JP3853266B2 - Expansion joints for high temperature environments - Google Patents

Expansion joints for high temperature environments Download PDF

Info

Publication number
JP3853266B2
JP3853266B2 JP2002218455A JP2002218455A JP3853266B2 JP 3853266 B2 JP3853266 B2 JP 3853266B2 JP 2002218455 A JP2002218455 A JP 2002218455A JP 2002218455 A JP2002218455 A JP 2002218455A JP 3853266 B2 JP3853266 B2 JP 3853266B2
Authority
JP
Japan
Prior art keywords
bellows
pair
portions
main body
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002218455A
Other languages
Japanese (ja)
Other versions
JP2004060736A (en
Inventor
紘一 木村
茂 大川
重六 過足
嘉宏 清水
浩 村田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
A&A Material Corp
Original Assignee
A&A Material Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by A&A Material Corp filed Critical A&A Material Corp
Priority to JP2002218455A priority Critical patent/JP3853266B2/en
Publication of JP2004060736A publication Critical patent/JP2004060736A/en
Application granted granted Critical
Publication of JP3853266B2 publication Critical patent/JP3853266B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Joints Allowing Movement (AREA)
  • Diaphragms And Bellows (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、一対の管状物を接続する伸縮継手に関し、特に管状物の内圧に起因した伸縮継手の変形に対処する技術に関するものである。
【0002】
【従来の技術】
図4〜図6に従来の伸縮継手の構造を示す。伸縮継手1は、上流側ダクト3及び下流側ダクト5の間に配設され、一対のフランジ付き本体7、9と、これら一対の本体7、9を連結するベローズ11とを備える。一対の本体7、9はそれぞれ、対応するダクト3、5に接続するような管状部材からなる。また、一対の本体7、9は相互に離隔しており、ベローズ11はこれら本体が離隔した空間を覆っている。ベローズ11は、本体7、9の押え部7a、9aと、対応するベローズ押え板13、15とに挟まれて固定されており、通常はゴム材から構成されている。
【0003】
流れ方向に沿って見た場合の図5に示されるように、ベローズ11は(従って、押え部7a、9aやベローズ押え板13、15も)、流れ方向に直交する断面形状がほぼ矩形の筒状部材からなる。すなわち、ベローズ11は、上下方向に延長し且つ流れ方向から見た投影形状が直線である一対のストレート部17a、17bと、横方向に延長し且つ流れ方向から見た投影形状が直線である一対のストレート部19a、19bと、それぞれ隣接するストレート部を接続し且つ流れ方向から見た投影形状が曲線である4つのコーナー部21a、21b、21c、21d(一コーナー部を示す図6も参照)とを備えている。
【0004】
以上のように、一対の本体7、9を離隔させ、それらの間をベローズ11で接続しているため、ダクト内の流体の温度変化や圧力変化に起因して一対の本体7、9の位置関係に変化が強いられるような状態でも、ベローズ11が変形して本体7、9の位置関係の変化を好適に吸収することができる。
【0005】
【発明が解決しようとする課題】
しかしながら、上述した構造のベローズ11を有する従来の伸縮継手においては、ダクト3、5内の流体の内圧が継手外部の外気圧よりも高くなると、ベローズ11が変形し、場所によって膨らんだり窪んだりする現象が生じる。図7は、ベローズ11における図6と同じ部分であり、内圧による変形後の状態を示す。図7に一コーナー部周辺が示されるように(他のコーナー部でも同様な変形が発生)、ダクト3、5内の内圧が高い場合には、ベローズ11の4つのストレート部17a、17b、19a、19bでは、径方向外側に膨出する部分23が発生する。一方、4つのコーナー部21a、21b、21c、21dでは、ストレート部と同様、径方向外側に膨出する部分25が発生しながら、ベローズの変形前と変形後の周長が不変であることに起因して、当該部分25における流れ方向のほぼ中央位置には、他の部分が膨出した分だけ逆に内側に向けて窪んだ凹み部分27が発生する。
【0006】
そして、このような膨出部分23、25や凹み部分27は、ベローズ11の内圧が低下すると元の平坦なストレート部17a、17b、19a、19bや平坦なコーナー部21a、21b、21c、21dに戻る。したがって、ベローズ11の内圧の上昇及び降下が繰り返し生じると、ベローズの流れ方向の伸縮、半径方向の膨らみや窪み、振動なども繰り返し生じ、短期間でベローズが破損する恐れがある。特に、内側に向けて窪む凹み部分27は、鋭角的に折れるため、上記の繰り返しの変形に際してより破損が起こりやすくなっており、また、ベローズ内側の保温材などに食い込むといった問題も起こり得る。
【0007】
また、従来のベローズ11は、前述したようにゴム材から構成されているため、プラントなどにおいて内部に非常に高温な流体を流通させるような態様では使用しにくく、特に高温条件下に加えて上記のような圧力変動に伴う伸縮・振動が繰り返し生じる場合には、尚更、その耐久性が問題となる恐れがあった。
【0008】
従って、本発明は、このような従来の問題に鑑みてなされたものであり、内圧の変化が繰り返し生じても長期間に亙ってベローズが破損しない高温環境下用の伸縮継手を提供することを目的とする。
【0009】
【課題を解決するための手段】
上述の目的を達成するため、本発明は、一対の被接続部材に対応して設けられる一対の継手本体と、これら一対の継手本体を接続するベローズとを備えた、200℃以上の高温環境下用の伸縮継手であって、前記ベローズは、該ベローズの上流端部及び下流端部を構成する一対の被固定部と、これら一対の被固定部の間に位置すると共に前記一対の継手本体から露出するベローズ本体部とを備え、前記ベローズ本体部は、該ベローズ本体部の上流端部及び下流端部を構成する一対のベース部と、これら一対のベース部の間に位置すると共にこれら一対のベース部を包含する曲率の仮想面よりも外側且つ弧状に膨出した筒状膨出部とを備え、前記ベローズは、径方向内側に配置されるフッ素樹脂層と径方向外側に配置されるガラスクロス層とから形成され、前記ガラスクロス層の糸密度は、25mm四方の領域に縦糸、横糸それぞれが6〜10本の範囲に設定され、且つ、該ガラスクロス層の繊維方向は、縦糸、横糸それぞれが前記ベローズ軸心方向に対して傾斜し、前記ベローズは、前記一対の被固定部及び前記ベローズ本体部の間と、前記一対のベース部及び前記筒状膨出部の間との、二段階で曲がっていることを特徴とする。
【0010】
適には、前記一対のベース部及び前記筒状膨出部は均一な厚さに形成されている。
好適には、前記筒状膨出部はその全周方向に関して角のない弧状に膨出している。
【0011】
【発明の実施の形態】
以下、この発明の実施の形態を添付図面に基づいて説明する。
【0012】
図1にこの発明の実施の形態に係る高温環境下用の伸縮継手を示す。伸縮継手31は、被接続部材としての上流側ダクト3及び下流側ダクト5の間に配設され、一対のフランジ付き継手本体37、39と、これら一対の本体37、39を連結する筒状のベローズ41とを備える。一対の本体37、39はそれぞれ、対応するダクト3、5に接続するような管状部材からなる。第1の本体37の上流側には、ダクトフランジ部37aが形成されている。一方、上流側ダクト3の下流側にも同様なフランジ部3aが形成されており、フランジ部37aとフランジ部3aとを図示しない締結手段により接続することにより、第1の本体37は上流側ダクト3に気密に接続されている。なお、第1の本体37の管路内側には、バッフル33が設けられている。また、第2の本体39の下流側及び下流側ダクト5の上流側にも同様なダクトフランジ部39a及びフランジ部5aが形成されており、これらフランジ部39a及びフランジ部5aを図示しない締結手段により接続することにより、第2の本体39は下流側ダクト5に気密に接続されている。
【0013】
第1及び第2の本体37、39にはそれぞれ、環状の押え部37b、39bが形成されている。これらの押え部37b、39bにはそれぞれ、ベローズ41の上流端及び下流端が係合している。さらに、押え部37b、39bに係合したベローズ41の上流端及び下流端の外側には、本体37、39の一構成部材である押え板37c、39cが配設されている。すなわち、ベローズ41は、その上流端及び下流端が押え部37b、39b及び押え板37c、39cの間に挟まれ、これら押え部及び押え板が締結手段35によって連結されることによって、一対の本体37、39の間に固定される。また、一対の押え板37c、39cは、図中概念的に示されたシッピングボルト43によって連結されている。さらに、ベローズ41の内側には、適当な断熱手段45が配設されている。
【0014】
次に、図1及び図2をもとにベローズ41について説明する。なお、図2は、図7と同様な図である。ベローズ41は、大別して、一対の被固定部51と、それら被固定部51の間に位置するベローズ本体部53とから構成されている。また、ベローズ41は全体がほぼ一定の厚さを有する膜状部材であり、したがって、一対の被固定部51及びベローズ本体部53が同じ厚さで構成されている。なお、図2においては、ベローズ本体部53の厚さが省略されて図示されているが、これはベローズ本体部53の湾曲形状を明瞭に示すことを優先したためであり、実際にはベローズ41全体がほぼ均一な厚さを有する。
【0015】
一対の被固定部51は、ベローズ41の流れ方向の最上流端部と最下流端部とに位置しており、押え板37c、39cと継手本体37、39の押え部37b、39bとの間に挟まれる。また、一対の被固定部51は、一平面(図2に符号Gで示される仮想平面)上に沿って延長した平坦面からなり、本実施の形態では押え板37c、39c及び押え部37b、39bによって覆われている。
【0016】
一方、ベローズ本体部53は、その全体が押え板37c、39c及び押え部37b、39bに覆われずに露出している部分であって、一対のベース部55と、それらベース部の間に位置し弧状に膨らんだ変形抑制用の筒状膨出部57とから構成されている。一対のベース部55は、ベローズ本体部53の流れ方向の最上流端部と最下流端部とに位置した平坦部である。また、本実施の形態では、一対のベース部55は、一対の被固定部51を包含する仮想平面Gに沿って配置されるのではなく、仮想平面Gよりも若干径方向外側に膨らんでいる。これは、ダクト内の流体の温度変化や圧力変化に起因して一対の継手本体37、39の位置関係に変化が強いられるような状態を考慮し、ベローズ本体部53を継手本体37、39の間でピンと張らずに余裕を持たせるためである。したがって、従来のベローズの中には、一対の被固定部の間に位置するベローズ本体部分の全体が一定の曲率で膨らんだ態様のものもあるが、本発明では余裕確保のための一対のベース部55はベローズ本体部53における両端部のみに形成されていると共に、その間には、変形抑制用の筒状膨出部57が設けられている。
【0017】
筒状膨出部57は、一対のベース部55の間に位置しそれらベース部55よりも更に外側に膨出している。より詳細には、筒状膨出部57の膨出態様は、一対のベース部55の本来の曲率を持った仮想面H(図1参照)、すなわち両ベース部55を包含するように両ベース部55を結ぶような仮想面Hに対して、さらに外側に弧状に膨出している。したがって、被固定部51に対してベース部55が角度をもっている場合には、ベローズ41全体としては、被固定部51とベース部55との間、ベース部55と筒状膨出部57との間という二段階で曲がっているような形態を備える。また、筒状膨出部57は、その周方向のいずれの位置にも角がないよう、すべてのストレート部からコーナー部に渡って弧状の湾曲を有する。したがって、角の部分から損傷が広がることを防止することができる。さらに、筒状膨出部57における最膨出部は、ベローズの流れ方向中央部に位置しており、上述した一対のベース部55及び一対の被固定部51は当該最膨出部を基準に流れ方向上流側及び下流側に対称的に形成されている。
【0018】
また、上述した一対の被固定部51、一対のベース部55及び筒状膨出部57は全て、流れ方向からみた投影形状が矩形に形成されている。すなわち、一対の被固定部51、一対のベース部55及び筒状膨出部57の各々は、流れ方向から見た投影形状が直線状に形成されている4つのストレート部51a、55a、57aと、隣接するストレート部を接続すると共に、流れ方向から見た投影形状が曲線状に形成されている4つのコーナー部51b、55b、57bとからなる。
【0019】
ベローズ41は、高温環境下で内圧の変化が繰り返し生じても、長期間に亙って破損しないよう、ガラスクロス層とフッ素樹脂層(テフロン(登録商標)層)とから構成されている。具体的には、フッ素樹脂層(テフロン(登録商標)層)がベローズ41の径方向内側を構成し、フッ素樹脂層と熱融着させて一体化したガラスクロス層がベローズ41の径方向外側を構成する。なお、上記の高温環境の範囲は、その下限状態はベローズ内を流通する流体温度が約200℃の状態とし、上限状態はベローズ自体の温度が約260℃となる状態とする。ベローズ自体の温度が約260℃となるこの上限状態は、ベローズの内側に設ける断熱手段の種類や厚さなどの構成によって左右され、ベローズ内を流通する流体温度で約1000℃となる状態もある。また、ベローズ41は、図2に一点鎖線領域Jで概念的に示されるように、ガラスクロス層を構成する縦糸59、横糸61がともに、流れ方向(ベローズ軸心方向)Kに対して傾いた方向となるように、配置される。なお、図2における一点鎖線領域J以外に付された格子状の線は、ベローズの曲面を理解しやすく表すためのものであり、繊維方向を示すものではない。さらに、ガラスクロス層を構成するガラスクロスの糸密度は、縦糸、横糸ともに直径2〜0.6mmの太さのものを使用して、25mm四方の領域に縦糸、横糸それぞれが6〜10本の範囲に選択される(JIS R 3420)。これにより、高温環境下、特にベローズ軸心方向と直交するような方向の移動量が引き起こす、ベローズ41の複雑な変形にも追従でき、長期に亙って破損を防止することができる。
【0020】
次に、以上説明した本実施の形態に係る伸縮継手の作用について説明する。伸縮継手31によって接続された一対のダクト3、5内には、上流側ダクト3から下流側ダクト5に向かって所定の流体が流れる。ここで、ダクト3、5や継手の内側の流体の圧力が外側の圧力よりも高い場合には、前述したようにベローズの流れ方向ほぼ中央部付近のコーナー部で、鋭角的な窪みが生じる恐れがある。しかしながら、本実施の形態の伸縮継手31では、ベローズ41の流れ方向ほぼ中央部付近に、もともと外側且つ弧状に突出した形状であってガラスクロス層及びフッ素樹脂層の二層構造で且つそのガラスクロス層の糸密度及び繊維方向が前述した態様である、筒状膨出部57が設けられているため、ベローズ内側の圧力が上昇しても、ベローズ41のコーナー部には、鋭角的に内側に窪む部分が発生しない。よって、ベローズ41内側の圧力の上昇降下が繰り返し起きても、短期間でベローズ41が破損することを確実に防止できる。
【0021】
次に、耐屈曲試験を行い、糸密度の条件を除いて上記と同様な構成を有する本発明の伸縮継手のベローズ(以下、本願ベローズと称する)と、従来からある筒状膨出部を持たない既存の形態にガラスクロス層を付加したベローズ(以下、従来ベローズと称する)とを比較した結果を以下に示す。従来ベローズ及び本願ベローズとしては、無負荷状態の幅(流れ方向寸法)が285mm、被固定部を基準とした直径が400mmのものを使用する。まず、従来ベローズ及び本願ベローズをそれぞれ、260℃で3時間加熱し、上記200℃以上の高温使用環境下の状態を与える。その後、ベローズの一端を他端に向けて往復させるような伸縮試験機にセットし、伸縮幅100mm、伸縮速度100回/分の条件で、ベローズを伸縮させ、10000回伸縮終了毎に、破損状況などを含めた観察を行い、最終的には50000回の伸縮を行って、その後で、JIS R 3420に準拠した引張り強度試験を行った。まず、従来ベローズについては、260℃で3時間加熱後に図3に示されるようにベローズに生じる折れジワを対称的に整えたような折れジワ63(すなわち、図7で示した窪みに等しい)を付与し、伸縮を開始する。一方、本願ベローズについては、上述した一対の被固定部、一対のベース部及び筒状膨出部から構成された形態により、260℃で3時間加熱後にも折れジワは出現しなかったため、図1及び図2に示した形態のまま、伸縮を開始する。なお、本願ベローズの例としては、
(1)本願ベローズA:ガラスクロス層の厚さ0.6mm、糸密度が縦糸7本、横糸8本、
(2)本願ベローズB:ガラスクロス層の厚さ0.6mm、糸密度が縦糸11本、横糸11本、及び
(3)本願ベローズC:ガラスクロス層の厚さ0.6mm、糸密度が縦糸5本、横糸5本、
の3タイプを用意した。
一方、従来ベローズの例としては、ガラスクロス層の厚さ2.0mm、糸密度が縦糸15本、横糸11本、のものを使用した。
【0022】
まず、10000回伸縮毎のベローズ外観の観察を行ったところ、以下の表1のような結果が得られた。
【0023】
【表1】

Figure 0003853266
【0024】
表1から分かるように、従来ベローズでは、10000回の伸縮終了後に、ベローズ可動部側の折れジワ箇所のガラス繊維部に毛羽立ちが発生し、50000回の伸縮終了時点には、さらに加えて他の部分にも毛羽立ちや糸切れが発生した。また、本願ベローズBでは、10000回の伸縮終了後の状態では異常がなかったが、50000回の伸縮終了時点では、ベローズ中央部に毛羽立ちが発生した。また、本願ベローズCでは、10000回の伸縮終了後の状態では異常がなかったが、50000回の伸縮終了時点では、フッ素樹脂層の方の中央部に亀裂が発生していた。これは、ガラスクロス層の糸密度が少なく十分な耐伸縮性が確保できなかったためである。これらに対し、本願ベローズAでは、50000回の伸縮終了時点でも異常がまったく生じなかった。
【0025】
また、50000回の伸縮終了後の引張り強度試験を行ったところ、以下の表2のような結果が得られた。なお、引張り強度試験を行う試験片は5個用意し、従来ベローズでは、図3に示されるようにベローズ軸心に対して傾斜した折りジワ部を含む領域65から帯状(長さ150mm、幅25mm)に5本切り出し、本願ベローズAでは従来ベローズの領域65に相当する位置の領域から同様に5本切り出して試験片とした。
【0026】
【表2】
Figure 0003853266
【0027】
表2から分かるように、従来ベローズでは、引張り強度の平均値は25mm四方の領域で0.64kNであるのに対し、本願ベローズAでは、引張り強度の平均値は25mm四方の領域で1.18kNであった。すなわち、本願ベローズAでは、50000回の伸縮終了後でも、従来ベローズの約2倍の引張り強度が確保されていることが分かる。また、伸縮を与える前のベローズに関する同態様の試験片による引張り強度平均値は、1.27kNであり、本願ベローズAでは、50000回の伸縮終了後も、ほとんど破損につながるような強度の低下が生じていないことが了解される。
【0028】
このように、耐屈曲試験の結果からも分かるように、本願の伸縮継手に採用されるベローズは、高温環境下で内圧の変化が繰り返し生じても、長期間に亙って破損しないような耐久性が確保されている。
【0029】
【発明の効果】
以上説明したように、本発明の伸縮継手によれば、高温環境下で内圧の変化が繰り返し生じても、長期間に亙ってベローズの破損を防止することができる。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係る伸縮継手の要部縦断面図である。
【図2】 本発明の実施の形態に係る伸縮継手に関し、矩形ベローズの一コーナー部近傍の形状を示す斜視図である。
【図3】 比較例としてのベローズの一コーナー部近傍の形状を示す斜視図である。
【図4】 従来の伸縮継手の要部縦断面図である。
【図5】 従来の伸縮継手に関し、ベローズ近傍を流れ方向からみた図である。
【図6】 従来の矩形ベローズの一コーナー部近傍であって、内圧による変形前の形状を示す斜視図である。
【図7】 従来の矩形ベローズの一コーナー部近傍であって、内圧による変形後の形状を示す斜視図である。
【符号の説明】
31…伸縮継手、37、39…筒状継手本体、41…ベローズ、51…被固定部、53…ベローズ本体部、55…ベース部、57…筒状膨出部。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an expansion joint for connecting a pair of tubular objects, and more particularly to a technique for coping with deformation of an expansion joint caused by an internal pressure of the tubular object.
[0002]
[Prior art]
4 to 6 show the structure of a conventional expansion joint. The expansion joint 1 is disposed between the upstream duct 3 and the downstream duct 5 and includes a pair of flanged main bodies 7 and 9 and a bellows 11 connecting the pair of main bodies 7 and 9. Each of the pair of main bodies 7 and 9 is formed of a tubular member connected to the corresponding ducts 3 and 5. Further, the pair of main bodies 7 and 9 are separated from each other, and the bellows 11 covers a space in which these main bodies are separated. The bellows 11 is sandwiched and fixed between the presser portions 7a and 9a of the main bodies 7 and 9 and the corresponding bellows presser plates 13 and 15, and is usually made of a rubber material.
[0003]
As shown in FIG. 5 when viewed along the flow direction, the bellows 11 (and therefore, the presser portions 7a and 9a and the bellows presser plates 13 and 15) have a substantially rectangular cross-sectional shape perpendicular to the flow direction. It consists of a member. That is, the bellows 11 has a pair of straight portions 17a and 17b extending in the vertical direction and having a straight projection shape viewed from the flow direction, and a pair having a projection shape extending in the horizontal direction and viewed from the flow direction. The four straight corner portions 21a, 21b, 21c, and 21d that connect the straight portions adjacent to each other and have a curved projection shape when viewed from the flow direction (see also FIG. 6 showing one corner portion) And.
[0004]
As described above, since the pair of main bodies 7 and 9 are separated from each other and connected between them by the bellows 11, the position of the pair of main bodies 7 and 9 is caused by the temperature change or pressure change of the fluid in the duct. Even in a state where the relationship is forced to change, the bellows 11 can be deformed to suitably absorb the change in the positional relationship between the main bodies 7 and 9.
[0005]
[Problems to be solved by the invention]
However, in the conventional expansion joint having the bellows 11 having the above-described structure, when the internal pressure of the fluid in the ducts 3 and 5 becomes higher than the external air pressure outside the joint, the bellows 11 is deformed and bulges or sinks depending on the location. A phenomenon occurs. FIG. 7 is the same portion as FIG. 6 in the bellows 11, and shows a state after deformation due to internal pressure. As shown in FIG. 7 around one corner portion (similar deformation occurs in other corner portions), when the internal pressure in the ducts 3 and 5 is high, the four straight portions 17a, 17b and 19a of the bellows 11 are used. 19b, a portion 23 bulging radially outward is generated. On the other hand, in the four corner portions 21a, 21b, 21c, and 21d, the circumferential length before and after the deformation of the bellows is invariable while the portion 25 that bulges radially outward is generated like the straight portion. As a result, a recessed portion 27 that is recessed toward the inside by the amount corresponding to the bulging of the other portion is generated at a substantially central position in the flow direction of the portion 25.
[0006]
Such bulging portions 23 and 25 and the recessed portion 27 are formed into the original flat straight portions 17a, 17b, 19a and 19b and flat corner portions 21a, 21b, 21c and 21d when the internal pressure of the bellows 11 decreases. Return. Therefore, when the internal pressure of the bellows 11 is repeatedly increased and decreased, the bellows is repeatedly expanded and contracted in the flow direction, the bulges and depressions in the radial direction, vibrations, and the like repeatedly, and the bellows may be damaged in a short period of time. In particular, the recessed portion 27 that is recessed toward the inside is bent at an acute angle, so that it is more likely to be damaged during the above-described repeated deformation, and a problem of biting into a heat insulating material inside the bellows may occur.
[0007]
In addition, since the conventional bellows 11 is made of a rubber material as described above, it is difficult to use in a mode in which a very high temperature fluid is circulated inside a plant or the like, and in particular, in addition to high temperature conditions, the above In the case where the expansion and contraction and vibration accompanying the pressure fluctuation occur repeatedly, the durability may become a problem.
[0008]
Accordingly, the present invention has been made in view of such conventional problems, and provides an expansion joint for a high temperature environment in which a bellows is not damaged over a long period of time even if a change in internal pressure occurs repeatedly. With the goal.
[0009]
[Means for Solving the Problems]
In order to achieve the above-described object, the present invention provides a pair of joint main bodies provided corresponding to a pair of connected members and a bellows connecting the pair of joint main bodies in a high-temperature environment of 200 ° C. or higher. The bellows is located between the pair of fixed portions constituting the upstream end portion and the downstream end portion of the bellows, the pair of fixed portions, and the pair of joint main bodies. An exposed bellows body, and the bellows body is positioned between the pair of bases constituting the upstream end and the downstream end of the bellows body, and the pair of bases. A cylindrical bulging portion that bulges out arcuately outside the imaginary surface of curvature including the base portion, and the bellows is a fluororesin layer disposed radially inward and glass disposed radially outward Cross layer The yarn density of the glass cloth layer is set to a range of 6 to 10 warp yarns and weft yarns in a 25 mm square area, and the fiber direction of the glass cloth layer is the bellows of the warp yarns and weft yarns. The bellows is inclined with respect to the axial direction, and the bellows bends in two stages between the pair of fixed parts and the bellows main body part and between the pair of base parts and the cylindrical bulge part. and said that you are.
[0010]
The good suitable, the pair of base portions and the tubular protruding portion is formed in a uniform thickness.
Preferably, the cylindrical bulging portion bulges in an arc shape without corners in the entire circumferential direction.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
[0012]
FIG. 1 shows an expansion joint for a high temperature environment according to an embodiment of the present invention. The expansion joint 31 is disposed between the upstream duct 3 and the downstream duct 5 as connected members, and has a pair of flanged joint bodies 37 and 39 and a cylindrical shape that connects the pair of bodies 37 and 39. Bellows 41 is provided. Each of the pair of main bodies 37 and 39 is formed of a tubular member connected to the corresponding ducts 3 and 5. A duct flange portion 37 a is formed on the upstream side of the first main body 37. On the other hand, a similar flange portion 3a is also formed on the downstream side of the upstream duct 3, and the first main body 37 is connected to the upstream duct by connecting the flange portion 37a and the flange portion 3a by fastening means (not shown). 3 is hermetically connected. A baffle 33 is provided on the inner side of the pipeline of the first main body 37. In addition, similar duct flange portions 39a and flange portions 5a are formed on the downstream side of the second main body 39 and the upstream side of the downstream duct 5, and these flange portions 39a and flange portions 5a are connected by fastening means (not shown). By connecting, the second main body 39 is airtightly connected to the downstream duct 5.
[0013]
The first and second main bodies 37 and 39 are respectively formed with annular pressing portions 37b and 39b. The upstream end and the downstream end of the bellows 41 are engaged with the presser portions 37b and 39b, respectively. Further, presser plates 37c and 39c, which are constituent members of the main bodies 37 and 39, are disposed outside the upstream end and the downstream end of the bellows 41 engaged with the presser portions 37b and 39b. That is, the bellows 41 has an upstream end and a downstream end sandwiched between the presser portions 37b and 39b and the presser plates 37c and 39c. It is fixed between 37 and 39. Further, the pair of presser plates 37c and 39c are connected by a shipping bolt 43 conceptually shown in the drawing. Further, a suitable heat insulating means 45 is disposed inside the bellows 41.
[0014]
Next, the bellows 41 will be described with reference to FIGS. 1 and 2. FIG. 2 is a diagram similar to FIG. The bellows 41 is roughly divided into a pair of fixed portions 51 and a bellows main body portion 53 positioned between the fixed portions 51. Further, the bellows 41 is a film-like member having a substantially constant thickness, and therefore, the pair of fixed portions 51 and the bellows main body portion 53 are configured with the same thickness. In FIG. 2, the thickness of the bellows main body portion 53 is omitted, but this is because priority is given to clearly showing the curved shape of the bellows main body portion 53. Has a substantially uniform thickness.
[0015]
The pair of fixed portions 51 are located at the most upstream end and the most downstream end in the flow direction of the bellows 41, and between the press plates 37 c and 39 c and the press portions 37 b and 39 b of the joint bodies 37 and 39. Sandwiched between. In addition, the pair of fixed portions 51 is formed of a flat surface extending along one plane (a virtual plane indicated by a symbol G in FIG. 2), and in the present embodiment, the pressing plates 37c and 39c and the pressing portion 37b, 39b.
[0016]
On the other hand, the bellows main body portion 53 is a portion that is exposed without being covered by the presser plates 37c and 39c and the presser portions 37b and 39b, and is located between the pair of base portions 55 and the base portions. It is composed of a cylindrical bulging portion 57 for suppressing deformation that swells in a circular arc shape. The pair of base portions 55 are flat portions located at the most upstream end portion and the most downstream end portion in the flow direction of the bellows main body portion 53. Further, in the present embodiment, the pair of base portions 55 are not arranged along the virtual plane G including the pair of fixed portions 51, but are slightly swelled radially outward from the virtual plane G. . This is because the state in which the positional relationship between the pair of joint main bodies 37 and 39 is forced to change due to the temperature change and pressure change of the fluid in the duct is taken into consideration. This is to give a margin without tensioning. Therefore, some of the conventional bellows have a form in which the entire bellows main body portion located between the pair of fixed portions swells with a certain curvature. The portion 55 is formed only at both end portions of the bellows main body portion 53, and a cylindrical bulging portion 57 for suppressing deformation is provided therebetween.
[0017]
The cylindrical bulging portion 57 is located between the pair of base portions 55 and bulges further outward than the base portions 55. More specifically, the bulging mode of the cylindrical bulging portion 57 is such that the imaginary surface H (see FIG. 1) having the original curvature of the pair of base portions 55, that is, both bases so as to include both base portions 55. With respect to the virtual plane H that connects the portions 55, it further bulges outward in an arc shape. Therefore, when the base portion 55 has an angle with respect to the fixed portion 51, the bellows 41 as a whole is between the fixed portion 51 and the base portion 55, and between the base portion 55 and the cylindrical bulging portion 57. It has a form that bends in two steps. Further, the cylindrical bulging portion 57 has an arc-shaped curve from all straight portions to the corner portions so that there is no corner at any position in the circumferential direction. Therefore, it is possible to prevent damage from spreading from the corner portion. Furthermore, the most bulging part in the cylindrical bulging part 57 is located at the center part in the flow direction of the bellows, and the pair of base parts 55 and the pair of fixed parts 51 described above are based on the most bulging part. It is symmetrically formed on the upstream side and the downstream side in the flow direction.
[0018]
In addition, the pair of fixed parts 51, the pair of base parts 55, and the cylindrical bulge part 57 described above are all formed in a rectangular shape when viewed from the flow direction. That is, each of the pair of fixed portions 51, the pair of base portions 55, and the cylindrical bulging portion 57 includes four straight portions 51a, 55a, and 57a that are linearly projected from the flow direction. In addition to connecting adjacent straight portions, the projection shape seen from the flow direction is formed of four corner portions 51b, 55b, and 57b formed in a curved shape.
[0019]
The bellows 41 is composed of a glass cloth layer and a fluororesin layer (Teflon (registered trademark) layer) so that even if a change in internal pressure occurs repeatedly in a high temperature environment, the bellows 41 is not damaged over a long period of time. Specifically, the fluororesin layer (Teflon (registered trademark) layer) constitutes the radially inner side of the bellows 41, and the glass cloth layer integrated by heat-sealing with the fluororesin layer forms the radially outer side of the bellows 41. Constitute. The range of the high temperature environment described above is such that the temperature at the lower end of the fluid flowing through the bellows is approximately 200 ° C., and the upper limit is the temperature at which the temperature of the bellows itself is approximately 260 ° C. This upper limit state in which the temperature of the bellows itself is about 260 ° C. depends on the configuration of the type and thickness of the heat insulating means provided inside the bellows, and there is a state in which the temperature of the fluid flowing in the bellows is about 1000 ° C. . Further, in the bellows 41, the warp yarn 59 and the weft yarn 61 constituting the glass cloth layer are both inclined with respect to the flow direction (bellows axial center direction) K as conceptually shown by the one-dot chain line region J in FIG. It arranges so that it may become a direction. In addition, the grid | lattice-like line attached | subjected other than the dashed-dotted line area | region J in FIG. 2 is for showing the curved surface of a bellows easily, and does not show a fiber direction. Further, the yarn density of the glass cloth constituting the glass cloth layer is such that both the warp and weft have a diameter of 2 to 0.6 mm in diameter, and each of the warp and weft is 6 to 10 in a 25 mm square region. The range is selected (JIS R 3420). Accordingly, it is possible to follow a complicated deformation of the bellows 41 caused by a movement amount in a direction orthogonal to the bellows axial center direction in a high temperature environment, and it is possible to prevent damage for a long period.
[0020]
Next, the operation of the expansion joint according to the present embodiment described above will be described. A predetermined fluid flows from the upstream duct 3 toward the downstream duct 5 in the pair of ducts 3 and 5 connected by the expansion joint 31. Here, when the pressure of the fluid inside the ducts 3 and 5 and the joint is higher than the pressure outside, as described above, an acute depression may occur at the corner portion in the vicinity of the central portion in the flow direction of the bellows. There is. However, in the expansion joint 31 of the present embodiment, the bellows 41 has a two-layer structure of a glass cloth layer and a fluororesin layer, and has a glass cloth layer and a fluororesin layer that are originally projected in the vicinity of the central portion in the flow direction. Since the cylindrical bulging portion 57 is provided in which the yarn density and the fiber direction of the layer are the above-described aspects, even if the pressure inside the bellows rises, the corner portion of the bellows 41 has an acute angle inside. There will be no depression. Therefore, even if the pressure rise and fall inside the bellows 41 repeatedly occur, the bellows 41 can be reliably prevented from being damaged in a short period of time.
[0021]
Next, a bending resistance test is performed, and the bellows of the expansion joint of the present invention (hereinafter referred to as the present bellows) having the same configuration as above except for the yarn density condition, and a conventional tubular bulge portion are provided. The result of comparison with a bellows (hereinafter referred to as a conventional bellows) in which a glass cloth layer is added to a non-existing form is shown below. As the conventional bellows and the present bellows, those having an unloaded width (flow direction dimension) of 285 mm and a diameter of 400 mm based on the fixed portion are used. First, each of the conventional bellows and the present bellows is heated at 260 ° C. for 3 hours to give a state under the high temperature use environment of 200 ° C. or higher. After that, set the bellows on a stretch tester that reciprocates one end toward the other end, stretch the bellows under the conditions of stretch width of 100 mm and stretch speed of 100 times / minute, and breakage condition after every 10,000 stretches And the like, were finally expanded and contracted 50000 times, and then a tensile strength test based on JIS R 3420 was performed. First, with respect to the conventional bellows, a folded crease 63 (that is, equal to the dent shown in FIG. 7) is obtained by symmetrically arranging the folded creases generated in the bellows as shown in FIG. 3 after heating at 260 ° C. for 3 hours. Grant and start stretching. On the other hand, for the bellows of the present application, because of the form constituted by the above-described pair of fixed parts, the pair of base parts, and the cylindrical bulging part, no creases appear even after heating at 260 ° C. for 3 hours. And expansion and contraction is started in the form shown in FIG. In addition, as an example of this application bellows,
(1) The present bellows A: the thickness of the glass cloth layer is 0.6 mm, the yarn density is 7 warps, 8 wefts,
(2) The present bellows B: glass cloth layer thickness 0.6 mm, yarn density is 11 warp yarns, 11 weft yarns, and (3) this application bellows C: glass cloth layer thickness 0.6 mm, yarn density is warp yarns 5 and 5 weft
Three types were prepared.
On the other hand, as an example of a conventional bellows, a glass cloth layer having a thickness of 2.0 mm, a yarn density of 15 warp yarns, and 11 weft yarns was used.
[0022]
First, when the bellows appearance was observed every 10,000 times of expansion and contraction, the results shown in Table 1 below were obtained.
[0023]
[Table 1]
Figure 0003853266
[0024]
As can be seen from Table 1, in the conventional bellows, after the end of the expansion and contraction of 10000 times, fluffing occurs in the glass fiber portion at the folded wrinkle portion on the side of the bellows movable part. Fluff and thread breakage also occurred in the part. Further, in the present bellows B, there was no abnormality in the state after the end of the 10,000 times of expansion / contraction, but fluffing occurred at the center of the bellows at the end of the expansion / contraction of 50,000 times. Further, in the bellows C of the present application, there was no abnormality in the state after the end of 10,000 times of expansion / contraction, but at the end of the expansion / contraction of 50,000 times, a crack occurred in the central portion of the fluororesin layer. This is because the yarn density of the glass cloth layer is small and sufficient stretch resistance cannot be secured. On the other hand, in the bellows A of the present application, no abnormality occurred even at the end of 50,000 times of expansion / contraction.
[0025]
Moreover, when the tensile strength test after completion | finish of 50000 times expansion / contraction was performed, the result as shown in the following Table 2 was obtained. In addition, five test pieces for the tensile strength test are prepared, and in the conventional bellows, as shown in FIG. 3, a band-like shape (length 150 mm, width 25 mm) from a region 65 including a folded wrinkle portion inclined with respect to the bellows axis. In the bellows A of the present application, five pieces were similarly cut out from a region corresponding to the region 65 of the conventional bellows to obtain a test piece.
[0026]
[Table 2]
Figure 0003853266
[0027]
As can be seen from Table 2, in the conventional bellows, the average value of the tensile strength is 0.64 kN in the region of 25 mm square, whereas in the present bellows A, the average value of the tensile strength is 1.18 kN in the region of 25 mm square. Met. That is, in the present bellows A, it can be seen that the tensile strength of about twice that of the conventional bellows is ensured even after the end of expansion and contraction for 50,000 times. In addition, the average tensile strength of the test piece in the same manner regarding the bellows before the expansion / contraction is 1.27 kN, and the bellows A of the present application has a decrease in strength that almost leads to breakage after the completion of the 50000 expansion / contraction. It is understood that it has not occurred.
[0028]
Thus, as can be seen from the results of the bending resistance test, the bellows employed in the expansion joint of the present application is durable so that it does not break for a long period of time even if the internal pressure changes repeatedly in a high temperature environment. Is secured.
[0029]
【The invention's effect】
As described above, according to the expansion joint of the present invention, it is possible to prevent the bellows from being damaged over a long period of time even if the internal pressure changes repeatedly under a high temperature environment.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of an essential part of an expansion joint according to an embodiment of the present invention.
FIG. 2 is a perspective view showing a shape in the vicinity of one corner of a rectangular bellows with respect to the expansion joint according to the embodiment of the present invention.
FIG. 3 is a perspective view showing a shape in the vicinity of one corner portion of a bellows as a comparative example.
FIG. 4 is a longitudinal sectional view of a main part of a conventional expansion joint.
FIG. 5 is a view of the vicinity of the bellows seen from the flow direction with respect to a conventional expansion joint.
FIG. 6 is a perspective view showing the shape of a conventional rectangular bellows near one corner and before deformation by internal pressure.
FIG. 7 is a perspective view showing a shape near a corner portion of a conventional rectangular bellows and deformed by internal pressure.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 31 ... Expansion joint, 37, 39 ... Cylindrical joint main body, 41 ... Bellows, 51 ... Fixed part, 53 ... Bellows main body part, 55 ... Base part, 57 ... Cylindrical bulging part.

Claims (3)

一対の被接続部材に対応して設けられる一対の継手本体と、これら一対の継手本体を接続するベローズとを備えた、200℃以上の高温環境下用の伸縮継手であって、
前記ベローズは、該ベローズの上流端部及び下流端部を構成する一対の被固定部と、これら一対の被固定部の間に位置すると共に前記一対の継手本体から露出するベローズ本体部とを備え、
前記ベローズ本体部は、該ベローズ本体部の上流端部及び下流端部を構成する一対のベース部と、これら一対のベース部の間に位置すると共にこれら一対のベース部を包含する曲率の仮想面よりも外側且つ弧状に膨出した筒状膨出部とを備え、
前記ベローズは、径方向内側に配置されるフッ素樹脂層と径方向外側に配置されるガラスクロス層とから形成され、
前記ガラスクロス層の糸密度は、25mm四方の領域に縦糸、横糸それぞれが6〜10本の範囲に設定され、且つ、該ガラスクロス層の繊維方向は、縦糸、横糸それぞれが前記ベローズ軸心方向に対して傾斜し、
前記ベローズは、前記一対の被固定部及び前記ベローズ本体部の間と、前記一対のベース部及び前記筒状膨出部の間との、二段階で曲がっていることを特徴とする高温環境下用の伸縮継手。
An expansion joint for a high temperature environment of 200 ° C. or higher, comprising a pair of joint bodies provided corresponding to a pair of connected members, and a bellows connecting the pair of joint bodies,
The bellows includes a pair of fixed portions that constitute an upstream end portion and a downstream end portion of the bellows, and a bellows main body portion that is located between the pair of fixed portions and is exposed from the pair of joint main bodies. ,
The bellows main body portion includes a pair of base portions constituting an upstream end portion and a downstream end portion of the bellows main body portion, a virtual surface of curvature that is positioned between the pair of base portions and includes the pair of base portions. A tubular bulging portion that bulges outward and arcuately,
The bellows is formed of a fluororesin layer disposed on the radially inner side and a glass cloth layer disposed on the radially outer side,
The yarn density of the glass cloth layer is set in a range of 6 to 10 warp yarns and weft yarns in a 25 mm square region, and the fiber direction of the glass cloth layer is the warp yarn and weft yarns in the bellows axial direction. inclined with respect to,
The bellows is bent in two stages between the pair of fixed parts and the bellows main body part and between the pair of base parts and the cylindrical bulge part. Expansion joint for use.
前記一対のベース部及び前記筒状膨出部は均一な厚さに形成されていることを特徴とする請求項1に記載の高温環境下用の伸縮継手。The expansion joint for high-temperature environments according to claim 1, wherein the pair of base portions and the cylindrical bulge portion are formed to have a uniform thickness. 前記筒状膨出部はその全周方向に関して角のない弧状に膨出していることを特徴とする請求項1または2に記載の高温環境下用の伸縮継手。The expansion joint for high-temperature environments according to claim 1 or 2 , wherein the tubular bulging portion bulges in an arc shape with no corners in the entire circumferential direction.
JP2002218455A 2002-07-26 2002-07-26 Expansion joints for high temperature environments Expired - Lifetime JP3853266B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002218455A JP3853266B2 (en) 2002-07-26 2002-07-26 Expansion joints for high temperature environments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002218455A JP3853266B2 (en) 2002-07-26 2002-07-26 Expansion joints for high temperature environments

Publications (2)

Publication Number Publication Date
JP2004060736A JP2004060736A (en) 2004-02-26
JP3853266B2 true JP3853266B2 (en) 2006-12-06

Family

ID=31939640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002218455A Expired - Lifetime JP3853266B2 (en) 2002-07-26 2002-07-26 Expansion joints for high temperature environments

Country Status (1)

Country Link
JP (1) JP3853266B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010196883A (en) * 2009-02-27 2010-09-09 A & A Material Corp Construction technique of telescopic joint
JP5313284B2 (en) * 2011-03-28 2013-10-09 豊田合成株式会社 Boot seal for variable compression ratio engine
JP6021302B2 (en) * 2011-03-31 2016-11-09 三菱重工コンプレッサ株式会社 Expansion joint and steam turbine equipment provided with the same

Also Published As

Publication number Publication date
JP2004060736A (en) 2004-02-26

Similar Documents

Publication Publication Date Title
JP6342908B2 (en) Perimeter reinforcement for composite fan cases
US3934905A (en) Expansion joint
US10131092B1 (en) Material joint for an inflatable structure and method of constructing the same
JP5317352B2 (en) Sleeve bearing assembly and manufacturing method
JP3853266B2 (en) Expansion joints for high temperature environments
JPH04211738A (en) Diaphragm type air spring, diaphragm of which is reinforced
JP2009542994A (en) Sleeve bearing assembly and manufacturing method
JP6391987B2 (en) Curved pipe and its manufacturing method
CN106907540A (en) Hose clamp with flat Spring pad
KR100448588B1 (en) Gland packing
JP2005535854A (en) Bearing shell for ball joint and method for manufacturing bearing shell
KR20110056384A (en) Textile gasket and method of construction thereof
JPS62292939A (en) Air spring
JP2007083410A (en) Method for forming reinforcing cord layer and rubber cylindrical body with metal fittings
CA1154802A (en) Expansion joint
KR101303919B1 (en) Bellows assembly.
JP2022533992A (en) Vehicle recliner shaft assembly and manufacturing method thereof
JP2017185911A (en) Dissimilar material adhesion structure
JPS637154B2 (en)
JPH0467940A (en) Bellows-shaped hose and its manufacture
JP2002039450A (en) Hose with bellows
JPS5922353Y2 (en) air spring diaphragm
JPH11105171A (en) Pressure contact belt for corrugation processing and production of corrugated processed article
JP2006002863A (en) Bellows expansion joint in square shape made of non-metal material
KR102347746B1 (en) Expansion joint

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060905

R150 Certificate of patent or registration of utility model

Ref document number: 3853266

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090915

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100915

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110915

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120915

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130915

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140915

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term