JP3825315B2 - Method for measuring roundness in cylindrical body and jig used for this measurement - Google Patents

Method for measuring roundness in cylindrical body and jig used for this measurement Download PDF

Info

Publication number
JP3825315B2
JP3825315B2 JP2001389203A JP2001389203A JP3825315B2 JP 3825315 B2 JP3825315 B2 JP 3825315B2 JP 2001389203 A JP2001389203 A JP 2001389203A JP 2001389203 A JP2001389203 A JP 2001389203A JP 3825315 B2 JP3825315 B2 JP 3825315B2
Authority
JP
Japan
Prior art keywords
cylindrical body
support
axis
roundness
expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001389203A
Other languages
Japanese (ja)
Other versions
JP2003185404A (en
Inventor
忠一 板敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sasakura Engineering Co Ltd
Original Assignee
Sasakura Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sasakura Engineering Co Ltd filed Critical Sasakura Engineering Co Ltd
Priority to JP2001389203A priority Critical patent/JP3825315B2/en
Publication of JP2003185404A publication Critical patent/JP2003185404A/en
Application granted granted Critical
Publication of JP3825315B2 publication Critical patent/JP3825315B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • A Measuring Device Byusing Mechanical Method (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属製パイプ等のような円筒体において、その外周円の幾何学的な真円からの狂いの大きさ、つまり、真円度を測定する方法と、この測定に使用する治具とに関するものである。
【0002】
【従来の技術】
金属製パイプ等の円筒体は、板部材を巻くという方法とか、或いは、圧延で穿孔するという方法等により製造されるが、これらの方法にて製造された円筒体には、その軸線方向の各所における外周円が、幾何学的な真円に対して外側に部分的に膨らんだり、部分的に凹んだりするという円ひずみが存在する。
【0003】
従って、この円筒体の内部に、例えば、特開平11−2478号公報等に記載されている製氷装置のように、当該円筒体の内周面に対して常に接触した状態で回転するスクレーパを設ける場合には、前記軸線方向に沿った各所における外周円を、真円又は略真円に近い状態にするようにひずみ取り矯正するようにしなければならない。
【0004】
そこで、従来は、図1に示すように、円筒体1を、その両端部等のように、軸線方向に沿った少なくもと二つの外周円の部分を、定盤又は機台3等に設けた一対の支持ローラ2に載せることによって回転自在に支持し、この円筒体1を、その軸線の回りに回転しながら、当該円筒体1における軸線方向に沿った複数の測定箇所A,B,C,D,E,F,Gに、ダイヤルゲージ(図示せず)を接触し、このダイヤルゲージにおける指針の動きによって、前記各箇所における真円度を測定し、この結果に基づいて各箇所におけるひずみ取り矯正を実行するようにしている。
【0005】
【発明が解決しようとする課題】
しかし、前記円筒体1における円ひずみは、当該円筒体1のうち支持ローラ2に載せた部分における外周円にも存在することにより、前記した従来の測定方法においては、各測定箇所A,B,C,D,E,F,Gに接触したダイヤルゲージにおける指針の動きに、前記支持ローラ2に載せた部分の外周円における円ひずみによる動きが加算されることになり、換言すると、円筒体1の各測定箇所において測定した真円度には、当該円筒体1を回転自在に支持する箇所における円ひずみによる誤差が加算されることになるから、各測定箇所における真円度を高い精度で正確に測定することができないのであった。
【0006】
本発明は、この問題を解消した測定方法と、この測定に使用する治具とを提供することを技術的課題とするものである。
【0007】
【課題を解決するための手段】
この技術的課題を達成するため本発明の測定方法は、
「真円度を測定する円筒体における両端部の各々に、支持体を、当該支持体のうちその軸線を中心とする円の円周方向に沿った少なくとも三つ以上の等分箇所に取付けた拡管片にて前記円筒体における端部を内側から外向きに同時に拡管するように装着し、前記円筒体を、この両端部に装着した前記両支持体にて回転自在に支持した状態で、当該両支持体における軸線の回りに回転する。」
ことを特徴としている。
【0008】
また、この測定方法に使用する治具は、
「真円度を測定する円筒体における両端部の各々に着脱自在に装着される支持体と、この両支持体を、その軸線の回りに回転するように回転自在に支持する支承機構とを備え、前記両支持体に、その軸線を中心とする円の円周方向に沿った少なくとも三つ以上の等分箇所に前記円筒体における端部の内周面に接触する拡管片と、この各拡管片を同時に半径方向に移動作動するようにした機構とを設けた。」
ことを特徴としている。
【0009】
【発明の作用・効果】
このように、円筒体における両端部の各々に、支持体を、当該支持体のうちその軸線を中心とする円の円周方向に沿った少なくとも三つ以上の等分箇所に取付けた拡管片にて前記円筒体の端部を内側から外向きに同時に拡管するように装着することにより、前記円筒体における両端部を、複数個の拡管片にて略真円の状態にひずみ矯正することができる一方、前記両支持体を、円筒体のうち前記のように略真円の状態にひずみ矯正した両端部に対して、当該支持体における軸線が円筒体の両端部においてひずみ矯正した円の中心にその軸線が略一致するように確実に装着することができる。
【0010】
そこで、前記円筒体を、この両端部に装着した前記両支持体にて回転自在に支持した状態で、当該両支持体における軸線の回りに回転することにより、この円筒体における軸線方向に沿った複数の測定箇所は、前記両支持体における軸線、ひいては、当該円筒体の両端部において略真円の状態にひずみ矯正した部分における軸線を基準として、この軸線の回りに回転するから、この各測定箇所に、ダイヤルゲージを接触することで、前記円筒体における各測定箇所の真円度を、当該円筒体の両端部における円を基準として測定することができるのである。
【0011】
従って、本発明によると、円筒体における軸線方向に沿った複数の測定箇所の真円度を測定するに際して、この各測定箇所の測定値に、円筒体を回転自在に支持する箇所における円ひずみが加算されることを確実に防止でき、換言すると、円筒体の各測定箇所において測定した真円度に、当該円筒体を回転自在に支持する箇所における円ひずみによる誤差が加算されることを僅少にとどめることができるから、各測定箇所における真円度を高い精度で確実に測定することができる効果を有する。
【0012】
この場合において、支持体に設ける拡管片は、少なくとも三つ以上の複数個にすることが必要であり、この拡管片の数をより多くすることにより、円筒体の両端部を、より真円に近づけるようにひずみ矯正することができるから、測定の精度を向上できる。直径が200mm以上の円筒体の場合、前記拡管片は五つ以上にすることが好ましい。
【0013】
特に、この各拡管片を、請求項3に記載したように、支持体における軸線と平行の軸線を有するローラに構成することにより、円筒体の両端部の拡管に際して、その内面に傷が付くことを防止できるとともに、前記円筒体のうちこの各拡管片が接触する部分が円弧状になるから、より真円に近づけるようにひずみ矯正できる。
【0014】
【発明の実施の形態】
以下、本発明の実施の形態を、図2〜図5の図面について説明する。
【0015】
この図2及び図3において、符号4は、円盤状に構成した支持体を示し、この支持体4における中心の部位には、操作軸5が当該支持体4の中心を通る軸線4aの方向に延びるように回転自在に軸支され、この操作軸5の一端には、当該操作軸5を手動で回転操作するためのハンドル6が固着され、他端には、太陽歯車7が嵌着されている。
【0016】
また、前記支持体4のうちその軸線4aを中心とする円4bの円周上における複数の等分箇所(本実施の形態においては、五つの等分箇所)の各々に、拡管軸8を、前記軸線4aと平行に延びるように回転自在に軸支して、この各拡管軸8の各々に、前記太陽歯車7に噛合する遊星歯車9を嵌着するとともに、真円度を測定しようとする円筒体1における端部の内面に接当する拡管片10を固着する。
【0017】
この拡管片10を、前記拡管軸8における軸線8a、ひいては、前記支持体4における軸線4aと平行な軸線10aを有するローラに構成して、その軸線10aを、拡管軸8における軸線8aに対して適宜寸法eだけ偏芯した構成にする。
【0018】
このように構成した支持体4を、被測定物であるところの円筒体1の両端部に対して、当該支持体4における各拡管片10が円筒体1の内部に嵌まるように配設したのち、操作軸5を、ハンドル6にて回転することにより、この回転が太陽歯車7及びこれに噛合する遊星歯車9を介して各拡管軸8に伝わり、この回転により偏芯したローラ状の拡管片10が、前記拡管軸8の軸線8aの回りに回転して半径方向の外向きに同時に移動する。
【0019】
この各拡管片10の半径方向外向きへの同時移動により、これが円筒体1の内面に接触して円筒体1における端部を拡管することになるから、前記円筒体1における両端部は、複数個の拡管片10にて略真円の状態にひずみ矯正される一方、前記両支持体4を、円筒体1のうち前記のように略真円の状態にひずみ矯正された両端部に対して、当該支持体4における軸線4aが円筒体1の両端部においてひずみ矯正された円の中心に軸線4aが略一致するように確実に装着することができる。
【0020】
なお、この拡管による装着が完了すると、ロックナット11の締結にて、前記操作軸5が逆回転しない状態にロックする。
【0021】
このようにして、円筒体1における両端部の各々に支持体4を装着すると、その両支持体4を、図4及び図5に示すように、定盤又は機台3等に設けた一対のローラ式の支承機構12に載せて、回転自在に支持し、この状態で、前記円筒体1を、両支持体4における軸線4aの回りに回転する。
【0022】
この円筒体1の回転により、円筒体1における軸線方向に沿った複数の測定箇所A,B,C,D,E,F,Gは、前記両支持体4における軸線4a、ひいては、当該円筒体1の両端部において略真円の状態にひずみ矯正した部分における軸線を基準として、この軸線の回りに回転できるから、この各測定箇所A,B,C,D,E,F,Gに、ダイヤルゲージ13を接触することで、このダイヤルゲージ13における指針の振れ動きによって、前記円筒体1における各測定箇所A,B,C,D,E,F,Gの真円度を、当該円筒体1の両端部における円を基準として正確に測定することができる。
【0023】
なお、前記円筒体1を、その両端部に装着した支持体4にて回転自在に支持するに際しては、前記したように、両支持体4を、ローラ式の支承機構12に回転自在に載せることに限らず、前記両支持体4の中心における操作軸5を回転自在に軸受けする軸受け式の支承機構に構成しても良い。
【0024】
また、支持体4における各拡管片10を半径方向に同時に移動するに際しても、前記太陽歯車7とこれに噛合する遊星歯車9とによる機構に限らず、その他の機構によって、各拡管片10を半径方向に同時に移動するに構成することができる。
【図面の簡単な説明】
【図1】従来における測定方法を示す斜視図である。
【図2】本発明の実施の形態における支持体を示す縦断正面図である。
【図3】図2のIII −III 視側面図である。
【図4】本発明による測定方法を示す斜視図である。
【図5】図4のV−V視拡大断面図である。
【符号の説明】
1 円筒体
4 支持体
4a 支持体の軸線
5 操作軸
7 太陽歯車
8 拡管軸
9 遊星歯車
10 拡管片
11 ロックナット
12 支承機構
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method of measuring the magnitude of deviation from the geometric perfect circle of the outer circumference of a cylindrical body such as a metal pipe, that is, a roundness, and a jig used for this measurement. It is about.
[0002]
[Prior art]
A cylindrical body such as a metal pipe is manufactured by a method of winding a plate member or a method of punching by rolling, etc. The cylindrical body manufactured by these methods has various parts in its axial direction. There is a circular strain in which the outer circumferential circle in FIG. 4 partially bulges outward or partially concaves with respect to a geometric perfect circle.
[0003]
Therefore, a scraper that rotates while always in contact with the inner peripheral surface of the cylindrical body is provided inside the cylindrical body, for example, as in an ice making device described in JP-A-11-2478. In such a case, it is necessary to correct the strain so that the outer circumferential circle at each location along the axial direction is in a state of being a perfect circle or a nearly perfect circle.
[0004]
Therefore, conventionally, as shown in FIG. 1, the cylindrical body 1 is provided with at least two outer circumferential circle portions along the axial direction, such as both ends thereof, on the surface plate or the machine base 3 or the like. A plurality of measurement points A, B, and C along the axial direction of the cylindrical body 1 while rotating the cylindrical body 1 around the axis while rotating the cylindrical body 1 around the pair of supporting rollers 2. , D, E, F, and G are in contact with a dial gauge (not shown), and the roundness at each location is measured by the movement of the pointer in the dial gauge. Based on this result, the strain at each location is measured. I am trying to carry out correction.
[0005]
[Problems to be solved by the invention]
However, the circular strain in the cylindrical body 1 is also present in the outer circumferential circle in the portion of the cylindrical body 1 placed on the support roller 2, so that in the above-described conventional measuring method, each measurement location A, B, The movement of the pointer on the dial gauge in contact with C, D, E, F, and G is added with the movement due to the circular distortion in the outer circumferential circle of the portion placed on the support roller 2. In other words, the cylindrical body 1 Since the roundness measured at each measurement point is added with an error due to circular distortion at the point where the cylindrical body 1 is rotatably supported, the roundness at each measurement point can be accurately determined with high accuracy. Could not be measured.
[0006]
This invention makes it a technical subject to provide the measuring method which eliminated this problem, and the jig | tool used for this measurement.
[0007]
[Means for Solving the Problems]
In order to achieve this technical problem, the measurement method of the present invention comprises:
“At each of both ends of the cylindrical body for measuring roundness, a support was attached to at least three or more equal portions along the circumferential direction of a circle centered on the axis of the support. In the state where the end of the cylindrical body is expanded so as to be expanded from the inside to the outside at the same time with the expansion piece, the cylindrical body is rotatably supported by the two supports attached to both ends. It rotates around the axis of both supports. "
It is characterized by that.
[0008]
The jig used for this measurement method is
“A support body that is detachably attached to each of both ends of a cylindrical body that measures roundness, and a support mechanism that rotatably supports both the support bodies so as to rotate about the axis thereof. The pipes contacting the inner peripheral surface of the end of the cylindrical body at at least three or more equal parts along the circumferential direction of a circle centered on the axis of the two support bodies; And a mechanism to move the pieces simultaneously in the radial direction. "
It is characterized by that.
[0009]
[Operation and effect of the invention]
Thus, on each of the both ends of the cylindrical body, the support body is attached to at least three or more equally divided portions along the circumferential direction of the circle centered on the axis of the support body. By attaching the end portions of the cylindrical body so as to be expanded from the inside to the outside at the same time, both ends of the cylindrical body can be straightened with a plurality of expanded pieces into a substantially circular state. On the other hand, with respect to the both ends of the cylindrical body, both ends of which are straightened as described above in a substantially circular state, the axis of the support is at the center of the circle which has been straightened at both ends of the cylindrical body. It can be securely mounted so that its axis is substantially coincident.
[0010]
Therefore, by rotating the cylindrical body around the axis of the two supports in a state of being rotatably supported by the two supports attached to both ends, the axial direction of the cylindrical body is aligned. The plurality of measurement points rotate around this axis with reference to the axis of the two supports, and consequently the axis of the portion where the distortion is corrected to a substantially perfect circle at both ends of the cylindrical body. By bringing a dial gauge into contact with a place, the roundness of each measurement place in the cylindrical body can be measured with reference to the circles at both ends of the cylindrical body.
[0011]
Therefore, according to the present invention, when measuring the roundness of a plurality of measurement locations along the axial direction in the cylindrical body, the circular strain at the location where the cylindrical body is rotatably supported is included in the measurement value of each measurement location. In other words, the roundness measured at each measurement point of the cylindrical body can be added to the roundness measured at each measurement point of the cylindrical body, and errors caused by circular distortion at the portion that rotatably supports the cylindrical body are added. Therefore, the roundness at each measurement point can be reliably measured with high accuracy.
[0012]
In this case, it is necessary to provide at least three or more expanded pipe pieces provided on the support, and by increasing the number of the expanded pipe pieces, both ends of the cylindrical body are made more circular. Since the distortion can be corrected so as to approach, the measurement accuracy can be improved. In the case of a cylindrical body having a diameter of 200 mm or more, the number of the expanded pipe pieces is preferably five or more.
[0013]
In particular, as described in claim 3, each of the expanded pipe pieces is configured as a roller having an axis parallel to the axis of the support body, so that the inner surface of the cylindrical body is scratched when the both ends of the cylindrical body are expanded. In addition, since the portion of the cylindrical body that comes into contact with each of the expanded pieces is arcuate, the distortion can be corrected so as to be closer to a perfect circle.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to FIGS.
[0015]
In FIG. 2 and FIG. 3, reference numeral 4 denotes a support configured in a disk shape, and the operation shaft 5 extends in the direction of the axis 4 a passing through the center of the support 4 at the central portion of the support 4. A handle 6 for manually rotating the operation shaft 5 is fixed to one end of the operation shaft 5, and a sun gear 7 is fitted to the other end. Yes.
[0016]
In addition, a tube expansion shaft 8 is provided at each of a plurality of equally divided locations (in this embodiment, five equally divided locations) on the circumference of a circle 4b centered on the axis 4a of the support 4. A planetary gear 9 that meshes with the sun gear 7 is fitted to each of the tube expansion shafts 8 so as to be rotatably supported so as to extend in parallel with the axis 4a, and the roundness is to be measured. The tube expansion piece 10 that contacts the inner surface of the end of the cylindrical body 1 is fixed.
[0017]
This pipe expansion piece 10 is configured as a roller having an axis 8a in the pipe expansion shaft 8 and, in turn, an axis 10a parallel to the axis 4a in the support 4, and the axis 10a is relative to the axis 8a in the pipe expansion shaft 8. The structure is appropriately decentered by the dimension e.
[0018]
The support body 4 configured in this manner is disposed so that each tube expansion piece 10 in the support body 4 fits inside the cylindrical body 1 with respect to both ends of the cylindrical body 1 that is the object to be measured. After that, when the operation shaft 5 is rotated by the handle 6, this rotation is transmitted to each tube expansion shaft 8 via the sun gear 7 and the planetary gear 9 meshing with the sun gear 7, and the roller-shaped tube expansion eccentric by this rotation. The piece 10 rotates around the axis 8a of the tube expansion shaft 8 and moves simultaneously outward in the radial direction.
[0019]
The simultaneous movement of each expanded pipe piece 10 in the radially outward direction contacts the inner surface of the cylindrical body 1 and expands the end portion of the cylindrical body 1. While the single expanded tube 10 is strain-corrected to a substantially perfect circle state, both the support bodies 4 are fixed to both ends of the cylindrical body 1 that have been strain-corrected to a substantially perfect circle state as described above. The support 4 can be securely mounted so that the axis 4a substantially coincides with the center of the circle whose distortion has been corrected at both ends of the cylindrical body 1.
[0020]
When the mounting by this pipe expansion is completed, the operation shaft 5 is locked in a state in which it does not reversely rotate by fastening the lock nut 11.
[0021]
Thus, when the support body 4 is attached to each of both end portions of the cylindrical body 1, the support bodies 4 are paired with a pair of plates provided on the surface plate or the machine base 3 as shown in FIGS. The cylindrical body 1 is mounted on a roller-type support mechanism 12 and is rotatably supported. In this state, the cylindrical body 1 is rotated around the axis 4 a of both the supports 4.
[0022]
Due to the rotation of the cylindrical body 1, a plurality of measurement points A, B, C, D, E, F, and G along the axial direction in the cylindrical body 1 are converted into the axis 4 a in both the support bodies 4, and thus the cylindrical body. Since it is possible to rotate around this axis with reference to the axis in the portion where the distortion has been corrected to a substantially perfect circle at both ends of 1, dials can be made to each of these measurement points A, B, C, D, E, F, G. By contacting the gauge 13, the roundness of each measurement location A, B, C, D, E, F, G in the cylindrical body 1 is determined by the swing movement of the pointer in the dial gauge 13. It is possible to accurately measure with reference to the circles at both ends.
[0023]
When the cylindrical body 1 is rotatably supported by the support bodies 4 attached to both ends thereof, the both support bodies 4 are rotatably mounted on the roller-type support mechanism 12 as described above. Not limited to this, it may be configured as a bearing-type support mechanism that rotatably supports the operation shaft 5 at the center of the both supports 4.
[0024]
Further, when each expanded pipe piece 10 in the support 4 is moved simultaneously in the radial direction, the expanded pipe piece 10 is not limited to the mechanism by the sun gear 7 and the planetary gear 9 meshing with the sun gear 7 but by other mechanisms. Can be configured to move simultaneously in the direction.
[Brief description of the drawings]
FIG. 1 is a perspective view showing a conventional measuring method.
FIG. 2 is a longitudinal sectional front view showing a support in an embodiment of the present invention.
3 is a side view taken along the line III-III in FIG. 2;
FIG. 4 is a perspective view showing a measuring method according to the present invention.
5 is an enlarged sectional view taken along line VV in FIG. 4;
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cylindrical body 4 Support body 4a Axis 5 of support body Operation shaft 7 Sun gear 8 Expanded shaft 9 Planetary gear 10 Expanded piece 11 Lock nut 12 Support mechanism

Claims (3)

真円度を測定する円筒体における両端部の各々に、支持体を、当該支持体のうちその軸線を中心とする円の円周方向に沿った少なくとも三つ以上の等分箇所に取付けた拡管片にて前記円筒体における端部を内側から外向きに同時に拡管するように装着し、前記円筒体を、この両端部に装着した前記両支持体にて回転自在に支持した状態で、当該両支持体における軸線の回りに回転することを特徴とする円筒体における真円度の測定方法。Tube expansions in which a support is attached to each of both ends of a cylindrical body for measuring roundness at at least three or more equal portions along the circumferential direction of a circle centering on the axis of the support. A piece is attached so that the ends of the cylindrical body are simultaneously expanded outward from the inside, and the cylindrical body is rotatably supported by the two supports attached to both ends. A method for measuring roundness in a cylindrical body, wherein the circular body rotates around an axis of the support. 真円度を測定する円筒体における両端部の各々に着脱自在に装着される支持体と、この両支持体を、その軸線の回りに回転するように回転自在に支持する支承機構とを備え、前記両支持体に、その軸線を中心とする円の円周方向に沿った少なくとも三つ以上の等分箇所に前記円筒体における端部の内周面に接触する拡管片と、この各拡管片を同時に半径方向に移動作動するようにした機構とを設けたことを特徴とする円筒体における真円度の測定に使用する治具。A support body detachably attached to each of both ends of the cylindrical body for measuring roundness, and a support mechanism for rotatably supporting both the support bodies so as to rotate about the axis thereof; Expanded pieces that come into contact with the inner peripheral surface of the end of the cylindrical body at at least three or more equal portions along the circumferential direction of a circle centered on the axis of the both supports, and the expanded pieces A jig used for measuring the roundness of a cylindrical body, characterized in that a mechanism is provided that simultaneously moves in a radial direction. 前記請求項2の記載において、前記各拡管片を、前記支持体における軸線と平行の軸線を有するローラにて構成したことを特徴とする円筒体における真円度の測定に使用する治具。3. The jig used for measuring roundness in a cylindrical body according to claim 2, wherein each of the expanded pipe pieces is constituted by a roller having an axis parallel to the axis of the support.
JP2001389203A 2001-12-21 2001-12-21 Method for measuring roundness in cylindrical body and jig used for this measurement Expired - Lifetime JP3825315B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001389203A JP3825315B2 (en) 2001-12-21 2001-12-21 Method for measuring roundness in cylindrical body and jig used for this measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001389203A JP3825315B2 (en) 2001-12-21 2001-12-21 Method for measuring roundness in cylindrical body and jig used for this measurement

Publications (2)

Publication Number Publication Date
JP2003185404A JP2003185404A (en) 2003-07-03
JP3825315B2 true JP3825315B2 (en) 2006-09-27

Family

ID=27597491

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001389203A Expired - Lifetime JP3825315B2 (en) 2001-12-21 2001-12-21 Method for measuring roundness in cylindrical body and jig used for this measurement

Country Status (1)

Country Link
JP (1) JP3825315B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11125329B2 (en) 2007-11-16 2021-09-21 Fallbrook Intellectual Property Company Llc Controller for variable transmission

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112432582B (en) * 2020-11-06 2022-05-27 山东诚信工程建设监理有限公司 Internet-based detection device for construction engineering and detection method thereof
CN117647193A (en) * 2023-10-26 2024-03-05 巴州鼎力杆塔有限公司 Wire pole optional position roundness dimension measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11125329B2 (en) 2007-11-16 2021-09-21 Fallbrook Intellectual Property Company Llc Controller for variable transmission

Also Published As

Publication number Publication date
JP2003185404A (en) 2003-07-03

Similar Documents

Publication Publication Date Title
US4035044A (en) Bearing assembly
JP2913913B2 (en) Method and apparatus for measuring the contact angle of a rolling bearing
JP2010071705A (en) Coupling centering tool
JP3825315B2 (en) Method for measuring roundness in cylindrical body and jig used for this measurement
JP6822994B2 (en) Bearing adjustment support device and bearing adjustment support method
JP2922893B2 (en) Tool eccentricity correction device
JP2005315681A (en) Bearing testing device
JP3785998B2 (en) Steel pipe end straightening method and straightening apparatus
JP2008215841A (en) Management method of circular arc shape of inner ring raceway surface of self-aligning roller bearing
KR101850001B1 (en) Apparatus and method for measuring torsional lash of intermediate shaft assembly
JP6508523B2 (en) Manufacturing method of universal joint
JP2009156770A (en) Device for measuring eccentricity of rotational body with gear teeth
JP5550529B2 (en) Method for measuring the inner shape of tire molds
JPS58129301A (en) Concentricity measuring device
JPS58103915A (en) Correcting device for out-of-roundness of pipe end
JP2011195317A (en) Rotation detector of elevator hoisting machine
JPS61117406A (en) Measuring instrument for curvature of rotating cylinder
US8201313B1 (en) Device and process for aligning a carrier roll to the tire of a rotating vessel
JPH08152318A (en) Inner diameter measuring apparatus
JPH0642162Y2 (en) Roundness measuring instrument
JP2022127750A (en) Tube plate measuring device
US4184264A (en) Gerotor internal gear testing
JPH0224608B2 (en)
JP4598482B2 (en) Tire holding device
CN117419630A (en) Blade inner and outer diameter measuring device and measuring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060518

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060606

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060629

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4