JP3884565B2 - Non-contact IC card reader / writer device - Google Patents

Non-contact IC card reader / writer device Download PDF

Info

Publication number
JP3884565B2
JP3884565B2 JP13983398A JP13983398A JP3884565B2 JP 3884565 B2 JP3884565 B2 JP 3884565B2 JP 13983398 A JP13983398 A JP 13983398A JP 13983398 A JP13983398 A JP 13983398A JP 3884565 B2 JP3884565 B2 JP 3884565B2
Authority
JP
Japan
Prior art keywords
card
contact
power
antenna
reader
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13983398A
Other languages
Japanese (ja)
Other versions
JPH11338983A (en
Inventor
学 中村
高洋 渡辺
修 古屋
信一 宮下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Priority to JP13983398A priority Critical patent/JP3884565B2/en
Publication of JPH11338983A publication Critical patent/JPH11338983A/en
Application granted granted Critical
Publication of JP3884565B2 publication Critical patent/JP3884565B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Continuous-Control Power Sources That Use Transistors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、非接触ICカード用リーダ/ライタ装置に関するものである。
【0002】
【従来の技術】
非接触ICカードは、ICカード内に電源を持たず、リーダ/ライタ装置から電磁結合により電力が供給され、その電力で動作する。また、データ通信も同じ電磁結合により非接触で行われる。図8は、リーダ/ライタ装置側の電力供給部と、非接触ICカード側の受電系統を示したもので、発振器1から出力された周波数fcの高周波が増幅器2で増幅され、整合回路3を介して自己インダクタンスL1のアンテナコイルへ供給される。このアンテナコイルには、伝送効率を上げるため、容量C1の同調コンデンサが直接接続されている。図中R1はこのアンテナコイルの損失抵抗を表している。
【0003】
非接触ICカード側のアンテナコイルにも同調コンデンサC2が並列接続されており、自己インダクタンスL2と共振して伝送効率を高めるようにしている。この非接触ICカード側のアンテナコイルがリーダ/ライタ装置側のアンテナコイルと電磁結合すると誘起電圧が発生し、これがダイオード回路4で整流され、レギュレータ5で所定の電圧に調整され、IC回路6へ供給される。
【0004】
【発明が解決しようとする課題】
非接触ICカードでは、リーダ/ライタ装置のアンテナコイルからICカードが動作可能な距離の範囲が決められており、その動作範囲の中では電力を最も多く受電する位置と最も少ない電力を受電する位置があり、この動作範囲内で受電する電力に差がある。そして非接触ICカードが動作範囲内で安定するためには、最も少ない電力を受電する位置で非接触ICカードが動作するために必要な電力を受電できるように、リーダ/ライタ装置の出力が設定されている。従って最小の電力を受電する位置以外では、非接触ICカード内のIC回路が必要とする電力以外のエネルギーは余分となり、レギュレータはこの余分の電力を熱放散して所定の出力電圧が得られるようにしている。このために非接触ICカードの動作範囲内であっても、その位置によってはレギュレータから発生する熱量が大きくなり、電力を最も多く受電する位置で最大になる。この際、レギュレータで発生する熱により直接ICを破損したり、その熱によりICカードの形成材である合成樹脂等が変形することによってICを破損する恐れがある、また、レギュレータが許容する入力電圧より大きい電圧がかかると、レギュレータを破損してしまう恐れがある。特に非接触ICカードがリーダ/ライタ装置の動作範囲内に長時間放置された場合にはこうした問題が発生しやすくなる。
【0005】
本発明の目的は、非接触ICカードへの過電力伝送による発熱でICを破損したり、またはレギュレータの過電圧による破損が生じないようにした非接触ICカード用リーダ/ライタ装置を提供することにある。
【0006】
【課題を解決するための手段】
本発明は、非接触ICカードのアンテナと自装置のアンテナの電磁結合によって非接触ICカードへ電力を供給する機能を有したリーダ/ライタ装置であって、
自装置のアンテナへ供給する高周波供給電力を制御するための電力制御手段と、
自装置のアンテナへの入力高周波電圧又は電流を検出するための検出手段と、
該手段により検出された入力高周波電圧又は電流と前記電力制御手段の出力電圧とから非接触ICカードのアンテナと自装置のアンテナの結合係数を求めるための結合係数算出手段と、
該手段により求められた結合係数から非接触ICカードの受電電力が予め定められた値となるように前記電力制御手段の出力電圧を制御するための制御手段と、
を備えると共に、
前記検出手段で検出した高周波電圧又は電流が予め定めた時間以上変化がないことを条件に、前記電力制御手段の出力電圧を低下させる第2の制御手段を設けたことを特徴とする非接触ICカード用リーダ/ライタ装置を開示する。
【0009】
【発明の実施の形態】
以下、本発明の実施の形態を説明する。図1は、本発明になるリーダ/ライタ装置の構成例を示すブロック図で、電力伝送に関係する部分のみを図示している。従来の図8と同一回路は同一符号で示されており、それら同一符号で示された回路の他に、増幅器2の出力高周波の電圧V(実効値)を検知するための電圧検知回路11と、出力電力を可変制御するための電力制御回路13とが付加されている。リーダ/ライタ装置用IC12は、従来からリーダ/ライタ装置の動作制御を行うために設けられているものであるが、前記の電圧検知回路11の出力信号もこのIC12へ入力される。
【0010】
図2は、図1の電力伝送系統の等価回路である。この等価回路で、電源20は図2の発振器1及び電力制御回路13からなる回路で、その出力電圧をVsとする。周波数fc=13.56MHz、増幅器2の出力インピーダンスRS=50Ω、リーダ/ライタ装置のアンテナの自己インダクタンスL1=6.8μH、カードアンテナの自己インダクタンスL2=1.5μH、リーダ/ライタ装置のアンテナの損失R1=12.5Ωとし、C1はL1と、C2はL2とそれぞれ周波数fcに共振がとれており、整合回路3はリーダ/ライタ装置のアンテナと発信機の出力インピーダンスRsとの整合を取っているものとし、さらにカードICの疑似負荷であるRL=2.56kΩとする。両アンテナの相互インダクタンスをMとすると両アンテナの結合係数kは
【数1】
k=M/(L1・L2)1/2
であるから、この結合係数kを与えればMが決まる。そこで電源20の出力電圧Vsをパラメータとし、結合係数kを0〜0.1まで、0.01間隔で変化させた場合の出力電圧Vを図2の等価回路を用いてシミュレートすると、図3のような結果が得られる。即ち、結合係数kが増大するにつれて増幅器2の出力電圧Vは増大する。但しこのような電圧Vは、増幅器2の出力インピーダンスRsがあまり小さいと変化が殆ど現れないが、通常はRs=50Ωあるいは75Ωのものが用いられるので、電圧Vが結合係数kの変化に伴って変化する。
【0011】
図3の結果から、電源20の出力電圧、即ち電力制御回路13の出力電圧Vsと増幅器2の出力Vが与えられと、そのときの結合係数kの値が一意に決まることがわかる。電力制御回路13の出力電圧VsはIC12により制御されるので、IC12にはVsの値はわかっており、また電圧検知回路11の出力信号から増幅器2の出力電圧VもIC12にはわかっている。従って図3のような回路特性が与えられれば、IC12は各時点に於ける結合係数kの値を知ることができる。
【0012】
その具体的な方法として例えば次のものがある。まず図3からも容易にわかるが、Vsとkの関数である電圧VはVsの値に比例している。従って
【数2】
V=Vs・f(k)
とかける。従って例えば図3の任意のVsに対して各kの値にたいするf(k)をV/Vsから求めておけば、この関数f(k)はVsに依存しない曲線である。そこでこの関数f(k)とV/Vsの関数を予め等価回路を用いて計算により求めておくか、あるいは実験的に求めて第1テーブルとし、IC12内のROMに格納しておく。そうすれば各時点のVとVsの値から結合係数kの値をそのテーブルを参照して容易に求めることができる。またf(k)の逆関数
【数3】
k=f-1(V/Vs)
をテーブルではなく、理論式あるいは近似式として求め、IC12内のプログラムに持たせておいてもよい。
【0013】
リーダ/ライタ用IC12にはもう一つのテーブルもしくは数式を用意する。非接触ICカードの受信電力として、カードが安定に動作し、かつ余分な熱を放出しなくてよいような受信電力をP0とする。非接触ICカードの受信電力Pは、リーダ/ライタ装置の増幅器2の出力電圧Vと結合係数kで決まるが、(数2)の関係を考えるとある関数gがあって
【数4】
P=g(Vs,k)
とかける。従って
【数5】
P0=g(Vs,k)
となるVsとkの関係を予め求めて第2テーブルとしてIC12内のROMに格納しておく。それもテーブルではなく近似関数で表しておいてもよい。
【0014】
リーダ/ライタ用IC12は、以上の第1及び第2テーブルを利用して図4に示したフローに従って送信電力の制御を行う。同図において、まず電力制御回路13の出力電圧Vsの設定値を初期化する(ステップ41)。このときの初期値は適当に定めればよく、例えば(数4)でk=0.05のときのVs値とする。次に電力制御回路13へ制御信号を出力してその出力電圧が初期化した設定値Vsとなるようにし(ステップ42)、制御タイミングを待つ(ステップ43)。制御タイミングになると電圧検知回路11の出力信号を取り込んで増幅器2の出力電圧Vを求め(ステップ44)、次いで前記した第1テーブルからV/Vsに対する結合係数kを求める(ステップ45)。そしてその求めた結合係数kに対するVsの値を第2テーブルから求め(ステップ46)、ステップ42へ戻って電力制御回路13出力電圧が今求めたVsとなるように制御する。
【0015】
以上のサイクルを繰り返すことで、非接触ICカードの受電電力は常にほぼ設定値P0となるように制御されるので、発熱や過電圧による非接触ICカード回路の損傷を確実に防止でき、安定な動作を実現できる。なお図4の制御サイクルの周期としては、非接触ICカードが人に所持されて移動したときの結合係数の変化に追従できればよいから、例えば20msec程度に設定しておけばよく、IC12のCPUへのオーバーヘッドとしてはわずかなものでよく、他の動作の妨害となることはない。
【0016】
図5は、本発明になるリーダ/ライタ装置の別の構成例を示すブロック図で、図1の構成と異なるのは、図1の電圧検知回路11に変わって電流検知回路14を設けていることである。この構成例では増幅器2の出力電流Iを電流検知回路14で検出して電流信号を出力するが、2つのアンテナの結合度kと増幅器2の出力電流Iとの間の関係は、電力制御回路13出力電圧Vsをパラメータとして求めると図6のようになる。この関係はやはり図2の等価回路を用いて図3のときと同じ回路定数を与えてシミュレートした結果である。
【0017】
図5にみられるように、両アンテナの結合係数kの増大とともに出力電流Iは単調に減少していて、電力制御回路出力電圧Vsと出力電流Iがわかれば結合係数kが一意に定まる。そして出力電流Iが電圧Vsに比例するのも図3の場合と同様である。
【数6】
I=Vs・h(k)
従ってこの場合は図1の場合と違ってI/Vsとh(k)の関係を前述の第1テーブルに代わるテーブル(第3テーブルという)として用意しておけば、VsとIの検出値から結合係数kが求められる。そうすると求めたkに対して適切な受電電力P0を非接触ICカードに与える電圧Vsが前述の第2テーブル(数4)の関係から求められので、やはり図1と同様な制御が可能となる。このときのIC12における制御フローを図7に示す。これはステップ74で電圧Vに変わって電流Iを求め、ステップ75で参照するテーブルを前述の第3テーブルとしたものであって、他の部分は図4と同じである。なお、図4、図7のいずれにおいても、テーブルに代わって近似関数を用いてもよいことはいうまでもない。
【0018】
以上のようにして、非接触ICカードでの過剰な発熱や過電圧による損傷を防止することができるが、そのための出力電力の制御にあたっては、非接触ICカードでの所要電力に多少の余裕を持たせて制御誤差があっても確実に非接触ICカードの動作を保証するようにする。従ってレギュレータ4に於ける多少の余分な発熱は避けられず、正規動作による各回路からの発熱もある。このため、非接触ICカードを動作範囲内に長時間放置したときには、電圧検知回路11または電流検知回路14の出力信号をIC12で監視し、その変化分ΔVまたはΔIが所定値をこえたときにタイマーを起動し、その後そのタイマーの設定時間をオーバーして検出値VまたはIが所定値以上の変化しないときは、非接触ICカードが動作範囲内に放置されたものと判断して電力制御回路13の出力電圧Vsを0かあるいは大幅に低下させるようにする。上記のタイマーとしてはIC12の内臓タイマーあるいはソフトで実現すればよく、またタイマー設定時間としては通常の非接触ICカードの処理に要する時間の例えば10倍程度の値にして於けばよい。このような機構を組み込めば、非接触ICカードが動作範囲に放置されたときでも、不要な電力消費を防止し、また発熱等による破損をより確実に防止できる。
【0019】
【発明の効果】
本発明によれば、非接触ICカードが動作範囲のどこにあっても、また動作範囲の中に長時間放置されても、発熱や過電圧のために損傷を受けるのを確実に防止できる。
【図面の簡単な説明】
【図1】本発明になるリーダ/ライタ装置の構成例を示すブロック図である。
【図2】非接触ICカードへの電力伝送系統の等価回路である。
【図3】リーダ/ライタ装置のアンテナと非接触ICカードのアンテナの結合係数kに対する増幅器出力電圧Vの関係を示す図である。
【図4】 図1のIC12による電力制御のフローである。
【図5】本発明になるリーダ/ライタ装置の別の構成例を示すブロック図である。
【図6】リーダ/ライタ装置のアンテナと非接触ICカードのアンテナの結合係数kに対する増幅器出力電流Iの関係を示す図である。
【図7】図4のIC12による電力制御のフローである。
【図8】従来のリーダ/ライタ装置の構成説明図である。
【符号の説明】
2 増幅器
11 電圧検知回路
12 リーダ/ライタ用IC
13 電力制御回路
14 電流検知回路
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a reader / writer device for a non-contact IC card.
[0002]
[Prior art]
The non-contact IC card does not have a power source in the IC card, and is supplied with electric power from a reader / writer device by electromagnetic coupling, and operates with the electric power. Data communication is also performed in a non-contact manner by the same electromagnetic coupling. FIG. 8 shows the power supply unit on the reader / writer device side and the power receiving system on the non-contact IC card side. The high frequency of the frequency fc output from the oscillator 1 is amplified by the amplifier 2, and the matching circuit 3 is To the antenna coil having the self-inductance L1. The antenna coil is directly connected to a tuning capacitor having a capacitance C1 in order to increase transmission efficiency. In the figure, R1 represents the loss resistance of this antenna coil.
[0003]
A tuning capacitor C2 is also connected in parallel to the antenna coil on the non-contact IC card side so as to resonate with the self-inductance L2 and increase the transmission efficiency. When the antenna coil on the non-contact IC card side is electromagnetically coupled with the antenna coil on the reader / writer device side, an induced voltage is generated, which is rectified by the diode circuit 4, adjusted to a predetermined voltage by the regulator 5, and sent to the IC circuit 6. Supplied.
[0004]
[Problems to be solved by the invention]
In the non-contact IC card, the range of the distance that the IC card can operate from the antenna coil of the reader / writer device is determined, and the position that receives the most power and the position that receives the least power in the operation range. There is a difference in the power received within this operating range. In order for the non-contact IC card to be stabilized within the operating range, the output of the reader / writer device is set so that the power necessary for the non-contact IC card to operate can be received at the position where the least power is received. Has been. Accordingly, energy other than the power required by the IC circuit in the non-contact IC card is extra at positions other than the position where the minimum power is received, and the regulator dissipates this extra power to obtain a predetermined output voltage. I have to. For this reason, even within the operation range of the non-contact IC card, the amount of heat generated from the regulator increases depending on the position, and becomes the maximum at the position where the most power is received. At this time, the IC may be directly damaged by the heat generated by the regulator, or the IC may be damaged by the deformation of the synthetic resin or the like that forms the IC card, and the input voltage allowed by the regulator If a larger voltage is applied, the regulator may be damaged. Such a problem is likely to occur particularly when the non-contact IC card is left in the operating range of the reader / writer device for a long time.
[0005]
SUMMARY OF THE INVENTION An object of the present invention is to provide a reader / writer device for a non-contact IC card in which the IC is not damaged by heat generated by the overpower transmission to the non-contact IC card or the regulator is not damaged by the overvoltage. is there.
[0006]
[Means for Solving the Problems]
The present invention is a reader / writer device having a function of supplying power to a non-contact IC card by electromagnetic coupling of the antenna of the non-contact IC card and the antenna of the own device,
Power control means for controlling the high-frequency power supplied to the antenna of the device itself;
Detection means for detecting an input high-frequency voltage or current to the antenna of the device;
A coupling coefficient calculation means for obtaining a coupling coefficient between the antenna of the non-contact IC card and the antenna of its own device from the input high-frequency voltage or current detected by the means and the output voltage of the power control means;
Control means for controlling the output voltage of the power control means so that the received power of the non-contact IC card becomes a predetermined value from the coupling coefficient obtained by the means;
With
A non-contact IC comprising a second control means for reducing the output voltage of the power control means on condition that the high frequency voltage or current detected by the detection means does not change for a predetermined time or more. A card reader / writer device is disclosed.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below. FIG. 1 is a block diagram showing a configuration example of a reader / writer device according to the present invention, and shows only a portion related to power transmission. The same circuit as that of the conventional FIG. 8 is indicated by the same reference numeral, and in addition to the circuit indicated by the same reference numeral, a voltage detection circuit 11 for detecting the output high frequency voltage V (effective value) of the amplifier 2; A power control circuit 13 for variably controlling the output power is added. The reader / writer device IC 12 is conventionally provided for controlling the operation of the reader / writer device. The output signal of the voltage detection circuit 11 is also input to the IC 12.
[0010]
FIG. 2 is an equivalent circuit of the power transmission system of FIG. In this equivalent circuit, the power source 20 is a circuit composed of the oscillator 1 and the power control circuit 13 of FIG. 2, and its output voltage is Vs. Frequency fc = 13.56 MHz, amplifier 2 output impedance RS = 50Ω, reader / writer device antenna self-inductance L1 = 6.8 μH, card antenna self-inductance L2 = 1.5 μH, reader / writer device antenna loss R1 = 12.5Ω, C1 is resonated with L1 and C2 is resonated with frequency fc, respectively, and the matching circuit 3 matches the reader / writer device antenna and the output impedance Rs of the transmitter. Further, it is assumed that RL = 2.56 kΩ, which is a pseudo load of the card IC. If the mutual inductance of both antennas is M, the coupling coefficient k of both antennas is
k = M / (L1 / L2) 1/2
Therefore, if this coupling coefficient k is given, M is determined. Therefore, when the output voltage Vs of the power source 20 is used as a parameter, and the output voltage V is changed using the equivalent circuit of FIG. The following results are obtained. That is, the output voltage V of the amplifier 2 increases as the coupling coefficient k increases. However, such a voltage V hardly changes when the output impedance Rs of the amplifier 2 is too small, but normally, a voltage with Rs = 50Ω or 75Ω is used, so that the voltage V varies with the change of the coupling coefficient k. Change.
[0011]
From the result of FIG. 3, it is understood that when the output voltage of the power source 20, that is, the output voltage Vs of the power control circuit 13 and the output V of the amplifier 2 are given, the value of the coupling coefficient k at that time is uniquely determined. Since the output voltage Vs of the power control circuit 13 is controlled by the IC 12, the value of Vs is known to the IC 12, and the output voltage V of the amplifier 2 is also known to the IC 12 from the output signal of the voltage detection circuit 11. Therefore, if the circuit characteristics as shown in FIG. 3 are given, the IC 12 can know the value of the coupling coefficient k at each time point.
[0012]
Specific examples of the method include the following. As can be easily seen from FIG. 3, the voltage V, which is a function of Vs and k, is proportional to the value of Vs. Therefore, [Equation 2]
V = Vs · f (k)
Call it. Therefore, for example, if f (k) for each value of k is obtained from V / Vs for an arbitrary Vs in FIG. 3, this function f (k) is a curve that does not depend on Vs. Therefore, the function f (k) and the function of V / Vs are previously obtained by calculation using an equivalent circuit, or are obtained experimentally as the first table and stored in the ROM in the IC 12. Then, the value of the coupling coefficient k can be easily obtained from the values of V and Vs at each time with reference to the table. Also, the inverse function of f (k)
k = f −1 (V / Vs)
May be obtained as a theoretical expression or an approximate expression instead of a table, and may be included in the program in the IC 12.
[0013]
Another table or mathematical expression is prepared for the reader / writer IC 12. As the received power of the non-contact IC card, P0 is a received power at which the card operates stably and does not need to release excess heat. The received power P of the non-contact IC card is determined by the output voltage V of the amplifier 2 of the reader / writer device and the coupling coefficient k, and there is a function g given the relationship of (Equation 2).
P = g (Vs, k)
Call it. Therefore, [Equation 5]
P0 = g (Vs, k)
The relationship between Vs and k is obtained in advance and stored in the ROM in the IC 12 as the second table. It may also be represented by an approximate function instead of a table.
[0014]
The reader / writer IC 12 controls transmission power according to the flow shown in FIG. 4 using the first and second tables. In the figure, first, the set value of the output voltage Vs of the power control circuit 13 is initialized (step 41). The initial value at this time may be determined appropriately. For example, the Vs value when k = 0.05 in (Expression 4) is used. Next, a control signal is output to the power control circuit 13 so that the output voltage becomes the initialized set value Vs (step 42), and control timing is awaited (step 43). At the control timing, the output signal of the voltage detection circuit 11 is taken in to obtain the output voltage V of the amplifier 2 (step 44), and then the coupling coefficient k for V / Vs is obtained from the first table (step 45). Then, the value of Vs for the obtained coupling coefficient k is obtained from the second table (step 46), and control is returned to step 42 so that the output voltage of the power control circuit 13 becomes the obtained Vs.
[0015]
By repeating the above cycle, the received power of the non-contact IC card is controlled so as to be almost always the set value P0, so that damage to the non-contact IC card circuit due to heat generation or overvoltage can be surely prevented and stable operation can be achieved. Can be realized. The cycle of the control cycle in FIG. 4 is only required to follow the change in the coupling coefficient when the non-contact IC card is carried by a person and can be set to about 20 msec, for example, to the CPU of the IC 12. The overhead of the system may be slight and will not interfere with other operations.
[0016]
FIG. 5 is a block diagram showing another configuration example of the reader / writer device according to the present invention. The difference from the configuration of FIG. 1 is that a current detection circuit 14 is provided instead of the voltage detection circuit 11 of FIG. That is. In this configuration example, the current detection circuit 14 detects the output current I of the amplifier 2 and outputs a current signal. The relationship between the coupling degree k of the two antennas and the output current I of the amplifier 2 is a power control circuit. When the 13 output voltage Vs is obtained as a parameter, it is as shown in FIG. This relationship is also the result of simulation using the equivalent circuit of FIG. 2 and giving the same circuit constants as in FIG.
[0017]
As seen in FIG. 5, the output current I monotonously decreases with an increase in the coupling coefficient k of both antennas. If the power control circuit output voltage Vs and the output current I are known, the coupling coefficient k is uniquely determined. The output current I is proportional to the voltage Vs as in the case of FIG.
[Formula 6]
I = Vs · h (k)
Therefore, in this case, unlike the case of FIG. 1, if the relationship between I / Vs and h (k) is prepared as a table (referred to as the third table) instead of the first table, the detected values of Vs and I can be used. A coupling coefficient k is determined. Then, since the voltage Vs for applying the appropriate received power P0 to the contactless IC card with respect to the obtained k is obtained from the relationship of the second table (Equation 4), the same control as in FIG. 1 is possible. A control flow in the IC 12 at this time is shown in FIG. In this step, the voltage I is changed to the voltage V in step 74 to obtain the current I, and the table referred to in step 75 is the third table described above, and the other parts are the same as those in FIG. Needless to say, an approximate function may be used in place of the table in either FIG. 4 or FIG.
[0018]
As described above, it is possible to prevent damage due to excessive heat generation and overvoltage in the non-contact IC card. However, in controlling the output power for that purpose, there is some margin for the required power in the non-contact IC card. Even if there is a control error, the operation of the non-contact IC card is surely guaranteed. Therefore, some excessive heat generation in the regulator 4 is unavoidable, and there is also heat generation from each circuit due to normal operation. For this reason, when the non-contact IC card is left in the operating range for a long time, the output signal of the voltage detection circuit 11 or the current detection circuit 14 is monitored by the IC 12 and the change ΔV or ΔI exceeds a predetermined value. When the timer is started and then the set time of the timer is exceeded and the detected value V or I does not change more than a predetermined value, it is determined that the non-contact IC card is left in the operating range and the power control circuit The output voltage Vs 13 is reduced to 0 or significantly. The timer may be realized by a built-in timer of the IC 12 or software, and the timer setting time may be set to a value, for example, about 10 times the time required for processing of a normal non-contact IC card. By incorporating such a mechanism, even when the non-contact IC card is left in the operating range, unnecessary power consumption can be prevented, and damage due to heat generation can be more reliably prevented.
[0019]
【The invention's effect】
According to the present invention, the contactless IC card can be reliably prevented from being damaged due to heat generation or overvoltage regardless of where it is in the operation range or left in the operation range for a long time.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration example of a reader / writer device according to the present invention.
FIG. 2 is an equivalent circuit of a power transmission system to a contactless IC card.
FIG. 3 is a diagram illustrating a relationship of an amplifier output voltage V with respect to a coupling coefficient k of an antenna of a reader / writer device and an antenna of a non-contact IC card.
4 is a flow of power control by the IC 12 of FIG.
FIG. 5 is a block diagram showing another configuration example of the reader / writer device according to the present invention.
FIG. 6 is a diagram illustrating a relationship of an amplifier output current I with respect to a coupling coefficient k of an antenna of a reader / writer device and an antenna of a non-contact IC card.
7 is a flow of power control by the IC 12 of FIG.
FIG. 8 is a diagram illustrating a configuration of a conventional reader / writer device.
[Explanation of symbols]
2 Amplifier 11 Voltage detection circuit 12 IC for reader / writer
13 Power control circuit 14 Current detection circuit

Claims (1)

非接触ICカードのアンテナと自装置のアンテナの電磁結合によって非接触ICカードへ電力を供給する機能を有したリーダ/ライタ装置であって、
自装置のアンテナへ供給する高周波供給電力を制御するための電力制御手段と、
自装置のアンテナへの入力高周波電圧又は電流を検出するための検出手段と、
該手段により検出された入力高周波電圧又は電流と前記電力制御手段の出力電圧とから非接触ICカードのアンテナと自装置のアンテナの結合係数を求めるための結合係数算出手段と、
該手段により求められた結合係数から非接触ICカードの受電電力が予め定められた値となるように前記電力制御手段の出力電圧を制御するための制御手段と、
を備えると共に、
前記検出手段で検出した高周波電圧又は電流が予め定めた時間以上変化がないことを条件に、前記電力制御手段の出力電圧を低下させる第2の制御手段を設けたことを特徴とする非接触ICカード用リーダ/ライタ装置。
A reader / writer device having a function of supplying electric power to the non-contact IC card by electromagnetic coupling of the antenna of the non-contact IC card and the antenna of the own device,
Power control means for controlling the high-frequency power supplied to the antenna of the device itself;
Detection means for detecting an input high-frequency voltage or current to the antenna of the device;
A coupling coefficient calculation means for obtaining a coupling coefficient between the antenna of the non-contact IC card and the antenna of its own device from the input high-frequency voltage or current detected by the means and the output voltage of the power control means;
Control means for controlling the output voltage of the power control means so that the received power of the non-contact IC card becomes a predetermined value from the coupling coefficient obtained by the means;
With
A non-contact IC comprising a second control means for reducing the output voltage of the power control means on condition that the high-frequency voltage or current detected by the detection means does not change for a predetermined time or more. Card reader / writer device.
JP13983398A 1998-05-21 1998-05-21 Non-contact IC card reader / writer device Expired - Fee Related JP3884565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13983398A JP3884565B2 (en) 1998-05-21 1998-05-21 Non-contact IC card reader / writer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13983398A JP3884565B2 (en) 1998-05-21 1998-05-21 Non-contact IC card reader / writer device

Publications (2)

Publication Number Publication Date
JPH11338983A JPH11338983A (en) 1999-12-10
JP3884565B2 true JP3884565B2 (en) 2007-02-21

Family

ID=15254566

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13983398A Expired - Fee Related JP3884565B2 (en) 1998-05-21 1998-05-21 Non-contact IC card reader / writer device

Country Status (1)

Country Link
JP (1) JP3884565B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9780321B2 (en) 2014-03-20 2017-10-03 Joled Inc. Organic EL display panel, display device incorporating same, and organic EL display panel manufacturing method
US9887250B2 (en) 2014-03-20 2018-02-06 Joled Inc. Organic el display panel with second blue emitter, display device provided therewith, and method for manufacturing organic el display panel

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004166384A (en) 2002-11-12 2004-06-10 Sharp Corp Non-contact power feeding system, electromagnetic coupling characteristic adjustment method therein and power feeder
JP4412091B2 (en) * 2004-07-23 2010-02-10 株式会社デンソーウェーブ Non-contact type IC card reader device
US8729734B2 (en) 2007-11-16 2014-05-20 Qualcomm Incorporated Wireless power bridge
US20090284369A1 (en) * 2008-05-13 2009-11-19 Qualcomm Incorporated Transmit power control for a wireless charging system
US9312924B2 (en) 2009-02-10 2016-04-12 Qualcomm Incorporated Systems and methods relating to multi-dimensional wireless charging
US20100201312A1 (en) 2009-02-10 2010-08-12 Qualcomm Incorporated Wireless power transfer for portable enclosures
WO2010106629A1 (en) 2009-03-17 2010-09-23 三菱電機株式会社 Input/output device and remote controller
JP5621203B2 (en) * 2009-03-30 2014-11-12 富士通株式会社 Wireless power supply system and wireless power supply method
FR2947073A1 (en) * 2009-06-19 2010-12-24 St Microelectronics Rousset ENERGY MANAGEMENT IN AN ELECTROMAGNETIC TRANSPONDER
FR2947074A1 (en) * 2009-06-19 2010-12-24 St Microelectronics Rousset INDUCTIVE EVALUATION OF THE COUPLING FACTOR OF AN ELECTROMAGNETIC TRANSPONDER
JP5681947B2 (en) 2009-08-13 2015-03-11 パナソニックIpマネジメント株式会社 WIRELESS POWER TRANSMISSION DEVICE, AND GENERATION DEVICE AND GENERATION SYSTEM INCLUDING WIRELESS POWER TRANSMISSION DEVICE
JP5478984B2 (en) * 2009-08-19 2014-04-23 長野日本無線株式会社 Power transmission device and contactless power transmission system
US8928284B2 (en) * 2009-09-10 2015-01-06 Qualcomm Incorporated Variable wireless power transmission
JP5238884B2 (en) * 2009-09-18 2013-07-17 株式会社東芝 Wireless power transmission device
JP2011166826A (en) * 2011-04-27 2011-08-25 Mitsubishi Electric Corp Input/output apparatus
JP5761507B2 (en) * 2011-07-19 2015-08-12 株式会社エクォス・リサーチ Power transmission system
JP5796444B2 (en) * 2011-10-03 2015-10-21 日産自動車株式会社 Non-contact power feeding device
JP6024129B2 (en) * 2012-03-13 2016-11-09 日産自動車株式会社 Non-contact power feeding device
JP2013211932A (en) * 2012-03-30 2013-10-10 Equos Research Co Ltd Power transmission system
KR102073819B1 (en) 2013-10-31 2020-02-05 삼성전자 주식회사 Transmitter of near field communication(nfc) device and nfc chip

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9780321B2 (en) 2014-03-20 2017-10-03 Joled Inc. Organic EL display panel, display device incorporating same, and organic EL display panel manufacturing method
US9887250B2 (en) 2014-03-20 2018-02-06 Joled Inc. Organic el display panel with second blue emitter, display device provided therewith, and method for manufacturing organic el display panel

Also Published As

Publication number Publication date
JPH11338983A (en) 1999-12-10

Similar Documents

Publication Publication Date Title
JP3884565B2 (en) Non-contact IC card reader / writer device
US6533178B1 (en) Device for contactless transmission of data
US6889905B2 (en) Electromagnetic coupling characteristic adjustment method in non-contact power supply system, power supply device, and non-contact power supply system
JP2597623B2 (en) Power supply method by electromagnetic induction coupling
US9190850B2 (en) Wireless power transmitter
US20200195306A1 (en) Multi-use wireless power and data system
EP2107495B1 (en) Switched capacitance method for the detection of, and subsequent communication with a wireless transponder device using a single antenna
JP2004222285A (en) Circuit for delivering electric power from high frequency electromagnetic field sent from base station
WO2006054070A1 (en) Wireless communicators
JP2001308758A (en) Conformity of transmission electric power of electromagnetic transponder reader
GB2307379A (en) Transponder device with overvoltage protection
US20190068248A1 (en) Transmission Apparatus, Antenna Drive Apparatus, Tuning Method, and Program for Realizing Tuning Method
JP2009512054A (en) Electrical circuit for contactless reader device
JP2009271920A (en) Recharge of active transponder
CN116918213A (en) Automatic gain control for communication demodulation in a wireless power transfer system
US11942797B2 (en) Virtual AC power signal transfer using wireless power transfer system
US20240079912A1 (en) Slotted Communications In Virtual AC Power Signal Transfer With Variable Slot Width
JP4171582B2 (en) Control device for impedance introduced to antenna of electronic label
JP2002009661A (en) Evaluation of number of electromagnetic transponders in reader field
US11791663B2 (en) Slotted communications in virtual AC power signal transfer
US8638196B2 (en) Adapting coil voltage of a tag to field strength
US11252550B1 (en) Frequency-division-coordinated automatic power control for near-field communication
KR100540890B1 (en) Contactless IC Card Reader of Contactless IC Card System
JP4736306B2 (en) An antenna that generates an electromagnetic field for the transponder
US10811906B2 (en) Adaptation of an electromagnetic recharging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060714

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060725

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061117

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091124

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101124

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111124

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121124

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees