JP3820787B2 - Sputtering target and manufacturing method thereof - Google Patents

Sputtering target and manufacturing method thereof Download PDF

Info

Publication number
JP3820787B2
JP3820787B2 JP00267799A JP267799A JP3820787B2 JP 3820787 B2 JP3820787 B2 JP 3820787B2 JP 00267799 A JP00267799 A JP 00267799A JP 267799 A JP267799 A JP 267799A JP 3820787 B2 JP3820787 B2 JP 3820787B2
Authority
JP
Japan
Prior art keywords
sputtering target
work
target
sputtering
affected layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP00267799A
Other languages
Japanese (ja)
Other versions
JP2000204467A (en
Inventor
秀行 高橋
建夫 大橋
和広 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Mining Holdings Inc
Original Assignee
Nippon Mining and Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining and Metals Co Ltd filed Critical Nippon Mining and Metals Co Ltd
Priority to JP00267799A priority Critical patent/JP3820787B2/en
Priority to TW088121042A priority patent/TW533248B/en
Priority to DE69940878T priority patent/DE69940878D1/en
Priority to EP99124348A priority patent/EP1018566B1/en
Priority to US09/459,805 priority patent/US6284111B1/en
Priority to KR1020000000238A priority patent/KR100319222B1/en
Publication of JP2000204467A publication Critical patent/JP2000204467A/en
Priority to US09/864,703 priority patent/US20010030172A1/en
Application granted granted Critical
Publication of JP3820787B2 publication Critical patent/JP3820787B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3488Constructional details of particle beam apparatus not otherwise provided for, e.g. arrangement, mounting, housing, environment; special provisions for cleaning or maintenance of the apparatus
    • H01J37/3491Manufacturing of targets
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
この発明は、スパッタリングターゲットの表面の加工変質層を実質的に除去し、なおかつその表面をスパッタリングに適した表面状態とすることにより,スパッタリング開始の初期段階から安定した成膜速度になり、プレスパッタに必要な積算投入電力量が少ないスパッタリングターゲットおよびその製造方法に関する。
【0002】
【従来の技術】
従来、スパッタリングターゲットは、切削、研削、研磨などの機械加工を施してその表面が仕上げられている。
このような機械加工は金属結晶粒を物理的に破壊しながら強制的に加工するという性質上、加工変質層と呼ばれる歪みおよび欠陥がターゲット表層部に多量に残存するようになる。
【0003】
スパッタリングは陰極に設置したターゲットに、Ar+などの正イオンを物理的に衝突させてターゲットを構成する金属原子をその衝突エネルギーで放出させる手法であるため、金属原子の結晶内での並び方(結晶方位)により金属原子自身の放出され易さが異なる。
上記のように加工変質層が残存したスパッタリングターゲットでは、ある程度使い込んで、初めて安定した表面状態が得られ、成膜速度が安定することになる。
このため、加工変質層が存在する間、成膜速度が安定せず、プレスパッタリングに必要な積算投入電力量が多くなるという結果になる。
【0004】
このようなことから、ターゲット表面にエッチング処理を施し加工変質層を除去する方法(特開平7−118842)が提案されている。
しかし、このような方法で加工変質層を除去するために適当な条件で荒くエッチングしたのでは、プレスパッタリングに必要な積算投入電力量を十分に低減できないという問題がある。
【0005】
【発明が解決しょうとする課題】
本発明は、上記の問題点の解決、特に成膜速度の早期安定を実現したもので、スパッタリングターゲット使用開始のごく初期の段階から安定した成膜速度を実現するために、所定の表面状態としたスパッタリングターゲットおよびその製造方法を提供することを目的としたものである。
【0006】
【課題を解決するための手段】
上記問題点を解決するために本発明者らは鋭意研究の結果、次の知見を得た。
スパッタリングターゲットを使い込み成膜速度が安定した状態では、スパッタリングにより金属原子の放出され易い結晶面がミクロにターゲットのエロージョンされる面を覆い、スパッタリングが進んでも次から次にそのような結晶面が現れるように進行する。
ターゲット表面粗さを限りなく小さく、例えば鏡面化しても、スパッタされ易い結晶面で表面が覆われていなければ、たとえ加工変質層がない状態でも成膜速度が安定するまでの積算投入電力量を完全にはゼロにはできない(後述の比較例(ハ)の挙動から)。
加工変質層が残存しているとその部分をスパッタしているときの成膜速度が安定時より大きくなるので、加工変質層を実質的にゼロにする必要がある。
加工変質層がなくてもターゲット表面が荒れすぎると、スパッタされ易い結晶表面で表面が覆われた状態とならず、そのような状態になるまでプレスパッタしなければならない(後述の比較例(ホ)の挙動から)。
加工変質層が少なくなるような精密機械加工をした後、エッチングにより加工変質層を実質的にゼロにし、さらにスパッタされ易い結晶面で表面が覆われた状態に近い状態になるまでエッチングすることにより、成膜速度が安定するまでの積算投入電力量の少ないターゲットが得られる。
【0007】
本発明は上記知見に基づき、
1.スパッタリングターゲットのエロージョンされる表面に機械加工による加工変質層が実質的になく、さらにその面の中心線平均粗さ(Ra)で規定される表面粗さが、ターゲットを構成する素材の平均結晶粒径の1%から10%であり、Raが0.4μm〜4μmの範囲にあることを特徴とするスパッタリングターゲット
2.スパッタリングターゲットのエロージョンされる面を精密機械加工により加工変質層を低減した後、エッチング処理により該表面の中心線平均粗さRaで規定される表面粗さを、ターゲットを構成する素材の平均結晶粒径の1%から10%とし、Raを0.4μm〜4μmの範囲とすることを特徴とするスパッタリングターゲットの製造方法
3.精密機械加工による低減後の加工変質層の厚さが20ミクロン以下であることを特徴とする上記2記載のスパッタリングターゲットの製造方法
、を提供するものである。
【0008】
【発明の実施の形態】
次に、本発明を実施例及び比較例並びに図面に基づいて詳細に説明する。
(実施例及び比較例)
試験には純度99.995wt%、平均結晶粒径40μmのTiターゲットを用いた。表面仕上げ状態として、(イ)通常の旋盤加工仕上げ、(ロ)通常の旋盤加工+湿式研磨加工仕上げ、(ハ)精密旋盤加工仕上げ、(ニ)精密旋盤加工+湿式研磨加工+化学エッチング処理仕上げ、(ホ)精密旋盤加工+化学エッチング(エッチング量が大)の5種類の試料を用意した。
各試料の諸元を表1に示す。表1から分かるように、(ニ)は本発明の実施例であり、(イ)、(ロ)、(ハ)、(ホ)は比較例である。
表面粗さは接触式粗さ測定器、加工変質層厚さはエックス線回折測定装置にて評価した。
化学エッチングはフッ酸5vol%、硝酸15vol%、水80vol%の混合溶液に60秒浸し実施した。
【0009】
【表1】

Figure 0003820787
【0010】
積算電力量に対する成膜速度を図1に示す。(イ)、(ロ)についてはスパッタされやすい加工変質層が厚く、スパッタリングターゲットの使用初期において成膜速度が速くなっている。
すなわち(イ)は加工変質層が多く残っているため、初期の成膜速度が速く、積算電力量が約20kWhで成膜速度がほぼ安定(定常)状態に達している。
(ロ)については、(イ)に比較して加工変質層が減少している分だけ成膜速度が安定状態に達する積算電力量が減少し、約10kWhで成膜速度がほぼ安定状態に達している。
【0011】
それに対して、(ハ)は加工変質層が(イ)に比べ薄く(20ミクロン)良好な表面に近づいたが、表面粗さが小さく(鏡面化し)、このため使用初期においてはむしろスパッタされにくく、成膜速度が遅くなっている(この場合、ターゲットの中心線平均粗さRaは、同平均結晶粒径の0.25%である)。
その後加工変質層が20ミクロン程度残っているため一旦成膜速度が増し、その後積算電力量約16kWhでほぼ安定化している。このように成膜速度が変動するのは好ましくない。
また、本発明の実施例である(ニ)はエッチングにより加工変質層が殆ど除去されており、最表面の自然酸化層が除去される1kWhまで成膜速度が遅いが、その後は非常に安定していることがわかる(この場合、ターゲットの中心線平均粗さRaは、同平均結晶粒径の1.75%である)。
本発明のターゲットは、このようにしてスパッタリングターゲット使用開始のごく初期の段階から安定した成膜速度が得られていることが分かる。
また、比較例(ホ)は加工変質層はないがエッチング量が多く、表面粗さが大きいため、使用初期において成膜速度が遅くなっており、その後積算電力量約14kWhでほぼ安定している。
【0012】
以上の通り、スパッタリングターゲット表面の加工層を低減した後、その表面をスパッタに適した秩序ある結晶面で覆われた状態に近い状態になるように適度なエッチングを行ったものは、使用初期から成膜速度は安定している。
次に、中心線平均表面粗さRa、中心線平均粗さRaと粒径の比及び成膜速度が安定に至るまでの積算電力量の関係を表2に示す。表2のA、B、F及びGは比較例、表2のCは参考例、D及びEは本発明の実施例である。
【0013】
【表2】
Figure 0003820787
【0014】
比較例A、Bは上記比較例(ハ)の表面粗さをさらに小さく、すなわち鏡面化したものである。比較例Bの成膜速度が安定するまでの積算電力量は約16kWhであり、比較例(ハ)とほぼ同じであるが、さらに鏡面化した比較例Aの積算電力量は約20kWhと多くなっている。
また、参考例C、実施例D、E及び比較例F、Gは実施例(ニ)でのエッチング時間を変えることにより表面粗さを変化させたものであり、比較例Fは比較例(ホ)に該当する。
【0015】
参考例C、実施例D、E及び比較例F、Gの成膜速度が安定するまでの積算電力量はそれぞれ8、2、3、14、18kWhであり、粒径に対する中心線平均粗さRaの比が1%以上10%以下の範囲が最も良いことが分かる。
このことからも、過剰なエッチングでは良好な成膜速度がより安定化したターゲット素材が得られるものでないことが分かる。
【0016】
このように、本発明はスパッタリングの定常状態に近似する表面をターゲットの作製当初に実現するものであり、スパッタリングターゲットの面をむしろ多少凹凸のある結晶粒の地はだが表面に露出した面とするものである。
このようにして作製されたターゲットは、通常のスパッタリングにおいてスパッタリングが進行し、定常状態になったスパッタ面と同等の面あるいは近似した面となる。
【0017】
【発明の効果】
以上から、本発明においては、加工変質層の殆どを除去するとともに、なおかつその表面を単に鏡面加工するということではなく、むしろ凹凸のある結晶粒の地膚が露出するようなスパッタリングに適した定常状態に近い状態にすることにより、スパッタリング初期から安定した成膜速度となるスパッタリングターゲットを提供することができる。
【図面の簡単な説明】
【図1】実施例及び比較例の積算電力量に対する成膜速度の関係を示すグラフである。[0001]
In the present invention, the work-affected layer on the surface of the sputtering target is substantially removed and the surface is brought into a surface state suitable for sputtering, so that a stable film formation speed can be obtained from the initial stage of sputtering, and pre-sputtering can be performed. The present invention relates to a sputtering target and a method for manufacturing the same that require a small amount of integrated input power.
[0002]
[Prior art]
Conventionally, the surface of a sputtering target is finished by performing machining such as cutting, grinding, and polishing.
Such machining is due to the property of forcibly processing metal crystal grains while physically destroying them, so that a large amount of distortion and defects called a work-affected layer remain in the target surface layer portion.
[0003]
Sputtering is a technique in which positive ions such as Ar + are physically collided with a target placed on the cathode, and metal atoms constituting the target are released with the collision energy. The ease with which metal atoms are released depends on the orientation.
As described above, in the sputtering target in which the work-affected layer remains, a stable surface state is obtained only after being used to some extent, and the film formation rate becomes stable.
For this reason, while the work-affected layer exists, the film formation rate is not stable, resulting in an increase in the amount of integrated input power necessary for pre-sputtering.
[0004]
For this reason, a method (Japanese Patent Laid-Open No. 7-118842) has been proposed in which the target surface is etched to remove the work-affected layer.
However, if the rough etching is performed under appropriate conditions to remove the work-affected layer by such a method, there is a problem that the accumulated input electric power required for pre-sputtering cannot be sufficiently reduced.
[0005]
[Problems to be solved by the invention]
The present invention is a solution to the above-described problems, in particular, an early stabilization of the deposition rate. In order to realize a stable deposition rate from the very initial stage of using the sputtering target, An object of the present invention is to provide a sputtering target and a manufacturing method thereof.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, the present inventors have obtained the following knowledge as a result of intensive studies.
In a state where the sputtering target is used and the film formation rate is stable, the crystal plane where metal atoms are likely to be released by sputtering covers the surface on which the target is eroded microscopically. Proceed to appear.
Even if the target surface roughness is as small as possible, for example, even if it is mirror-finished, and the surface is not covered with a crystal plane that is easily sputtered, the integrated input electric energy until the deposition rate is stabilized even in the absence of a work-affected layer It cannot be completely zero (from the behavior of comparative example (c) described later).
If the work-affected layer remains, the film-forming speed when the portion is sputtered becomes higher than that at the time of stabilization, so that the work-affected layer needs to be made substantially zero.
Even if there is no work-affected layer, if the surface of the target is too rough, the surface is not covered with a crystal surface that is easily sputtered, and pre-sputtering must be performed until such a state is reached (Comparative Example (H) ) From the behavior).
After precision machining that reduces the number of work-affected layers, the work-affected layer is made substantially zero by etching, and etching is performed until the surface is almost covered with a crystal surface that is easily sputtered. A target with a small amount of integrated input power until the film formation rate is stabilized can be obtained.
[0007]
The present invention is based on the above findings.
1. The surface to be eroded of the sputtering target is substantially free from a work-affected layer by machining, and the surface roughness defined by the centerline average roughness (Ra) of the surface is the average grain size of the material constituting the target. from 10% to 1% of the diameter, the sputtering target 2 which Ra is characterized by a range near Rukoto of 0.4Myuemu~4myuemu. After reducing the work-affected layer by precision machining the surface to be eroded of the sputtering target, the surface roughness defined by the centerline average roughness Ra of the surface is determined by etching, and the average crystal grain of the material constituting the target 2. A method for producing a sputtering target, wherein the diameter is 1% to 10% and Ra is in the range of 0.4 μm to 4 μm . The method for producing a sputtering target according to the above item 2, wherein the thickness of the work-affected layer after reduction by precision machining is 20 microns or less.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Next, the present invention will be described in detail based on examples and comparative examples and drawings.
(Examples and Comparative Examples)
In the test, a Ti target having a purity of 99.995 wt% and an average crystal grain size of 40 μm was used. Surface finishing conditions are (a) normal lathe finishing, (b) normal lathe machining + wet polishing finish, (c) precision lathe finishing, (d) precision lathe machining + wet polishing + chemical etching finish. (E) Five types of samples were prepared: precision lathe machining + chemical etching (large etching amount).
Table 1 shows the specifications of each sample. As can be seen from Table 1, (d) is an example of the present invention, and (a), (b), (c), and (e) are comparative examples.
The surface roughness was evaluated with a contact-type roughness measuring instrument, and the work-affected layer thickness was evaluated with an X-ray diffractometer.
Chemical etching was performed by immersing in a mixed solution of 5 vol% hydrofluoric acid, 15 vol% nitric acid, and 80 vol% water for 60 seconds.
[0009]
[Table 1]
Figure 0003820787
[0010]
Figure 1 shows the deposition rate with respect to the integrated power consumption. Regarding (a) and (b), the work-affected layer that is easily sputtered is thick, and the film formation rate is high in the initial use of the sputtering target.
That is, in (A), since a large number of work-affected layers remain, the initial film formation rate is high, and the film formation rate reaches a substantially stable (steady) state at an integrated power amount of about 20 kWh.
As for (b), compared to (a), the integrated power amount at which the film formation rate reaches a stable state is reduced by the amount of the work-affected layer being reduced, and the film formation rate reaches an almost stable state at about 10 kWh. ing.
[0011]
On the other hand, in (c), the work-affected layer was thinner (20 microns) than (a) and approached a good surface, but the surface roughness was small (mirrored), so it was rather difficult to be sputtered at the beginning of use. The film formation rate is slow (in this case, the center line average roughness Ra of the target is 0.25% of the average crystal grain size).
After that, since the work-affected layer remains about 20 microns, the film formation rate once increases, and then is stabilized almost at an integrated power amount of about 16 kWh. It is not preferable that the film formation rate fluctuates in this way.
In the example (d) of the present invention, the work-affected layer was almost removed by etching, and the film formation rate was slow up to 1 kWh where the outermost natural oxide layer was removed, but after that, it was very stable. (In this case, the center line average roughness Ra of the target is 1.75% of the average crystal grain size).
In this way, it can be seen that the target of the present invention has obtained a stable film formation rate from the very initial stage of the start of using the sputtering target.
In Comparative Example (e), there is no work-affected layer, but the etching amount is large and the surface roughness is large. Therefore, the film formation rate is slow in the initial stage of use, and then it is almost stable at an integrated power amount of about 14 kWh. .
[0012]
As described above, after reducing the number of processed layers on the surface of the sputtering target, those that have been appropriately etched so that the surface is close to the state covered with an ordered crystal plane suitable for sputtering are used from the beginning of use. The film formation rate is stable.
Next, Table 2 shows the relationship between the center line average surface roughness Ra, the ratio between the center line average roughness Ra and the particle diameter, and the integrated electric energy until the film formation speed becomes stable. In Table 2, A, B, F and G are comparative examples, C in Table 2 is a reference example, and D and E are examples of the present invention.
[0013]
[Table 2]
Figure 0003820787
[0014]
In Comparative Examples A and B, the surface roughness of the above Comparative Example (C) is further reduced, that is, mirror-finished. The integrated electric energy until the film forming speed of Comparative Example B is stabilized is about 16 kWh, which is substantially the same as Comparative Example (c), but the integrated electric energy of Comparative Example A that is further mirrored is about 20 kWh. ing.
Reference Example C, Examples D and E, and Comparative Examples F and G were obtained by changing the surface roughness by changing the etching time in Example (d). )
[0015]
The integrated electric energy until the film formation rates of Reference Example C, Examples D and E and Comparative Examples F and G are stabilized is 8, 2, 3, 14, and 18 kWh, respectively, and the center line average roughness Ra with respect to the particle diameter It can be seen that the ratio of 1% to 10% is the best .
From this, it can be seen that excessive etching does not provide a target material in which a good film formation rate is further stabilized.
[0016]
In this way, the present invention realizes a surface that approximates the steady state of sputtering at the beginning of the production of the target, and the surface of the sputtering target is a surface with a slightly uneven surface but exposed to the surface. Is.
The target thus produced becomes a surface equivalent to or close to the sputter surface that has been in a steady state due to the progress of sputtering in normal sputtering.
[0017]
【The invention's effect】
From the above, in the present invention, most of the work-affected layer is removed, and the surface is not simply mirror-finished, but rather is a steady state suitable for sputtering that exposes the surface of uneven crystal grains. By making the state close to the state, it is possible to provide a sputtering target having a stable film formation rate from the initial stage of sputtering.
[Brief description of the drawings]
FIG. 1 is a graph showing a relationship of film forming speed with respect to integrated electric energy in Examples and Comparative Examples.

Claims (3)

4μm〜400μmの平均結晶粒径を持つ高純度チタンからなるスパッタリングターゲットのエロージョンされる表面に機械加工による加工変質層が実質的になく、さらにその面の中心線平均粗さ(Ra)で規定される表面粗さが、ターゲットを構成する素材の平均結晶粒径の1%から10%であり、Raが0.4μm〜4μmの範囲にあることを特徴とする高純度チタンからなるスパッタリングターゲット。 The surface to be eroded of the sputtering target made of high purity titanium having an average crystal grain size of 4 μm to 400 μm is substantially free from a work-affected layer by machining, and is defined by the centerline average roughness (Ra) of the surface. A sputtering target made of high-purity titanium , wherein the surface roughness is 1% to 10% of the average crystal grain size of the material constituting the target, and Ra is in the range of 0.4 μm to 4 μm. 4μm〜400μmの平均結晶粒径を持つ高純度チタンからなるスパッタリングターゲットのエロージョンされる面を精密機械加工により加工変質層を低減した後、エッチング処理により該面の中心線平均粗さRaで規定される表面粗さを、ターゲットを構成する素材の平均結晶粒径の1%から10%とし、Raを0.4μm〜4μmの範囲とすることを特徴とする高純度チタンからなるスパッタリングターゲットの製造方法。After reducing the damaged layer by precision machining a surface to be eroded of the sputtering target made of high purity titanium having an average grain size of 4Myuemu~400myuemu, defined by the center line average roughness Ra of said surface by an etching process The manufacturing method of a sputtering target made of high-purity titanium , characterized in that the surface roughness is 1% to 10% of the average crystal grain size of the material constituting the target and Ra is in the range of 0.4 μm to 4 μm . 精密機械加工による低減後の加工変質層の厚さが20ミクロン以下であることを特徴とする請求項2記載の高純度チタンからなるスパッタリングターゲットの製造方法。The method for producing a sputtering target comprising high-purity titanium according to claim 2, wherein the thickness of the work-affected layer after reduction by precision machining is 20 microns or less.
JP00267799A 1999-01-08 1999-01-08 Sputtering target and manufacturing method thereof Expired - Lifetime JP3820787B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP00267799A JP3820787B2 (en) 1999-01-08 1999-01-08 Sputtering target and manufacturing method thereof
TW088121042A TW533248B (en) 1999-01-08 1999-12-02 Sputtering target and method for the manufacture thereof
EP99124348A EP1018566B1 (en) 1999-01-08 1999-12-06 Sputtering target and method for the manufacture thereof
DE69940878T DE69940878D1 (en) 1999-01-08 1999-12-06 Sputtering target and method of making such a target
US09/459,805 US6284111B1 (en) 1999-01-08 1999-12-13 Sputtering target free of surface-deformed layers
KR1020000000238A KR100319222B1 (en) 1999-01-08 2000-01-05 Sputtering target and method for manufacture thereof
US09/864,703 US20010030172A1 (en) 1999-01-08 2001-05-24 Sputtering target and method for the manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00267799A JP3820787B2 (en) 1999-01-08 1999-01-08 Sputtering target and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2000204467A JP2000204467A (en) 2000-07-25
JP3820787B2 true JP3820787B2 (en) 2006-09-13

Family

ID=11535947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00267799A Expired - Lifetime JP3820787B2 (en) 1999-01-08 1999-01-08 Sputtering target and manufacturing method thereof

Country Status (6)

Country Link
US (2) US6284111B1 (en)
EP (1) EP1018566B1 (en)
JP (1) JP3820787B2 (en)
KR (1) KR100319222B1 (en)
DE (1) DE69940878D1 (en)
TW (1) TW533248B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4709358B2 (en) * 2000-08-30 2011-06-22 株式会社東芝 Sputtering target and sputtering apparatus, thin film, and electronic component using the same
WO2002020865A1 (en) * 2000-09-07 2002-03-14 Kabushiki Kaisha Toshiba Tungsten spattering target and method of manufacturing the target
US20050072668A1 (en) * 2003-10-06 2005-04-07 Heraeus, Inc. Sputter target having modified surface texture
US20050236270A1 (en) * 2004-04-23 2005-10-27 Heraeus, Inc. Controlled cooling of sputter targets
US7666323B2 (en) 2004-06-09 2010-02-23 Veeco Instruments Inc. System and method for increasing the emissivity of a material
US20060268284A1 (en) * 2005-03-01 2006-11-30 Zhiguo Zhang Method and apparatus for surface roughness measurement
JP2006316339A (en) * 2005-04-12 2006-11-24 Kobe Steel Ltd Aluminum-based sputtering target
US9127362B2 (en) 2005-10-31 2015-09-08 Applied Materials, Inc. Process kit and target for substrate processing chamber
US8647484B2 (en) 2005-11-25 2014-02-11 Applied Materials, Inc. Target for sputtering chamber
US20070215463A1 (en) * 2006-03-14 2007-09-20 Applied Materials, Inc. Pre-conditioning a sputtering target prior to sputtering
US20080110746A1 (en) * 2006-11-09 2008-05-15 Kardokus Janine K Novel manufacturing design and processing methods and apparatus for sputtering targets
US20080121516A1 (en) * 2006-11-29 2008-05-29 Jaydeep Sarkar Method and apparatus for treating sputtering target to reduce burn-in time and sputtering targets made thereby
KR20150047637A (en) * 2007-01-29 2015-05-04 토소우 에스엠디, 인크 Ultra smooth face sputter targets and methods of producing same
WO2008134516A2 (en) 2007-04-27 2008-11-06 Honeywell International Inc. Novel manufacturing design and processing methods and apparatus for sputtering targets
US8968536B2 (en) 2007-06-18 2015-03-03 Applied Materials, Inc. Sputtering target having increased life and sputtering uniformity
JP4833942B2 (en) * 2007-08-29 2011-12-07 株式会社コベルコ科研 Ag-based alloy sputtering target
US7901552B2 (en) 2007-10-05 2011-03-08 Applied Materials, Inc. Sputtering target with grooves and intersecting channels
WO2013070679A1 (en) 2011-11-08 2013-05-16 Tosoh Smd, Inc. Silicon sputtering target with special surface treatment and good particle performance and methods of making the same
JP6077102B2 (en) 2013-03-06 2017-02-08 Jx金属株式会社 Titanium target for sputtering and manufacturing method thereof

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4750932A (en) 1985-04-15 1988-06-14 Gte Products Corporation Refractory metal silicide sputtering target
US4663120A (en) 1985-04-15 1987-05-05 Gte Products Corporation Refractory metal silicide sputtering target
US5294321A (en) 1988-12-21 1994-03-15 Kabushiki Kaisha Toshiba Sputtering target
JPH03257158A (en) 1990-03-07 1991-11-15 Toshiba Corp Sputtering target
DE69117868T2 (en) 1990-05-15 1996-07-25 Toshiba Kawasaki Kk SPRAYING TARGET AND THEIR PRODUCTION
JPH05214523A (en) 1992-02-05 1993-08-24 Toshiba Corp Sputtering target and its manufacture
US5464520A (en) 1993-03-19 1995-11-07 Japan Energy Corporation Silicide targets for sputtering and method of manufacturing the same
JP2794382B2 (en) 1993-05-07 1998-09-03 株式会社ジャパンエナジー Silicide target for sputtering and method for producing the same
EP0634498A1 (en) 1993-07-16 1995-01-18 Applied Materials, Inc. Etched sputtering target and process
US5772860A (en) * 1993-09-27 1998-06-30 Japan Energy Corporation High purity titanium sputtering targets
US5630918A (en) 1994-06-13 1997-05-20 Tosoh Corporation ITO sputtering target
JPH10158829A (en) * 1996-12-04 1998-06-16 Sony Corp Production of assembly of sputtering target
JP3755559B2 (en) * 1997-04-15 2006-03-15 株式会社日鉱マテリアルズ Sputtering target
JP3129233B2 (en) * 1997-05-09 2001-01-29 三菱マテリアル株式会社 Sputtering target for forming a high dielectric film comprising a composite oxide sintered body of Ba, Sr and Ti
US5993621A (en) * 1997-07-11 1999-11-30 Johnson Matthey Electronics, Inc. Titanium sputtering target
JPH1180942A (en) * 1997-09-10 1999-03-26 Japan Energy Corp Ta sputtering target, its production and assembled body
US6139701A (en) * 1997-11-26 2000-10-31 Applied Materials, Inc. Copper target for sputter deposition

Also Published As

Publication number Publication date
DE69940878D1 (en) 2009-06-25
KR20000053385A (en) 2000-08-25
KR100319222B1 (en) 2002-01-05
EP1018566A2 (en) 2000-07-12
EP1018566A3 (en) 2003-04-16
US20010030172A1 (en) 2001-10-18
TW533248B (en) 2003-05-21
US6284111B1 (en) 2001-09-04
EP1018566B1 (en) 2009-05-13
JP2000204467A (en) 2000-07-25

Similar Documents

Publication Publication Date Title
JP3820787B2 (en) Sputtering target and manufacturing method thereof
US6024852A (en) Sputtering target and production method thereof
JP4833515B2 (en) Powder metallurgy tantalum sputtering target with textured grains
CN101376963A (en) Ag-based alloy sputtering target
EP1115584B1 (en) Method of manufacturing enhanced finish sputtering targets
TWI623634B (en) Silicon sputtering target with special surface treatment and good particle performance and methods of making the same
JP3152108B2 (en) ITO sputtering target
KR100727243B1 (en) Sputtering target and method for finishing surface of such target
EP0402568B1 (en) Method of manufacturing a titanium magnetic disk substrate
JP2001316808A (en) Sputtering target
JP4495855B2 (en) Titanium sputtering target and manufacturing method thereof
JP4709358B2 (en) Sputtering target and sputtering apparatus, thin film, and electronic component using the same
JP2000239835A (en) Sputtering target
JPH01207756A (en) Manufacture of electrophotographic sensitive body
US4681669A (en) Method for producing magnetic recording media
JP3026225B2 (en) Processing method of sputtering target
JPH0752030A (en) Anodic oxidation surface treated base and polishing method therefor
JPH06228746A (en) High melting point metallic sputtering target
JPH06136524A (en) Sputtering target
JPS62230947A (en) Aluminum alloy for magnetic disk
JPH0392263A (en) Specular surface finishing method for titanium alloy substrate
JPH0775946A (en) Hdd aluminum base polishing method
JPH0726193B2 (en) Method for forming thin film that prevents white turbidity
JPH0360119A (en) Sputtering target
JPH0395727A (en) Manufacture of substrate for magnetic disk

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20030114

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060331

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060612

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090630

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100630

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130630

Year of fee payment: 7

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term