed of a pair of convex portions 101 and 102, but the width of the space portion is constant and the width of the line portion is varied depending on the position. This also increases the line / space ratio in the direction of arrow b as in FIG. As a property of the coating film, even if the space is constant, the coating film is formed thicker as the width of the line portion sandwiching the space is wider. That is, the film thickness of the coating film is different at a position where the line / space ratio is different. Accordingly, the etch back amount can be detected from the boundary position e when the coating film is etched back.
[0021]
The inspection pattern shown in FIG. 11 includes a pair of convex portions 111 and 112, but the line portion width and the space portion width are changed more complicatedly.
It is not always necessary that the two convex portions of the inspection pattern exemplified above are separated. For example, the inspection pattern of FIG. 12 is obtained by integrating the inspection pattern of the embodiment of FIG. 1 into one convex portion. FIG. 13 shows an example in which the inspection pattern of the embodiment of FIG. Since these also have a plurality of locations having different line / space ratios, correlation data between the boundary position e of the coating film and the etch back amount can be obtained.
[0022]
【The invention's effect】
As described above, according to the present invention, in order to determine the suitability of the etching amount of the coating film, the line portion has a predetermined thickness and the ratio of the line width to the space width is different at a plurality of locations in the plane. And a convex inspection pattern with a space part. When such a test pattern is formed on a flat surface in advance and a coating film is formed, and this coating film is etched back, the etching amount of the coating film differs at different line / space ratios, and the etching amount depends on the etching amount. Since the boundary position between the coating film and the substrate changes, the correlation data between the coating film and substrate boundary position in the inspection pattern and the etching amount are obtained in advance by repeated measurement. In addition, by performing the above-described boundary position detection, it is possible to determine the suitability of the etching amount based on the correlation data, and it is possible to accurately control the etching amount without variation.
[Brief description of the drawings]
FIG. 1 shows an inspection pattern in one embodiment of the present invention.
FIG. 2 is a cross-sectional view showing the relationship between the inspection pattern and the remaining film thickness of a coating film.
FIG. 3 is a plan view showing the relationship between the inspection pattern and the remaining film.
FIG. 4 is a plan view showing a change in a boundary position between a remaining film and a base due to etching of a coating film.
FIG. 5 is data showing a correlation between an etch back amount and a critical interval in which a coating film remains.
FIG. 6 shows a planarization step of the same embodiment.
FIG. 7 shows a planarization process of another embodiment.
FIG. 8 shows an inspection pattern of another embodiment.
FIG. 9 shows an inspection pattern of another embodiment.
FIG. 10 shows an inspection pattern of another embodiment.
FIG. 11 shows an inspection pattern of another embodiment.
FIG. 12 shows an inspection pattern of another embodiment.
FIG. 13 shows an inspection pattern of another embodiment.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 ... Board | substrate, 11, 12 ... Convex part, 13 ... Coating film, 14 ... Residual film, 21 ... Silicon substrate, 22 ... Insulating film, 23 ... 1st layer Al wiring, 24 ... Inspection pattern, 26 ... Insulating film, e ... boundary position.

Claims (2)

所望の素子が形成された半導体基板上の段差のある面に塗布膜を形成し、この塗布膜をエッチングする工程を有する半導体装置の製造方法において、
前記半導体基板の段差のある面上に、前記塗布膜の形成に先だって、互いに分離された一対の凸部を含むと共に前記一対の凸部で形成されるスペース部の幅が断続的に変化している平面形状を有する検査パターンを形成し、
前記塗布膜のエッチング工程で前記検査パターン内のスペース部での前記塗布膜と前記基板の境界位置を検出して、予め測定されている境界位置とエッチング量の相関関係データに基づいてエッチング量の適否判定を行う
ことを特徴とする半導体装置の製造方法。
In a manufacturing method of a semiconductor device including a step of forming a coating film on a stepped surface on a semiconductor substrate on which a desired element is formed, and etching the coating film,
Prior to the formation of the coating film, the semiconductor substrate includes a pair of protrusions separated from each other and the width of the space formed by the pair of protrusions is intermittently changed prior to the formation of the coating film. Forming an inspection pattern having a planar shape,
In the etching process of the coating film, the boundary position between the coating film and the substrate in the space portion in the inspection pattern is detected, and the etching amount is determined based on the correlation data between the boundary position and the etching amount measured in advance. A method of manufacturing a semiconductor device, comprising performing a suitability determination.
所望の素子が形成された半導体基板上の段差のある面に絶縁膜を堆積した後塗布膜を形成し、この塗布膜をエッチングする工程を有する半導体装置の製造方法において、
前記半導体基板の段差のある面上に、前記絶縁膜の堆積に先だって、互いに分離された一対の凸部を含むと共に前記一対の凸部で形成されるスペース部の幅が断続的に変化している平面形状を有する検査パターンを形成し、
前記塗布膜のエッチング工程で前記検査パターン内のスペース部での前記塗布膜と前記絶縁膜の境界位置を検出して、予め測定されている境界位置とエッチング量の相関関係データに基づいてエッチング量の適否判定を行う
ことを特徴とする半導体装置の製造方法。
In a method for manufacturing a semiconductor device, the method includes forming a coating film after depositing an insulating film on a stepped surface on a semiconductor substrate on which a desired element is formed, and etching the coating film.
Prior to the deposition of the insulating film on the stepped surface of the semiconductor substrate, the width of the space portion formed by the pair of protrusions and the pair of protrusions separated from each other is intermittently changed. Forming an inspection pattern having a planar shape,
In the etching process of the coating film, the boundary position between the coating film and the insulating film in the space portion in the inspection pattern is detected, and the etching amount based on the correlation data between the boundary position and the etching amount measured in advance A method for manufacturing a semiconductor device, comprising: determining whether the semiconductor device is suitable.
JP2001132320A 2001-04-27 2001-04-27 Manufacturing method of semiconductor device Expired - Fee Related JP3890919B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001132320A JP3890919B2 (en) 2001-04-27 2001-04-27 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001132320A JP3890919B2 (en) 2001-04-27 2001-04-27 Manufacturing method of semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP03434395A Division JP3214279B2 (en) 1995-01-31 1995-01-31 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2002050663A JP2002050663A (en) 2002-02-15
JP3890919B2 true JP3890919B2 (en) 2007-03-07

Family

ID=18980352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001132320A Expired - Fee Related JP3890919B2 (en) 2001-04-27 2001-04-27 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JP3890919B2 (en)

Also Published As

Publication number Publication date
JP2002050663A (en) 2002-02-15

Similar Documents

Publication Publication Date Title
US7282422B2 (en) Overlay key, method of manufacturing the same and method of measuring an overlay degree using the same
US7492049B2 (en) Multi-layer registration and dimensional test mark for scatterometrical measurement
JP4999234B2 (en) Photomask and method of manufacturing semiconductor device using the same
US5684301A (en) Monocrystalline test structures, and use for calibrating instruments
WO2009142121A1 (en) Semiconductor device and fabrication method thereof
JP3214279B2 (en) Method for manufacturing semiconductor device
US6309900B1 (en) Test structures for testing planarization systems and methods for using same
JP2003282507A (en) Determining method of residual film by optical measurement
JP3890919B2 (en) Manufacturing method of semiconductor device
TWI278909B (en) In-line wafer surface mapping
US6218847B1 (en) Test pattern for use in measuring thickness of insulating layer and method for using the same
US6995074B2 (en) Method for manufacturing a semiconductor wafer
KR20040105005A (en) Semiconductor device having measuring pattern to improve measuring reliability and Method of measuring semiconductor device using the measuring pattern
US20020058407A1 (en) Structure of critical dimension bar
KR101067860B1 (en) Multi overlay mark and method for forming the same
KR100326911B1 (en) Alignment mark of semiconductor device and manufacturing method thereof
KR100290483B1 (en) Test Pattern Formation Method and Pore Detection Method of Insulating Film Using the Same
CN117038645B (en) Semiconductor structure and preparation method thereof
KR100218158B1 (en) Method for making semiconductor apparatus
KR20040046696A (en) Method for measuring stress of semiconductor device
JP2010153455A (en) Semiconductor device and method of inspecting the same
JP2570130B2 (en) Pattern for measuring film thickness and method for measuring film thickness
JP2000216210A (en) Method and structure for evaluation of level embedding in insulating film
JPH033223A (en) Semiconductor device
JPH05175304A (en) Evaluating method for semiconductor element

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041008

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A072

Effective date: 20041214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061127

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101215

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111215

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121215

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131215

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees