JP3837680B2 - Mold for metal-ceramic composite substrate manufacturing - Google Patents

Mold for metal-ceramic composite substrate manufacturing Download PDF

Info

Publication number
JP3837680B2
JP3837680B2 JP13797397A JP13797397A JP3837680B2 JP 3837680 B2 JP3837680 B2 JP 3837680B2 JP 13797397 A JP13797397 A JP 13797397A JP 13797397 A JP13797397 A JP 13797397A JP 3837680 B2 JP3837680 B2 JP 3837680B2
Authority
JP
Japan
Prior art keywords
mold
molten metal
ceramic
metal
ceramic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13797397A
Other languages
Japanese (ja)
Other versions
JPH10180433A (en
Inventor
正博 風呂
隆志 銭盛
満弘 小坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP13797397A priority Critical patent/JP3837680B2/en
Publication of JPH10180433A publication Critical patent/JPH10180433A/en
Application granted granted Critical
Publication of JP3837680B2 publication Critical patent/JP3837680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は金属−セラミックス複合基板製造用鋳型、特に、自動車部品、電子部品などに好適な、酸化物、窒化物、炭化物セラミックスと金属との強固な複合部材を製造する製造技術に関するものである。
【0002】
【従来の技術】
セラミックスの化学安定性、高融点、絶縁性、高硬度などの特性と、金属の高強度、高靱性、易加工性、導電性などの特性を生かした金属−セラミックス複合部材は、自動車、電子装置などに広く使用されている。その代表的な例として、自動車ターボチャージャー用のローター、大電力電子素子実装用の基板及びパッケージが挙げられる。
【0003】
従来、金属−セラミックス複合部材の主な製造方法として、接着、めっき、メタライズ、溶射、ろう接、DBC、焼き嵌め、鋳ぐるみなどの方法が知られている。
【0004】
しかし、上記製造方法にあっては、接着法の場合は接着強度が低く、耐熱性が乏しいとの問題点がある。めっき、メタライズ、溶射法の場合は、形成したセラミックス(金属)が厚さ数μm〜数十μmの薄い層状のものに限られている。焼き嵌め及び鋳ぐるみ法は、セラミックス部材の少なくとも一部が金属に抱き込まれるような特定の場合に限られている。
【0005】
DBC法では、接合できる金属が銅に限られ、且つ接合温度がCu−Oの共晶点近くの狭い範囲に限られている為、膨れや未接のような接合欠陥が発生し易いという問題点がある。ろう接法の場合は、高価なろう材を使用し、且つ接合を真空中で行なわなければならない為、コストが高く、応用範囲が限られている。また、ろう材には、一般に接合する金属と他の金属とさらには非金属を添加した共晶合金が使用され、それ自体は一般に接合する金属より硬いので、直接接合体に比べて、ろう接体の耐ヒートサイクル寿命が短いなどの問題点があった。
【0006】
本発明者らは上記問題点を解決する装置として、特開平8−198692号公報「金属−セラミックス複合部材の製造装置」に開示したように、セラミックス部材を連続的に供給する搬送手段と、搬送されたセラミックス部材を予熱する予熱部と、予熱されたセラミックス部材を坩堝内の金属溶湯中を通過させて、セラミックス部材の周囲面に金属を接合させる接合部と、該接合されたセラミックス部材を徐冷して金属−セラミックス複合部材となす冷却部からなる装置を提供した。
【0007】
上記の製造装置により、連続的に大量の金属−セラミックス複合部材を製造することができ、実操業の面で大きな効果を得ているが、この複合部材のセラミックスの両面の金属厚さは、上記接合部の構造から両面とも同じ厚さであった。
【0008】
【発明が解決しようとする課題】
近年、これらの金属−セラミックス複合部材として、放熱板の金属厚さを回路面の金属厚さより薄くして、熱伝導特性を上げようとする複合部材も要求されるようになったが、上記の製造装置では製造できなかった。
【0009】
本発明は優れた特性を有する特殊形状の金属−セラミックス複合部材を低コストで製造できる嵌合タイプの鋳型を提供することを目的とする。
【0010】
本発明者らは斯かる課題を解決するために鋭意研究したところ、嵌合タイプの鋳型を開発することにより、溶湯金属をセラミックス部材に接合できることを見出し本発明を提供することができた。
【0011】
【課題を解決するための手段】
即ち、本発明は、左右に分割した一方及び他方の鋳型より成り、これらの間にセラミックス部材を挟持して互いに結合せしめる一体型鋳型であって、一方の鋳型内面には、溶湯注入筒固定部、溶湯導入部、上記セラミックス部材用回路面部、押湯部を連接して設け、他方の鋳型内面には、溶湯注入筒固定部、溶湯導入部、上記セラミックス部材用放熱板部あるいはフィン部と一体となった放熱部、押湯部を連接して設けたことを特徴とする金属−セラミックス複合基板製造用鋳型である。
【0012】
また、本発明は、左右及び中央に分割した鋳型より成り、左右の鋳型と中央の鋳型間に夫々セラミックス部材を挟持して互いに結合せしめる一体型鋳型であって、中央鋳型の両面には、溶湯注入筒固定部、溶湯導入部、上記セラミックス部材用回路面部、押湯部を連接して設け、上記中央鋳型の両側に配置される左右の鋳型内面の夫々には、溶湯注入筒固定部、溶湯導入部、上記セラミックス部材用放熱板部あるいはフィン部と一体となった放熱部、押湯部を連接して設けたことを特徴とする金属−セラミックス複合基板製造用鋳型である。
【0013】
上記溶湯は、金属アルミニウムまたはアルミニウムを主体とする合金であることを特徴とする。
【0015】
本発明では、上記鋳型によって、セラミックス部材を挟持せしめた後に、溶湯金属としてのアルミニウム金属を流し込み、セラミックス部材の一面に0.5mm程度の厚みを有する回路形成面を設け、反対面には0.3mm程度の放熱板やあるいはフィン部と一体となった放熱部を一連の工程で製造する。
【0016】
本発明で用いる金属は、アルミニウムの純金属であるが、これにより導電性が向上し、且つ軟らかさを得るものである。この場合、純度が高い程導電性が向上するが、逆に価格が高くなるため、本発明では99.9%(3N)の純アルミニウムを使用した。
【0017】
また本発明で使用するセラミックス部材は、アルミナ、窒化アルミニウム、窒化ケイ素、炭化ケイ素、ジルコニア等のセラミックス部材やガラス等であり、この場合、高強度の素材であればなお更に好ましい。
【0018】
【発明の実施の形態】
以下図面を参照して本発明鋳型について詳細に説明する。
【0019】
(実施例1)
【0020】
図1は、本発明鋳型の全体を示す斜視図である。本発明の鋳型は、例えば縦150mm、横150mm、厚さ45mmの大きさであり、左右の鋳型がほぼ真中で嵌合する構造となっている。
【0021】
図2〜図5に示すように右側鋳型1の内面には、溶湯注入筒固定部4、溶湯導入部5、セラミックス部材固定用凹部6、回路面用凹部6′、押湯部7、ガス抜き孔8を設け、図6〜図9に示すように、左側鋳型2の内面には、溶湯注入筒固定部4、溶湯導入部5、放熱板部10、押湯部7を設け、セラミックス部材13として縦112mm、横54mm、厚さ0.635mmのアルミナ部材を上記セラミックス部材固定用凹部6内に固定し、次いで、直径30mmの溶湯注入筒3を溶湯注入筒固定部4に固定した後、両方の鋳型1及び2を嵌合する。なお、11は上記右側鋳型1の凸部9を受け入れるため上記左側鋳型2に形成した凹部である。また、図3に示すように上記セラミックス部材固定用凹部6の深さは上記厚さ0.635mmのアルミナ部材を受け入れる深さであり、回路面用凹部6′はこれより深い例えば1.15mmである。
【0022】
次に、別途加熱して得た純度99.9%(3N)のアルミニウム溶湯を、上記溶湯注入筒3から圧力をかけながら流し込み、最終的にガス抜き孔8から若干のアルミニウムが抜け出るまで注入する。
【0023】
上記の状態でアルミニウム溶湯の注入を中止し、引け巣、欠陥が回路形成や放熱板に残らないよう温度勾配をかけながら鋳型を室温に近い状態まで冷却した後、鋳型を当初のように左右に分割してアルミニウム−セラミックス複合部材を得た。本発明によって得られた複合部材は、回路形成14が0.5mmの厚さであり、これはアルミナ部材の一面と回路面用凹部6′間に形成される。アルミナ部材の反対面の放熱板部10に形成された放熱板15の厚さは0.3mmであった。
【0024】
このようにして得られた回路形成面14にエッチングレジストを加熱圧着し、遮光、現像処理を行なって所望のパターンを形成した後、塩化第2鉄溶液にエッチングを行なって回路を形成した。更に、回路表面をZn置換してNiめっき処理を施して、図10に示すような形状のアルミニウム−セラミックス直接接合基板を得た。なお、16はNiメッキ膜である。
【0025】
該複合基板の諸特性を測定したところ、以下の結果を得た。
【0026】
ピール強度>21kg/cm(アルミニウムが切れる)
【0027】
ヒートサイクル>3000回(クラックなし)
【0028】
抗折強度:61.6kg/mm2
【0029】
たわみ:170μm
【0030】
(実施例2)
【0031】
上記左側鋳型2の内面を図11及び図12に示すように、放熱板部10をフィン部12を有するものに変えた以外は実施例1に示すものと同一の左右の鋳型を用い、セラミックス部材として縦112mm、横54mm、厚さ0.635mmの窒化アルミニウム部材を用いて実施例1と同様な処理をして、図13に示す形状のフィン17付きのアルミニウム−セラミックス複合部材を得た。
【0032】
(実施例3)
【0033】
図14は、本発明の第3の実施例である鋳型の全体を示す斜視図である。この鋳型は、1個の溶湯注入筒3に夫々連通する3個の鋳型18〜20を一体に結合せしめたものであり、左右の鋳型18,20が中央鋳型19を挟持する構造となっている。
【0034】
図15〜図17に示すように右側鋳型18の内面には、溶湯注入筒固定部21a、溶湯導入部22、セラミックス部材固定用凹部23,24、回路面用凹部25,26、押湯部27,28、ガス抜き孔29,30を設け、図18〜図20に示すように、上記右側鋳型18に対向する中央鋳型19の対向面には、溶湯注入筒固定部21b、溶湯導入部22′、放熱板部31,32、押湯部27′,28′、セラミックス部材固定用凹部23,24、及び上記右側鋳型18の凸部33を受け入れるための凹部33′を設ける。
【0035】
また、図21に示すように上記中央鋳型19の反対側の面には、溶湯注入筒固定部21b、溶湯導入部34、セラミックス部材固定用凹部35,36、放熱板部37,38、押湯部39,40を設け、図22〜24に示すように、上記中央鋳型19の上記反対側の面に対向する左側鋳型20の内面には、溶湯注入筒固定部21c、溶湯導入部34′、回路面用凹部41,42、押湯部39′,40′、ガス抜き孔43,44、及び上記中央鋳型19の凸部45を受け入れるための凹部45′を設け、4枚のアルミナ部材を上記セラミックス部材固定用凹部23,24,35,36内に固定し、次いで、溶湯注入筒3を中央鋳型19の溶湯注入筒固定部21bに固定した後、中央鋳型19に右,左の鋳型18及び20を嵌合する。
【0036】
次に、別途加熱して得た純度99.9%(3N)のアルミニウム溶湯を、上記溶湯注入筒3から圧力をかけながら流し込み、最終的にガス抜き孔29,30,43,44から若干のアルミニウムが抜け出るまで注入する。
【0037】
上記の状態でアルミニウム溶湯の注入を中止し、引け巣、欠陥が回路形成や放熱板に残らないよう温度勾配をかけながら鋳型を室温に近い状態まで冷却した後、鋳型を当初のように分割してアルミニウム−セラミックス複合部材を得た。本発明によって得られた複合部材は、以下、他の実施例と同様に処理する。
【0038】
この実施例によれば一度に4枚の複合基板を量産できる。
【0039】
【発明の効果】
本発明の鋳型は、嵌合式であるため特定形状の金属−セラミックス複合基板を製造できるものであり、且つ、鋳型は繰り返して使用できる事から特定形状の複合基板を安価に製造できるという大きな利益がある。
【図面の簡単な説明】
【図1】本発明鋳型の全体を示す斜視図である。
【図2】図1中、A方向に見た右側鋳型の正面図である。
【図3】右側鋳型の平面図である。
【図4】図2の4−4線断面図である。
【図5】図2の5−5線断面図である。
【図6】図1中、B方向に見た左側鋳型の正面図である。
【図7】左側鋳型の平面図である。
【図8】図6の8−8線断面図である。
【図9】図6の9−9線断面図である。
【図10】本発明の実施例1で得られた複合基板の断面図である。
【図11】左側鋳型の別な形態を示す正面図である。
【図12】図11の12−12線断面図である。
【図13】本発明の実施例2で得られた複合基板の断面図である。
【図14】本発明の第3の実施例の鋳型の全体を示す斜視図である。
【図15】同じく右側鋳型の正面図である。
【図16】同じく右側鋳型の平面図である。
【図17】同じく側面図である。
【図18】同じく中央鋳型の正面図である。
【図19】同じく中央鋳型の平面図である。
【図20】同じく中央鋳型の側面図である。
【図21】同じく背面図である。
【図22】同じく左側鋳型の正面図である。
【図23】同じく左側鋳型の平面図である。
【図24】同じく側面図である。
【符号の説明】
1 右側鋳型
2 左側鋳型
3 溶湯注入筒
4 溶湯注入筒固定部
5 溶湯導入部
6 セラミックス部材固定用凹部
6′ 回路面用凹部
7 押湯部
8 ガス抜き孔
9 凸部
10 放熱板部
11 凹部
12 フィン部
13 セラミックス部材
14 回路形成面
15 放熱板
16 Niメッキ膜
17 フィン
18 鋳型
19 中央鋳型
20 鋳型
21a 溶湯注入筒固定部
21b 溶湯注入筒固定部
21c 溶湯注入筒固定部
22 溶湯導入部
22′ 溶湯導入部
23 セラミックス部材固定用凹部
24 セラミックス部材固定用凹部
25 回路面用凹部
26 回路面用凹部
27 押湯部
28 押湯部
27′ 押湯部
28′ 押湯部
29 ガス抜き孔
30 ガス抜き孔
31 放熱板部
32 放熱板部
33 鋳型凸部
33′ 鋳型凹部
34 溶湯導入部
34′ 溶湯導入部
35 セラミックス部材固定用凹部
36 セラミックス部材固定用凹部
37 放熱板部
38 放熱板部
39 押湯部
39′ 押湯部
40 押湯部
40′ 押湯部
41 回路面用凹部
42 回路面用凹部
43 ガス抜き孔
44 ガス抜き孔
45 鋳型凸部
45′ 鋳型凹部
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a metal-ceramic composite substrate manufacturing mold, particularly to a manufacturing technique for manufacturing a strong composite member of an oxide, nitride, carbide ceramic and metal suitable for automobile parts, electronic parts and the like.
[0002]
[Prior art]
Metal-ceramic composite members that take advantage of the characteristics of ceramics such as chemical stability, high melting point, insulation, and high hardness, and the characteristics of metals such as high strength, high toughness, easy processability, and conductivity are used in automobiles and electronic devices. Widely used in Typical examples include a rotor for an automobile turbocharger, a substrate for mounting a high-power electronic device, and a package.
[0003]
Conventionally, methods such as adhesion, plating, metallization, thermal spraying, brazing, DBC, shrink fitting, and cast-in are known as main methods for producing metal-ceramic composite members.
[0004]
However, the above-described production method has a problem that the bonding method has low adhesive strength and poor heat resistance. In the case of plating, metallization, and thermal spraying, the formed ceramic (metal) is limited to a thin layer having a thickness of several μm to several tens of μm. The shrink-fit and cast-in methods are limited to specific cases where at least a portion of the ceramic member is held in the metal.
[0005]
In the DBC method, the metal that can be bonded is limited to copper, and the bonding temperature is limited to a narrow range near the eutectic point of Cu-O, so that a bonding defect such as swelling or non-contact is likely to occur. There is a point. In the case of the brazing method, an expensive brazing material is used and bonding must be performed in a vacuum, so that the cost is high and the application range is limited. In addition, a brazing material is generally a eutectic alloy to which a metal to be joined, another metal, and even a non-metal are added, and is generally harder than the metal to be joined. There were problems such as a short heat cycle life of the body.
[0006]
As disclosed in Japanese Patent Laid-Open No. 8-198692 “Metal-ceramic composite member manufacturing apparatus”, the present inventors as a device for solving the above problems, a conveying means for continuously supplying a ceramic member, A preheating portion for preheating the ceramic member, a joining portion for allowing the preheated ceramic member to pass through the molten metal in the crucible and joining the metal to the peripheral surface of the ceramic member, and the joined ceramic member gradually. An apparatus comprising a cooling unit that is cooled to form a metal-ceramic composite member is provided.
[0007]
A large amount of the metal-ceramic composite member can be continuously manufactured by the above manufacturing apparatus, and a great effect is obtained in terms of actual operation. The metal thickness of both sides of the ceramic of the composite member is as described above. Due to the structure of the joint, both sides had the same thickness.
[0008]
[Problems to be solved by the invention]
In recent years, as these metal-ceramic composite members, there has been a demand for composite members that attempt to improve heat conduction characteristics by making the metal thickness of the heat sink thinner than the metal thickness of the circuit surface. It could not be manufactured with a manufacturing device.
[0009]
An object of the present invention is to provide a fitting type mold capable of manufacturing a specially shaped metal-ceramic composite member having excellent characteristics at low cost.
[0010]
The inventors of the present invention have intensively studied to solve such problems. As a result, they have found that a molten metal can be joined to a ceramic member by developing a fitting type mold.
[0011]
[Means for Solving the Problems]
That is, the present invention is made of one and the other of the mold is divided into right and left, an integral-type mold occupy together forming each other by sandwiching a ceramic member between them, the one mold inner surface, the molten metal injection tube fixing And a molten metal introduction part, the circuit surface part for the ceramic member , and the feeder part are connected to each other, and on the other mold inner surface, there are a molten metal injection cylinder fixing part, a molten metal introduction part, the radiator plate part for the ceramic member, or a fin part. A mold for producing a metal / ceramic composite substrate, wherein an integrated heat dissipating part and a feeder part are connected to each other.
[0012]
The present invention is made of a mold divided left and right and center, to sandwich the respective ceramic member between the left and right mold and the central mold a unitary mold Ru allowed coupled together, on both sides of the central mold, The molten metal injection cylinder fixing portion, the molten metal introduction portion, the circuit surface portion for the ceramic member , and the feeder portion are connected to each other , and the molten metal injection cylinder fixing portion is provided on each of the left and right mold inner surfaces arranged on both sides of the central mold. A mold for producing a metal / ceramic composite substrate, comprising a molten metal introducing portion, a heat radiating portion integrated with the ceramic heat radiating plate portion or the fin portion, and a feeder portion.
[0013]
The molten metal is metal aluminum or an alloy mainly composed of aluminum.
[0015]
In the present invention, after the ceramic member is sandwiched by the mold, an aluminum metal as a molten metal is poured, and a circuit forming surface having a thickness of about 0.5 mm is provided on one surface of the ceramic member. A heat radiating part integrated with a heat sink of about 3 mm or a fin part is manufactured in a series of steps.
[0016]
The metal used in the present invention is a pure metal of aluminum, which improves conductivity and obtains softness. In this case, the higher the purity is, the better the conductivity is. However, since the price is higher, 99.9% (3N) pure aluminum is used in the present invention.
[0017]
The ceramic member used in the present invention is a ceramic member such as alumina, aluminum nitride, silicon nitride, silicon carbide, zirconia, glass, or the like. In this case, a high-strength material is still more preferable.
[0018]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the mold of the present invention will be described in detail with reference to the drawings.
[0019]
Example 1
[0020]
FIG. 1 is a perspective view showing the entire mold of the present invention. The mold of the present invention is, for example, 150 mm long, 150 mm wide, and 45 mm thick, and has a structure in which the left and right molds are fitted approximately in the middle.
[0021]
As shown in FIGS. 2 to 5, on the inner surface of the right mold 1, a molten metal injection cylinder fixing portion 4, a molten metal introducing portion 5, a ceramic member fixing concave portion 6, a circuit surface concave portion 6 ′, a feeder portion 7, a gas vent A hole 8 is provided, and as shown in FIGS. 6 to 9, on the inner surface of the left mold 2, a molten metal injection tube fixing portion 4, a molten metal introduction portion 5, a heat radiating plate portion 10, and a feeder portion 7 are provided. After fixing an alumina member having a length of 112 mm, a width of 54 mm, and a thickness of 0.635 mm in the concave portion 6 for fixing the ceramic member, and then fixing the molten metal injection cylinder 3 having a diameter of 30 mm to the molten metal injection cylinder fixing portion 4, both The molds 1 and 2 are fitted. Reference numeral 11 denotes a concave portion formed in the left mold 2 for receiving the convex portion 9 of the right mold 1. Also, as shown in FIG. 3, the depth of the ceramic member fixing recess 6 is a depth for receiving the alumina member having a thickness of 0.635 mm, and the circuit surface recess 6 'is 1.15 mm deeper than this, for example. is there.
[0022]
Next, molten aluminum having a purity of 99.9% (3N) obtained by separately heating is poured from the molten metal injection cylinder 3 while applying pressure, and finally injected until some aluminum comes out from the vent hole 8. .
[0023]
Stop the injection of molten aluminum in the above state, cool the mold to near room temperature while applying a temperature gradient so that no shrinkage and defects remain on the circuit formation and heat sink, and then move the mold to the left and right as originally. The aluminum-ceramic composite member was obtained by dividing. The composite member obtained by the present invention, the circuit formation portion 14 is a thickness of 0.5 mm, which is formed between the concave portion 6 'for one side and the circuit surface of the alumina member. The thickness of the heat sink 15 formed on the heat sink 10 on the opposite surface of the alumina member was 0.3 mm.
[0024]
An etching resist was thermocompression bonded to the circuit forming surface 14 thus obtained, and a desired pattern was formed by shading and developing, and then etching was performed on the ferric chloride solution to form a circuit. Further, the surface of the circuit was replaced with Zn and subjected to Ni plating to obtain an aluminum-ceramics direct bonding substrate having a shape as shown in FIG. Reference numeral 16 denotes a Ni plating film.
[0025]
When various characteristics of the composite substrate were measured, the following results were obtained.
[0026]
Peel strength> 21 kg / cm (aluminum can be cut)
[0027]
Heat cycle> 3000 times (no cracks)
[0028]
Folding strength: 61.6kg / mm 2
[0029]
Deflection: 170 μm
[0030]
(Example 2)
[0031]
As shown in FIGS. 11 and 12, the left and right mold 2 has the same left and right molds as those shown in Example 1, except that the heat radiating plate 10 is replaced with a fin 12. As an example, an aluminum nitride member having a length of 112 mm, a width of 54 mm, and a thickness of 0.635 mm was used to obtain the aluminum-ceramic composite member with fins 17 having the shape shown in FIG.
[0032]
Example 3
[0033]
FIG. 14 is a perspective view showing an entire mold according to a third embodiment of the present invention. This mold is formed by integrally joining three molds 18 to 20 that communicate with one molten metal injection cylinder 3, and the left and right molds 18 and 20 sandwich the central mold 19. .
[0034]
As shown in FIGS. 15 to 17, on the inner surface of the right mold 18, a molten metal injection cylinder fixing portion 21 a, a molten metal introducing portion 22, ceramic member fixing concave portions 23 and 24, circuit surface concave portions 25 and 26, and a hot water portion 27. 28, gas vent holes 29, 30 are provided, and as shown in FIGS. 18 to 20, on the opposed surface of the central mold 19 facing the right mold 18, the molten metal injection cylinder fixing portion 21b and the molten metal introducing portion 22 ′ are provided. The heat sinks 31, 32, the feeder parts 27 ′, 28 ′, the ceramic member fixing concave parts 23, 24, and the concave part 33 ′ for receiving the convex part 33 of the right mold 18 are provided.
[0035]
Further, as shown in FIG. 21, on the opposite surface of the central mold 19, the molten metal injection cylinder fixing portion 21b, the molten metal introducing portion 34, the ceramic member fixing concave portions 35 and 36, the heat radiating plate portions 37 and 38, the hot water supply 22 and 24, as shown in FIGS. 22 to 24, on the inner surface of the left mold 20 facing the opposite surface of the central mold 19, a molten metal injection cylinder fixing portion 21c, a molten metal introducing portion 34 ', The circuit surface recesses 41 and 42, the feeders 39 'and 40', the gas vent holes 43 and 44, and the recesses 45 'for receiving the projections 45 of the central mold 19 are provided, and the four alumina members are formed as described above. After fixing in the ceramic member fixing recesses 23, 24, 35, and 36, and then fixing the molten metal injection cylinder 3 to the molten metal injection cylinder fixing portion 21b of the central mold 19, the right and left molds 18 and 20 is fitted.
[0036]
Next, molten aluminum having a purity of 99.9% (3N) obtained by heating separately is poured from the molten metal injection cylinder 3 while applying pressure, and finally, a slight amount of gas is released from the vent holes 29, 30, 43, and 44. Pour until aluminum comes out.
[0037]
In the above state, the injection of molten aluminum is stopped, the mold is cooled to near room temperature while applying a temperature gradient so that no shrinkage and defects remain in the circuit formation and the heat sink, and then the mold is divided as originally. Thus, an aluminum-ceramic composite member was obtained. Hereinafter, the composite member obtained by the present invention is processed in the same manner as in the other examples.
[0038]
According to this embodiment, four composite substrates can be mass-produced at a time.
[0039]
【The invention's effect】
Since the mold of the present invention is a fitting type, a metal-ceramic composite substrate having a specific shape can be manufactured, and since the mold can be used repeatedly, there is a great advantage that a composite substrate having a specific shape can be manufactured at low cost. is there.
[Brief description of the drawings]
FIG. 1 is a perspective view showing the entire mold of the present invention.
FIG. 2 is a front view of the right mold as viewed in the direction A in FIG.
FIG. 3 is a plan view of a right mold.
4 is a cross-sectional view taken along line 4-4 of FIG.
5 is a cross-sectional view taken along line 5-5 of FIG.
6 is a front view of the left mold as viewed in the direction B in FIG. 1. FIG.
FIG. 7 is a plan view of the left mold.
8 is a cross-sectional view taken along line 8-8 of FIG.
9 is a cross-sectional view taken along line 9-9 of FIG.
FIG. 10 is a cross-sectional view of a composite substrate obtained in Example 1 of the present invention.
FIG. 11 is a front view showing another form of the left mold.
12 is a sectional view taken along line 12-12 of FIG.
FIG. 13 is a cross-sectional view of a composite substrate obtained in Example 2 of the present invention.
FIG. 14 is a perspective view showing an entire mold according to a third embodiment of the present invention.
FIG. 15 is a front view of the right mold.
FIG. 16 is a plan view of the right mold.
FIG. 17 is a side view of the same.
FIG. 18 is a front view of the central mold.
FIG. 19 is a plan view of the central mold.
FIG. 20 is a side view of the central mold.
FIG. 21 is a rear view of the same.
FIG. 22 is a front view of the left mold.
FIG. 23 is a plan view of the left mold.
FIG. 24 is a side view of the same.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Right side mold 2 Left side mold 3 Molten injection cylinder 4 Molten injection cylinder fixing | fixed part 5 Molten metal introducing | transducing part 6 Ceramic member fixing recessed part 6 'Circuit surface recessed part 7 Feeding part 8 Degassing hole 9 Convex part 10 Radiating plate part 11 Concave part 12 Fin part 13 Ceramic member 14 Circuit forming surface 15 Heat sink 16 Ni plating film 17 Fin 18 Mold 19 Central mold 20 Mold 21a Molten injection cylinder fixing part 21b Molten injection cylinder fixing part 21c Molten injection cylinder fixing part 22 Molten injection part fixing part 22 'Molten metal introduction part 22' Introduction part 23 Recess for fixing ceramic member 24 Recess for fixing ceramic member 25 Recess for circuit surface 26 Recess for circuit surface 27 Feeding part 28 Feeding part 27 'Feeding part 28' Feeding part 29 Gas vent hole 30 Gas vent hole 31 heat sink plate 32 heat sink plate 33 mold convex portion 33 ′ mold concave portion 34 molten metal introducing portion 34 ′ molten metal introducing portion 35 concave portion 36 for fixing a ceramic member Lamix member fixing recess 37 Heat sink plate 38 Heat sink plate 39 Hot water supply portion 39 'Hot water supply portion 40 Hot water supply portion 40' Hot water supply portion 41 Circuit surface recess 42 Circuit surface recess 43 Gas vent hole 44 Gas vent hole 45 Mold convex part 45 'Mold concave part

Claims (7)

左右に分割した一方及び他方の鋳型より成り、これらの間にセラミックス部材を挟持して互いに結合せしめる一体型鋳型であって、一方の鋳型内面には、溶湯注入筒固定部、溶湯導入部、上記セラミックス部材用回路面部、押湯部を連接して設け、他方の鋳型内面には、溶湯注入筒固定部、溶湯導入部、上記セラミックス部材用放熱板部、押湯部を連接して設けたことを特徴とする金属−セラミックス複合基板製造用鋳型。 Consists one and the other of the mold is divided into right and left, an integral-type mold occupy together forming each other by sandwiching a ceramic member between them, the one mold inner surface, the molten metal injection tube fixing portion, the molten metal inlet section, The ceramic member circuit surface part and the hot metal part are connected to each other, and the molten metal injection cylinder fixing part, the molten metal introducing part, the ceramic member heat radiation plate part and the hot metal part are connected to the other mold inner surface. A mold for producing a metal / ceramic composite substrate. 左右及び中央に分割した鋳型より成り、左右の鋳型と中央の鋳型間に夫々セラミックス部材を挟持して互いに結合せしめる一体型鋳型であって、中央鋳型の両面には、溶湯注入筒固定部、溶湯導入部、上記セラミックス部材用回路面部、押湯部を連接して設け、上記中央鋳型の両側に配置される左右の鋳型内面の夫々には、溶湯注入筒固定部、溶湯導入部、上記セラミックス部材用放熱板部、押湯部を連接して設けたことを特徴とする金属−セラミックス複合基板製造用鋳型。 Consists mold divided left and right and center, to sandwich the respective ceramic member between the left and right mold and the central mold a unitary mold Ru allowed coupled together, on both sides of the central mold, the molten metal injection tube fixing portion, molten metal introduction, the ceramic member for a circuit surface, provided by concatenating feeder unit, to each of the left and right mold inner surface is arranged on either side of the central mold, the molten metal injection tube fixing portion, the molten metal inlet portion, the ceramic A mold for producing a metal / ceramic composite substrate, wherein a member heat radiating plate portion and a feeder portion are connected to each other. 左右に分割した一方及び他方の鋳型より成り、これらの間にセラミックス部材を挟持して互いに結合せしめる一体型鋳型であって、一方の鋳型内面には、溶湯注入筒固定部、溶湯導入部、上記セラミックス部材用回路面部、押湯部を連接して設け、他方の鋳型内面には、溶湯注入筒固定部、溶湯導入部、フィン部と一体となった上記セラミックス部材用放熱板部、押湯部を連接して設けたことを特徴とする金属−セラミックス複合基板製造用鋳型。It is composed of one and other molds divided into right and left, and is an integral mold in which a ceramic member is sandwiched between them and bonded together, and on the inner surface of one mold, a molten metal injection cylinder fixing part, a molten metal introducing part, The ceramic member circuit surface part and the feeder part are connected to each other, and on the other mold inner surface, the molten metal injection tube fixing part, the molten metal introduction part, the fin part, and the above-mentioned ceramic member radiator plate part and feeder part A metal-ceramic composite substrate manufacturing mold, characterized in that they are connected to each other. 左右及び中央に分割した鋳型より成り、左右の鋳型と中央の鋳型間に夫々セラミックス部材を挟持して互いに結合せしめる一体型鋳型であって、中央鋳型の両面には、溶湯注入筒固定部、溶湯導入部、上記セラミックス部材用回路面部、押湯部を連接して設け、上記中央鋳型の両側に配置される左右の鋳型内面の夫々には、溶湯注入筒固定部、溶湯導入部、フィン部と一体となった上記セラミックス部材用放熱板部、押湯部を連接して設けたことを特徴とする金属−セラミックス複合基板製造用鋳型。The mold is divided into left and right and center molds, and is an integral mold in which the ceramic members are sandwiched between the left and right molds and the center mold and bonded to each other. An introduction part, a circuit surface part for the ceramic member, and a hot metal part are connected to each other, and a molten metal injection cylinder fixing part, a molten metal introduction part, a fin part, A mold for producing a metal / ceramic composite substrate, wherein the integrated heat dissipating plate portion for the ceramic member and the feeder portion are connected to each other. 左右及び中央に分割した鋳型より成り、左右の鋳型と中央の鋳型間に夫々セラミックス部材を挟持して互いに結合せしめる一体型鋳型であって、中央の鋳型の両面には、溶湯注入筒固定部、溶湯導入部、上記セラミックス部材用放熱板部と一体となった放熱部、押湯部を連接して設け、上記中央鋳型の両側に配置される左右の鋳型内面の夫々には、溶湯注入筒固定部、溶湯導入部、上記セラミックス部材用回路面部、押湯部を連接して設けたことを特徴とする金属−セラミックス複合基板製造用鋳型。It consists of a mold divided into left and right and center, and is an integral mold that sandwiches the ceramic members between the left and right molds and the center mold and bonds them to each other. A molten metal introduction part, a heat radiating part integrated with the heat dissipating plate part for the ceramic member, and a feeder part are connected to each other, and a molten metal injection cylinder is fixed to each of the left and right mold inner surfaces arranged on both sides of the central mold A mold for producing a metal / ceramic composite substrate, comprising: a metal part, a molten metal introduction part, a circuit surface part for the ceramic member, and a feeder part. 左右及び中央に分割した鋳型より成り、左右の鋳型と中央の鋳型間に夫々セラミックス部材を挟持して互いに結合せしめる一体型鋳型であって、中央の鋳型の両面には、溶湯注入筒固定部、溶湯導入部、上記セラミックス部材用フィン部と一体となった放熱部、押湯部を連接して設け、上記中央鋳型の両側に配置される左右の鋳型内面の夫々には、溶湯注入筒固定部、溶湯導入部、上記セラミックス部材用回路面部、押湯部を連接して設けたことを特徴とする金属−セラミックス複合基板製造用鋳型。It consists of a mold divided into left and right and center, and is an integral mold that sandwiches the ceramic members between the left and right molds and the center mold and bonds them to each other. A molten metal introduction part, a heat dissipating part integrated with the ceramic member fin part, and a feeder part are connected to each other, and a molten metal injection cylinder fixing part is provided on each of the left and right mold inner surfaces arranged on both sides of the central mold. A mold for producing a metal / ceramic composite substrate, comprising: a molten metal introduction portion, a circuit surface portion for the ceramic member, and a feeder portion connected to each other. 上記溶湯は、金属アルミニウムまたはアルミニウムを主体とする合金であることを特徴とする請求項1、2、3、4、5または記載の金属−セラミックス複合基板製造用鋳型。The molten metal, according to claim 1, characterized in that an alloy mainly composed of metallic aluminum or aluminum, 2, 3, 4, 5 or 6 wherein the metal - ceramic composite substrate manufacturing mold.
JP13797397A 1996-10-24 1997-05-14 Mold for metal-ceramic composite substrate manufacturing Expired - Fee Related JP3837680B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13797397A JP3837680B2 (en) 1996-10-24 1997-05-14 Mold for metal-ceramic composite substrate manufacturing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8-299281 1996-10-24
JP29928196 1996-10-24
JP13797397A JP3837680B2 (en) 1996-10-24 1997-05-14 Mold for metal-ceramic composite substrate manufacturing

Publications (2)

Publication Number Publication Date
JPH10180433A JPH10180433A (en) 1998-07-07
JP3837680B2 true JP3837680B2 (en) 2006-10-25

Family

ID=26471138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13797397A Expired - Fee Related JP3837680B2 (en) 1996-10-24 1997-05-14 Mold for metal-ceramic composite substrate manufacturing

Country Status (1)

Country Link
JP (1) JP3837680B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4324704B2 (en) 2002-09-13 2009-09-02 Dowaメタルテック株式会社 Metal-ceramic composite member manufacturing apparatus, manufacturing mold, and manufacturing method
JP4496404B2 (en) * 2003-10-10 2010-07-07 Dowaメタルテック株式会社 Metal-ceramic bonding substrate and manufacturing method thereof
JP5467407B2 (en) * 2007-10-22 2014-04-09 Dowaメタルテック株式会社 Aluminum-ceramic bonded body
JP5631100B2 (en) * 2010-08-05 2014-11-26 Dowaメタルテック株式会社 Electronic component mounting board cooling structure
JP6233973B2 (en) * 2014-03-31 2017-11-22 Dowaメタルテック株式会社 Metal-ceramic circuit board manufacturing method

Also Published As

Publication number Publication date
JPH10180433A (en) 1998-07-07

Similar Documents

Publication Publication Date Title
US5666269A (en) Metal matrix composite power dissipation apparatus
JP2004115337A (en) Aluminum-ceramic bonded body
JP2002076551A (en) Metal ceramic circuit board and its manufacturing method
US20040101707A1 (en) Composite structural material, and method of producing the same
US20060263584A1 (en) Composite material, electrical circuit or electric module
JP4382154B2 (en) Heat spreader and manufacturing method thereof
JP3837680B2 (en) Mold for metal-ceramic composite substrate manufacturing
US20050250245A1 (en) Semiconductor chip arrangement and method
CN107787147A (en) A kind of semisolid communication radiating shell and its production method
EP2169717B1 (en) Method of manufacturing an insulation substrate
JP2002066724A (en) Compound material and manufacturing method thereof
JPH10150124A (en) Heat generating semiconductor device mounting composite substrate and semiconductor device using the substrate
JP2002231865A (en) Insulation board with heat sink, bonding member and bonding method
JP4055596B2 (en) Composite
JP2003060137A (en) Substrate for module
JPH09234826A (en) Metal-ceramic composite base plate and manufacture thereof
WO2020262015A1 (en) Metal-ceramic joined substrate and manufacturing method thereof
JP2011082502A (en) Substrate for power module, substrate for power module with heat sink, power module, and method of manufacturing substrate for power module
JP2007073904A (en) Circuit board
JPH11269577A (en) Metal-based composite casting, and its manufacture
JP4237284B2 (en) Metal-ceramic composite member manufacturing method, manufacturing apparatus, and manufacturing mold
JP4256282B2 (en) Heat sink material manufacturing method and heat sink ceramic package
JP3383892B2 (en) Method for manufacturing semiconductor mounting structure
JP2001144224A (en) Metal-ceramic composite substrate
JP2022171241A (en) Metal-ceramic bonded substrate and manufacturing method for the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060720

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090811

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100811

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110811

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120811

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130811

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees