JP3833607B2 - Vibration generator - Google Patents

Vibration generator Download PDF

Info

Publication number
JP3833607B2
JP3833607B2 JP2002373032A JP2002373032A JP3833607B2 JP 3833607 B2 JP3833607 B2 JP 3833607B2 JP 2002373032 A JP2002373032 A JP 2002373032A JP 2002373032 A JP2002373032 A JP 2002373032A JP 3833607 B2 JP3833607 B2 JP 3833607B2
Authority
JP
Japan
Prior art keywords
mover
frequency
vibration
coil
vibration acceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002373032A
Other languages
Japanese (ja)
Other versions
JP2004202327A (en
Inventor
弘之 脇若
治雄 伊藤
Original Assignee
帝国通信工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 帝国通信工業株式会社 filed Critical 帝国通信工業株式会社
Priority to JP2002373032A priority Critical patent/JP3833607B2/en
Publication of JP2004202327A publication Critical patent/JP2004202327A/en
Application granted granted Critical
Publication of JP3833607B2 publication Critical patent/JP3833607B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Telephone Set Structure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は振動発生器に関するものである。
【0002】
【従来の技術】
従来、例えば移動体通信機器の端末である携帯電話機などの携帯機器には、着信を呼出音で知らせる代わりに、携帯機器そのもの又は付属品内に振動発生器を収納しておき、この振動発生器を振動させることで人体に着信を感知させるものがある。
【0003】
そしてこの種の従来の振動発生器としては、モータの回転軸に、その重心を回転軸に対して偏芯させた分銅を取り付け、この分銅を回転することで振動を発生させる構造のものがあった(特許文献1の図4参照)。
【0004】
しかしながらこのような構造の振動発生器は、偏芯させて取り付けた分銅を回転する際の回転軸のブレを振動として利用する方法なので、モータの回転軸の軸受け部分が過酷な力を受け、その耐久性や信頼性を阻害するという問題などがあった。
【0005】
またこれらの回転モータ型振動発生器は人体に着信を感知させるために振動するが、人体が感知する感度のよい周波数は100Hz前後にあり、150Hzを超えると感知できなくなり、回転数を最大でも8000rpm以下に抑える必要があり、人体への刺激としての振動加速度を大きくする方法として回転数を上げる手段に限界があった。
【0006】
一方人体に着信を感知させるために人体に与える刺激として同一の刺激を続けていると刺激でなくなってくるため、絶えず新鮮な振動刺激を与え続ける必要があるが、回転モータ型振動発生器は直流モータなので一定の電圧を印加する方式であり、電圧を可変させることは制御系を加えるため困難である。このため従来の回転モータ型振動発生器では図13に示すように、モータへ流す電流を間欠させる時間を制御してパターン化し、絶えず新鮮な振動刺激を与えるようにしている。しかしながらこの方式は決まった振動周波数の振動加速度値を断続する時間を変えるだけのため、新鮮さに欠けるという問題があった。また人体が感知する感度のよい周波数は人(体格・体形等)によって異なり、このため一定の振動周波数しか付与できないと、その振動発生器を使用する人にとって必ずしも感知するのに最適な振動周波数を付与できていないという問題もあった。
【0007】
【特許文献1】
特開平10−180186号公報
【特許文献2】
特開2002−210411号公報
【0008】
【発明が解決しようとする課題】
本発明は上述の点に鑑みてなされたものでありその目的は、個々の人体の何れに対しても最適感度の周波数の振動を供給できるとともに、絶えず新鮮な振動刺激を与え続けることができる振動発生器を提供することにある。
【0009】
【課題を解決するための手段】
上記問題点を解決するため本願の請求項1に記載の振動発生器は、永久磁石を取り付けてなる可動子と、可動子の端面に対して所定の隙間を介して対向する端面を有し、取り付けたコイルに電流を流して励磁することで前記可動子との間に磁路を形成する固定子と、線材の一端を可動子側に他端を固定子側に取り付けることで可動子を略直線状に振動可能に支持する一対の弾性支持部材とを具備する振動発生器において、前記コイルに周波数変調された電流を流すことにより、可動子の振動の振動加速度を変化させるとともに、前記コイルに流す周波数変調された電流は、前記一対の弾性支持部材による弾発力と、前記可動子と固定子との間に働く磁気的吸引・反発力とで決まる可動子の共振周波数を中心周波数として所定の周波数振幅で周波数変調された電流であり、これによって変調周期の倍の振動加速度変化を発生させるとともに、振動加速度値の低下部を交互に異なる振動加速度値とすることを特徴とする。
【0011】
本願の請求項2に記載の振動発生器は、永久磁石を取り付けてなる可動子と、可動子の端面に対して所定の隙間を介して対向する端面を有し、取り付けたコイルに電流を流して励磁することで前記可動子との間に磁路を形成する固定子と、線材の一端を可動子側に他端を固定子側に取り付けることで可動子を略直線状に振動可能に支持する一対の弾性支持部材とを具備する振動発生器において、前記コイルに周波数変調された電流を流すことにより、可動子の振動の振動加速度を変化させるとともに、前記コイルに流す周波数変調された電流が、前記一対の弾性支持部材による弾発力と、前記可動子と固定子との間に働く磁気的吸引・反発力とで決まる可動子の共振周波数を中心周波数として周波数振幅を所定の初期値の振幅から徐々に狭めて前記共振周波数に収束せしめる変調周期で周波数変調された電流であり、これによって変調周期の倍の振動加速度変化を発生させるとともに、共振周波数に収束することによる最大振動加速度値を周波数変調周期の最後に与えることを特徴とする。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態について図面を参照して詳細に説明する。
図1は本発明の一実施の形態にかかる振動発生器1の斜視図、図2(a)は正面図、図2(b)は側面図、図3は分解斜視図である。これらの図に示すように振動発生器1は、固定子10の上部に可動子50を2つの弾性支持部材80,80によって支持して構成されている。以下各構成部品について説明する。
【0015】
固定子10は、合成樹脂材からなる端子付き基台部20上にコア付きコイル30と2枚の弾性体40,40とを取り付けて構成されている。また端子付き基台部20の下面両側にはそれぞれ端子板23,23が取り付けられている。
【0016】
コア付きコイル30は略棒状の鉄の焼結体からなるコイルコア31の周囲にコイル33を巻き回して構成されている。このコア付きコイル30は端子付き基台部20上に取り付けられ、その際コイル端部35,35が端子付き基台部20の内部に露出する端子板23,23の接続部231,231に接続固定される。
【0017】
弾性体40,40は薄いゴム板製であり、前記端子付き基台部20の弾性体載置部211,211上にそれぞれ載置できる形状に形成されている。
【0018】
次に弾性支持部材80,80は、何れも一本の線材を折り曲げることによって構成されたいわゆるダブルトーション型のコイルバネであり、略一回転半ほど巻き回した2つのコイル部81,81のそれぞれ両側から2本づつのほぼ平行なアーム部83,83とアーム部85,85とを突き出し、一方の方向に延ばしたアーム部83,83間は端部(以下「連結部」と呼ぶ)82によって連結し、他方のアーム部85,85は先端を折り曲げて端部(以下「係止端部」と呼ぶ)87,87として構成している。
【0019】
図4は可動子50の分解斜視図である。同図に示すように可動子50は、前記コイルコア31と同等の材質からなる可動子ヨーク51に、錘60と永久磁石70と高透磁率部材〈以下「センターヨーク」と呼ぶ〉75とを取り付けて構成されている。
【0020】
可動子ヨーク51は略四角柱状(棒状)であってその両端に固定子10側に向かって延びる腕部52,52を設け、全体として略「コ」字状に形成され、腕部52,52の内側面を前記コイルコア31の端面37,37と所定の隙間を介して対向するテーパ面状の端面53,53とし、腕部52,52の両外側側面に前記弾性支持部材80,80の連結部82,82を係止するL字状に折れ曲がる切り欠きからなる係止部55,55を設けて構成されている。
【0021】
錘60は非磁性体材料によって構成され、その中央に永久磁石70を嵌合する収納部61が設けられている。永久磁石70は四角形状の板部材であり、その上下面をSN磁極として構成している。 なお永久磁石70の面の縦横方向の寸法は、コイル33上面の縦横方向の寸法とほぼ同一寸法に形成され、コイル33の上面をちょうど覆う寸法形状に形成されている。センターヨーク75は薄い四角形状の板部材であって、これに磁束を集めるために高透磁率部材で構成されている。
【0022】
可動子50の組み立ては、可動子ヨーク51の下面中央に、錘60の嵌合部63を嵌合した状態で、永久磁石70を錘60の収納部61に挿入し、その下にセンターヨーク75を取り付けることで行なわれる。
【0023】
次に振動発生器1を組み立てるには図3において、コア付きコイル30と弾性体40,40を取り付けた固定子10のバネ端固定部217,217に、弾性支持部材80,80の係止端部87,87を挿入し、同時に弾性支持部材80,80の各アーム部85を固定子10のバネ係止部219に係止する。このように弾性支持部材80,80の係止端部87,87とアーム部85を固定することで、コイル部81,81は弾性体40上に少し弾圧された状態で当接し、これによって弾性支持部材80,80は3点で確実に支持される。そして弾性支持部材80,80の連結部82,82を可動子50の係止部55,55に挿入・係止することで、図1,図2に示す振動発生器1が完成する。
【0024】
可動子50は弾性支持部材80,80によってコイル33による固定子10の磁化方向(即ち図2(a)の左右方向)に向けて振動自在に支持される。このとき永久磁石70のセンターヨーク75を取り付けた側の磁極面は、コイル33の外周側面に対向するような隙間を介して設置され、この対向面は平行となるように構成されている。
【0025】
以上のように構成された振動発生器1の磁路は、図2に一点鎖線で示すように、永久磁石70のセンターヨーク75を取り付けた磁極面からコイル33の外周側面を通してコイルコア31内に入り、コイルコア31内においてコイル33による固定子10の磁化方向(NS磁極方向)を向くように導かれ、さらにコイルコア31の両端面37,37から隙間を通って可動子50の両端面53,53に入り可動子ヨーク51の中央から永久磁石70の他方の磁極面に再び戻るように形成される。
【0026】
そしてこの振動発生器1は図示しない回路基板上に載置され、回路基板上に設けた回路パターン(端子パターン)に、前記端子付き基台部10の端子板23を当接して低融点金属等で電気的・機械的に接続固定する。そして図示しない回路基板側からコイル33に所定の電流を流すと、可動子50が左右に単振動を開始する。以下その原理を説明する。
【0027】
ここでまず図5は可動子50の左右への変位X(mm)と、可動子50に働く左右方向への推力F(N)との関係を示す図である。なおこの推力Fはプラスのとき図2(a)の右方向への力、マイナスのとき左方向への力を示している。また変位Xはプラスのとき図2(a)の右方向への変位、マイナスのとき左方向への変位を示している。
【0028】
図5の太い点線はコイル33に電流を流さないときの永久磁石70の磁力と弾性支持部材80,80による弾発力との合力状態を示し、実線はコイル33にNI=+0.35(N)の電流を流した場合の電磁力に前記永久磁石70の磁力と弾性支持部材80,80による弾発力とを合計した合力の状態を示し、細い点線はコイル33にNI=―0.35(N)の電流を流した場合の電磁力に前記永久磁石70の磁力と弾性支持部材80,80による弾発力とを合計した合力の状態を示している。
【0029】
同図に示すように、何れの状態においても、可動子50に印加される推力は略直線状であり、これは可動子50を単振動させるのに好適な状態であることを示している。このような推力となるのは以下の理由による。
【0030】
即ち図6の線aに示すように、弾性支持部材80,80のみによる推力は、変位量が増せば増すほど直線的に可動子50を中立位置に戻そうとする力となる。一方図6の線bに示すように、永久磁石70のみによる推力は弾性支持部材80,80の推力と反対方向の推力であり、変位量が小さい場合はほとんど働かず、変位量が増えて左右いずれかの隙間が小さくなると小さくなった方に向けて急激に増加する。従って図6の線a及び線bの推力を合わせれば、図6の線cに示すような略直線状の推力になるのである。なお、永久磁石70のみによる推力が図6の線bに示すようになるのは、可動子50の両端面53,53は何れもS極となっているので可動子50が中立位置にある場合は左右何れにも吸引されないからである。但し何れかの端面53が固定子10の何れかの端面37に接近した場合は、その端面37に吸着しようとする推力が指数関数的に増加していく。このように永久磁石70のみによる推力は中立点近傍では小さいので、弾性支持部材80,80の弾発力をそれほど大きくしなくても、コイル33に電流を流さないときに可動子50を中立位置に保持したままの状態にしておくことが容易に行える。
【0031】
そしてコイル33にNI=+0.35(N)の電流を流して固定子10の左右の端面37,37にNS磁極を励磁した場合は、図5に示すように永久磁石70と弾性支持部材80,80による推力をそのまま所定の幅で上方向にほぼ平行移動した状態の推力になる。即ち何れの変位位置においても前記永久磁石70と弾性支持部材80,80による推力よりもほぼ一定の変位量だけ大きい推力となる。NI=―0.35(N)の電流を流した場合はこれとは逆に下方向に略平行移動する。
【0032】
このように一対の弾性支持部材80,80により決められる機械バネ定数が図6の線aから求められ、永久磁石70を取り付けた可動子50と軟磁性体である鉄からなるコイルコア31を取り付けた固定子10との間で磁路を形成することにより働く吸着力からなる磁気バネ定数(図6の線b)との合力として合成バネ定数(図6の線c)が生じる。この合成バネ定数が振動発生器1の共振周波数を決めている。合成バネ定数は図6の横軸を変位とし縦軸を応力としたときの傾きで与えられる。またこの合成バネ定数は図5のNI=0(N)の曲線と同じであり、コイル33に電流を流したときのNI=−0.35(N)とNI=+0.35(N)の曲線の傾きから与えられる合成バネ定数の値はほぼ同じであることから、コイル33に電流を流したときに得られる共振周波数は図6の線cから求まる合成バネ定数の値から与えられる共振周波数と一致する。図7は振動発生器1の80Hzから150Hzまでの振動加速度を測定し得られたデータであり、この実測の共振周波数と、図4の線cから求まる合成バネ定数の値から公式によって算出される共振周波数とは、良い一致を示している。
【0033】
次にこの振動発生器1の駆動方法を説明する。図2に示すようにコイル33に電流を流していないときは、弾性支持部材80,80が可動子50を中立位置に維持する。次にコイル33に電流(例えばNI=−0.35N)を供給するとコイルコア31の両端面37,37にNS磁極が励磁され、例えば可動子50の右側端面53が対向するコイル端面37方向(左方向)に向けて引き付けられていく。これは図5において細い点線が変位X=0mmにおいてマイナスの推力になっているからである。そして可動子50の右側端面53が対向するコイル端面37に接近したときに、コイル33に供給する電流の方向を反転(NI=+0.35N)すると、図5において実線の推力になり、これは可動子50を逆方向〈右方向〉に引っ張る推力なので、可動子50は逆方向に移動をはじめる。
【0034】
そして前記電流の反転を可動子50の振動周波数に合わせて繰り返し行うことで、可動子50の両端面53,53が固定子10のコイル端面37,37に当接する寸前で可動子50を反転移動させ(つまりコイル端面37とは常に当接しない)、可動子50の振動を繰り返すことができる。
【0035】
この実施形態においては、可動子50を左右一対の弾性支持部材80,80で支持しているので、可動子50の動きを左右方向へのほぼ平行移動にすることができ、固定子10のコイル端面37,37に対する可動子50の端面53,53の動きをほぼ平行移動にすることができ、またセンターヨーク75と固定子10との隙間もほぼ一定のままとなり、従って磁気回路を乱さない構造で、安定した振動が確保できる。
【0036】
図7は振動発生器1を80Hzから150Hzまでの周波数で振動させたときの振動加速度を測定し得られたデータであり、横軸にコイル33に流す電流の周波数を示し、縦軸に振動加速度を示す。図7に示すように本発明に用いる構造の振動発生器1では振動加速度に極大値を持ち、この極大値を示す周波数を共振周波数という。前記したようにこの共振周波数は、一対の弾性支持部材80,80により決められる機械バネ定数と、永久磁石70を取り付けた可動子50と軟磁性体である鉄からなるコイルコア31を取り付けた固定子10との間で磁路を形成することにより働く吸着力からなる磁気バネ定数との合力として求まる合成バネ定数を、バネ定数から共振周波数を求める公式に代入することで得られる共振周波数と良い一致をする。このことよりこの方式(構造)の振動発生器1は、一対の弾性支持部材80,80と永久磁石70を取り付けた可動子50および固定子10との間での磁路とにより、振動加速度に極大値を持つ共振周波数が決まる。
【0037】
そして本発明においては、この振動発生器1が有する周波数−振動加速度特性(図7参照)を利用して、コイル33に周波数変調された電流、即ち時間とともに周波数を変更していく電流を流すことにより、可動子の振動の振動加速度を時間とともに変化させてゆき、これによって個々の人体にとって最適な感度を有する周波数を前記変化している周波数の中に含ませて何れの人に対しても最適な感度を与えることができ、同時に振動加速度(振動強度)の変化によって絶えず新鮮な振動刺激を与え続けることができる。以下、具体的に振動発生器1に印加する周波数変調された電流の各種例を説明する。
【0038】
ここでまず図8に本発明の振動発生器1を周波数変調された電流によって駆動する回路例(振動発生器駆動手段)を示す。この駆動回路は電源としてDC3V駆動であり、最低電圧DC2.6V駆動を可能にしている。また本発明の振動発生器1に印加する波形はHブリッジを用いてデューテイ50%の交番方形波であり、振動周波数を変化させる周波数変調機能を備えている。なお以下に示すような各種周波数変調できる振動発生器駆動回路(振動発生器駆動手段)であれば、どのような振動発生器駆動回路であっても良いことは言うまでもない。
【0039】
図9乃至図10は本発明の各種実施の形態を示す図であり、振動発生器1のコイル33に各種周波数変調された電流を入力したときの振動発生器1の振動加速度出力の状態を示す図である。即ち図9の実施の形態では振動発生器1の共振周波数を中心周波数とする所定の周波数振幅(この場合は±10Hz)で周波数変調された電流をコイル33に流すことによって、振動加速度出力として変調周期の倍の振動加速度変化であって、しかも振動加速度値の低下部a1,a2が、交互に異なる振動加速度出力を得るようにしている。このように本発明の振動発生器1は、周波数変調のみを行うことにより、振動周波数変化を与えると同時に振動加速度出力の変化を与えることができる。この周波数変調による振動加速度出力の特色は、鋭い〈瞬間的な〉共振周波数における最大の振動加速度を出すことと、二つのゆっくりとした(間がある)低い振動加速度値を持つ新鮮な変化のある振動加速度出力を提供できることである。なお変調周期は一秒から三秒の間を選定している。
【0040】
図10の実施の形態の入力電流は、本発明の振動発生器1の共振周波数を中心周波数として所定の周波数振幅(この場合±10Hz)の電流を初期値として入力した後この初期値の振幅を徐々に狭めていって前記共振周波数に収束せしめるのを一つの変調周期として周波数変調を繰り返す電流である。この電流をコイル33に流すことにより変調周期の倍の振動加速度変化を発生し、且共振周波数に収束することによる最大振動加速度値を周波数変調周期の最後に与える振動加速度出力が得られる。変調周期は一秒から三秒の間を選定している。この実施の形態の場合も、周波数変調のみを行うことにより、振動周波数変化を与えると同時に振動加速度出力の変化を与えることができる。
【0041】
図11の入力電流は、振動発生器1の共振周波数を上限の周波数として所定の周波数振幅(この場合±5Hz)で所定の変調周期で周波数変調された電流をコイル33に流すことにより低い周波数での振動加速度値から高い周波数である共振周波数での最大の振動加速度値出力までを交互に得るものである。この場合も、周波数変調のみを行うことにより、振動周波数変化を与えると同時に振動加速度出力の変化を与えることができる。変調周期は一秒から三秒の間を選定している。
【0042】
図12の入力電流は、振動発生器1の共振周波数を下限の周波数として所定の周波数振幅(この場合は±5Hz)で所定の変調周期で周波数変調された電流をコイル33に流すことにより高い周波数での振動加速度から低い周波数の共振周波数での最大の振動加速度値出力までを交互に得るものである。これによって図7の周波数―振動加速度特性が示す共振周波数より高い周波数部分の特性曲線に従った振動加速度出力の変化を得ることができる。また当然のことながら周波数変調を行っているので、周波数変化に応じた振動加速度値出力を示す。
【0043】
以上本発明の実施形態を説明したが、本発明は上記実施形態に限定されるものではなく、特許請求の範囲、及び明細書と図面に記載された技術的思想の範囲内において種々の変形が可能である。なお直接明細書及び図面に記載がない何れの形状や構造や材質であっても、本願発明の作用・効果を奏する以上、本願発明の技術的思想の範囲内である。即ち図7の周波数―振動加速度特性に基づいた各種周波数変調を行うことにより、より変化に富んだ周波数変化に応じた振動加速度値出力を得ることができる。例えば、共振周波数を中心周波数にしないで、共振周波数よりもずらした中心周波数での周波数変調を行って新鮮な振動刺激を得ることもできる。また低い振動加速度値から高い振動加速度値に変化する振動加速度値変化を1つの変調周期とするように周波数変調を行なっても良い。
【0044】
【発明の効果】
以上詳細に説明したように本発明によれば以下のような優れた効果を有する。▲1▼周波数変調によってコイルに流す電流の周波数を周期的に変化できるので、個々の人体の何れに対してもその周期の中で最適感度の周波数の振動を供給できる。同時にコイルに周波数変調された電流を流すことにより、可動子の振動加速度(振動強度)を変化させることができ、絶えず新鮮な振動刺激を人体に与え続けることができる。つまり周波数変調するだけで、振動強度である振動加速度の変化が個人個人の感度差である振動周波数変化と合わせて得られ、個々の人体にそれぞれ新鮮で感度の良い振動加速度の変化を与え続けることができる。
【0045】
▲2▼コイルに流す電流を、可動子の共振周波数を中心周波数として所定の変調周期で周波数変調された電流としたので、変調周期の倍の振動加速度変化を発生させることができ、絶えず周波数と振動加速度値とに変化を与え続けることができる。
【0046】
▲3▼コイルに流す電流を、可動子の共振周波数を中心周波数として周波数振幅を所定の初期値の振幅から徐々に狭めて前記共振周波数に収束せしめる変調周期で周波数変調された電流としたので、変調周期の倍の振動加速度変化を発生させるとともに、共振周波数に収束することによる最大振動加速度値を周波数変調周期の最後に与えることができ、これによっても絶えず周波数と振動加速度値とに変化を与え続けることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態にかかる振動発生器1を示す斜視図である。
【図2】図2(a)は振動発生器1の正面図、図2(b)は側面図である。
【図3】振動発生器1の分解斜視図である。
【図4】可動子50の分解斜視図である。
【図5】コイルに電流を流したときの可動子の変位−推力特性図である。
【図6】機械バネ定数、磁気バネ定数、合成バネ定数を、変位−応力特性曲線から得る図である。
【図7】振動発生器1の周波数−振動加速度特性図である。
【図8】振動発生器1の周波数変調部を備えた振動発生器駆動回路図である。
【図9】本発明の一実施の形態にかかる振動発生器1への入力電流と振動加速度出力の関係を示す図である。
【図10】本発明の他の実施の形態にかかる振動発生器1への入力電流と振動加速度出力の関係を示す図である。
【図11】 他の振動発生器1への入力電流と振動加速度出力の関係を示す図である。
【図12】 他の振動発生器1への入力電流と振動加速度出力の関係を示す図である。
【図13】回転振動モータの代表的な電流間欠による振動モードを示す図である。
【符号の説明】
1 振動発生器
10 固定子
20 端子付き基台部
30 コア付きコイル
31 コイルコア
33 コイル
37 端面
40 弾性体
50 可動子
51 可動子ヨーク
53 端面
60 錘
70 永久磁石
75 センターヨーク(高透磁率部材)
80 弾性支持部材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a vibration generator.
[0002]
[Prior art]
Conventionally, for example, in a mobile device such as a mobile phone which is a terminal of a mobile communication device, a vibration generator is stored in the mobile device itself or an accessory instead of notifying the incoming call by a ringing tone. There is something that causes the human body to detect incoming calls by vibrating.
[0003]
A conventional vibration generator of this type has a structure in which a weight whose center of gravity is eccentric with respect to the rotation shaft is attached to the rotation shaft of the motor, and vibration is generated by rotating this weight. (See FIG. 4 of Patent Document 1).
[0004]
However, the vibration generator having such a structure uses the vibration of the rotating shaft when rotating the weight attached eccentrically as vibration, so that the bearing portion of the rotating shaft of the motor is subjected to severe force. There was a problem of impeding durability and reliability.
[0005]
In addition, these rotary motor type vibration generators vibrate to make the human body sense incoming calls, but the sensitive frequency that the human body senses is around 100 Hz, and when it exceeds 150 Hz, it can not be sensed, and the maximum number of rotations is 8000 rpm. There is a limit to the means for increasing the rotational speed as a method for increasing the vibration acceleration as a stimulus to the human body.
[0006]
On the other hand, if the same stimulus is given as a stimulus to the human body in order to make the human body sense the incoming call, it will no longer be a stimulus, so it is necessary to continuously give a fresh vibration stimulus, but the rotary motor type vibration generator is a direct current Since this is a motor, a constant voltage is applied, and it is difficult to vary the voltage because a control system is added. For this reason, as shown in FIG. 13, in the conventional rotary motor type vibration generator, the time for intermittently passing the current to the motor is controlled and patterned to continuously give a fresh vibration stimulus. However, this method has a problem that it lacks freshness because it only changes the time during which the vibration acceleration value at a predetermined vibration frequency is intermittent. In addition, the frequency that the human body can detect is different depending on the person (physique, body shape, etc.). Therefore, if only a certain vibration frequency can be applied, the vibration frequency that is optimal for the person who uses the vibration generator is not necessarily detected. There was also a problem that it could not be granted.
[0007]
[Patent Document 1]
Japanese Patent Laid-Open No. 10-180186 [Patent Document 2]
Japanese Patent Laid-Open No. 2002-210411
[Problems to be solved by the invention]
The present invention has been made in view of the above points, and its purpose is to vibrate that can supply vibrations at a frequency of optimum sensitivity to any individual human body and can continuously provide fresh vibration stimulation. It is to provide a generator.
[0009]
[Means for Solving the Problems]
In order to solve the above problem, the vibration generator according to claim 1 of the present application has a mover to which a permanent magnet is attached, and an end face facing the end face of the mover via a predetermined gap, A stator that forms a magnetic path with the mover by exciting the attached coil with an electric current, and one end of the wire is attached to the mover side and the other end is attached to the stator side so that the mover is substantially In a vibration generator comprising a pair of elastic support members that are supported so as to vibrate linearly, by passing a frequency-modulated current through the coil, the vibration acceleration of the mover vibration is changed , and the coil is applied to the coil. The frequency-modulated current that flows is a predetermined frequency centered on the resonance frequency of the mover determined by the elastic force generated by the pair of elastic support members and the magnetic attraction / repulsion force acting between the mover and the stator. Around the frequency amplitude A number modulated current, thereby together to generate a multiple of the vibration acceleration change of the modulation period, characterized by a different vibration acceleration values alternately reduction of vibration acceleration values.
[0011]
The vibration generator according to claim 2 of the present application has a mover to which a permanent magnet is attached and an end face facing the end face of the mover with a predetermined gap, and current is passed through the attached coil. A stator that forms a magnetic path between the mover and the mover is excited, and one end of the wire is attached to the mover side and the other end is attached to the stator side so that the mover can be vibrated substantially linearly. In the vibration generator comprising a pair of elastic support members, the frequency-modulated current flowing in the coil is changed while flowing the frequency-modulated current in the coil to change the vibration acceleration of the vibration of the mover. The frequency amplitude is set to a predetermined initial value with the resonance frequency of the mover determined by the elastic force of the pair of elastic support members and the magnetic attraction / repulsion force acting between the mover and the stator as the center frequency. Gradually narrow from amplitude The current is frequency-modulated with a modulation period that converges to the resonance frequency, thereby generating a vibration acceleration change that is twice the modulation period, and the maximum vibration acceleration value by converging to the resonance frequency at the end of the frequency modulation period. It is characterized by giving.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
1 is a perspective view of a vibration generator 1 according to an embodiment of the present invention, FIG. 2 (a) is a front view, FIG. 2 (b) is a side view, and FIG. 3 is an exploded perspective view. As shown in these drawings, the vibration generator 1 is configured such that a movable element 50 is supported by two elastic support members 80 and 80 on an upper portion of a stator 10. Each component will be described below.
[0015]
The stator 10 is configured by attaching a coil 30 with a core and two elastic bodies 40 and 40 on a base 20 with a terminal made of a synthetic resin material. Terminal plates 23 and 23 are attached to both sides of the lower surface of the base 20 with terminals.
[0016]
The cored coil 30 is formed by winding a coil 33 around a coil core 31 made of a substantially rod-shaped iron sintered body. The coil 30 with a core is mounted on the base part 20 with a terminal, and at that time, the coil end parts 35 and 35 are connected to the connection parts 231 and 231 of the terminal plates 23 and 23 exposed inside the base part 20 with a terminal. Fixed.
[0017]
The elastic bodies 40, 40 are made of thin rubber plates, and are formed in shapes that can be placed on the elastic body mounting portions 211, 211 of the base portion with terminal 20, respectively.
[0018]
Next, each of the elastic support members 80 and 80 is a so-called double torsion type coil spring formed by bending a single wire, and each of the two coil portions 81 and 81 wound around approximately one and a half turns. Two substantially parallel arm portions 83, 83 and arm portions 85, 85 are projected from each other, and the arm portions 83, 83 extending in one direction are connected by an end portion (hereinafter referred to as "connecting portion") 82. The other arm portions 85 and 85 are configured as end portions (hereinafter referred to as “locking end portions”) 87 and 87 by bending the tips.
[0019]
FIG. 4 is an exploded perspective view of the mover 50. As shown in the figure, in the mover 50, a weight 60, a permanent magnet 70, and a high permeability member (hereinafter referred to as “center yoke”) 75 are attached to a mover yoke 51 made of the same material as the coil core 31. Configured.
[0020]
The mover yoke 51 has a substantially quadrangular prism shape (bar shape) and is provided with arm portions 52 and 52 extending toward the stator 10 at both ends thereof, and is formed in a substantially “U” shape as a whole. The inner side surfaces of the coil core 31 are tapered end surfaces 53 and 53 facing the end surfaces 37 and 37 of the coil core 31 with a predetermined gap, and the elastic support members 80 and 80 are connected to both outer side surfaces of the arm portions 52 and 52. Locking portions 55 and 55 each having a notch that bends in an L shape for locking the portions 82 and 82 are provided.
[0021]
The weight 60 is made of a nonmagnetic material, and a storage portion 61 into which the permanent magnet 70 is fitted is provided at the center thereof. The permanent magnet 70 is a rectangular plate member, and the upper and lower surfaces thereof are configured as SN magnetic poles. The vertical and horizontal dimensions of the surface of the permanent magnet 70 are formed to be substantially the same as the vertical and horizontal dimensions of the upper surface of the coil 33, and are formed in a dimension shape that just covers the upper surface of the coil 33. The center yoke 75 is a thin quadrilateral plate member, and is composed of a high permeability member in order to collect magnetic flux on the plate member.
[0022]
The mover 50 is assembled by inserting the permanent magnet 70 into the storage portion 61 of the weight 60 in the state where the fitting portion 63 of the weight 60 is fitted at the center of the lower surface of the mover yoke 51, and the center yoke 75 below it. It is done by attaching.
[0023]
Next, in order to assemble the vibration generator 1, in FIG. 3, the locking ends of the elastic support members 80, 80 are attached to the spring end fixing portions 217, 217 of the stator 10 to which the cored coil 30 and the elastic bodies 40, 40 are attached. The portions 87 and 87 are inserted, and at the same time, the arm portions 85 of the elastic support members 80 and 80 are locked to the spring locking portions 219 of the stator 10. By fixing the locking end portions 87 and 87 of the elastic support members 80 and 80 and the arm portion 85 in this way, the coil portions 81 and 81 are in contact with the elastic body 40 in a state of being slightly repressed, thereby elastically The support members 80 and 80 are reliably supported at three points. Then, the coupling portions 82 and 82 of the elastic support members 80 and 80 are inserted and locked into the locking portions 55 and 55 of the mover 50, whereby the vibration generator 1 shown in FIGS. 1 and 2 is completed.
[0024]
The mover 50 is supported by the elastic support members 80 and 80 so as to vibrate in the direction of magnetization of the stator 10 by the coil 33 (that is, in the left-right direction in FIG. 2A). At this time, the magnetic pole surface on the side where the center yoke 75 of the permanent magnet 70 is attached is disposed through a gap that faces the outer peripheral side surface of the coil 33, and the facing surfaces are configured to be parallel.
[0025]
The magnetic path of the vibration generator 1 configured as described above enters the coil core 31 through the outer peripheral side surface of the coil 33 from the magnetic pole surface to which the center yoke 75 of the permanent magnet 70 is attached, as shown by a one-dot chain line in FIG. In the coil core 31, the coil 33 is guided so as to face the magnetization direction (NS magnetic pole direction) of the stator 10, and further passes from the both end surfaces 37, 37 of the coil core 31 to the both end surfaces 53, 53 of the mover 50 through a gap. It is formed so as to return to the other magnetic pole surface of the permanent magnet 70 again from the center of the entering mover yoke 51.
[0026]
The vibration generator 1 is placed on a circuit board (not shown), and a terminal plate 23 of the base portion 10 with terminals is brought into contact with a circuit pattern (terminal pattern) provided on the circuit board so that a low melting point metal, etc. Secure the connection electrically and mechanically. When a predetermined current is passed through the coil 33 from the circuit board side (not shown), the mover 50 starts a single vibration to the left and right. The principle will be described below.
[0027]
First, FIG. 5 is a diagram showing the relationship between the lateral displacement X (mm) of the mover 50 and the lateral thrust F (N) acting on the mover 50. The thrust F indicates a rightward force in FIG. 2A when positive, and a leftward force when negative. Further, the displacement X indicates a displacement in the right direction in FIG. 2A when it is positive, and indicates a displacement in the left direction when it is negative.
[0028]
The thick dotted line in FIG. 5 indicates the resultant state of the magnetic force of the permanent magnet 70 and the elastic force generated by the elastic support members 80 and 80 when no current flows through the coil 33, and the solid line indicates NI = + 0.35 (N ) Represents the resultant state obtained by adding the magnetic force of the permanent magnet 70 and the elastic force of the elastic support members 80 and 80 to the electromagnetic force when the current of () is passed, and the thin dotted line represents NI = −0.35 in the coil 33. A state of a resultant force obtained by adding the magnetic force of the permanent magnet 70 and the elastic force of the elastic support members 80 and 80 to the electromagnetic force when the current of (N) is passed is shown.
[0029]
As shown in the figure, in any state, the thrust applied to the mover 50 is substantially linear, which indicates that the mover 50 is in a state suitable for simple vibration. The reason for this thrust is as follows.
[0030]
That is, as indicated by the line a in FIG. 6, the thrust force generated only by the elastic support members 80 and 80 becomes a force for linearly returning the mover 50 to the neutral position as the amount of displacement increases. On the other hand, as shown by the line b in FIG. 6, the thrust by the permanent magnet 70 alone is the thrust in the opposite direction to the thrust of the elastic support members 80 and 80, and hardly works when the displacement is small, and the displacement increases and the left and right When any gap becomes smaller, it increases rapidly toward the smaller one. Therefore, when the thrusts of the lines a and b in FIG. 6 are combined, a substantially linear thrust as shown by the line c in FIG. 6 is obtained. The reason why only the permanent magnet 70 is shown by the line b in FIG. 6 is that both end faces 53 and 53 of the mover 50 are S poles, and therefore the mover 50 is in the neutral position. This is because they are not sucked to the left or right. However, when any one of the end faces 53 approaches one of the end faces 37 of the stator 10, the thrust to be attracted to the end face 37 increases exponentially. As described above, since the thrust generated only by the permanent magnet 70 is small in the vicinity of the neutral point, the mover 50 is moved to the neutral position when no current is passed through the coil 33 even if the resilient force of the elastic support members 80 and 80 is not increased so much. It is easy to keep it in a state of being held in the container.
[0031]
When a current of NI = + 0.35 (N) is passed through the coil 33 to excite NS magnetic poles on the left and right end faces 37, 37 of the stator 10, the permanent magnet 70 and the elastic support member 80 as shown in FIG. , 80 becomes the thrust in a state of being translated in the upward direction with a predetermined width as it is. That is, at any displacement position, the thrust is larger by a substantially constant displacement than the thrust by the permanent magnet 70 and the elastic support members 80 and 80. In contrast, when a current of NI = −0.35 (N) is passed, the movement is substantially parallel downward.
[0032]
Thus, the mechanical spring constant determined by the pair of elastic support members 80, 80 is obtained from the line a in FIG. 6, and the mover 50 to which the permanent magnet 70 is attached and the coil core 31 made of iron which is a soft magnetic material are attached. A combined spring constant (line c in FIG. 6) is generated as a resultant force with a magnetic spring constant (line b in FIG. 6) composed of an attractive force that works by forming a magnetic path with the stator 10. This composite spring constant determines the resonance frequency of the vibration generator 1. The composite spring constant is given by the inclination when the horizontal axis in FIG. 6 is the displacement and the vertical axis is the stress. The composite spring constant is the same as the curve of NI = 0 (N) in FIG. 5, and NI = −0.35 (N) and NI = + 0.35 (N) when current is passed through the coil 33. Since the value of the composite spring constant given from the slope of the curve is almost the same, the resonance frequency obtained when a current is passed through the coil 33 is the resonance frequency given from the value of the composite spring constant obtained from the line c in FIG. Matches. FIG. 7 shows data obtained by measuring the vibration acceleration of the vibration generator 1 from 80 Hz to 150 Hz, and is calculated from the measured resonance frequency and the value of the combined spring constant obtained from the line c in FIG. The resonance frequency shows a good agreement.
[0033]
Next, a method for driving the vibration generator 1 will be described. As shown in FIG. 2, when no current is passed through the coil 33, the elastic support members 80 and 80 maintain the mover 50 in the neutral position. Next, when a current (for example, NI = −0.35N) is supplied to the coil 33, NS magnetic poles are excited on both end surfaces 37, 37 of the coil core 31, for example, toward the coil end surface 37 facing the right end surface 53 of the mover 50 (left (Direction). This is because the thin dotted line in FIG. 5 has a negative thrust when the displacement X = 0 mm. When the right end surface 53 of the mover 50 approaches the opposing coil end surface 37, if the direction of the current supplied to the coil 33 is reversed (NI = + 0.35N), it becomes a solid line thrust in FIG. Since this is a thrust that pulls the mover 50 in the reverse direction (right direction), the mover 50 starts to move in the reverse direction.
[0034]
Then, by reversing the current in accordance with the vibration frequency of the mover 50, the mover 50 is reversed and moved just before the both end faces 53, 53 of the mover 50 come into contact with the coil end faces 37, 37 of the stator 10. Therefore, the vibration of the mover 50 can be repeated.
[0035]
In this embodiment, since the mover 50 is supported by a pair of left and right elastic support members 80, 80, the mover 50 can be moved substantially in the left-right direction, and the coil of the stator 10 can be moved. The movement of the end faces 53, 53 of the mover 50 with respect to the end faces 37, 37 can be made substantially parallel, and the gap between the center yoke 75 and the stator 10 remains substantially constant, so that the magnetic circuit is not disturbed. Thus, stable vibration can be secured.
[0036]
FIG. 7 shows data obtained by measuring the vibration acceleration when the vibration generator 1 is vibrated at a frequency from 80 Hz to 150 Hz. The horizontal axis indicates the frequency of the current flowing through the coil 33, and the vertical axis indicates the vibration acceleration. Indicates. As shown in FIG. 7, in the vibration generator 1 having the structure used in the present invention, the vibration acceleration has a maximum value, and the frequency indicating the maximum value is called a resonance frequency. As described above, this resonance frequency is determined by the mechanical spring constant determined by the pair of elastic support members 80, 80, the mover 50 to which the permanent magnet 70 is attached, and the stator to which the coil core 31 made of iron, which is a soft magnetic material, is attached. The composite spring constant obtained as a resultant force with the magnetic spring constant composed of the attraction force that works by forming a magnetic path with 10 is in good agreement with the resonance frequency obtained by substituting the formula for obtaining the resonance frequency from the spring constant. do. From this, the vibration generator 1 of this system (structure) is subjected to vibration acceleration by the magnetic path between the pair of elastic support members 80 and 80 and the mover 50 and the stator 10 to which the permanent magnet 70 is attached. The resonance frequency having the maximum value is determined.
[0037]
In the present invention, using the frequency-vibration acceleration characteristic (see FIG. 7) of the vibration generator 1, a current whose frequency is modulated, that is, a current whose frequency is changed with time, is passed through the coil 33. By changing the vibration acceleration of the movement of the mover with time, the frequency having the optimum sensitivity for each human body is included in the changing frequency so that it is optimal for any person Sensitivity can be given, and at the same time, a fresh vibration stimulus can be continuously given by a change in vibration acceleration (vibration intensity). Hereinafter, various examples of the frequency-modulated current applied to the vibration generator 1 will be specifically described.
[0038]
First, FIG. 8 shows a circuit example (vibration generator driving means) for driving the vibration generator 1 of the present invention with a frequency-modulated current. This drive circuit is a DC 3V drive as a power source, and enables a minimum voltage DC 2.6V drive. The waveform applied to the vibration generator 1 of the present invention is an alternating square wave with a duty of 50% using an H bridge, and has a frequency modulation function for changing the vibration frequency. Needless to say, any vibration generator drive circuit may be used as long as it is a vibration generator drive circuit (vibration generator drive means) capable of performing various frequency modulations as described below.
[0039]
FIGS. 9 to 10 are diagrams showing various embodiments of the present invention, and show the state of vibration acceleration output of the vibration generator 1 when various frequency-modulated currents are inputted to the coil 33 of the vibration generator 1. FIG. In other words, in the embodiment shown in FIG. 9, a current that is frequency-modulated with a predetermined frequency amplitude (in this case, ± 10 Hz) having the resonance frequency of the vibration generator 1 as a center frequency is passed through the coil 33 to be modulated as a vibration acceleration output. The vibration acceleration change is twice the period, and the vibration acceleration value lowering portions a1 and a2 alternately obtain different vibration acceleration outputs. Thus, the vibration generator 1 of the present invention can change the vibration acceleration output at the same time as changing the vibration frequency by performing only the frequency modulation. This frequency-modulated vibration acceleration output is characterized by a maximum vibration acceleration at a sharp <instantaneous> resonance frequency and a fresh change with two slow (intermittent) low vibration acceleration values. The ability to provide vibration acceleration output. The modulation period is selected from 1 second to 3 seconds.
[0040]
The input current in the embodiment of FIG. 10 is obtained by inputting the current of a predetermined frequency amplitude (in this case ± 10 Hz) as an initial value with the resonance frequency of the vibration generator 1 of the present invention as the center frequency, and then the amplitude of this initial value. A current that repeats frequency modulation with one modulation period being gradually narrowed and converged to the resonance frequency. By passing this current through the coil 33, a vibration acceleration change that is twice the modulation period is generated, and a vibration acceleration output that gives the maximum vibration acceleration value at the end of the frequency modulation period by converging to the resonance frequency is obtained. The modulation period is selected from 1 second to 3 seconds. Also in this embodiment, by performing only frequency modulation, it is possible to change the vibration acceleration output at the same time as changing the vibration frequency.
[0041]
Input current in FIG. 11, lower by passing a current that is frequency-modulated at a predetermined modulation period at a predetermined frequency the amplitude (in this case ± 5 Hz) resonance frequency of the vibration generator 1 as the upper limit frequency to the coil 33 It alternately obtains from the vibration acceleration value at the frequency to the maximum vibration acceleration value output at the resonance frequency which is a high frequency. If this also, by performing only the frequency modulation, it is possible that changes at the same time the vibration acceleration output Given the vibration frequency changes. The modulation period is selected from 1 second to 3 seconds.
[0042]
Input current in FIG. 12, (in this case ± 5 Hz) predetermined frequency amplitude resonance frequency of the vibration generator 1 as a frequency of the lower limit by supplying a current that is frequency-modulated at a predetermined modulation period in the coil 33 From a vibration acceleration at a high frequency to a maximum vibration acceleration value output at a resonance frequency at a low frequency are alternately obtained. Accordingly, it is possible to obtain a change in the vibration acceleration output according to the characteristic curve of the frequency portion higher than the resonance frequency indicated by the frequency-vibration acceleration characteristic of FIG. Naturally, since frequency modulation is performed, vibration acceleration value output corresponding to frequency change is shown.
[0043]
Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea described in the claims and the specification and drawings. Is possible. Note that any shape, structure, or material not directly described in the specification and drawings is within the scope of the technical idea of the present invention as long as the effects and advantages of the present invention are exhibited. That is, by performing various frequency modulations based on the frequency-vibration acceleration characteristics of FIG. 7, it is possible to obtain a vibration acceleration value output corresponding to a more varied frequency change. For example, a fresh vibration stimulus can be obtained by performing frequency modulation at a center frequency shifted from the resonance frequency without setting the resonance frequency as the center frequency. Further, frequency modulation may be performed so that a change in vibration acceleration value that changes from a low vibration acceleration value to a high vibration acceleration value is set as one modulation period.
[0044]
【The invention's effect】
As described in detail above, the present invention has the following excellent effects. {Circle around (1)} Since the frequency of the current flowing through the coil can be periodically changed by frequency modulation, it is possible to supply vibration of an optimal sensitivity frequency to any individual human body within the cycle. At the same time, by passing a frequency-modulated current through the coil, the vibration acceleration (vibration intensity) of the mover can be changed, and fresh vibration stimulation can be continuously applied to the human body. In other words, by simply modulating the frequency, the vibration acceleration change, which is the vibration intensity, can be obtained together with the vibration frequency change, which is the individual individual sensitivity difference, and each individual human body is continuously subjected to a fresh and sensitive vibration acceleration change. Can do.
[0045]
(2) Since the current flowing through the coil is a current that is frequency-modulated at a predetermined modulation period with the resonance frequency of the mover as the center frequency, it is possible to generate a vibration acceleration change that is twice the modulation period. The vibration acceleration value can be continuously changed.
[0046]
(3) The current flowing through the coil is a frequency-modulated current with a modulation period in which the frequency amplitude is gradually narrowed from the amplitude of a predetermined initial value and converged to the resonance frequency with the resonance frequency of the mover as the center frequency. A vibration acceleration change that is twice the modulation period can be generated, and the maximum vibration acceleration value by converging to the resonance frequency can be given at the end of the frequency modulation period, which continuously changes the frequency and vibration acceleration value. You can continue.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a vibration generator 1 according to an embodiment of the present invention.
2A is a front view of a vibration generator 1, and FIG. 2B is a side view.
3 is an exploded perspective view of the vibration generator 1. FIG.
4 is an exploded perspective view of the mover 50. FIG.
FIG. 5 is a displacement-thrust characteristic diagram of a mover when a current is passed through a coil.
FIG. 6 is a diagram for obtaining a mechanical spring constant, a magnetic spring constant, and a composite spring constant from a displacement-stress characteristic curve.
7 is a frequency-vibration acceleration characteristic diagram of the vibration generator 1. FIG.
8 is a vibration generator driving circuit diagram including a frequency modulation unit of the vibration generator 1. FIG.
FIG. 9 is a diagram showing the relationship between the input current to the vibration generator 1 and the vibration acceleration output according to the embodiment of the present invention.
FIG. 10 is a diagram showing a relationship between an input current to a vibration generator 1 and a vibration acceleration output according to another embodiment of the present invention.
FIG. 11 is a diagram showing a relationship between an input current to another vibration generator 1 and a vibration acceleration output.
FIG. 12 is a diagram showing a relationship between an input current to another vibration generator 1 and a vibration acceleration output.
FIG. 13 is a diagram showing a typical vibration mode by intermittent current of a rotary vibration motor.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Vibration generator 10 Stator 20 Base part with terminal 30 Coil with core 31 Coil core 33 Coil 37 End surface 40 Elastic body 50 Movable element 51 Movable element yoke 53 End surface 60 Weight 70 Permanent magnet 75 Center yoke (High permeability member)
80 Elastic support member

Claims (2)

永久磁石を取り付けてなる可動子と、
可動子の端面に対して所定の隙間を介して対向する端面を有し、取り付けたコイルに電流を流して励磁することで前記可動子との間に磁路を形成する固定子と、
線材の一端を可動子側に他端を固定子側に取り付けることで可動子を略直線状に振動可能に支持する一対の弾性支持部材とを具備する振動発生器において、
前記コイルに周波数変調された電流を流すことにより、可動子の振動の振動加速度を変化させるとともに、
前記コイルに流す周波数変調された電流は、前記一対の弾性支持部材による弾発力と、前記可動子と固定子との間に働く磁気的吸引・反発力とで決まる可動子の共振周波数を中心周波数として所定の周波数振幅で周波数変調された電流であり、これによって変調周期の倍の振動加速度変化を発生させるとともに、振動加速度値の低下部を交互に異なる振動加速度値とすることを特徴とする振動発生器。
A mover with a permanent magnet attached,
A stator having an end face opposed to the end face of the mover through a predetermined gap, and forming a magnetic path with the mover by exciting the attached coil by passing an electric current;
In a vibration generator comprising a pair of elastic support members that vibrate the mover substantially linearly by attaching one end of the wire to the mover side and the other end to the stator side,
By passing a frequency-modulated current through the coil, the vibration acceleration of the mover is changed , and
The frequency-modulated current flowing through the coil is centered on the resonance frequency of the mover determined by the elastic force generated by the pair of elastic support members and the magnetic attraction / repulsion force acting between the mover and the stator. This is a current that is frequency-modulated with a predetermined frequency amplitude as a frequency, thereby generating a vibration acceleration change that is twice the modulation period, and alternately lowering the vibration acceleration value at different vibration acceleration values. Vibration generator.
永久磁石を取り付けてなる可動子と、
可動子の端面に対して所定の隙間を介して対向する端面を有し、取り付けたコイルに電流を流して励磁することで前記可動子との間に磁路を形成する固定子と、
線材の一端を可動子側に他端を固定子側に取り付けることで可動子を略直線状に振動可能に支持する一対の弾性支持部材とを具備する振動発生器において、
前記コイルに周波数変調された電流を流すことにより、可動子の振動の振動加速度を変化させるとともに、
前記コイルに流す周波数変調された電流は、前記一対の弾性支持部材による弾発力と、前記可動子と固定子との間に働く磁気的吸引・反発力とで決まる可動子の共振周波数を中心周波数として周波数振幅を所定の初期値の振幅から徐々に狭めて前記共振周波数に収束せしめる変調周期で周波数変調された電流であり、これによって変調周期の倍の振動加速度変化を発生させるとともに、共振周波数に収束することによる最大振動加速度値を周波数変調周期の最後に与えることを特徴とする振動発生器。
A mover with a permanent magnet attached,
A stator having an end face opposed to the end face of the mover through a predetermined gap, and forming a magnetic path with the mover by exciting the attached coil by passing an electric current;
In a vibration generator comprising a pair of elastic support members that vibrate the mover substantially linearly by attaching one end of the wire to the mover side and the other end to the stator side,
By passing a frequency-modulated current through the coil, the vibration acceleration of the mover is changed, and
The frequency-modulated current flowing through the coil is centered on the resonance frequency of the mover determined by the elastic force generated by the pair of elastic support members and the magnetic attraction / repulsion force acting between the mover and the stator. The frequency is a current that is frequency-modulated with a modulation period that gradually narrows the frequency amplitude from the amplitude of a predetermined initial value and converges to the resonance frequency, thereby generating a vibration acceleration change that is twice the modulation period and the resonance frequency. The vibration generator is characterized in that the maximum vibration acceleration value by converging to is given at the end of the frequency modulation period.
JP2002373032A 2002-12-24 2002-12-24 Vibration generator Expired - Fee Related JP3833607B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002373032A JP3833607B2 (en) 2002-12-24 2002-12-24 Vibration generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002373032A JP3833607B2 (en) 2002-12-24 2002-12-24 Vibration generator

Publications (2)

Publication Number Publication Date
JP2004202327A JP2004202327A (en) 2004-07-22
JP3833607B2 true JP3833607B2 (en) 2006-10-18

Family

ID=32811458

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002373032A Expired - Fee Related JP3833607B2 (en) 2002-12-24 2002-12-24 Vibration generator

Country Status (1)

Country Link
JP (1) JP3833607B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100691150B1 (en) 2005-02-04 2007-03-09 삼성전기주식회사 A vibration actuator
JP2010130746A (en) * 2008-11-26 2010-06-10 Kyocera Corp Vibration controller and personal digital assistant
JP2011125843A (en) * 2009-09-29 2011-06-30 Sanyo Electric Co Ltd Acceleration generation device
KR101161943B1 (en) * 2010-03-04 2012-07-04 삼성전기주식회사 Haptic feedback device and electronic device
JP6293687B2 (en) * 2015-02-17 2018-03-14 日本電信電話株式会社 Simulated force generation device
JP2017113691A (en) * 2015-12-24 2017-06-29 日本電信電話株式会社 Pseudokinethetic sense generator
FR3068840B1 (en) * 2017-07-07 2023-03-31 Actronika Sas VIBROTACTILE ACTUATOR
JP2019134509A (en) * 2018-01-29 2019-08-08 日本電産セイミツ株式会社 Vibration motor

Also Published As

Publication number Publication date
JP2004202327A (en) 2004-07-22

Similar Documents

Publication Publication Date Title
JP3855738B2 (en) Vibration actuator and electronic device having vibration actuator
KR100541112B1 (en) A vertical vibrator of inner weight type
JP4065769B2 (en) Vibration generator
JP5362425B2 (en) Vibration generator
KR100541113B1 (en) A vertical vibrator of pattern coil type
CA2668403C (en) Oscillating motor for a personal care appliance
CN101902115B (en) Linear vibrator
KR101046044B1 (en) Linear vibrator
JP2020022346A (en) Linear vibration motor
JPH11168869A (en) Vibration generator
CN110875680A (en) Vibration actuator and portable electronic device provided with same
JP3833607B2 (en) Vibration generator
EP1091477B1 (en) Vibration generator
JP4422354B2 (en) Electro-mechanical-acoustic transducer
JP2009213952A (en) Vibration generator
JP2002177882A (en) Vibration generator
JP4795008B2 (en) Driving method for vibration device for portable device having coil and movable body
WO1998019383A1 (en) Vibration generator
KR101793072B1 (en) Horizontal vibration device
JP3835740B2 (en) Axial driven vibrator
JP3548474B2 (en) Vibration generator
JP3766683B2 (en) Axial driven vibrator
JP2004202424A (en) Vibrator and portable terminal device equipped with the vibrator
JP2518745B2 (en) Vibration actuator for thin information transmission device
JPH08238901A (en) Signal annunciator by vibration

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040709

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040709

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060619

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060718

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060719

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110728

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120728

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees