JP3849955B2 - Body fat meter and body weight scale with body fat meter - Google Patents

Body fat meter and body weight scale with body fat meter Download PDF

Info

Publication number
JP3849955B2
JP3849955B2 JP29960297A JP29960297A JP3849955B2 JP 3849955 B2 JP3849955 B2 JP 3849955B2 JP 29960297 A JP29960297 A JP 29960297A JP 29960297 A JP29960297 A JP 29960297A JP 3849955 B2 JP3849955 B2 JP 3849955B2
Authority
JP
Japan
Prior art keywords
voltage
body fat
current
impedance
constant current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29960297A
Other languages
Japanese (ja)
Other versions
JPH11113872A (en
Inventor
耕二 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tanita Corp
Original Assignee
Tanita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tanita Corp filed Critical Tanita Corp
Priority to JP29960297A priority Critical patent/JP3849955B2/en
Publication of JPH11113872A publication Critical patent/JPH11113872A/en
Application granted granted Critical
Publication of JP3849955B2 publication Critical patent/JP3849955B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/48Other medical applications
    • A61B5/4869Determining body composition
    • A61B5/4872Body fat

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、立ち位の両足間の生体インピーダンスと体重とを同時に測定し、その測定値とは別に入力された身長、性別、年齢等の身体的特徴を基に体内脂肪量を演算し推測する体内脂肪量計付き体重計に関し、詳しくは、インピーダンス測定用電極と測定本体である足の裏との接触インピーダンスのバラツキに対応した体内脂肪量計付き体重計に関する。
【0002】
【従来の技術】
被検体の末端から微少な定電流を印可し、電極間の電圧低下分を測定することで得られる生体末端間インピーダンスを使用して、人体の組成が推定できること(The Ameri-can Journal of Clinical Nutrition, 41(4) 810-817 1985 "Assessment of fat-free mass using bioelectrical impedance measurement of the human body" )を利用した体内脂肪量計が提案され、(USP.4,008,721、特公平5−49050、特開平7−51242等々)これらの提案の実施品が商品化されている。
【0003】
なかでも、特公平5−49050に係わる商品は、被測定者が体重計に載ったとき、両足の裏が接触する位置に生体インピーダンスを測定するための平らな金属製の電極を体重計の載台表面に設け、測定器の指定された位置に素足で載るだけで、体内脂肪量を推定する為の因子の内、測定毎に変化のある生体末端間インピーダンスと体重とを同時に測定し、計算式に取り込む事が出来る、最も簡便に体内脂肪量が推定できる装置、体内脂肪計付体重計として商品化されている。
【0004】
従来の体内脂肪計は、まず、被測定者の、身長、性別、体重などの身体的データを、キースイッチなどの入力装置を介して入力し、記憶装置に記憶し、次に、制御装置によって、インピーダンス測定装置を駆動し、生体のインピーダンス値をアナログ出力し、それをAD変換器によって、デジタル値に変換し、演算装置に取り込み、得られた生体インピーダンス値を示すデジタル値と、記憶装置に記憶された身長などの身体的データから、体内脂肪量を算出し、表示装置に出力している。体重は、他の身体的データと異なり、容易に変動するものであるから、測定の度に入力する必要があるので、重力測定装置を設け、インピーダンスの測定の度に被測定者の体重値も測定するようにした物が体内脂肪量計付き体重計である。
【0005】
この体内脂肪量計付き体重計は、インピーダンス測定装置のアナログ出力と、前記AD変換器との間に切替スイッチを設け、切替スイッチの他端を、重力測定装置のアナログ出力に接続し、切替スイッチの制御端子を、前記制御装置に接続し、まず、切替スイッチで、重量測定装置の出力をAD変換器に入力し、被測定者の体重値をデジタル値に変換し、記憶装置にその値を記憶した後に、切替スイッチを切り替え、インピーダンス測定装置の出力をAD変換器に入力して、インピーダンスの測定値をデジタル値に変換し、体重測定装置とインピーダンス測定装置とでAD変換器を共有している。(図1)
【0006】
また前記、従来の体内脂肪量計付き体重計の生体インピーダンス測定装置は、電極と生体との接触抵抗のバラツキが測定値に与える影響を除去するため4端子法が取られている。(図2)、(図3)
被測定者の重量を測定する電子式体重計の載台に、被測定者が載ったとき、両足の爪先部と踵部に接触する様に電極A1、A2、B1、B2を配設し、50kHz で既知の電流値iRを持った交流定電流源の電流端子を、電極A1、A2 に、交流電圧計の測定端子を電極B1、B2に接続している。また、交流電圧計の測定端子にはほとんど電流が流れないように設計されている。
【0007】 ここで、体内インピーダンスを ri 、右爪先の接触インピーダンスを rA1、左爪先の接触インピーダンスを rA2、 右踵の接触インピーダンスを rB1、 左踵の接触インピーダンスを rB2、とする。
交流定電流iRは、rA1を流れ、rB1、rB2には漏れずに、そのままri、rA2に流れ、電流端子に戻る。
このとき、rA1、ri、rA2に生じる電圧降下は、それぞれ、
vA1=iR×rA1 (1)
vi =iR×ri (2)
vA2=iR×rA2 (3) となる。
ここで、交流電圧計の測定各端子には、ほとんど電流が流れないため、rB1、rB2に生じる電圧降下はそれぞれ0とみなされ、rB1、rB2の影響は除去され、交流電圧計では、viがそのまま観測される。
(2)式より、体内インピーダンスriは
ri=vi/iR (4)
となり、iRは既知の値であるので、観測値viから容易に求めることができる。
【0008】
交流定電流源は、交流定電圧源、抵抗R1 、OPアンプで構成されている。(図4)
交流定電圧源の出力がR1の一端に接続され、R1の他端はOPアンプの−端子に接続される。−端子には、前記電極A1 が、OPアンプの出力端子には前記電極A2が接続され、+端子はGND(0V)に接続されている。
OPアンプの−端子は、出力端子が飽和しない限りは、+端子と同電位であり、また−端子からOPアンプ内に電流が流れることはない。
よって、R1に流れる電流は、そのまま電極A1に流れ、生体を流れて、A2 に達し、OPアンプの出力端子に吸収される。
交流定電圧源の出力電圧をvとすると、R1の両端の電圧はvであるので、
ri=v/R1 (5)
となり、v、R1 は既知のものであるから、既知の定電流が得られることになる。
【0009】
交流電圧計は、差動増幅器、整流器、ローパスフィルタ及びAD変換器で構成されている。まず、差動増幅器により、電極B1、B2間の差の電圧をN倍した増幅出力を得る。
このとき、差動増幅器の出力電圧vは、
v=N×Vi=N×iR×ri (6) となる。
この出力を、半波整流器に入力すると、整流器は交流電圧の+部分だけを出力する。これをローパスフィルタで、直流に変換して、前記AD変換器に入力することにより、体内インピーダンスri に比例したデジタル値が得られる。
この構成により、足の接触インピーダンスに影響されない生体インピーダンスの測定が可能と成っている。
【0010】
しかし、なるべく正確な測定をするため、通常は接触インピーダンスがある程度小さいこと、素足で使用することを前提に設計されている。 通常の足の裏の接触インピーダンスは1kΩ以内であり、インピーダンス測定電流の最大値を1mA以下として設計されている。
前記交流定電圧源のピーク電圧を0.8Vとし、抵抗R1 を1kΩとすると、このときの電流値は、(5)式から、800μAとなる。
生体インピーダンスを500Ω、接触インピーダンスをそれぞれ1kΩとすると、 電極A2の電圧Voは、
Vo=800μA×(rA1+ri+rA2)= 2V となる。
通常の足の裏の接触インピーダンスは、1kΩ以内であるが、靴下を着用している場合は、極端に大きくなる。
今、接触インピーダンスを10kΩとすると、電極A2の計算上の電圧Voは、
Vo=800μA×(10kΩ+500Ω+10kΩ)=16.4V(8)
となる。
【0011】
一方、体脂肪計は、持ち運びを前提に作られている場合が多く、主に電池で回路を駆動している。そのため回路電圧は、±5V程度に限られている。定電流源に使用されるOPアンプの出力端子の電圧も、その範囲内であり、前記の様に靴下を着用しているとき(接触インピーダンスが10KΩ)は、OPアンプが飽和してしまい、定電流は流すことができなくなる。従って、ri は既知の定電流ではなくなり、また、波形が歪み、正弦波ではなくなってしまう。しかし、交流電圧計は、その歪んで不正確な電圧出力vi を検出しその値を以て、演算装置は体内脂肪量を計算し、表示装置に出力してしまっていた。
【0012】
以上述べた如く、従来の体内脂肪量計付き体重計の生体インピーダンス測定装置は、素足で測定器に載ることが前提として設計されたものであり、靴下を着用した場合等、測定装置の電極と被測定体との接触インピダンスが過大となると、システムの構成上、測定装置の電極と被測定体との間での電圧降下が大きく、定電流電源の正常な動作範囲を逸脱し、生体に所定の電流を流入することが出来なくなり、正確な測定が不可能な構成となっていた。
【0013】
【発明が解決しようとする課題】
本発明が解決しようとする課題は、靴下を着用する等、生体と、生体インピーダンスを測定するための電極との接触インピーダンスが大きくなった場合でも簡単に、正確に体内脂肪量を推定することが出来る体内脂肪量計付き体重計を提供する事である。
【0014】
【課題を解決するための手段】
定電流源用OPアンプの飽和検出器を設けて発生電圧を監視し、被測定者の足の裏と両足間生体インピーダンス測定用電極との接触インピーダンスに対応して生体インピーダンス測定の為の供給電流値を変更し、定電流源の発生電圧が所定の電圧以下のときだけ生体インピーダンスを測定する。
【0015】
【作用及び効果】
常に定電流電源が正常な動作範囲で使用されるので、所定の安定した正確な電流が供給され、接触インピーダンスの大きい時でも正確な生体インピーダンスの測定が可能となる。
【0016】
【実施の形態】
被測定者が載ったときその重量を測定する電子式体重計の載台に被測定者が載ったとき両足の爪先部に接触する、体内に微電流を流入させる一対の電極A(A1,A2)と、両足の踵部に接触し、踵間の電位差を測定する一対の電極B(B1, B2 )とからなる両足間生体インピーダンス測定装置の二対の電極と、身長、年齢、性別等の身体的特徴を入力する入力装置を設ける。該電子式体重計に正弦波の定電圧を得る発振器と、複数の定電流を得る電圧−電流変換器、該電圧−電流変換器の発生電圧の判定器を設け、該判定器の判定結果が所定の電圧以下である電圧−電流変換器の出力を電極Aに接続する。電極Bからの電圧降下分の電位差を差動増幅器により取り出し、波形成形、整流等の処置を施し、直流変換した後AD変換し、接続されている電圧−電流変換器の出力電流を用いて生体インピーダンスのデジタルデーターとして演算部に取り込む。演算部は、入力された身長、年齢、性別等の身体的特徴と、測定された体重および生体インピーダンスを基に体内脂肪量を算出して表示器に表示する構成とする。
【0017】
【実施例】
以下本発明の実施例の詳細を図面に基づき詳細に述べる。定電流源用OPアンプの飽和検出器の具体例1として、B1、B2端子と、A1、A2端子を、選択的に差動増幅器に接続するSW1を設け、SW1の制御端子を、制御装置に接続し、定電流源が確実に正常に動作している場合の、A1、A2端子間の電圧がAD変換されたデジタル値の最大をNMAXとして記憶しておく。
また、R3にSW2により並列に接続できるように、抵抗R4を接続する。SW2の制御端子は、制御装置に接続する。(図6)
【0018】
制御装置は、まず、SW3で、R2を、R1 と並列に接続する。
R1=5kΩ R2=1.25kΩ とすると、並列抵抗値R' は、
R'=1/(1/R1 + 1/R2 )=1kΩ
前記交流定電圧源のピーク電圧を0.8Vとすれば、体内流入電流値は、
iR=0.8V/1kΩ=800μA となる。
制御装置は、SW1により、A1、A2 端子を差動増幅器に接続し、その出力を半波整流、ローパスフィルタにより直流電圧に変換して、AD変換器に入力する。
【0019】
iRを流したとき、A1、A2端子間電圧から得られたデジタル値が、NMAXより小さければ、SW1によりB1、B2 端子を差動増幅器に接続し、半波整流、ローパスフィルタを介して、AD変換器によって得た生体インピーダンスri に比例したデジタル値と、被測定者の身体データを元に、演算装置は、体内脂肪量を算出し、表示装置に出力する。(図8)
【0020】
定電流源の電圧、すなわちA1、A2端子間電圧から得られたデジタル値が、NMAX より大きければ、定電流源は飽和していると判断できる。
NMAXより大きいときは、制御装置は、SW3をOFFし、R2を切り離す。
定電流を生成する抵抗はR1のみとなるので、体内流入電流iR' は、
iR'=0.8V/5kΩ=160μA = iR/5 となる。
靴下を履き各接触インピーダンスが10kΩの時の例を計算すると、
Vo=160μA×(10kΩ+500Ω+10kΩ)=3.28V
となり、定電流源電源電圧を±5Vとすれば、飽和は防がれているのが分かる。iR'を流したとき、A1、A2端子間電圧から得られたデジタル値が、NMAX より小さければ、SW1によりB1、B2 端子を差動増幅器に接続する。得られたデジタル値は、体内流入電流に比例するので、1/5の値が得られる。従って、演算器により、得られたデジタル値×5 を計算し、その値と、被測定者の身体データを元に、演算装置は、体内脂肪量を算出し、表示装置に出力すればよい。
【0021】
靴下が厚手であり、接触インピーダンスが25kΩの場合には
Vo=160μA×(25kΩ+500Ω+25kΩ)=8.8V
となりVoはNMAXより大きくなる。この場合はOPアンプが飽和状態であり、定電流源が確実に正常に動作してはいないと判断し、即ち、VoがNMAX以上の場合は「Error」を表示して正常に測定されていないこと、被測定体と生体インピーダンス測定用電極との接触インピーダンスが大きすぎる事を報知する。
【0022】
OPアンプの飽和検出器は、OPアンプの出力電圧を、直接監視するものでも良い。(図7)
端子A2 を、コンパレータの+端子に接続し、−端子を電源OPアンプが確実に動作する上限の電圧VMAX に設定する。コンパレータの出力を制御装置に入力する。
コンパレータは、端子A2の電圧がVMAXを越えるとHiを出力し、VMAX より低い場合はLoを出力する。
制御装置は、コンパレータの出力がHiになったかを監視し、Hiになった時は、SW3をOFFしてR2を切り離し、定電流を生成する抵抗をR1のみとする。この状態でもHiであれば、OPアンプが飽和している判断し、「Error」を出力し、Loのままであれば、又はLoに変わったときは正常な測定が可能であるとみなし、算出された体内脂肪量を表示する。
【0023】
差動増幅器の後に、更に増幅器2を設け、通常は、差動増幅器の電圧を1倍に、接触インピーダンスが高く、インピーダンス測定電流を通常の1/5にした場合は、差動増幅器の電圧を5倍にして出力するようにすれば、得られるデジタル値を計算上で5倍する必要がなく、また実際にAD変換により計測されるデジタル値が1/5になり、分解能が低下することを避けることができる。具体的には、差動増幅器の出力にR3 の一端を接続し、他端を増幅器2の−端子に接続する。また増幅器2の−端子と出力端子をR5で接続し、更に、R3に、SW2により並列に接続できるように、R4を接続する。SW2 の制御端子は、制御装置に接続する。 R3=5kΩ R4=1.25kΩ R5=5kΩ とする。最初、SW2をOFFし、R4を切り離しておく。増幅器2の増幅率は、R5/R3 で表され、1倍となる。接触インピーダンスが高く、測定電流を少なくした場合は、SW2 をONする。R3とR4の並列抵抗値R''は、
R''=1/(1/R3 + 1/R4 )=1kΩ
で表され、増幅率は、R5/R''=5倍 となる。上記の例は、簡単のため、定電流の段階を2段階として説明したが、3段階以上でも同様に実現可能であることは明白である。
【0024】
高接触インピーダンスモードでは、体内流入電流が小さくなるため、誤差の割合が増え、若干の精度の低下がみられることがある。
上記では、自動で定電流を切り換える例を示したが、被測定者が変わる度に精度が変化する事が煩わしい場合も考えられる。
よって、入力装置に「高接触インピーダンスモード」キーを付加し、「高接触インピーダンスモード」キーを押すことにより、「高接触インピーダンスモード」を記憶装置が記憶し、SW3 をOFFにしてその状態を維持し、低い定電流を保つようにすることにより、被測定者が変わっても精度は変化しないようにする事ができる。
靴下着用者が多い場合の計測時にも、安心して使用が可能となる。
【0025】
また表示装置に「高精度」「低精度」のマークを設け、「通常モード」時には「高精度」を点灯させ、「高接触インピーダンスモード」時には「低精度」マークを点灯させることにより、精度が変化した場合でも分かりやすく表示し、間違いを避ける事ができる。
「通常モード」時には0.5%単位で表示し、「高接触インピーダンスモード」時には1%単位で表示し、小数点以下を表示させないようにすることにより、表示の区別を付けることも有効な方法である。
【0026】
上記の例は、簡単のため、体重計の説明を省略したが、インピーダンス測定装置のアナログ出力と、前記AD変換器との間に切替スイッチを設け、切替スイッチの他端を、重力測定装置のアナログ出力に接続し、切替スイッチの制御端子を、前記制御装置に接続することで、まず、切替スイッチで、重量測定装置の出力をAD変換器に入力し、被測定者の体重値をデジタル値に変換し、記憶装置にその値を記憶した後に、切替スイッチをインピーダンス測定装置の出力をAD変換器に入力することで、インピーダンス測定との装置の共有ができ、使い勝手が良く、安価な商品とすることができる。
【0027】
以上、体脂肪率測定を、より精度良く、間違えを起こさないようにする技術を述べたが、この技術によって、靴下を履いたままでも、精度良く、間違えを起こさないように測定することができる。
【図面の簡単な説明】
【図1】従来の体内脂肪量計付き体重計のブロック図
【図2】体脂肪測定模式図
【図3】生体インピーダンス測定説明図
【図4】定電流電流ブロック図
【図5】交流電圧計ブロック図
【図6】本発明の実施例のブロック図
【図7】本発明の他の実施例のブロック図
【図8】本発明の実施例の動作流れ線図
【符号の説明】
A1 インピーダンス測定手段の電力供給端子
A2 インピーダンス測定手段の電力供給端子
B1 インピーダンス測定手段の降下電圧測定端子
B2 インピーダンス測定手段の降下電圧測定端子
rA1 生体と各端子との接触インピーダンス
rA2 生体と各端子との接触インピーダンス
rB1 生体と各端子との接触インピーダンス
rB2 生体と各端子との接触インピーダンス
ri 体内インピーダンス
[0001]
[Industrial application fields]
The present invention simultaneously measures bioimpedance and body weight between both feet in the standing position, and calculates and estimates the amount of fat in the body based on physical characteristics such as height, gender, and age that are input separately from the measured values. More particularly, the present invention relates to a weight scale with a body fat meter that corresponds to variations in contact impedance between the impedance measurement electrode and the sole of the foot, which is a measurement main body.
[0002]
[Prior art]
The composition of the human body can be estimated using the impedance between living body terminals obtained by applying a small constant current from the end of the subject and measuring the voltage drop between the electrodes (The Ameri-can Journal of Clinical Nutrition , 41 (4) 810-817 1985 "Body fat meter using" Assessment of fat-free mass using bioelectrical impedance measurement of the human body "" has been proposed, (USP. 4,008,721, Japanese Patent Publication 5- (49050, JP-A-7-51242, etc.) These proposed products have been commercialized.
[0003]
In particular, in the product related to Japanese Patent Publication No. 5-49050, a flat metal electrode for measuring bioimpedance is placed at a position where the soles of both feet come into contact with each other when the subject puts on the weight scale. By simply placing it on the surface of the table and placing it barefoot on the specified position of the measuring instrument, among the factors for estimating the amount of fat in the body, the inter-body impedance and body weight that change with each measurement are measured simultaneously and calculated. It has been commercialized as a device that can be incorporated into the equation and can estimate the amount of fat in the body most simply, a weight scale with a body fat scale.
[0004]
A conventional internal fat meter first inputs physical data such as height, gender, weight, etc. of a measured person via an input device such as a key switch, and stores it in a storage device. The impedance measurement device is driven, the impedance value of the living body is output as an analog signal, converted into a digital value by an AD converter, taken into the arithmetic device, and a digital value indicating the obtained biological impedance value is stored in the storage device. The body fat mass is calculated from the stored physical data such as height and output to the display device. Unlike other physical data, the body weight is easily fluctuated, so it is necessary to input it every time it is measured, so a gravity measuring device is provided, and the weight value of the subject is also measured each time impedance is measured. What is to be measured is a body scale with a body fat meter.
[0005]
This body weight scale with body fat meter is provided with a changeover switch between the analog output of the impedance measurement device and the AD converter, and the other end of the changeover switch is connected to the analog output of the gravity measurement device. The control terminal is connected to the control device. First, the output of the weight measuring device is input to the AD converter with the changeover switch, the weight value of the person to be measured is converted into a digital value, and the value is stored in the storage device. After storing, switch the changeover switch, input the output of the impedance measuring device to the AD converter, convert the measured impedance value into a digital value, and share the AD converter between the weight measuring device and the impedance measuring device Yes. (Figure 1)
[0006]
Further, the conventional bioimpedance measuring device for a weight scale with a body fat meter employs a four-terminal method in order to eliminate the influence of variations in contact resistance between the electrode and the living body on the measured value. (Fig. 2), (Fig. 3)
Electrodes A1, A2, B1, and B2 are arranged so that the toe part and the heel part of both feet are in contact with the toe part and the heel part when the subject is placed on the platform of an electronic weight scale that measures the weight of the subject. The current terminal of the AC constant current source having a known current value iR at 50 kHz is connected to the electrodes A1 and A2, and the measurement terminal of the AC voltmeter is connected to the electrodes B1 and B2. The AC voltmeter is designed so that almost no current flows through the measurement terminal.
Here, the body impedance is ri, the contact impedance of the right toe is rA1, the contact impedance of the left toe is rA2, the contact impedance of the starboard is rB1, and the contact impedance of the port is rB2.
The AC constant current iR flows through rA1, does not leak into rB1 and rB2, flows directly into ri and rA2, and returns to the current terminal.
At this time, the voltage drops generated in rA1, ri, and rA2 are respectively
vA1 = iR × rA1 (1)
vi = iR * ri (2)
vA2 = iR × rA2 (3)
Here, since almost no current flows in each measurement terminal of the AC voltmeter, the voltage drop generated in rB1 and rB2 is regarded as 0, respectively, and the influence of rB1 and rB2 is eliminated. In the AC voltmeter, vi is Observed as is.
From the equation (2), the internal impedance ri is ri = vi / iR (4)
Since iR is a known value, it can be easily obtained from the observed value vi.
[0008]
The AC constant current source is composed of an AC constant voltage source, a resistor R1, and an OP amplifier. (Fig. 4)
The output of the AC constant voltage source is connected to one end of R1, and the other end of R1 is connected to the negative terminal of the OP amplifier. The electrode A1 is connected to the negative terminal, the electrode A2 is connected to the output terminal of the OP amplifier, and the positive terminal is connected to GND (0 V).
As long as the output terminal is not saturated, the − terminal of the OP amplifier is at the same potential as the + terminal, and no current flows from the − terminal into the OP amplifier.
Therefore, the current flowing through R1 flows directly to the electrode A1, flows through the living body, reaches A2, and is absorbed by the output terminal of the OP amplifier.
If the output voltage of the AC constant voltage source is v, the voltage across R1 is v.
ri = v / R1 (5)
Since v and R1 are known, a known constant current can be obtained.
[0009]
The AC voltmeter includes a differential amplifier, a rectifier, a low-pass filter, and an AD converter. First, an amplified output obtained by multiplying the difference voltage between the electrodes B1 and B2 by N times is obtained by a differential amplifier.
At this time, the output voltage v of the differential amplifier is
v = N * Vi = N * iR * ri (6)
When this output is input to a half-wave rectifier, the rectifier outputs only the positive portion of the AC voltage. This is converted into direct current by a low-pass filter and input to the AD converter, thereby obtaining a digital value proportional to the internal impedance ri.
With this configuration, it is possible to measure bioimpedance that is not affected by foot contact impedance.
[0010]
However, in order to measure as accurately as possible, it is usually designed on the assumption that the contact impedance is somewhat small and that it is used with bare feet. The contact impedance of the normal sole of the foot is within 1 kΩ, and the maximum impedance measurement current is designed to be 1 mA or less.
When the peak voltage of the AC constant voltage source is 0.8 V and the resistance R1 is 1 kΩ, the current value at this time is 800 μA from the equation (5).
Assuming that the bioimpedance is 500Ω and the contact impedance is 1 kΩ, the voltage Vo of the electrode A2 is
Vo = 800 μA × (rA1 + ri + rA2) = 2V
The contact impedance of the usual sole of the foot is within 1 kΩ, but becomes extremely large when wearing socks.
Now, assuming that the contact impedance is 10 kΩ, the calculated voltage Vo of the electrode A2 is
Vo = 800 μA × (10 kΩ + 500Ω + 10 kΩ) = 16.4 V (8)
It becomes.
[0011]
On the other hand, body fat scales are often made on the premise of carrying, and the circuit is mainly driven by a battery. Therefore, the circuit voltage is limited to about ± 5V. The voltage at the output terminal of the OP amplifier used for the constant current source is also within that range. When wearing socks (contact impedance is 10 KΩ) as described above, the OP amplifier is saturated and constant. Current cannot flow. Therefore, ri is not a known constant current, and the waveform is distorted and not a sine wave. However, the AC voltmeter detects the distorted and inaccurate voltage output vi and uses the value to calculate the body fat mass and outputs it to the display device.
[0012]
As described above, the conventional bioimpedance measuring device for a body weight with a body fat meter is designed on the premise that it is placed on a measuring device with bare feet, and when the sock is worn, the electrodes of the measuring device If the contact impedance with the measured object becomes excessive, the voltage drop between the electrode of the measuring device and the measured object will be large due to the system configuration, deviating from the normal operating range of the constant current power supply, Current could not flow in, and accurate measurement was impossible.
[0013]
[Problems to be solved by the invention]
The problem to be solved by the present invention is that the amount of fat in the body can be estimated easily and accurately even when the contact impedance between the living body and the electrode for measuring the biological impedance becomes large, such as wearing socks. It is to provide a weight scale with a built-in body fat meter.
[0014]
[Means for Solving the Problems]
Supply current for bioimpedance measurement corresponding to the contact impedance between the sole of the subject's foot and the bioimpedance measurement electrode between both feet by monitoring the generated voltage by installing a saturation detector of a constant current source OP amplifier The bioimpedance is measured only when the value is changed and the voltage generated by the constant current source is equal to or lower than a predetermined voltage.
[0015]
[Action and effect]
Since the constant current power supply is always used in the normal operating range, a predetermined stable and accurate current is supplied, and accurate bioimpedance can be measured even when the contact impedance is large.
[0016]
Embodiment
A pair of electrodes A (A1, A2) for injecting a minute current into the body that contacts the toes of both feet when the subject is placed on the platform of an electronic weighing scale that measures the weight of the subject when the subject is placed. ) And a pair of electrodes B (B1, B2) that contact the heel of both feet and measure the potential difference between the heels, and two pairs of bioimpedance measuring devices between the feet, height, age, sex, etc. An input device for inputting physical features is provided. The electronic scale is provided with an oscillator for obtaining a constant voltage of a sine wave, a voltage-current converter for obtaining a plurality of constant currents, and a determination device for a voltage generated by the voltage-current converter. An output of a voltage-current converter that is equal to or lower than a predetermined voltage is connected to the electrode A. A potential difference corresponding to the voltage drop from the electrode B is taken out by a differential amplifier, subjected to waveform shaping, rectification, etc., converted into a direct current and then converted into an AD, and an output current of a connected voltage-current converter is used to Imported into the calculation unit as digital impedance data. The calculation unit is configured to calculate the amount of fat in the body based on the input physical characteristics such as height, age, and sex, and the measured body weight and bioimpedance, and display the calculated amount on the display.
[0017]
【Example】
Details of embodiments of the present invention will be described in detail with reference to the drawings. As a specific example 1 of the saturation detector of the constant current source OP amplifier, SW1 for selectively connecting the B1 and B2 terminals and the A1 and A2 terminals to the differential amplifier is provided, and the control terminal of SW1 is provided to the control device. When the constant current source is connected and is surely operating normally, the maximum digital value obtained by AD-converting the voltage between the A1 and A2 terminals is stored as NMAX.
A resistor R4 is connected to R3 so that it can be connected in parallel by SW2. The control terminal of SW2 is connected to the control device. (Fig. 6)
[0018]
The control device first connects R2 in parallel with R1 through SW3.
When R1 = 5 kΩ R2 = 1.25 kΩ, the parallel resistance value R ′ is
R ′ = 1 / (1 / R1 + 1 / R2) = 1 kΩ
If the peak voltage of the AC constant voltage source is 0.8 V, the inflow current value in the body is
iR = 0.8 V / 1 kΩ = 800 μA
The control device connects the A1 and A2 terminals to the differential amplifier by SW1, converts the output into a DC voltage by a half-wave rectification and low-pass filter, and inputs it to the AD converter.
[0019]
If the digital value obtained from the voltage between the A1 and A2 terminals is smaller than NMAX when iR is applied, the B1 and B2 terminals are connected to the differential amplifier by SW1, and the AD is passed through the half-wave rectification and low-pass filter. Based on the digital value proportional to the bioelectrical impedance ri obtained by the converter and the body data of the person to be measured, the arithmetic unit calculates the amount of fat in the body and outputs it to the display device. (Fig. 8)
[0020]
If the digital value obtained from the voltage of the constant current source, that is, the voltage between the A1 and A2 terminals is larger than NMAX, it can be determined that the constant current source is saturated.
When it is larger than NMAX, the control device turns off SW3 and disconnects R2.
Since the resistance that generates a constant current is only R1, the inflow current iR 'in the body is
iR ′ = 0.8 V / 5 kΩ = 160 μA = iR / 5
Calculating an example when wearing socks and each contact impedance is 10 kΩ,
Vo = 160 μA × (10 kΩ + 500Ω + 10 kΩ) = 3.28V
Thus, it can be seen that saturation is prevented when the constant current source power supply voltage is ± 5V. If the digital value obtained from the voltage between the A1 and A2 terminals is smaller than NMAX when iR 'is applied, the B1 and B2 terminals are connected to the differential amplifier by SW1. Since the obtained digital value is proportional to the inflow current in the body, a value of 1/5 is obtained. Accordingly, the arithmetic unit calculates the obtained digital value × 5 and the arithmetic unit calculates the body fat mass based on the value and the physical data of the measurement subject, and outputs it to the display device.
[0021]
When the sock is thick and the contact impedance is 25 kΩ, Vo = 160 μA × (25 kΩ + 500Ω + 25 kΩ) = 8.8 V
Then Vo becomes larger than NMAX. In this case, it is determined that the OP amplifier is in a saturated state and the constant current source is not normally operating properly. That is, when Vo is greater than or equal to NMAX, “Error” is displayed and measurement is not normally performed. That the contact impedance between the measurement object and the bioimpedance measurement electrode is too high.
[0022]
The OP amplifier saturation detector may directly monitor the output voltage of the OP amplifier. (Fig. 7)
The terminal A2 is connected to the + terminal of the comparator, and the-terminal is set to the upper limit voltage VMAX at which the power supply OP amplifier operates reliably. The output of the comparator is input to the control device.
The comparator outputs Hi when the voltage at the terminal A2 exceeds VMAX, and outputs Lo when the voltage is lower than VMAX.
The control device monitors whether the output of the comparator becomes Hi, and when it becomes Hi, SW3 is turned off and R2 is disconnected, and the resistor for generating a constant current is only R1. In this state, if it is Hi, it is determined that the OP amplifier is saturated, “Error” is output, and if it remains Lo or changes to Lo, it is considered that normal measurement is possible and calculation is performed. Displays the amount of fat in the body.
[0023]
An amplifier 2 is further provided after the differential amplifier. Usually, when the voltage of the differential amplifier is doubled, the contact impedance is high, and the impedance measurement current is 1/5 of the normal, the voltage of the differential amplifier is reduced. If the output is multiplied by 5, the obtained digital value does not need to be multiplied by 5 in the calculation, and the digital value actually measured by AD conversion becomes 1/5, and the resolution is lowered. Can be avoided. Specifically, one end of R3 is connected to the output of the differential amplifier, and the other end is connected to the-terminal of the amplifier 2 . Further, the negative terminal and the output terminal of the amplifier 2 are connected by R5, and further R4 is connected to R3 so that it can be connected in parallel by SW2. The control terminal of SW2 is connected to the control device. R3 = 5 kΩ R4 = 1.25 kΩ R5 = 5 kΩ First, SW2 is turned off and R4 is disconnected. The amplification factor of the amplifier 2 is represented by R5 / R3 and is 1 time. When the contact impedance is high and the measurement current is reduced, SW2 is turned on. The parallel resistance value R ″ of R3 and R4 is
R ″ = 1 / (1 / R3 + 1 / R4) = 1 kΩ
The amplification factor is R5 / R '' = 5 times. In the above example, the constant current stage is described as two stages for the sake of simplicity. However, it is obvious that three or more stages can be similarly realized.
[0024]
In the high contact impedance mode, the inflow current in the body becomes small, so the error rate increases and a slight decrease in accuracy may be observed.
In the above example, the constant current is automatically switched. However, there may be a case where it is troublesome for the accuracy to change every time the person to be measured changes.
Therefore, by adding the “High Contact Impedance Mode” key to the input device and pressing the “High Contact Impedance Mode” key, the storage device memorizes the “High Contact Impedance Mode” and turns off SW3 and maintains the state. In addition, by maintaining a low constant current, it is possible to prevent the accuracy from changing even if the measurement subject changes.
It can be used with confidence even when measuring when there are many socks.
[0025]
In addition, the “high accuracy” and “low accuracy” marks are provided on the display device, and “high accuracy” is lit in “normal mode” and “low accuracy” is lit in “high contact impedance mode”. Even if it changes, it can be displayed in an easy-to-understand manner and mistakes can be avoided.
It is also an effective method to distinguish between the display by displaying in 0.5% units in "normal mode", displaying in 1% units in "high contact impedance mode", and not displaying decimals. is there.
[0026]
In the above example, the description of the weight scale is omitted for the sake of simplicity. However, a changeover switch is provided between the analog output of the impedance measurement device and the AD converter, and the other end of the changeover switch is connected to the gravity measurement device. By connecting to the analog output and connecting the control terminal of the changeover switch to the control device, first, the output of the weight measuring device is input to the AD converter with the changeover switch, and the weight value of the person being measured is a digital value After storing the value in the storage device and inputting the output of the impedance measuring device to the AD converter, the device can be shared with the impedance measurement, and it is easy to use and inexpensive. can do.
[0027]
As mentioned above, the technique for measuring the body fat percentage with higher accuracy and preventing mistakes has been described, but with this technique , measurement can be performed with high accuracy and without making mistakes even while wearing socks. .
[Brief description of the drawings]
1 is a block diagram of a conventional weight scale with a body fat meter. FIG. 2 is a schematic diagram of body fat measurement. FIG. 3 is an explanatory diagram of bioimpedance measurement. FIG. 4 is a constant current block diagram. FIG. 6 is a block diagram of an embodiment of the present invention. FIG. 7 is a block diagram of another embodiment of the present invention. FIG. 8 is an operational flow diagram of an embodiment of the present invention.
A1 Power supply terminal of impedance measuring means A2 Power supply terminal of impedance measuring means B1 Voltage drop measuring terminal of impedance measuring means B2 Voltage drop measuring terminal of impedance measuring means rA1 Contact impedance between living body and each terminal rA2 Between living body and each terminal Contact impedance rB1 Contact impedance between living body and each terminal rB2 Contact impedance between living body and each terminal ri Internal impedance

Claims (5)

被測定者の身長等の身体的データを入力する入力手段と、被測定者の身体に電流を供給して生体インピーダンスを測定するための交流定電流源並びに電流印加用及び電圧測定用の各電極を備えたインピーダンス測定手段と、前記入力手段で入力された身体的データと前記インピーダンス測定手段で測定されたインピーダンス値とを演算処理して体内脂肪量を算出する演算処理手段と、演算処理手段で得た体内脂肪量を表示する表示手段とを有する体内脂肪量計であって、
前記交流定電流源が、交流定電圧源と、OPアンプと、これら交流定電圧源とOPアンプとの間に並列に接続されて定電流を生成する複数の抵抗とで構成されていると共に、
前記インピーダンス測定手段が、被測定者の身体と前記電流印加用電極との間の接触インピーダンスに関連する情報として電流印加用電極の電圧を検出する検出手段と、該検出手段で検出した電圧が前記定電流源が確実に動作する上限の電圧よりも大きいときに、前記交流定電流源を構成する複数の抵抗の一部の接続を切り離すことによって身体に供給する電流値を減少させる電流値変更手段とを更に備えてなることを特徴とする体内脂肪量計。
Input means for inputting physical data such as the height of the person to be measured, an AC constant current source for supplying a current to the body of the person to be measured and measuring bioimpedance, and electrodes for current application and voltage measurement An impedance measuring means comprising: an arithmetic processing means for calculating a body fat mass by arithmetically processing the physical data input by the input means and the impedance value measured by the impedance measuring means; and the arithmetic processing means. A body fat meter having a display means for displaying the obtained body fat mass,
The AC constant current source includes an AC constant voltage source, an OP amplifier, and a plurality of resistors connected in parallel between the AC constant voltage source and the OP amplifier to generate a constant current.
Wherein the impedance measuring means, detecting means for detecting a voltage of the current application electrodes as the information related to the contact impedance, the voltage detected by the detection means and the between the current supply electrode and the body of the subject Current value changing means for reducing the current value supplied to the body by disconnecting some of the plurality of resistors constituting the AC constant current source when the constant current source is larger than the upper limit voltage at which the constant current source operates reliably. A body fat meter characterized by further comprising:
被測定者の身長等の身体的データを入力する入力手段と、被測定者の体重を測定する重量測定手段と、被測定者の身体に電流を供給して生体インピーダンスを測定するための交流定電流源並びに電流印加用及び電圧測定用の各電極を備えたインピーダンス測定手段と、前記入力手段で入力された身体的データと前記重量測定手段で測定された体重値と前記インピーダンス測定手段で測定されたインピーダンス値とを演算処理して体内脂肪量を算出する演算処理手段と、演算処理手段で得た体内脂肪量を表示する表示手段とを有する体内脂肪量計付き体重計であって、
前記交流定電流源が、交流定電圧源と、OPアンプと、これら交流定電圧源とOPアンプとの間に並列に接続されて定電流を生成する複数の抵抗とで構成されていると共に、
前記インピーダンス測定手段が、被測定者の身体と前記電流印加用電極との間の接触インピーダンスに関連する情報として電流印加用電極の電圧を検出する検出手段と、該検出手段で検出した電圧が前記定電流源が確実に動作する上限の電圧よりも大きいときに、前記交流定電流源を構成する複数の抵抗の一部の接続を切り離すことによって身体に供給する電流値を減少させる電流値変更手段とを更に備えてなることを特徴とする体内脂肪量計付き体重計。
An input means for inputting physical data such as the height of the measurement subject, a weight measurement means for measuring the weight of the measurement subject, and an AC constant for measuring the bioimpedance by supplying current to the measurement subject's body. Impedance measuring means having a current source and electrodes for current application and voltage measurement , physical data input by the input means, body weight value measured by the weight measuring means, and impedance measurement means A weight scale with a body fat meter, having a processing means for calculating the body fat mass by computing the impedance value, and a display means for displaying the body fat mass obtained by the processing means,
The AC constant current source includes an AC constant voltage source, an OP amplifier, and a plurality of resistors connected in parallel between the AC constant voltage source and the OP amplifier to generate a constant current.
Wherein the impedance measuring means, detecting means for detecting a voltage of the current application electrodes as the information related to the contact impedance, the voltage detected by the detection means and the between the current supply electrode and the body of the subject Current value changing means for reducing the current value supplied to the body by disconnecting some of the plurality of resistors constituting the AC constant current source when the constant current source is larger than the upper limit voltage at which the constant current source operates reliably. And a body weight scale with a body fat meter.
前記演算処理手段は、前記電流値変更手段で身体に供給する電流値を減少させた後に前記検出手段で検出した電流印加用電極の電圧が前記定電流源が確実に動作する上限の電圧よりも大きい場合には、体内脂肪量を算出しないことを特徴とする請求項1又は2記載の体内脂肪量計又は体内脂肪量計付き体重計。The arithmetic processing means reduces the current value supplied to the body by the current value changing means, and the voltage of the current application electrode detected by the detection means is higher than the upper limit voltage at which the constant current source operates reliably. The body fat meter or body weight meter with a body fat meter according to claim 1 or 2 , wherein when it is large , the body fat mass is not calculated. 前記表示装置は、前記電流値変更手段で身体に供給する電流値を減少させた後に前記検出手段で検出した電流印加用電極の電圧が前記定電流源が確実に動作する上限の電圧よりも大きい場合には、体内脂肪量を表示しないことを特徴とする請求項1又は2記載の体内脂肪量計又は体内脂肪量計付き体重計。In the display device, after the current value supplied to the body by the current value changing unit is decreased , the voltage of the current applying electrode detected by the detecting unit is larger than the upper limit voltage at which the constant current source operates reliably. In such a case, the body fat mass is not displayed, and the body fat meter or body weight scale with body fat meter according to claim 1 or 2 . 前記インピーダンス測定手段を4端子回路により構成したことを特徴とする請求項1乃至4記載の体内脂肪量計又は体内脂肪量計付き体重計。Body fat meter or body fat meter with body weight meter according to claim 1 to 4, wherein the configured by 4-terminal circuit the impedance measuring means.
JP29960297A 1997-10-17 1997-10-17 Body fat meter and body weight scale with body fat meter Expired - Fee Related JP3849955B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29960297A JP3849955B2 (en) 1997-10-17 1997-10-17 Body fat meter and body weight scale with body fat meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29960297A JP3849955B2 (en) 1997-10-17 1997-10-17 Body fat meter and body weight scale with body fat meter

Publications (2)

Publication Number Publication Date
JPH11113872A JPH11113872A (en) 1999-04-27
JP3849955B2 true JP3849955B2 (en) 2006-11-22

Family

ID=17874767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29960297A Expired - Fee Related JP3849955B2 (en) 1997-10-17 1997-10-17 Body fat meter and body weight scale with body fat meter

Country Status (1)

Country Link
JP (1) JP3849955B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11779254B2 (en) 2019-12-11 2023-10-10 Samsung Electronics Co., Ltd. Method for processing biometric signal and electronic device and storage medium for the same

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19928566B4 (en) * 1998-06-23 2012-05-31 Nissan Motor Co., Ltd. Gear ratio control device and control method of a continuously variable transmission
JP3725697B2 (en) * 1998-06-23 2005-12-14 日産自動車株式会社 Shift control device for automatic transmission
JP4357049B2 (en) * 1999-10-07 2009-11-04 大和製衡株式会社 Body fat measuring device
JP2001228013A (en) 2000-02-16 2001-08-24 Tanita Corp Biomedical measuring apparatus with weight meter
KR100375657B1 (en) * 2000-06-21 2003-03-15 주식회사 몸앤맘 Apparatus and method for eliminating a fat mass in human body
JP2003052658A (en) * 2001-08-13 2003-02-25 Yamato Scale Co Ltd Internal fat measuring apparatus
US7218961B2 (en) 2002-03-19 2007-05-15 Funai Electric Co., Ltd. Percent body fat measuring apparatus using a half-wave waveform
JP4795807B2 (en) * 2006-02-09 2011-10-19 フクダ電子株式会社 Bioimpedance measuring device
JP6475942B2 (en) 2014-09-25 2019-02-27 ルネサスエレクトロニクス株式会社 Semiconductor device and AC resistance measurement system including the same
JP6531203B1 (en) * 2018-06-25 2019-06-12 有限会社 ライブエイド Toe force measurement device, toe force evaluation method, and program
CN113768487A (en) * 2021-08-02 2021-12-10 深圳市晨北科技有限公司 User body fat detection method and device, computer device and medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11779254B2 (en) 2019-12-11 2023-10-10 Samsung Electronics Co., Ltd. Method for processing biometric signal and electronic device and storage medium for the same

Also Published As

Publication number Publication date
JPH11113872A (en) 1999-04-27

Similar Documents

Publication Publication Date Title
JP3734350B2 (en) Body fat meter and body weight scale with body fat meter
US5415176A (en) Apparatus for measuring body fat
JP3849955B2 (en) Body fat meter and body weight scale with body fat meter
EP0545014B1 (en) Apparatus for measuring body fat
JP3907353B2 (en) Bioimpedance measurement device
JP4454092B2 (en) Body fat mass measuring device
JPH10510455A (en) Human body component analyzer and analysis method using new electrode system based on bioelectric impedance analysis
JP2001104271A (en) Body fat measuring equipment
KR101009388B1 (en) Body composition monitor capable of accurately measuring whole-body composition and achieving facilitated manipulation
US8932062B2 (en) Body weight management device
JP2001161655A (en) Device for measuring impedance of bioelectricity
US7065399B2 (en) Muscle fatigue level measuring device
EP1488742B1 (en) Biological data acquiring apparatus
USRE37954E1 (en) Method and apparatus for measuring body fat
JPH10179536A (en) Weighing machine having body adipometer
JP2007181524A (en) Body composition meter
JPH06277191A (en) Method for measuring bio-impedance
US7089052B2 (en) Method and system for estimating visceral fat area
JP4671467B2 (en) Impedance measuring device
JP2002065628A (en) Living body impedance detecting system
JP2003265427A (en) Health care device
KR20010011583A (en) Apparatus for Body Composition Analysis and for Postural Balance Measurement and Method of Using the Same
JP4780824B2 (en) Body fat scale
JP2007307013A (en) Bioelectric impedance measuring apparatus with pulse measuring function
JP3809926B2 (en) Body fat scale

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060825

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100908

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110908

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120908

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130908

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees