JP3824715B2 - 発破地面の掘削負荷計測装置 - Google Patents

発破地面の掘削負荷計測装置 Download PDF

Info

Publication number
JP3824715B2
JP3824715B2 JP22381396A JP22381396A JP3824715B2 JP 3824715 B2 JP3824715 B2 JP 3824715B2 JP 22381396 A JP22381396 A JP 22381396A JP 22381396 A JP22381396 A JP 22381396A JP 3824715 B2 JP3824715 B2 JP 3824715B2
Authority
JP
Japan
Prior art keywords
excavation
blasting
excavator
ground
detecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22381396A
Other languages
English (en)
Other versions
JPH1060954A (ja
Inventor
康雄 田中
豊 渡辺
義紀 古野
隆 柳生
幸彦 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Construction Machinery Co Ltd
Original Assignee
Hitachi Construction Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Construction Machinery Co Ltd filed Critical Hitachi Construction Machinery Co Ltd
Priority to JP22381396A priority Critical patent/JP3824715B2/ja
Priority to DE19780904T priority patent/DE19780904T1/de
Priority to US09/065,064 priority patent/US6122598A/en
Priority to PCT/JP1997/002968 priority patent/WO1998009026A1/ja
Priority to AU38696/97A priority patent/AU705565B2/en
Publication of JPH1060954A publication Critical patent/JPH1060954A/ja
Application granted granted Critical
Publication of JP3824715B2 publication Critical patent/JP3824715B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/205Remotely operated machines, e.g. unmanned vehicles
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/308Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working outwardly
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/42Drives for dippers, buckets, dipper-arms or bucket-arms
    • E02F3/43Control of dipper or bucket position; Control of sequence of drive operations
    • E02F3/435Control of dipper or bucket position; Control of sequence of drive operations for dipper-arms, backhoes or the like
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2029Controlling the position of implements in function of its load, e.g. modifying the attitude of implements in accordance to vehicle speed
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/2025Particular purposes of control systems not otherwise provided for
    • E02F9/2045Guiding machines along a predetermined path
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Component Parts Of Construction Machinery (AREA)
  • Operation Control Of Excavators (AREA)
  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、大規模鉱山等において発破をかけた後の掘削機による地面の掘削負荷を測定、表示する発破地面の掘削負荷計測装置に関する。
【0002】
【従来の技術】
露天掘り(直掘り)の大規模鉱山等においては、発破により一旦地面を爆破しておき、その後、爆破された地面を掘削機、例えば油圧ショベルで掘削する手段が採用されている。これを図19、20、21を参照して説明する。図19は大規模鉱山全体の平面図である。この図で、Aは大規模鉱山の全体領域を示し、通常、縦、横それぞれ数km以上に及ぶ。A1 〜An は全体領域Aを小さく区分した区域を示し、各区域は、例えば、縦、横それぞれ50〜 200m程度に選定される。Bはこの鉱山現場の管理を行う鉱山管理事務所を示す。鉱山管理事務所Bは全体領域Aの内外の管理に都合の良い位置に設置される。
【0003】
図20は図19に示す1つの区域の平面図である。この場合、図19に示す区域A1 が方形で示されている。PB1、PB2、…………、PBi、…………は、区域A1 における発破の設置位置を示す。又、d1 、d2 は発破相互の間隔を示す。通常、この間隔はほぼ等間隔とされることが多い。発破の設置位置(間隔)や爆薬の量は、全体領域Aにおけるある場所の地質調査の柱状サンプルや地形図を参考にして決定される。
【0004】
図21は油圧ショベルの側面図である。1つの区域に発破が仕掛けられ、これらによる爆破が終了すると、当該区域に1台又は複数台の油圧ショベルが入って爆破された地面を掘削し、掘削土石をダンプトラック等に積み込んで所定の個所へ運搬して処理を行う。図21はこの掘削作業を行う油圧ショベルを示し、図中、1は走行体、2は上部旋回体、3は運転室、4は上部旋回体2に可回動に支持されたブーム、4Sはブーム4を駆動するブームシリンダ、5はブーム4に可回動に支持されたアーム、5Sはアーム5を駆動するアームシリンダ、6はアーム5に可回動に支持されたバケット、6Sはバケット6を駆動するバケットシリンダ、6pはバケットの回動中心となるピンである。Cはバケット操作におけるクラウド方向、Dはダンプ方向を示す。バケット6がクラウド方向Cに操作されると掘削が行われ、ダンプ方向Dに操作されると放土が行われる。
【0005】
1つの区域における上記掘削作業が終了すると、再び次の区域に発破が仕掛けられ、これら発破が爆破され、爆破後の地面が油圧ショベルにより掘削され、掘削された土石がダンプトラック等により運搬される。このようにして、順次、各区域の掘削処理が行われてゆく。
【0006】
【発明が解決しようとする課題】
上記大規模鉱山における作業の80%は表土の除去作業であるといわれている。したがって、発破の適否は全体作業に重大な影響を及ぼす。即ち、爆薬の量が少な過ぎると、又は発破位置の間隔が広過ぎると土石を充分にほぐすことができず、この場合には油圧ショベルの掘削負荷が大きくなり、掘削に余分な時間が消費されて予定時間通りの掘削を行うことができず、又、ダンプトラックを長時間待機させるという不都合を生じる。逆に、爆薬の量が多過ぎ、又は間隔が狭過ぎると土石が充分過ぎるほどほぐされ、油圧ショベルの有する掘削能力を充分に利用できないばかりでなく、爆薬に大きなコストがかかるという問題を生じる。発破の計画者は、発破後の状態を見て、又は油圧ショベルのオペレータから掘削の状況を聞いて次の区域の発破の計画を立案するが、これらはいずれも計画者やオペレータの感覚によるものであり、多くの場合、最適の発破を行うことはできなかった。
【0007】
本発明の目的は、上記従来技術における課題を解決し、正確な発破に資することができる発破地面の掘削負荷計測装置を提供することにある。
【0008】
【課題を解決するための手段】
上記の目的を達成するため、請求項1の発明は、発破後の地面を掘削する掘削機のバケットがクラウド方向に操作されたときに出力する信号が一定時間継続したことをもってバケットのクラウド操作を検出するクラウド操作検出手段と、このクラウド操作検出手段でクラウド操作が検出された状態での前記掘削機のバケットシリンダのボトム圧力を掘削負荷として検出する圧力検出手段とで発破地面の掘削負荷計測装置を構成することを特徴とする。
【0009】
又、請求項2の発明は、請求項1記載の発破地面の掘削負荷計測装置において、前記掘削機の掘削時間を検出する掘削時間検出手段を設けたことを特徴とする。
【0010】
又、請求項3の発明は、発破後の地面を掘削する掘削機のバケットがクラウド方向に操作されたときに出力する信号が一定時間継続したことをもってバケットのクラウド操作を検出するクラウド操作検出手段と、前記掘削機による積込工程を判定する積込工程判定手段と、前記クラウド操作検出手段でクラウド操作が検出された状態での前記掘削機のバケットシリンダのボトム圧力を掘削負荷として検出する圧力検出手段と、この圧力検出手段により検出された掘削負荷を前記積込工程判定手段で判定された積込工程における掘削負荷とそれ以外の工程における掘削負荷とに分ける分類手段とで発破地面の掘削負荷計測装置を構成することを特徴とする。
【0011】
又、請求項4の発明は、発破後の地面を掘削する掘削機のバケットがクラウド方向に操作されたときに出力する信号が一定時間継続したことをもってバケットのクラウド操作を検出するクラウド操作検出手段と、このクラウド操作検出手段でクラウド操作が検出された状態での前記掘削機のバケットシリンダのボトム圧力が予め設定された設定圧力以上になったときこれを掘削負荷として検出する設定圧力検出手段とで発破地面の掘削負荷計測装置を構成することを特徴とする。
【0012】
又、請求項5の発明は、請求項4記載の発破地面の掘削負荷計測装置において、前記設定圧力検出手段により設定圧力以上の圧力が検出された時間又は回数を求める負荷量検出手段を設けたことを特徴とする。
【0013】
又、請求項6の発明は、請求項1又は請求項2記載の発破地面の掘削負荷計測装置において、前記掘削機の掘削位置を検出する掘削位置検出手段と、前記圧力検出手段により検出された掘削負荷又はこれに対応する値或いはこれに対応する色彩、および前記掘削位置検出手段で検出された掘削位置を表示する表示手段とを設けて発破地面の掘削負荷計測装置を構成したことを特徴とする。
【0014】
又、請求項7の発明は、請求項3記載の発破地面の掘削負荷計測装置において、前記掘削機の掘削位置を検出する掘削位置検出手段と、前記圧力検出手段により検出された掘削負荷又はこれに対応する値或いはこれに対応する色彩を前記積込工程判定手段で判定された積込工程とそれ以外の工程とに分けて表示するとともに、前記掘削位置検出手段で検出された掘削位置を表示する表示手段とを設けて発破地面の掘削負荷計測装置を構成したことを特徴とする。
【0015】
さらに、請求項8の発明は、請求項5記載の発破地面の掘削負荷計測装置において、前記掘削機の掘削位置を検出する掘削位置検出手段と、前記負荷量検出手段により検出された時間又は回数或いはこれに対応する色彩、および前記掘削位置検出手段で検出された掘削位置を表示する表示手段とを設けて発破地面の掘削負荷計測装置を構成したことを特徴とする。
【0016】
【発明の実施の形態】
以下、本発明を図示の実施の形態に基づいて説明する。
図1は本発明の第1の実施の形態に係る発破地面の掘削負荷計測装置のブロック図である。この図で、6Sは図21に示すバケットシリンダ、6SR はバケットシリンダ6Sのロッド室、6SB はボトム室である。10は油圧ショベルの油圧ポンプ、11は油タンク、12は油圧ポンプ10とバケットシリンダ6Sの間に介在するコントロール弁、13はバケット6の操作レバーである。14はパイロット弁であり、操作レバー13の操作に応じてコントロール弁12へパイロット圧を供給し、コントロール弁12を駆動する。15は操作レバー13によるバケット6のクラウド方向操作を検出する圧力スイッチであり、操作レバー13がクラウド方向に操作されとき信号LC を出力する。16は操作レバー13によるバケット6のダンプ方向操作を検出する圧力スイッチであり、操作レバー13がダンプ方向に操作されとき信号LD を出力する。17はバケットシリンダ6Sのボトム室6SB の圧力PB を検出する圧力センサである。18は油圧ショベルのブーム角αを検出する角度センサ、19は油圧ショベルのアーム角βを検出する角度センサである。
【0017】
20は油圧ショベルに搭載されたGPS( Grobal Positioning System)であり、人工衛星からの信号をアンテナ20Aで受信して油圧ショベルの地球上の絶対座標PG を出力する。21は油圧ショベルの上部旋回体2の旋回中心に設置された磁気方位センサである。この磁気方位センサの検出方位を図2により説明する。図2で、2Cは上部旋回体2の旋回中心、実線で示す4、5はブーム4およびアーム5の軸線を示す。6pはバケット6の回動ピンである。磁気方位センサ21は、上部旋回体2の正面方向の向き、即ち、ブーム4、アーム5、バケット6の向きが地磁気の北方向から何度傾いているかを検出するものであり、その検出角度が図2にθで示され、これが方位データとして出力される。22は油圧ショベルに備えられたスタート/ストップスイッチであり、操作されたとき信号SS を出力する。信号SS はスタートスイッチONとストップスイッチONの両方の信号を含む。23は油圧ショベルに備えられ、コンピュータで構成される処理装置(この処理装置の構成については後述する)、24はアンテナ24Aを有する無線送受信機である。
【0018】
30は図19に示す鉱山の管理事務所Bに備えられたコンピュータである。31はアンテナ31Aを有する無線送受信機であり、処理装置23から出力される各種データを無線送受信機24を介して受信する。32はコンピュータ30からのデータに基づいて所要の表示を行う表示装置である。
【0019】
図3は図1に示す処理装置23のシステム構成図である。この図で、23は処理装置を示す。231は図1に示す各信号を入力する入力インタフェースであり、A/D変換器を有する。232は種々の演算、制御を行う中央処理ユニット(CPU)、233はCPU232の処理プログラム等を格納するリードオンリメモリ(ROM)、234は演算、制御の結果等を格納するランダムアクセスメモリ(RAM)、235は時刻信号を出力するタイマ、236は処理装置23で得られたデータを出力する出力インタフェースである。ROM233には、スタート/ストッププログラム233a、負荷圧サンプリングプログラム233b、掘削位置サンプリングプログラム233c、および終了プログラム233dが格納されている。
【0020】
図4は図1に示すコンピュータ30のシステム構成図である。この図で、30はコンピュータを示す。301は図1に示す無線送受信機31からの信号を入力する入力インタフェース、302は種々の演算、制御を行う中央処理ユニット(CPU)、303はCPU302の処理プログラム等を格納するリードオンリメモリ(ROM)、304は演算、制御の結果等を格納するランダムアクセスメモリ(RAM)、305はコンピュータ30で得られたデータを出力する出力インタフェースである。ROM303には、発破データ303a、負荷圧データ303b、および表示プログラム303cが格納されている。発破データ303aは、掘削工事現場の地図、発破を設けた位置、および火薬の使用量で構成されている。
【0021】
次に、本実施の形態の動作を、図5〜図10に示すフローチャートを参照しながら説明する。油圧ショベルのオペレータは、発破終了後の地面を掘削するとき、スタート/ストップスイッチ22のスタートスイッチをONとし、信号SS を出力する。処理装置23のCPU232は、図5に示すスタートプログラム233aにより信号SS の入力を監視しており(手順S10)、信号SS が入力されると、掘削カウンタn、操作レバー13のレバー操作時間カウンタCTL、および圧力センサ17の検出圧力PB の積算値PD をそれぞれ0にセットし、かつ、クラウドフラグFC とダンプフラグFD をそれぞれOFFにして(手順S11)、スタートプログラムを終了する。
【0022】
次いで、CPU232はタイマ235の出力に基づき、一定時間、例えば10msec毎に、図6および図7に示す負荷圧サンプリングプログラム233bを起動させる。この負荷圧サンプリングプログラムでは、操作レバー13がバケット6をクラウド方向に操作されたとき(即ち、掘削が行われたとき)、この操作信号LC がノイズではなくオペレータの意志であることを確認するため、当該信号が一定時間、例えば 0.3sec継続して入力されたか否かを判断し、当該一定時間継続したとき掘削が行われたと判断する。又、その掘削が終了して放土するときの操作信号LD についても同様の確認を行う。そして、これらが確認されたとき、初めてそれぞれ所要の数値を設定し又は取り込む動作を行う。
【0023】
図5に示すスタートプログラムが実施された後、負荷圧サンプリングプログラム233bが起動すると、CPU232は操作レバー13のクラウド方向の操作信号LC が入力されたか否か判断し(図6に示す手順S20)、入力されていない場合、クラウド操作判定用カウンタ値CC を0に、かつ、クラウドフラグをOFFにし(手順S21)、次いで操作レバー13のダンプ方向操作信号LD が入力されたか否か判断し(手順S22)、入力されていない場合、ダンプ操作判定用カウンタ値CD を0に、かつ、ダンプフラグをOFFにする(手順S21)。そして、処理を図7に示す手順S24に移行させ、ここでクラウドフラグFC がONか否かを判断し、ONでない場合には、同様にダンプフラグがONか否か判断し(手順S25)、ONでなければ処理を終了する。
【0024】
このような処理が10msec毎に行われているうちに、オペレータが掘削をすべく操作レバー13をクラウド方向に操作すると、これが手順S20の処理で判断され、次にCPU232はクラウドフラグFC がONか否かを判断し(手順S26)、この場合、ONになっていないので、クラウド操作判定用カウンタ値CC が予め定められた値CC0になっているか否か判断する(手順S27)。値CC0を例えば30回とすると、負荷圧サンプリングプログラム233bは上記の例では10msec毎に実行されるので、クラウド操作判定用カウンタ値CC が0 から30になるまでには0.3 secを要し、この時間でオペレータの操作の意志確認を行う。
【0025】
即ち、クラウド操作判定用カウンタ値CC が予め定められた値CC0になっていない場合には、クラウド操作判定用カウンタ値CC に「1 」を加算し(手順S28)、手順S22、S23、S24、S25を経て処理を終了する。この処理を10msec毎に繰り返して行くと、やがてクラウド操作判定用カウンタ値CC が値CC0に達する。CPU232は手順S27の処理でこれを判断することにより、オペレータが操作レバー13をクラウド方向に操作したことを確認し、クラウドフラグをONとし、掘削カウンタnに「1 」を加算し、そのときの掘削位置P6P(ピン6pの位置)、およびそのときの時刻を格納し、かつ、ダンプフラグをOFFにし(手順S29)、手順S22、S23、S24、S25を経て処理を終了する。
【0026】
ここで、上記掘削位置P6Pは、図8に示す掘削位置サンプリングプログラム233cを実行することにより得られる。即ち、CPU232は、GPS20からの信号PG 、磁気方位センサ21からの信号θ、ブーム角センサ18およびアーム角センサ19からの信号α、βを読み込み(図8に示す手順S40)、油圧ショベルの旋回中心2Cとブーム4の上部旋回体2との連結点との間の水平距離(既知)、および角度α、β用いて上記連結点とバケットピン6pとの間の水平距離Lを演算し、さきに読みだされた信号PG 、演算された距離L、および方位θに基づいて掘削位置(バケットピン6pの位置)P6Pを演算する(手順S41)。
【0027】
上記手順S29の処理が終了して10msec経過後に再度負荷圧サンプリングプログラムが実行されるが、このときは前回の処理の手順S29においてクラウドフラグFC をONとしているので、手順S26でこれが判断され、処理は手順S22、S23を経て手順S24へ移行する。クラウドフラグFC はONの状態にあるので、手順S24ではこれを判断し、処理を手順S30へ移行する。手順S30において、CPU232はクラウド操作時間のカウント値CTLに「 1」を加算し、かつ、そのときの圧力センサ17の検出値(負荷圧)をそれまでの負荷圧の積算値(この場合は最初の掘削であるので「 0」)に加算する。次いで、手順S25を経て処理を終了する。この処理が掘削動作中、10msec毎に実行され、その都度、クラウド操作時間のカウント値CTLに「 1」が加算され、負荷圧が積算されてゆく。
【0028】
掘削動作が終了すると、オペレータは操作レバー13をダンプ方向へ操作する。この動作は、手順S20、S21を経て手順S22の処理で判断される。次いで、CPU232はダンプフラグFD がONであるか否か判断し(手順S31)、この場合はダンプ方向へ切り換えられたばかりであるので、ダンプフラグFD はOFFの状態にあり、ダンプ操作判定用カウンタ値CD がさきに述べた値CC0になっているか否か判断し(手順S32)、値CC0にはなっていないので、ダンプ操作判定用カウンタ値CD に「 1」を加算し(手順S33)、手順S24、S25を経て処理を終了する。クラウド方向操作の場合と同様、この処理がCD =CC0になる(ダンプ方向操作が確認される)まで繰り返され、手順S32でこれが判断されると、CPU232は、ダンプフラグFD をON、クラウドフラグFC をOFFにし(手順S33)、手順S24を経て手順S25でダンプフラグFD がONであることを判断し、掘削回数nが更新されてるか否かをみる(手順S34)。この場合、掘削回数nは手順S29で「 1」が加算され、更新されているので、CPU232は手順S35の処理を実行する。
【0029】
この手順S35の処理では、
〔1〕今回得られたクラウド操作時間カウント値CTLの積算値CTL(n)から前回までのクラウド操作時間カウント値CTL(n−1)を減算して今回のクラウド操作時間カウント値ΔCTL(n)を得る演算
〔2〕今回のクラウド操作時間カウント値ΔCTL(n)に負荷圧サンプリングプログラム233cの繰り返し時間間隔(10msec)を乗算して今回の掘削時間ΔTL を得る演算
〔3〕今回得られた負荷圧の積算値PD (n)から、前回までの負荷圧の積算値PD (n−1)を減算して今回の負荷圧ΔPD (n)を得る演算
〔4〕今回の負荷圧ΔPD (n)を今回のクラウド操作時間カウント値ΔCTL(n)で除して今回の平均負荷圧PA を得る演算
が実行され、演算の結果をデータとして無線送受信機24へ出力する。無線送受信機24は入力されたデータを無線で鉱山管理事務所Bのコンピュータ30へ送信する。
【0030】
油圧ショベルでは、バケット6がクラウド方向に操作される毎に、処理装置23により上記の処理が繰り返され、1回のクラウド方向操作が終了する毎に上記データが鉱山管理事務所Bのコンピュータ30へ送信されることになる。1つの区域の掘削作業が終了すると、オペレータはスタート/ストップスイッチ22のストップスイッチをONにすることにより、図9に示す終了プログラム233dを実行する。即ち、CPU232はストップスイッチ22がONにされたか否かを見ており(手順S50)、ONにされたと判断すると、無線送受信機24に、作業終了のステータスを出力するとともに、現在の時刻t0 、クラウド操作時間の積算値TL 、負荷圧力の積算値PD を出力して(手順S51)処理を終了する。
【0031】
以上は、掘削機側の処理であるが、鉱山管理事務所B側では掘削機側から掘削操作ごとに送信されてくるデータに対して次の処理が行われる。
コンピュータ30は、油圧ショベルによる掘削区域の掘削開始前に、発破データ303aに基づいて表示装置32の画面に掘削区域の地図および発破を設けた位置を表示する。この状態で、図10に示す表示プログラム303cが常時実行され、CPU302は掘削機側から新しいデータが送信されてきたか否か判断する(手順S60)。掘削機側からのデータが無線送受信機31で受信され入力されたことを判断すると、CPU303cは入力された掘削位置データP6Pと今回掘削の負荷圧ΔPD (n)とを負荷圧データ領域303bに書き込むとともに、掘削位置データP6Pに相当する表示画面上の位置に×印を表示し、かつ、その近辺に今回掘削の負荷圧ΔPD (n)を表示する(手順S61)。次いで、ストップスイッチがONになったか否かを判断し(手順S62)、ONになっていなければ、手順S60へ処理を戻し、新たにデータが入力される毎に×印と負荷圧を格納し、かつ、表示してゆく。
【0032】
図11は表示装置の画面の一部拡大正面図である。この図で、32Dは表示装置32の表示画面を示す。PBiは発破を設けた位置の1つを示し、この発破位置PBiの周辺の掘削位置が×印で、負荷圧が数字で表示されている。なお、この場合、負荷圧は実際の負荷圧ではなく、実際の負荷圧を 0〜100 のレベルに区分したときのレベルが表示される。他の位置の表示も同様になされる。
【0033】
掘削作業が終了し、オペレータによりストップスイッチがONとされると、CPU302は手順S62でこれを判断し、図9に示す手順S51により送信されてきたクラウド操作時間の積算値TL 、および負荷圧力の積算値PD を表示するとともに、現在時刻t0 から掘削作業開始時の時刻t0 (1)を減算して掘削に要した全作業時間を表示する。
【0034】
図12は表示装置の他の表示例を示す表示画面の正面図である。この図で、32Dは図11に示すものと同じ表示画面である。又、PB1は1つの発破位置を示す。この表示例の場合、区域をさらに小区域(例えば 5m四方)に細分しこれら小区域毎に、掘削時間および負荷圧(レベル)の平均値を表示するようになっている。勿論、この場合には、表示プログラム303cに掘削時間および負荷圧レベルの平均値演算の手順が付加されることになる。
【0035】
なお、図11、図12に示す表示例では、負荷圧を数値で表示する例を示したが、負荷圧又は負荷圧レベルをそれらの値に対応して複数範囲に区分し、各区分毎に異なる色彩、例えば、負荷圧が高い範囲を赤、低い範囲を青、中間の範囲を緑というように割当て、負荷圧又は負荷圧レベルを対応する色彩で表示することもできる。
【0036】
このように、本実施の形態では、発破後の地面の掘削において、掘削機側でバケットの掘削位置とその位置でのクラウド方向の負荷圧とを採取し、これらを鉱山事務所へ送信し、鉱山事務所ではそれら送信されたデータに基づいて発破区域および発破位置の地図上に掘削位置と負荷圧又は負荷圧レベルを表示するようにしたので、発破の計画者はこれを参照して次の区域の発破をより一層適切に行うことができる。即ち、発破の計画者は、地図上の発破設置位置、掘削位置、および負荷圧又は負荷圧レベルをみることにより、負荷圧が高過ぎる個所は発破の火薬の量が少なかったか、又は火薬の量が少ないとは考えられない場合は再度の地質調査が必要か、さらに、負荷圧が低い場合にはさらに火薬の量を減少させるか等の判断を行うことにより、次の区域の発破を適切なものとすることができる。
【0037】
さらに、ダンプトラックの使用台数を考慮し、使用台数が多い場合には、負荷圧を小さくして掘削時間を短くする方がダンプトラックの待ち時間を最小にすることができるので、この観点から、本実施の形態の計測で得られた負荷圧を考慮し、火薬の量をさらに大きくするか(負荷圧を小さくするか)否かの判断ができ、逆に、ダンプトラックの使用台数が少ない場合には、掘削時間が多少長くても全体の運搬作業に差し支えはないので、この観点から、得られた負荷圧を考慮して火薬の量を判断することができる。又、掘削機についても、負荷圧が時々刻々と表示されるので、負荷圧の大きな個所が多い場合には、新たに掘削機を投入して作業を円滑に遂行させることもできる。
【0038】
又、掘削時間を参照する場合、負荷圧が低いのに掘削時間が大きいときには、オペレータの未熟練又は機械的トラブルの発生が予想できる。さらに、負荷圧を色彩で表示した場合には、全体の発破の適、不適を一目で判断することができる。又、クラウド操作時間の積算値TL 、負荷圧力の積算値PD 掘削に要した全作業時間の表示からも全体の発破の適、不適を判断することができる。
【0039】
次に、本発明の第2の実施の形態について説明する。
図13は本発明の第2の実施の形態に係る発破地面の掘削負荷計測装置のブロック図である。この図で、図1に示す部分と同一又は等価な部分には同一符号を付して説明を省略する。さきの第1の実施の形態では、バケットがクラウド方向に操作された場合を一律に「掘削」としたのに対して、本実施の形態では、「掘削」を、実態に即してさらに区分する。即ち、掘削作業においては、ダンプトラックの数が少ない場合には、発破地面を掘削して土石を一個所に集めておき、ダンプトラックが到着したとき、集めた土石をダンプトラックに積み込む作業態様を採用するのが通常である。本実施の形態では、「掘削」を、発破地面の掘削(実際の負荷に直結する掘削)とダンプトラックへの積込時の掘削とに区分するものであり、その区分を工程入力スイッチ25で行う。工程入力スイッチ25はDIGスイッチとLOADスイッチで構成され、DIGスイッチは発破地面掘削時にONとされ、LOADスイッチはダンプトラックへの積込掘削時にONとされる。工程入力スイッチ25以外の構成は、処理装置23およびコンピュータ30の処理手順に多少の相違があるものの、図1に示す構成と同じである。
【0040】
次に、本実施の形態の動作を図14、図15に示すフローチャートを参照して説明する。油圧ショベルのオペレータは、発破地面掘削時にはDIGスイッチを、ダンプトラックへの積込掘削時にはLOADスイッチをONとしておく。この状態で、さきの実施の形態と同じく負荷圧サンプリングプログラムが実施される。即ち、操作レバー13のクラウド方向操作が確認され、クラウド操作時間のカウント値CTLおよびバケット負荷圧PB が積算されてゆき、次いで操作レバー13がダンプ方向に操作されたとき、その操作を確認する。ここまでの動作を、さきの実施の形態では手順S20〜手順S34で行い、次いで手順S35で直ちに各データの演算出力の処理を行った。本実施の形態では、手順S34までの動作はさきの実施の形態と同じであるが、この後の動作が相違する。
【0041】
即ち、手順S34で掘削回数nが更新されたと判断されると、次に、工程スイッチ25はDIGスイッチがONになっているか、LOADスイッチがONになっているかを判断する(図14に示す手順S36)。DIGスイッチがONになっている場合には工程入力スイッチ25のフラグF25を「 1」とし(手順S37)、LOADスイッチがONになっている場合には工程入力スイッチ25のフラグF25を「 0」とし(手順S38)、処理を手順S350 へ移行する。手順S350 では、図7に示す手順S35と同一の演算により同一の各データを得るとともに、フラグF25のデータも採取して当該各データとともに無線送受信機24へ出力する。
【0042】
一方、コンピュータ30では、さきの実施の形態と同じく表示プログラムが実行され、新しいデータが入力されたと判断(手順S60)されたとき、入力された掘削位置データP6Pと今回掘削の負荷圧ΔPD (n)とを、フラグF25のデータとともに負荷圧データ領域303bに書き込むとともに、掘削位置データP6Pに相当する表示画面上の位置に×印を表示し、かつ、その近辺に今回掘削の負荷圧ΔPD (n)を表示する(手順S61)。この×印と負荷圧データの表示はさきの実施の形態と同じであるが、本実施の形態の場合、×印と負荷圧データはフラグF25のデータに応じて異なる色彩で表示される。この処理に続く手順S62、S63の処理はさきの実施の形態の処理と同じである。
【0043】
図16は表示装置の画面の一部拡大正面図である。この図で、32Dは表示装置32の表示画面を示す。PBiは発破を設けた位置の1つを示し、この発破位置PBiの周辺の掘削位置が×印で、負荷圧が数字で表示されている。なお、この場合、負荷圧は実際の負荷圧ではなく、実際の負荷圧を 0〜100 のレベルに区分したときのレベルが表示される。他の位置の表示も同様になされる。本実施の形態では、掘削位置と負荷圧レベルが、発破地面掘削と積込掘削とで異なる色彩により表示されるので、位置PBiの周辺ではフラグF25のデータが「 1」のときの(発破地面掘削時の)掘削位置および負荷圧レベルと、フラグF25のデータが「 0」のときの(積込掘削時の)掘削位置および負荷圧レベルとが、色分けされた2つのグループとして観察される。図で、32DD は発破地面掘削時のグループ、32DL は積込掘削時のグループである。
なお、表示は図16に示す表示に限らず、図12に示す態様の表示も可能である。この場合には、異なる色彩の時間と負荷圧が表示される小区分が表われることになる。
【0044】
本実施の形態の効果は、さきの実施の形態の効果に加えて、負荷圧を発破地面掘削時の負荷圧と、積込掘削時の負荷圧とに区分して表示するので、発破の適、不適の判断をより一層容易、正確に行うことができる。
【0045】
次に、本発明の第3の実施の形態を説明する。本実施の形態の全体構成は、圧力スイッチ15が除かれている点、および処理装置23およびコンピュータ30の処理手順が異なる点を除き、図1に示す構成とほぼ同じである。図17および図18は当該実施の形態に係る発破地面の掘削負荷計測を説明する図であり、図17は発破地面の断面図、図18は本実施の形態の動作を示すタイミングチャートである。
【0046】
図17で、G1 は発破地面における掘削終了地面、G2 は発破地面における未掘削地面を示す。未掘削地面G2 中、G21は発破によりほぐされた部分、G22は発破によっても充分にほぐされていない部分を示す。油圧ショベルは地面G1 の掘削が終了するとこの地面G1 を足場にして隣接する地面G2 の掘削を行う。ところで、発破は地面にドリルで孔をあけて火薬をセットすることにより行われるので、相当程度の深さまで土石を破砕するが、それでも表面に近い部分に比較して深い部分の土石の破砕は不十分となる。そして、発破が適切であったか否かは、土石の破砕の不十分な個所がどの程度存在するかにより判断される。そこで、本実施の形態では、土石の破砕が不十分な部分の掘削負荷のみを取り出して、鉱山管理事務所Bへ送信するデータを作成しようとするものである。
【0047】
以下、本実施の形態の動作を図18に示すタイミングチャートを参照して説明する。図18の(a)は操作レバーの動作を示す図であり、横軸に時間、縦軸に操作レバーの操作状態がとってある。又、図18の(b)はバケットシリンダ6Sのボトム室6SB の圧力を示す図であり、横軸に時間、縦軸に圧力がとってある。掘削開始時にスタート/ストップスイッチ22のスタートスイッチはONとされ、又、掘削中の掘削位置は、第1の実施の形態と同一方法で算出される。処理装置23は、信号 C により操作レバー13がクラウド方向に操作されたと判断すると(この判断方法は第1の実施の形態の判断方法と同じ)、圧力センサ17の検出圧力PB を取り込み、予め定められた設定圧力PS と比較し、検出圧力PB が設定圧力PS 以上であるとき、その時間を計測し(図ではこれらの時間がt1 、t2 、t3 で示されている)、かつ、回数(図の場合3回)をカウントする。なお、図で、PR はリリーフ圧を示す。これらの時間は合計され、回数とともに無線送受信機24へ出力され、コンピュータ30へ送信される。
【0048】
コンピュータ30は送信されてきたデータを負荷圧データ領域303bに格納するとともに、表示プログラムにより、表示装置32の表示画面に掘削位置を×印で表示し、かつ、この×印の近辺に上記合計時間又は回数或いは両者を表示する。又、ストップスイッチがONとなった場合には、全操作時間、全経過時間、上記合計時間の積算値又は上記回数の積算値を表示画面に表示する。
本実施の形態の効果も、さきの各実施の形態の効果と同じである。
【0049】
なお、上記各実施の形態の説明では、掘削機として図21に示すローダ型の油圧ショベルを例示したが、バックホウ型の油圧ショベルであってもよいのは当然である。又、表示装置によらず掘削負荷のデータだけでも発破の適否等を相当程度推測することができる。又、スタート/ストップスイッチは掘削機側に設置せずに鉱山管理事務所側に設置し、ここから無線送受信機によりスタート/ストップスイッチのデータを掘削機側に送信してもよい。又、第2の実施の形態における工程入力スイッチはダンプトラック側に設け、ここから掘削機へ送信してもよい。さらに、操作レバーの操作の検出に圧力スイッチの代わりに圧力センサを用い、これを処理装置に取り込み、圧力が所定値以上となったとき操作レバーが操作されたと判断するようにしてもよい。そして、当該所定値を適宜の値に設定しておけば、処理装置における操作レバーの操作の確認処理は不要となる。
【0050】
さらに、掘削位置については、GPSを用いる例について説明したが、GPSに代えてレーザ投光器と反射ミラーを用い、鉱山管理事務所から掘削機に設置した反射ミラーを追尾して、鉱山管理事務所からの相対位置を計測して掘削位置としてもよい。又、掘削位置としてバッケットピン位置をブーム角とアーム角を用いて算出する例について説明したが、掘削や積込の姿勢は大きく変化しないので、ブーム角とアーム角は用いず、ブームの回動中心から所定の距離を定めておき、これを掘削位置の算出に用いることもできる。
【0051】
【発明の効果】
以上述べたように、本発明では、発破後の地面を掘削する掘削機のバケットがクラウド方向に操作されたときに出力する信号が一定時間継続したことをもってバケットのクラウド操作を検出するクラウド操作検出手段と、このクラウド操作検出手段でクラウド操作が検出された状態での前記掘削機のバケットシリンダのボトム圧力を掘削負荷として検出する圧力検出手段とを備えた構成にしてあることから、発破を適切に行うことができる。
【図面の簡単な説明】
【図1】 本発明の第1の実施の形態に係る発破地面の掘削負荷計測装置のブロック図である。
【図2】磁気方位センサの方位を説明する図である。
【図3】図1に示す処理装置のシステム構成図である。
【図4】図1に示すコンピュータのシステム構成図である。
【図5】図1に示す装置の動作を説明するフローチャートである。
【図6】図1に示す装置の動作を説明するフローチャートである。
【図7】図1に示す装置の動作を説明するフローチャートである。
【図8】図1に示す装置の動作を説明するフローチャートである。
【図9】図1に示す装置の動作を説明するフローチャートである。
【図10】図1に示す装置の動作を説明するフローチャートである。
【図11】表示装置の画面の一部拡大正面図である。
【図12】表示装置の他の表示例を示す表示画面の正面図である。
【図13】 本発明の第2の実施の形態に係る発破地面の掘削負荷計測装置のブロック図である。
【図14】図13に示す装置の動作を説明するフローチャートである。
【図15】図13に示す装置の動作を説明するフローチャートである。
【図16】表示装置の画面の一部拡大正面図である。
【図17】発破地面の断面図である。
【図18】第3の実施の形態の動作を示すタイミングチャートである。
【図19】大規模鉱山全体の平面図である。
【図20】図19に示す1つの区域の平面図である。
【図21】油圧ショベルの側面図である。
【符号の説明】
6S バケットシリンダ
12 コントロール弁
13 操作レバー
14 パイロット弁
15、16 圧力スイッチ
17 圧力センサ
20 GPS
21 磁気方位センサ
22 スタート/ストップスイッチ
23 処理装置
24、31 無線送受信機
30 コンピュータ
32 表示装置

Claims (9)

  1. 発破後の地面を掘削する掘削機のバケットがクラウド方向に操作されたときに出力する信号が一定時間継続したことをもってバケットのクラウド操作を検出するクラウド操作検出手段と、このクラウド操作検出手段でクラウド操作が検出された状態での前記掘削機のバケットシリンダのボトム圧力を掘削負荷として検出する圧力検出手段とを備えていることを特徴とする発破地面の掘削負荷計測装置。
  2. 請求項1記載の発破地面の掘削負荷計測装置において、前記掘削機の掘削時間を検出する掘削時間検出手段を設けたことを特徴とする発破地面の掘削負荷計測装置。
  3. 発破後の地面を掘削する掘削機のバケットがクラウド方向に操作されたときに出力する信号が一定時間継続したことをもってバケットのクラウド操作を検出するクラウド操作検出手段と、前記掘削機による積込工程を判定する積込工程判定手段と、前記クラウド操作検出手段でクラウド操作が検出された状態での前記掘削機のバケットシリンダのボトム圧力を掘削負荷として検出する圧力検出手段と、この圧力検出手段により検出された掘削負荷を前記積込工程判定手段で判定された積込工程における掘削負荷とそれ以外の工程における掘削負荷とに分ける分類手段とを備えていることを特徴とする発破地面の掘削負荷計測装置。
  4. 発破後の地面を掘削する掘削機のバケットがクラウド方向に操作されたときに出力する信号が一定時間継続したことをもってバケットのクラウド操作を検出するクラウド操作検出手段と、このクラウド操作検出手段でクラウド操作が検出された状態での前記掘削機のバケットシリンダのボトム圧力が予め設定された設定圧力以上になったときこれを掘削負荷として検出する設定圧力検出手段とを備えていることを特徴とする発破地面の掘削負荷計測装置。
  5. 請求項4記載の発破地面の掘削負荷計測装置において、前記設定圧力検出手段により設定圧力以上の圧力が検出された時間又は回数を求める負荷量検出手段を設けたことを特徴とする発破地面の掘削負荷計測装置。
  6. 請求項1又は請求項2記載の発破地面の掘削負荷計測装置において、前記掘削機の掘削位置を検出する掘削位置検出手段と、前記圧力検出手段により検出された掘削負荷又はこれに対応する値或いはこれに対応する色彩、および前記掘削位置検出手段で検出された掘削位置を表示する表示手段とを設けたことを特徴とする発破地面の掘削負荷計測装置。
  7. 請求項3記載の発破地面の掘削負荷計測装置において、前記掘削機の掘削位置を検出する掘削位置検出手段と、前記圧力検出手段により検出された掘削負荷又はこれに対応する値或いはこれに対応する色彩を前記積込工程判定手段で判定された積込工程とそれ以外の工程とに分けて表示するとともに、前記掘削位置検出手段で検出された掘削位置を表示する表示手段とを設けたことを特徴とする発破地面の掘削負荷計測装置。
  8. 請求項5記載の発破地面の掘削負荷計測装置において、前記掘削機の掘削位置を検出する掘削位置検出手段と、前記負荷量検出手段により検出された時間又は回数或いはこれに対応する色彩、および前記掘削位置検出手段で検出された掘削位置を表示する表示手段とを備えていることを特徴とする発破地面の掘削負荷計測装置。
  9. 請求項6乃至請求項8のいずれか1項記載の発破地面の掘削負荷計測装置において、前記表示手段は、発破位置を記憶し、かつ、これを任意に表示することを特徴とする発破地面の掘削負荷計測装置。
JP22381396A 1996-08-26 1996-08-26 発破地面の掘削負荷計測装置 Expired - Fee Related JP3824715B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP22381396A JP3824715B2 (ja) 1996-08-26 1996-08-26 発破地面の掘削負荷計測装置
DE19780904T DE19780904T1 (de) 1996-08-26 1997-08-26 Meß- und Anzeigesystem für anliegende Lasten beim Baggern von gesprengter Erde
US09/065,064 US6122598A (en) 1996-08-26 1997-08-26 Measurement and display of load of excavating blasted ground
PCT/JP1997/002968 WO1998009026A1 (fr) 1996-08-26 1997-08-26 Mesure et affichage de la charge d'excavation de la terre abattue
AU38696/97A AU705565B2 (en) 1996-08-26 1997-08-26 Measuring and display system for loads applied upon digging blasted earth

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22381396A JP3824715B2 (ja) 1996-08-26 1996-08-26 発破地面の掘削負荷計測装置

Publications (2)

Publication Number Publication Date
JPH1060954A JPH1060954A (ja) 1998-03-03
JP3824715B2 true JP3824715B2 (ja) 2006-09-20

Family

ID=16804131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22381396A Expired - Fee Related JP3824715B2 (ja) 1996-08-26 1996-08-26 発破地面の掘削負荷計測装置

Country Status (5)

Country Link
US (1) US6122598A (ja)
JP (1) JP3824715B2 (ja)
AU (1) AU705565B2 (ja)
DE (1) DE19780904T1 (ja)
WO (1) WO1998009026A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7912612B2 (en) * 2007-11-30 2011-03-22 Caterpillar Inc. Payload system that compensates for rotational forces
US8660758B2 (en) * 2007-11-30 2014-02-25 Caterpillar Inc. Payload system with center of gravity compensation
WO2013015300A1 (ja) * 2011-07-25 2013-01-31 株式会社クボタ 作業機、作業機のデータ通信システム、作業機の作動システム及び作業機の設定変更システム
US9211832B1 (en) * 2012-05-16 2015-12-15 S.A.S. Of Luxemburg, Ltd. Salvage hold down attachment for excavators
JP6615473B2 (ja) * 2015-03-27 2019-12-04 住友建機株式会社 ショベル
US20210078667A1 (en) * 2018-07-04 2021-03-18 Chad Wilson System and method for Balancing a Bicycle

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR910002234B1 (ko) * 1982-12-01 1991-04-08 히다찌 겡끼 가부시기가이샤 적하 이송장치의 적하중량 표시장치
CA1248147A (en) * 1985-06-07 1989-01-03 James R. Blair Determining of the amount of material delivered each operational cycle of a shovel loader
US4919222A (en) * 1989-03-15 1990-04-24 Caterpillar Inc. Dynamic payload monitor
US5105896A (en) * 1991-03-05 1992-04-21 Caterpillar Inc. Dynamic payload monitor
JPH07158105A (ja) * 1993-12-09 1995-06-20 Shin Caterpillar Mitsubishi Ltd ショベル系建設機械の掘削制御装置
JPH07259137A (ja) * 1994-03-23 1995-10-09 Caterpillar Inc 掘削機械のペイロードを求める方法
US5404661A (en) * 1994-05-10 1995-04-11 Caterpillar Inc. Method and apparatus for determining the location of a work implement
US5850341A (en) * 1994-06-30 1998-12-15 Caterpillar Inc. Method and apparatus for monitoring material removal using mobile machinery
US5438771A (en) * 1994-05-10 1995-08-08 Caterpillar Inc. Method and apparatus for determining the location and orientation of a work machine
US5553407A (en) * 1995-06-19 1996-09-10 Vermeer Manufacturing Company Excavator data acquisition and control system and method of use
US5806016A (en) * 1996-03-28 1998-09-08 Caterpillar Inc. Method for determining the course of a machine
US5844800A (en) * 1996-12-18 1998-12-01 Caterpillar Inc. Shot-rock diggability monitor
US5968103A (en) * 1997-01-06 1999-10-19 Caterpillar Inc. System and method for automatic bucket loading using crowd factors

Also Published As

Publication number Publication date
DE19780904T1 (de) 1998-11-05
JPH1060954A (ja) 1998-03-03
AU705565B2 (en) 1999-05-27
AU3869697A (en) 1998-03-19
WO1998009026A1 (fr) 1998-03-05
US6122598A (en) 2000-09-19

Similar Documents

Publication Publication Date Title
US7513070B2 (en) Work support and management system for working machine
AU750246B2 (en) Method for determining and displaying the position of a truck during material removal
US5850341A (en) Method and apparatus for monitoring material removal using mobile machinery
US6711838B2 (en) Method and apparatus for determining machine location
AU683165B2 (en) Method and apparatus for determining the location of a work implement
US20040210370A1 (en) Method and apparatus for displaying an excavation to plan
US5996702A (en) System for monitoring movement of a vehicle tool
AU2006201412B2 (en) Work machine having boundary tracking system
US20210110488A1 (en) Construction site management device, output device, and construction site management method
JP3824715B2 (ja) 発破地面の掘削負荷計測装置
JP4642288B2 (ja) 地下埋設物掘削システム
KR101629716B1 (ko) 굴삭작업을 위한 좌표측량 시스템 및 그 방법
CN102797461B (zh) 用于监控线缆铲机的操作的方法和系统
AU2017276332A1 (en) Method and system for positioning a truck for loading
JP3652062B2 (ja) 発破地面の自動掘削負荷計測装置
JP3723660B2 (ja) 掘削負荷計測表示装置
JP3118173B2 (ja) 測地システム
JP2019101697A (ja) 施工管理装置および施工管理方法
JP2922832B2 (ja) 測地システム
WO2024106423A1 (ja) 建設機械の作業管理方法
JPH0754003B2 (ja) バックホウの掘削位置自動検出装置
Carter Mining with precision
CN116096972A (zh) 作业机械
AU698674B2 (en) A system for monitoring movement of a vehicle tool
CN118115013A (zh) 用于确定土方施工现场中特定位置竣工绩效值的方法

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060620

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060628

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090707

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100707

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110707

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120707

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130707

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees