JP3830771B2 - Optical recording medium, processing apparatus and processing method thereof - Google Patents

Optical recording medium, processing apparatus and processing method thereof Download PDF

Info

Publication number
JP3830771B2
JP3830771B2 JP2001118073A JP2001118073A JP3830771B2 JP 3830771 B2 JP3830771 B2 JP 3830771B2 JP 2001118073 A JP2001118073 A JP 2001118073A JP 2001118073 A JP2001118073 A JP 2001118073A JP 3830771 B2 JP3830771 B2 JP 3830771B2
Authority
JP
Japan
Prior art keywords
recording medium
optical recording
phase change
medium
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001118073A
Other languages
Japanese (ja)
Other versions
JP2002312986A (en
Inventor
達 村下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2001118073A priority Critical patent/JP3830771B2/en
Publication of JP2002312986A publication Critical patent/JP2002312986A/en
Application granted granted Critical
Publication of JP3830771B2 publication Critical patent/JP3830771B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thermal Transfer Or Thermal Recording In General (AREA)

Description

【0001】
【発明の属する技術分野】
近年のインターネット等の高速・広域通信網による情報配信量の爆発的な増大や、コンピュータソフトの規模や処理データ量の飛躍的増大などにより、これらの情報を記録する光記録装置の大容量化が強く求められている。また、種々の電子機器の小型化が進み、衛星や移動体(モバイル、ウェアラブル)通信機器等への搭載も可能な小型軽量の大容量記憶装置のニーズが高まっている。これらを背景にして、要求される記録容量は短期間に桁違いに増大しており、1m当たり1550テラビット〔1平方インチ当り1テラ(1012:T)ビット〕以上(テラビット級)の超高密度の実現が切望されており、その利用範囲と市場規模は非常に大きい(参考資料:光産業技術振興協会編、「光産業ロードマップ」)。
本発明は、このテラビット級の超高記録面密度を有する再記録可能(リライタブル)な光記録装置を実現する光記録媒体およびその処理装置ならびに処理方法に関する。
【0002】
【従来の技術】
従来から、リライタブル記録装置としては磁性記録材料の磁化方向の差異を記録単位とした磁気記録方式が主に用いられている。これには記録媒体と信号検出機構が一体化したハードディスクや、記録媒体を信号検出機構と分離して持ち運べるフロッピディスクなどがある。
近年では、記録材料にレーザ光をレンズで集光・照射し、そのとき生じる記録材料の光学特性の差異を記録単位として記録・再生する光記録方式の発展が著しい。光記録方式のリライタブル記録装置の例としては、コンパクトディスク(CD)やデジタルビデオディスク(DVD)、あるいは光磁気ディスク(MOディスク)等があり、広く普及している。
【0003】
【発明が解決しようとする課題】
ところで、テラビット級の記録面密度では記録単位(ピット)のサイズを25ナノメートル(ナノメートル=10−9m)程度以下と極めて小さくしなければならない(以下、本文ではこのようなナノメータサイズのピットをナノピットと呼ぶ)。従来から使用されている磁気記録方式には長手磁気記録方式と垂直磁気記録方式があるが、現在実用化している長手磁気記録方式ではピットサイズがナノメートルレベルになると磁区の反転を保持できなくなる物理的限界(超磁性限界)がある。これにより磁気記録方式の記録面密度は100ギガ(10:G)ビット程度が上限とされ、磁気記録方式によるテラビット級記録装置の実用は困難である。さらに高い面記録密度が期待される垂直磁化方式は長年研究が行われているが、まだ実用化のめどは立っていない。
【0004】
一方、光記録方式では、現状のDVDやCD等の光ディスクではレンズで絞ったレーザ光の回折限界により光照射範囲を光の波長の半分(サブミクロンレベル)以下にできないため面記録密度は10Gビット程度が限界とされ、やはりナノピットを必要とするテラビット級記録装置に適用することができない。
そこで、ナノピットを効率良く記録・再生する方法として、導電性プローブの先端から媒体のナノメータ領域に電流を注入し、この電流により媒体中で光を励起し、この光を検出する方法(電流励起発光方式)が提案された。この方式を用いたリライタブル記録装置の媒体としては、基板上に、電流注入によって発光する層(発光層)と、さらにその上に電流によって電気抵抗や光透過率が可逆的に相変化する材料で形成した層(記録層)を積層したものが用いられる。この方式では、プローブ電流を媒体内のナノメータサイズの領域にほとんど損失せずに集中的に注入できるためナノピットを高効率で形成できることと、励起光がないので信号光検出のSN比が高められる利点がある。しかし、従来のこの記録方式ではピットの形成に結晶とアモルファスの間の相変化を用いていたために、アモルファスと結晶の間で相変化する場合の体積変化を抑えるための構造や、アモルファス化に必要な高温にした時に基板等に熱の影響が及ばないようにするための構造等が必要となる問題があった。
【0005】
本発明の目的は、上記従来技術における問題点を解消するものであって、ナノピットから十分な強度の再生信号光を検出せしめると共に、情報の記録・再生・消去を反復して行えるテラビット級のリライタブル(再記録可能)な光記録媒体およびその記録・再生・消去を行う処理装置ならびに処理方法を提供することにある。
【0006】
【課題を解決するための手段】
上記目的を達成するために、本発明は特許請求の範囲に記載のような構成とするものである。すなわち、
請求項1に記載のように、外部から注入されるエネルギーによって光を発生する発光媒体の上部に、光透過性があり、かつ外部から注入されるエネルギーによって電気伝導率が可逆的に変化する相変化記録媒体を積層して構成された光記録媒体であって、上記相変化記録媒体は、到達する最高温度の差によって異なる電気抵抗を有する少なくとも2種類の結晶状態を持つ相変化記録材料よりなる光記録媒体とするものである。
【0007】
また、請求項2に記載のように、請求項1に記載の光記録媒体おいて、上記発光媒体は電流の注入により発光する直接遷移型半導体もしくはこれらの材料を含む井戸構造を有する光記録媒体とするものである。
【0008】
また、請求項3に記載のように、請求項1または請求項2に記載の光記録媒体において、上記相変化記録材料はゲルマニウムとアンチモンとテルルを含む化合物よりなる光記録媒体とするものである。
【0009】
また、請求項4に記載のように、光記録媒体の表面に接触し、もしくはトンネル電流が流れる範囲の微小な間隔をおいて、上記光記録媒体の表面に対向し、電流の上記相変化記録媒体への注入領域がナノメータサイズの領域内に限定されるように、先鋭化した導電性プローブを有し、上記導電性プローブと上記光記録媒体との間に、上記相変化記録媒体の結晶状態を高抵抗結晶から低抵抗結晶へ変化させる温度まで加熱できるプローブ電流と、上記相変化記録媒体の結晶状態を低抵抗結晶から高抵抗結晶へ変化させる温度まで加熱できるプローブ電流と、を流すことができるバイアス電圧をパルス的に印加することが可能なパルス電源を備えた光記録媒体の処理装置において、上記光記録媒体中の発光媒体を励起して発光を生じせしめる手段と、上記発光媒体からの発光を集光する手段が、光ファイバもしくは光導波路の端面に透明電極薄膜をコーティングした構造を有することを特徴とする光記録媒体の処理装置とするものである。
【0012】
また、請求項に記載のように、光記録媒体の表面に接触し、もしくはトンネル電流が流れる範囲の微小な間隔をおいて、上記光記録媒体表面に対向し、電流の上記相変化記録媒体への注入領域がナノメータサイズの領域内に限定されるように、先鋭化した導電性プローブを有する光記録媒体の処理装置を用い、上記相変化記録媒体に記録信号に対応した低抵抗結晶のナノピットよりなる記録ピットを形成した光記録媒体の表面部から、上記相変化記録媒体の低抵抗結晶が変化しない範囲内のパワーを上記プローブから上記相変化記録媒体の記録領域に注入し、該記録領域の下部に設けられている発光媒体からの発光を検出することにより記録の再生を行う光記録媒体の処理方法とするものである。
【0014】
本発明は、光記録媒体の微小領域へ電流を供給する手段と、該電流の注入によって光を発生する発光媒体に、電流の注入によって電気伝導率が可逆的に変化する相変化記録媒体を積層した光記録媒体と、上記発光媒体からの発光を検出する手段を備えた光記録装置において、上記相変化記録媒体として、溶融温度より低い二つの最高到達温度によって電気抵抗が異なる少なくとも2種類の結晶間の相変化を生じる材料を用い、その2種類の結晶状態をピットの有無に対応させることにより、アモルファス化に必要な高温を用いることなく、体積変化や耐熱性の問題の生じない、テラビット級のリライタブルな光記録装置を実現するものである。
本発明は、上記した材料および構成を採用することにより、より少ない電流注入で、情報データの光記録・再生・消去を可能とするテラビット級のリライタブルな光記録・再生・消去を実現することができる効果がある。
【0015】
【発明の実施の形態】
本発明の光記録媒体に用いられる相変化記録材料として、例えば、GeSbTe(以下、単にGeSbTeと略記する)の温度履歴と電気抵抗の関係を図1に模式的に示す。
最初、基板上にスパッタした直後のGeSbTe膜はアモルファス状態にあり、これを使用前に、いったんT1(約150℃)とT2(約350℃)の間の温度範囲(温度領域Aと呼ぶ)に加熱した後、室温まで戻すと結晶Aの状態となる(図1ではこの過程は省略してある)。
結晶Aは数十kΩ以上の高い電気抵抗を持つ。次に、A結晶をT2からTm(溶融温度:約600℃)の間の温度範囲(温度領域Bと呼ぶ)に再加熱してから冷却すると結晶Bになる。結晶Bは数十Ωと低い電気抵抗を持つ。結晶Bを再度温度範囲Aに過熱して冷却すると再度結晶Aになる。このようにGeSbTeは経験した温度履歴により結晶Aと結晶Bの間を相変化し、それに伴って電気抵抗が3桁程度以上変化する。Tm以上の高温にしなければアモルファスに戻ることはない。すなわち、GeSbTe膜には、高抵抗の結晶Aと低抵抗の結晶Bが存在し、最高温度の履歴によって結晶Aと結晶Bとの間を相変化することを示すものである。
【0016】
図1で示した特性を利用した本発明の基本的な実施の形態を、図2を用いて説明する。ここで、1は導電集光プローブ、2はプローブ電流(電子)、3は表面保護層、4は相変化記録媒体(GeSbTe)、4aは相変化記録媒体中の結晶Aの領域(初期状態)、4bは相変化記録媒体中の結晶Bの領域(ナノピットと呼ぶ)、5は発光媒体、6は電極(基板が絶縁性の場合)、6′は電極(基板が導電性の場合)、7は基板、8は光、9は正孔、10はパルス電源、11は光記録媒体を示す。
【0017】
導電集光プローブ1は、例えば先端をピットサイズ程度まで先鋭化した光ファイバの表面に透明導電膜を被覆した構造とする。プローブ先端は、導電性と透明性の両方を有し、相変化記録媒体4にトンネル電流を注入すると同時に発光媒体5からの光を集光する。なお、この実施の形態では電流注入と集光を同一プローブで行う場合について述べているが、電流注入は導電プローブで行い集光は探針とは別に設置した集光素子(例えばレンズや反射鏡)で行う構成も可能である。基板7の上に電極6(絶縁性基板の場合のみ)と発光媒体5を積層する。発光媒体5は電流の注入により発光する材料や構造体であり、例えば直接遷移型半導体であるAlGaAs、GaN、InP等や、あるいはこれらの材料を含んだ井戸構造体よりなる発光媒体5の上に相変化記録媒体4を積層する。
ここでは相変化記録材料としてGeSbTeを用いた場合の例を示す。スパッタで成膜された直後のGeSbTeはアモルファス状態となっている。これを基板ごと、いったん温度領域Aに加熱して室温に戻すと結晶Aになる。数十kΩ以上の高い電気抵抗を持つ。これを初期状態とする。
【0018】
図2は、本発明のテラビット級超高密度光記録装置の構成の一例を示す模式図である。なお、ここでは集光手段として透明で導電性のプローブを用いてプローブから集光する実施の形態を示したが、電流注入プローブとは別個に集光用のレンズや凹面鏡を設置した構造であっても適用可能である。
【0019】
(1)記録
結晶Aの膜の媒体表面上でプローブを走査する。ピットを形成すべき位置にプローブが来たら、プローブと媒体表面との間に、GeSbTe膜が温度領域Bまで加熱されるようなプローブ電流をパルス的に注入する。いったん、この温度を経験したGeSbTeは結晶Bとなって室温に戻る。結晶BとなったGeSbTeは電気抵抗が数十Ωまで著しく低下する。一方、光透過率は結晶Aとほとんど変わらない。この結晶Bの領域をピットとする。サイズはプローブ電流で制御可能であり直径10nm程度まで小さくできる。この作業をプローブを移動しながら繰り返すことによりGeSbTe膜上に記録信号に対応したナノピットが順次形成されてゆく。温度領域BはGeSbTeの溶融温度(約600℃)より低いので、アモルファスを用いる光記録方式よりも少ないプローブ電流で記録できる。さらに、耐熱のための媒体構造等も軽減できる利点がある。
【0020】
(2)再生、
次に、GeSbTeが温度領域Aに達しない程度のプローブ電流を媒体に注入する。ピット形成していない結晶Aの上では電気抵抗が高いためプローブ電流が小さく、発光は検出されない。一方、ピットを形成した結晶B上では電気抵抗が小さいため大きなプローブ電流がGeSbTe層を貫通して流れる。この電流はGeSbTe層の下の発光媒体に流入し光が強く放出される。この光を集光して検出する。発光強度はプローブ電流に比例する。結晶Aと結晶Bの抵抗の比は少なくとも3桁以上と著しく大きいので、発光強度はピットの有無に対応して大きく変化する。この発光強度の変化を読み取ることにより記録を再生できる。集光は探針とは別個に設置されたレンズや凹面鏡で集光することは可能であるが、透明で導電性があるプローブを用いてそのプローブ先端で集光する手段を用いた方が、光をより高感度で検出することができる。なお、発光媒体を電子閉じ込め構造にすることにより、注入した電流がプローブ直下の発光媒体の狭い空間に局在するので、プローブによる集光効率を高めることができる。
【0021】
(3)消去
結晶Bを再度温度領域Aまで電流加熱したのち室温まで冷却すると結晶Aに相変化し結晶Bは消失する。これにより、ナノピットすなわち記録データを消去できる。
室温では結晶Aと結晶Bのどちらの状態も安定なので、テラビット光記録装置に必要なナノピットの記録、読み出し(再生)、消去の動作が実現できる。
【0022】
【発明の効果】
本発明の光記録媒体およびその処理装置ならびに処理方法によれば、アモルファス状態を利用する光記録装置に比べ、より小さなプローブ電流で安定して動作するテラビット級の超高密度のリライタブル光記録装置を実現することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態で例示した相変化記録材料であるGeSbTeの温度履歴と電気抵抗との関係を示すグラフ。
【図2】本発明の実施の形態で例示したテラビット級超高密度光記録装置の構成を示す模式図。
【符号の説明】
1…導電集光プローブ
2…プローブ電流(電子)
3…表面保護層
4…相変化記録媒体
4a…結晶Aの領域(初期状態)
4b…結晶Bの領域(ナノピット)
5…発光媒体
6…電極(基板が絶縁性の場合)
6′…電極(基板が導電性の場合)
7…基板
8…光
9…正孔
10…パルス電源
11…光記録媒体
[0001]
BACKGROUND OF THE INVENTION
Due to the explosive increase in the amount of information delivered by high-speed and wide-area communication networks such as the Internet in recent years and the dramatic increase in the size of computer software and the amount of processing data, the capacity of optical recording devices that record these information has increased. There is a strong demand. In addition, various electronic devices have been miniaturized, and the need for a small and light mass storage device that can be mounted on a satellite or a mobile (mobile, wearable) communication device is increasing. These were the background, recording capacity required is several orders of magnitude increase in the short term, 1 m 2 per 1550 terabits [per square inch 1 tera (10 12: T) bit] or more (terabit) Ultra Realization of high density is eagerly desired, and the range of use and market size are very large (Reference: Optoelectronic Industry Technology Promotion Association, “Optical Industry Roadmap”).
The present invention relates to an optical recording medium, a processing apparatus, and a processing method for realizing a rewritable optical recording apparatus having a terabit-class ultrahigh recording surface density.
[0002]
[Prior art]
Conventionally, as a rewritable recording apparatus, a magnetic recording method using a difference in magnetization direction of a magnetic recording material as a recording unit has been mainly used. This includes a hard disk in which a recording medium and a signal detection mechanism are integrated, and a floppy disk that can be carried separately from the signal detection mechanism.
In recent years, the development of an optical recording system in which a recording material is focused and irradiated with a laser beam by a lens and a difference in optical characteristics of the recording material generated at that time is recorded and reproduced is a remarkable development. Examples of optical recording type rewritable recording devices include a compact disc (CD), a digital video disc (DVD), a magneto-optical disc (MO disc), and the like, which are widely used.
[0003]
[Problems to be solved by the invention]
By the way, with a terabit-class recording surface density, the size of a recording unit (pit) must be extremely small, about 25 nanometers (nanometer = 10 −9 m) or less (hereinafter referred to as such nanometer-sized pits). Are called nanopits). There are two types of magnetic recording methods that have been used in the past: longitudinal magnetic recording and perpendicular magnetic recording. However, with the longitudinal magnetic recording currently in practical use, physical inversion cannot be maintained when the pit size reaches the nanometer level. There is a critical limit (supermagnetic limit). As a result, the upper limit of the recording surface density of the magnetic recording system is about 100 giga (10 9 : G) bits, and it is difficult to put the terabit class recording apparatus using the magnetic recording system into practical use. It has been made more perpendicular magnetization scheme high surface recording density is expected for many years research, not standing still practical prospect.
[0004]
On the other hand, in the optical recording method, in the current optical disks such as DVD and CD, the surface irradiation density is 10 Gbit because the light irradiation range cannot be less than half the wavelength of light (submicron level) due to the diffraction limit of the laser light focused by the lens. The degree is limited, and it cannot be applied to a terabit class recording apparatus that still requires nanopits.
Therefore, as a method for efficiently recording and reproducing nanopits, a current is injected into the nanometer region of the medium from the tip of the conductive probe, light is excited in the medium by this current, and this light is detected (current excitation light emission). Method) was proposed. As a medium of a rewritable recording apparatus using this method, a layer (light emitting layer) that emits light by current injection is formed on a substrate, and a material on which electrical resistance and light transmittance are reversibly changed by current. A layer in which the formed layers (recording layers) are laminated is used. In this method, the probe current can be intensively injected into the nanometer-sized region in the medium with almost no loss, so that nanopits can be formed with high efficiency, and the advantage is that the S / N ratio of signal light detection can be increased because there is no excitation light. There is. However, since this conventional recording method used a phase change between crystal and amorphous for pit formation, it is necessary for a structure to suppress volume change when phase change between amorphous and crystal, and for amorphization However, there has been a problem that a structure or the like is required to prevent the substrate from being affected by heat when the temperature is increased.
[0005]
SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems in the prior art, and to detect a reproduction signal light having a sufficient intensity from nanopits and to perform a terabit-class rewritable that can repeatedly record, reproduce and erase information. An object of the present invention is to provide a (re-recordable) optical recording medium and a processing apparatus and processing method for recording / reproducing / erasing the same.
[0006]
[Means for Solving the Problems]
In order to achieve the above object, the present invention is configured as described in the claims. That is,
The phase in which the electric conductivity is reversibly changed by the energy that is light-transmitting on the upper part of the light emitting medium that generates light by the energy injected from the outside and the energy injected from the outside. An optical recording medium configured by laminating a change recording medium, wherein the phase change recording medium is made of a phase change recording material having at least two kinds of crystal states having different electric resistances depending on a difference in maximum temperature reached. The optical recording medium is used.
[0007]
Further, as described in claim 2, in the optical recording medium according to claim 1 , the light emitting medium is a direct transition type semiconductor that emits light by current injection or has a well structure including these materials. It is what.
[0008]
Further, as described in claim 3, in the optical recording medium according to claim 1 or 2 , the phase change recording material is an optical recording medium made of a compound containing germanium, antimony and tellurium. .
[0009]
Further, the phase change recording of the current is made in contact with the surface of the optical recording medium or facing the surface of the optical recording medium at a minute interval in a range where a tunnel current flows. Having a sharpened conductive probe so that the injection region into the medium is limited to a nanometer-sized region, and the crystalline state of the phase change recording medium between the conductive probe and the optical recording medium A probe current that can be heated to a temperature that changes the crystal state of the phase change recording medium from a low resistance crystal to a high resistance crystal, and a probe current that can be heated to a temperature that changes the crystal state of the phase change recording medium from a low resistance crystal to a high resistance crystal. in the processing apparatus for an optical recording medium having a pulse power source capable of pulsed manner applying a bias voltage that can be, means that allowed to produce light by exciting the luminescent medium in the optical recording medium The light emitted from the light emitting medium is means for focusing light, it is an apparatus of an optical recording medium characterized by having a coated transparent electrode film on the end face of the optical fiber or optical waveguide structure.
[0012]
In addition, as described in claim 5 , the phase change recording medium that is in contact with the surface of the optical recording medium or is opposed to the surface of the optical recording medium at a minute interval in a range in which a tunnel current flows, Using a processing device for an optical recording medium having a sharpened conductive probe so that the injection region into the nanometer-sized region is limited to a nanometer-sized region, a low-resistance crystal nanopit corresponding to the recording signal is used for the phase change recording medium. A power within a range in which the low resistance crystal of the phase change recording medium does not change is injected from the probe into the recording area of the phase change recording medium from the surface portion of the optical recording medium in which the recording pits are formed. The processing method of the optical recording medium for reproducing the recording by detecting the light emission from the light emitting medium provided in the lower part of the recording medium.
[0014]
The present invention includes a means for supplying a current to a minute region of an optical recording medium, and a phase change recording medium in which electric conductivity is reversibly changed by current injection on a light emitting medium that generates light by injection of the current. In the optical recording apparatus provided with the optical recording medium and the means for detecting light emission from the light emitting medium, the phase change recording medium has at least two types of crystals having different electric resistances at two highest temperatures lower than the melting temperature. Terabit class that uses a material that causes phase change between the two, and makes the two crystal states correspond to the presence or absence of pits, so that there is no problem of volume change or heat resistance without using high temperatures required for amorphization. The rewritable optical recording apparatus is realized.
The present invention realizes terabit-class rewritable optical recording / reproducing / erasing that enables optical recording / reproducing / erasing of information data with less current injection by adopting the above-described materials and configurations. There is an effect that can be done.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
As a phase change recording material used in the optical recording medium of the present invention, for example, the relationship between the temperature history and electrical resistance of Ge 2 Sb 2 Te 5 (hereinafter simply abbreviated as GeSbTe) is schematically shown in FIG.
Initially, the GeSbTe film immediately after being sputtered on the substrate is in an amorphous state, and before being used, it is once in a temperature range (referred to as temperature region A) between T1 (about 150 ° C.) and T2 (about 350 ° C.). After heating, when the temperature is returned to room temperature, a state of crystal A is obtained (this process is omitted in FIG. 1).
Crystal A has a high electrical resistance of several tens of kΩ or more. Next, when the A crystal is reheated to a temperature range (referred to as a temperature region B) between T2 and Tm (melting temperature: about 600 ° C.) and then cooled, it becomes a crystal B. Crystal B has an electrical resistance as low as several tens of ohms. When the crystal B is again heated to the temperature range A and cooled, it becomes the crystal A again. Thus, GeSbTe undergoes a phase change between crystals A and B according to the experienced temperature history, and the electrical resistance changes by about three orders of magnitude or more accordingly. If the temperature is not higher than Tm, it will not return to amorphous. That is, the GeSbTe film has a high-resistance crystal A and a low-resistance crystal B, and shows a phase change between the crystal A and the crystal B due to the history of the maximum temperature.
[0016]
A basic embodiment of the present invention using the characteristics shown in FIG. 1 will be described with reference to FIG. Here, 1 is a conductive condensing probe, 2 is a probe current (electron), 3 is a surface protective layer, 4 is a phase change recording medium (GeSbTe), 4a is a region of crystal A in the phase change recording medium (initial state) 4b is a region of the crystal B in the phase change recording medium (referred to as nanopits), 5 is a light emitting medium, 6 is an electrode (when the substrate is insulating), 6 'is an electrode (when the substrate is conductive), 7 Is a substrate, 8 is light, 9 is a hole, 10 is a pulse power supply, and 11 is an optical recording medium.
[0017]
The conductive condensing probe 1 has a structure in which, for example, the surface of an optical fiber whose tip is sharpened to about the pit size is covered with a transparent conductive film. The probe tip has both conductivity and transparency, and injects a tunnel current into the phase change recording medium 4 and simultaneously collects light from the light emitting medium 5. In this embodiment, current injection and light collection are performed using the same probe. However, current injection is performed using a conductive probe, and light collection is performed separately from a probe (for example, a lens or a reflecting mirror). ) Is also possible. An electrode 6 (only in the case of an insulating substrate) and a light emitting medium 5 are laminated on a substrate 7. The light emitting medium 5 is a material or a structure that emits light by current injection. For example, AlGaAs, GaN, InP, etc., which are direct transition semiconductors, or a light emitting medium 5 made of a well structure containing these materials. The phase change recording medium 4 is laminated.
Here, an example in which GeSbTe is used as the phase change recording material is shown. The GeSbTe immediately after being deposited by sputtering is in an amorphous state. When this is heated together with the substrate to the temperature region A and returned to room temperature, it becomes a crystal A. High electrical resistance of several tens of kΩ or more. This is the initial state.
[0018]
FIG. 2 is a schematic diagram showing an example of the configuration of the terabit-class ultrahigh-density optical recording apparatus of the present invention. Although an embodiment in which light is collected from the probe using a transparent and conductive probe as the light collecting means is shown here, the light collecting probe and the concave mirror are provided separately from the current injection probe. Is applicable.
[0019]
(1) The probe is scanned on the medium surface of the recording crystal A film. When the probe comes to a position where a pit is to be formed, a probe current is pulse-injected between the probe and the medium surface so that the GeSbTe film is heated to the temperature region B. Once this temperature is experienced, GeSbTe becomes crystal B and returns to room temperature. GeSbTe that has become crystal B has an electrical resistance that is significantly reduced to several tens of ohms. On the other hand, the light transmittance is almost the same as that of the crystal A. This crystal B region is defined as a pit. The size can be controlled by the probe current and can be reduced to about 10 nm in diameter. By repeating this operation while moving the probe, nanopits corresponding to the recording signal are sequentially formed on the GeSbTe film. Since the temperature region B is lower than the melting temperature (about 600 ° C.) of GeSbTe, recording can be performed with less probe current than the optical recording method using amorphous. Furthermore, there is an advantage that the medium structure for heat resistance can be reduced.
[0020]
(2) Playback,
Next, a probe current that does not allow GeSbTe to reach the temperature region A is injected into the medium. Since the electric resistance is high on the crystal A where no pit is formed, the probe current is small and no light emission is detected. On the other hand, a large probe current flows through the GeSbTe layer because the electric resistance is small on the crystal B in which the pits are formed. This current flows into the light emitting medium under the GeSbTe layer, and light is strongly emitted. This light is collected and detected. The emission intensity is proportional to the probe current. Since the resistance ratio between the crystal A and the crystal B is remarkably large, at least three orders of magnitude, the emission intensity varies greatly depending on the presence or absence of pits. The recording can be reproduced by reading the change in the emission intensity. It is possible to collect light with a lens or concave mirror installed separately from the probe, but it is better to use a means that collects light at the probe tip using a transparent and conductive probe. Light can be detected with higher sensitivity. Note that by making the luminescent medium an electron confinement structure, the injected current is localized in a narrow space of the luminescent medium immediately below the probe, so that the light collection efficiency by the probe can be increased.
[0021]
(3) When the erasing crystal B is again heated to the temperature region A and then cooled to room temperature, the phase changes to the crystal A and the crystal B disappears. Thereby, nanopits, that is, recorded data can be erased.
Since both the crystal A and the crystal B are stable at room temperature, nanopit recording, reading (reproducing), and erasing operations necessary for the terabit optical recording apparatus can be realized.
[0022]
【The invention's effect】
According to the optical recording medium, the processing apparatus, and the processing method of the present invention, a terabit-class ultra-high-density rewritable optical recording apparatus that operates stably with a smaller probe current than an optical recording apparatus that uses an amorphous state is provided. It can be realized.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between temperature history and electrical resistance of Ge 2 Sb 2 Te 5 which is a phase change recording material exemplified in an embodiment of the present invention.
FIG. 2 is a schematic diagram illustrating a configuration of a terabit-class ultrahigh-density optical recording apparatus exemplified in an embodiment of the present invention.
[Explanation of symbols]
1 ... Conductive condensing probe 2 ... Probe current (electron)
3 ... Surface protective layer 4 ... Phase change recording medium 4a ... Crystal A region (initial state)
4b ... Crystal B region (nanopit)
5 ... Luminescent medium 6 ... Electrode (when substrate is insulative)
6 '... Electrode (when the substrate is conductive)
7 ... Substrate 8 ... Light 9 ... Hole 10 ... Pulse power supply 11 ... Optical recording medium

Claims (5)

外部から注入されるエネルギーによって光を発生する発光媒体の上部に、光透過性があり、かつ外部から注入されるエネルギーによって電気伝導率が可逆的に変化する相変化記録媒体を積層して構成された光記録媒体であって、上記相変化記録媒体は、到達する最高温度の差によって異なる電気抵抗を有する少なくとも2種類の結晶状態を持つ相変化記録材料よりなることを特徴とする光記録媒体。  It is constructed by laminating a phase change recording medium that is light transmissive and reversibly changes its electric conductivity by energy injected from the outside, above the light emitting medium that generates light by energy injected from the outside. An optical recording medium, wherein the phase change recording medium is made of a phase change recording material having at least two kinds of crystal states having different electric resistances depending on a difference in maximum temperature reached. 請求項1に記載の光記録媒体において、上記発光媒体は電流の注入により発光する直接遷移型半導体もしくはこれらの材料を含む井戸構造を有することを特徴とする光記録媒体。2. The optical recording medium according to claim 1 , wherein the light- emitting medium has a direct transition type semiconductor that emits light by current injection or a well structure including these materials. 請求項1または請求項2に記載の光記録媒体において、上記相変化記録材料はゲルマニウムとアンチモンとテルルを含む化合物よりなることを特徴とする光記録媒体。3. The optical recording medium according to claim 1 , wherein the phase change recording material comprises a compound containing germanium, antimony and tellurium. 光記録媒体の表面に接触し、もしくはトンネル電流が流れる範囲の微小な間隔をおいて、上記光記録媒体の表面に対向し、電流の上記相変化記録媒体への注入領域がナノメータサイズの領域内に限定されるように、先鋭化した導電性プローブを有し、上記導電性プローブと上記光記録媒体との間に、上記相変化記録媒体の結晶状態を高抵抗結晶から低抵抗結晶へ変化させる温度まで加熱できるプローブ電流と、上記相変化記録媒体の結晶状態を低抵抗結晶から高抵抗結晶へ変化させる温度まで加熱できるプローブ電流と、を流すことができるバイアス電圧をパルス的に印加することが可能なパルス電源を備えた光記録媒体の処理装置において、上記光記録媒体中の発光媒体を励起して発光を生じせしめる手段と、上記発光媒体からの発光を集光する手段が、光ファイバもしくは光導波路の端面に透明電極薄膜をコーティングした構造を有することを特徴とする光記録媒体の処理装置。 It is in contact with the surface of the optical recording medium, or is opposed to the surface of the optical recording medium at a minute interval in the range where the tunnel current flows, and the injection region of the current into the phase change recording medium is within a nanometer size region. The phase change recording medium is changed from a high resistance crystal to a low resistance crystal between the conductive probe and the optical recording medium. A bias voltage capable of flowing a probe current that can be heated to a temperature and a probe current that can be heated to a temperature that changes the crystal state of the phase change recording medium from a low-resistance crystal to a high-resistance crystal can be applied in pulses. collecting the processing apparatus for an optical recording medium with the possible pulse power supply, and means allowed to rise to emission by exciting the luminescent medium in the optical recording medium, the light emitted from the light emitting medium Means processing apparatus for an optical recording medium characterized by having a coated transparent electrode film on the end face of the optical fiber or optical waveguide structure. 光記録媒体の表面に接触し、もしくはトンネル電流が流れる範囲の微小な間隔をおいて、上記光記録媒体表面に対向し、電流の上記相変化記録媒体への注入領域がナノメータサイズの領域内に限定されるように、先鋭化した導電性プローブを有する光記録媒体の処理装置を用い、上記相変化記録媒体に記録信号に対応した低抵抗結晶のナノピットよりなる記録ピットを形成した光記録媒体の表面部から、上記相変化記録媒体の低抵抗結晶が変化しない範囲内のパワーを上記プローブから上記相変化記録媒体の記録領域に注入し、該記録領域の下部に設けられている発光媒体からの発光を検出することにより記録の再生を行うことを特徴とする光記録媒体の処理方法 It is in contact with the surface of the optical recording medium or opposed to the surface of the optical recording medium at a minute interval in the range where the tunnel current flows, and the injection region of the current into the phase change recording medium is within a nanometer size region. As described above, an optical recording medium processing apparatus having a sharpened conductive probe is used to form an optical recording medium in which recording pits made of nano-pits of low resistance crystals corresponding to a recording signal are formed on the phase change recording medium. From the surface portion, power within a range in which the low-resistance crystal of the phase change recording medium does not change is injected from the probe into the recording area of the phase change recording medium, and from the light emitting medium provided below the recording area. A method of processing an optical recording medium, wherein recording reproduction is performed by detecting light emission .
JP2001118073A 2001-04-17 2001-04-17 Optical recording medium, processing apparatus and processing method thereof Expired - Fee Related JP3830771B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001118073A JP3830771B2 (en) 2001-04-17 2001-04-17 Optical recording medium, processing apparatus and processing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001118073A JP3830771B2 (en) 2001-04-17 2001-04-17 Optical recording medium, processing apparatus and processing method thereof

Publications (2)

Publication Number Publication Date
JP2002312986A JP2002312986A (en) 2002-10-25
JP3830771B2 true JP3830771B2 (en) 2006-10-11

Family

ID=18968520

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001118073A Expired - Fee Related JP3830771B2 (en) 2001-04-17 2001-04-17 Optical recording medium, processing apparatus and processing method thereof

Country Status (1)

Country Link
JP (1) JP3830771B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100644887B1 (en) 2004-09-07 2006-11-15 엘지전자 주식회사 Heat Assisted Data Writing Apparatus for SPM Data Storage and Writing Method thereof

Also Published As

Publication number Publication date
JP2002312986A (en) 2002-10-25

Similar Documents

Publication Publication Date Title
US4773060A (en) Optical information recording device
JP3688530B2 (en) Recording medium, recording apparatus, and recording method
JP2602608B2 (en) Optical data storage
CN100372001C (en) Recording medium having super-resolution near-field structure and method and apparatus for reproducing the same
KR0160363B1 (en) Phase changing type optical disk
KR100399052B1 (en) Apparatus for recording and reproducing high-density information using multi-functional probe
US7572496B2 (en) Recording medium having high melting point recording layer, information recording method thereof, and information reproducing apparatus and method therefor
JPH0896412A (en) Information recording medium
JP3648378B2 (en) optical disk
JPH08212604A (en) Method and device for information recording and reproducing
JP3830771B2 (en) Optical recording medium, processing apparatus and processing method thereof
JP3842059B2 (en) Optical recording medium, processing apparatus and processing method thereof
CN1316455C (en) High density recording medium with super-resolution near-field structure manufactured using high-melting point metal oxide or silicon oxide mask layer
JP2005175202A (en) Recording element
JP2002063722A (en) Method for recording optical information and optical information recording medium
JPH11144319A (en) Optical information recording medium and recording and reproducing method
JP4998224B2 (en) Optical information recording medium
JP3792546B2 (en) Optical recording device
Saito et al. Phase change materials for optical disc and display applications
JP4381540B2 (en) Reproduction method of optical recording medium
JP2003257097A (en) Optical recording medium, processor and processing method therefor
JPH1139738A (en) Magneto-optical disk and memory device using the same
JP2643566B2 (en) Optical recording medium
US6819648B1 (en) Optical sample and method of writing and reading information on the same
JPS60117433A (en) Electron beam recording disc

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090721

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100721

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110721

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees