JP3794259B2 - Thermosetting oxetane composition - Google Patents

Thermosetting oxetane composition Download PDF

Info

Publication number
JP3794259B2
JP3794259B2 JP2000320724A JP2000320724A JP3794259B2 JP 3794259 B2 JP3794259 B2 JP 3794259B2 JP 2000320724 A JP2000320724 A JP 2000320724A JP 2000320724 A JP2000320724 A JP 2000320724A JP 3794259 B2 JP3794259 B2 JP 3794259B2
Authority
JP
Japan
Prior art keywords
composition
thermosetting
compound
component
cured product
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000320724A
Other languages
Japanese (ja)
Other versions
JP2001187814A (en
Inventor
幹人 加島
結実樹 野田
治利 星野
利一 町田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2000320724A priority Critical patent/JP3794259B2/en
Publication of JP2001187814A publication Critical patent/JP2001187814A/en
Application granted granted Critical
Publication of JP3794259B2 publication Critical patent/JP3794259B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Epoxy Resins (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、オキセタン環を有する化合物を含んで成る熱硬化性オキセタン組成物、更に詳しくは、オキセタン化ビフェニル化合物、エポキシ化合物、カルボン酸無水物、及び触媒を含んで成る熱硬化性オキセタン組成物に関する。
【0002】
【従来の技術】
オキセタン環を有する化合物を含んで成る熱硬化性組成物としては、1〜4個のオキセタン環を有する化合物と、2個以上のカルボキシル基を有する化合物とから成る熱硬化性オキセタン組成物(特開平11−43540号公報)や、1〜4個のオキセタン環を有する化合物と、官能性酸無水物又は遊離酸酸無水物とから成る熱硬化性オキセタン組成物(特開平11−60702号公報)が知られている。
【0003】
更に、1〜4個のオキセタン環を有する化合物、1個以上のオキシラン環を有する化合物、及び2個以上のカルボキシル基を有する化合物から成る熱硬化性組成物(特開平11−116663号公報)や、1〜4個のオキセタン環を有する化合物、1個以上のオキシラン環を有する化合物、及び官能性酸無水物又は遊離酸酸無水物から成る熱硬化性組成物(特開平11−140171号公報)も知られている。
【0004】
しかしながら、前記の各組成物は、組成物を硬化させて得られる硬化物について、物性面及び製造プロセス面の双方で問題を有している。即ち、物性面では、得られる硬化物のガラス転移温度(Tg)が100℃未満に過ぎず、150℃を超える硬化物は得られていないという問題などがある。また、製造プロセス面では、200℃で硬化させる場合も硬化に数時間を要するなど、生産性やコストに影響する問題などがある。
【0005】
【発明が解決しようとする課題】
本発明は、前記のような硬化物に係る物性面及び製造プロセス面の問題を解決できる熱硬化性組成物を提供することを課題とする。即ち、本発明は、高い硬化速度を有すると共に、高いガラス転移温度(Tg)を有していて耐熱性及び寸法安定性に優れた硬化物を与える熱硬化性組成物を提供することを課題とする。
【0006】
【課題を解決するための手段】
本発明の課題は、次式で表されるオキセタン化ビフェニル化合物(A)、エポキシ化合物(B)、カルボン酸無水物(C)、及び触媒(D)を含んで成る熱硬化性オキセタン組成物により解決される。
【化4】

Figure 0003794259
(式中、Rは水素原子又は炭素数1〜6のアルキル基を表す。)
【0007】
【発明の実施の形態】
本発明で使用されるオキセタン化ビフェニル化合物(A)としては、次式で表される化合物が好ましく挙げられる。
【0008】
【化4】
Figure 0003794259
(式中、Rは水素原子又は炭素数1〜6のアルキル基を表す。)
【0009】
前記オキセタン化ビフェニル化合物は、例えば、3−アルキル−3−ヒドロキシメチルオキセタン又は3−ヒドロキシメチルオキセタンをアルカリ金属アルコラートに誘導し、次いでそのアルカリ金属アルコラートを4,4’−ビス(クロロメチル)ビフェニルと反応させることによって得ることができる。
【0010】
前記オキセタン化ビフェニル化合物としては、例えば、4,4’−ビス[(3−オキセタニル)メトキシメチルビフェニル、4,4’−ビス[(3−メチル−3−オキセタニル)メトキシメチルビフェニル、4,4’−ビス[(3−エチル−3−オキセタニル)メトキシメチルビフェニルなどが具体的に挙げられる。
【0011】
本発明で使用されるエポキシ化合物(B)としては、次式で表される化合物の少なくとも一種が好ましく挙げられる。これらエポキシ化合物は、第1の化合物が180S(油化シェルエポキシ製)、第2の化合物がNC−3000P(日本化薬製)、第3の化合物がYX−4000H(油化シェルエポキシ製)として知られている。エポキシ化合物の中では、より高いガラス転移温度(Tg)を有する硬化物が得られることから、180S、NC−3000Pが更に好ましい。
【0012】
【化5】
Figure 0003794259
(式中、Gはグリシジル基を表し、nは0〜5の整数を表す。)
【0013】
本発明で使用されるカルボン酸無水物(C)としては、次式で表される化合物、即ち、s−ビフェニルテトラカルボン酸無水物(s−BPDA)、a−ビフェニルテトラカルボン酸無水物(a−BPDA)の少なくとも一種が好ましく挙げられる。これらカルボン酸無水物は、例えば、フタル酸ジメチルをパラジウム触媒の存在下で酸化二量化した後、得られる二量化物を加水分解して脱水することにより得られる。
【0014】
【化6】
Figure 0003794259
【0015】
本発明で使用される触媒(D)は、熱(加熱)によりオキセタン環やオキシラン環(エポキシ基)の開環及び重合を開始させることができる化合物であればよい。このような化合物としては、例えば、ベンジルジエチルアミン、トリエチレンジアミン、2−エチル−4−メチルイミダゾール等のアミン、オクチル酸スズ等のカルボン酸金属塩、p−トルエンスルホン酸等のプロトン酸、テトラブトキシチタン、テトライソプロポキシチタン等のテトラアルキコキシチタンなどが好ましく挙げられる。これら触媒は単独又は複数で使用される。
【0016】
本発明の熱硬化性オキセタン組成物において、A成分とB成分の混合割合は任意に選ぶことができるが、A成分中のオキセタン環(オキセタニル基)の当量:B成分中のオキシラン環(エポキシ基)の当量は1:5〜5:1であることが好ましい。C成分は、前記のオキセタニル基の当量とエポキシ基の当量の合計に対して、0.7〜1.0当量、更には0.8〜0.9当量で使用することが好ましい。また、D成分は、前記のオキセタニル基の当量とエポキシ基の当量の合計に対して、1.0〜7.0モル%、更には2.0〜4.0モル%で使用することが好ましい。
【0017】
本発明の熱硬化性オキセタン組成物は、前記成分に加えて、水酸基含有化合物(E)を含んでいることが好ましい。その量は、前記のオキセタニル基の当量とエポキシ基の当量の合計に対して、2.0〜10.0モル%、更には5.0〜8.0モル%であることが好ましい。
【0018】
即ち、本発明の熱硬化性オキセタン組成物としては、A成分中のオキセタン環(オキセタニル基)の当量:B成分中のオキシラン環(エポキシ基)の当量が1:5〜5:1で、C成分が前記のオキセタニル基の当量とエポキシ基の当量の合計に対して0.7〜1.0当量、D成分が前記のオキセタニル基の当量とエポキシ基の当量の合計に対して1.0〜7.0モル%であるものが好ましいが、その中では、これら成分に加えて、E成分を前記のオキセタニル基の当量とエポキシ基の当量の合計に対して2.0〜10.0モル%含むものがより好ましい。
【0019】
そして、本発明では、A成分中のオキセタン環(オキセタニル基)の当量:B成分中のオキシラン環(エポキシ基)の当量が1:5〜5:1で、C成分が前記のオキセタニル基の当量とエポキシ基の当量の合計に対して0.8〜0.9当量、D成分が前記のオキセタニル基の当量とエポキシ基の当量の合計に対して2.0〜4.0モル%である組成物が更に好ましいが、その中では、これら成分に加えて、E成分を前記のオキセタニル基の当量とエポキシ基の当量の合計に対して5.0〜8.0モル%含む組成物がより好ましい。
【0020】
前記水酸基含有化合物としては、水又は脂肪族アルコールが好ましい。脂肪族アルコールとしては、メタノール、エタノール、プロパノール、ブタノール等の脂肪族1価アルコールや、1,4−ブタンジオール、1,6−ヘキサンジオール等の脂肪族2価アルコールや、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール等の脂肪族多価アルコール(2価アルコールを除く)が好ましく挙げられる。
【0021】
本発明の熱硬化性オキセタン組成物は、更に有機溶媒(前記脂肪族アルコールを除く)を含んでいてもよい。その量は、A成分、B成分、及びC成分を溶解又は均一に分散させるに足りる量以上であればよい。通常は、A成分、B成分、及びC成分の合計含量が10〜70重量%、更には30〜60重量%となる組成物を与えるような量で有機溶媒を使用することが好ましい。
【0022】
前記有機溶媒としては、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、N−メチル−2−ピロリドン、ジメチルスルホキシド等の非プロトン性極性溶媒が好ましく挙げられる。また、これら非プロトン性極性溶媒と、トルエン、キシレン、メシチレン等の芳香族炭化水素との混合溶媒を使用することもできる。芳香族炭化水素の混合割合は、例えば、非プロトン性極性溶媒に対して10〜50容量%程度であればよい。
【0023】
本発明の熱硬化性オキセタン組成物は、前記のように、オキセタン化ビフェニル化合物(A)、エポキシ化合物(B)、カルボン酸無水物(C)、及び触媒(D)を含んで成り、好ましくは水酸基含有化合物(E)を更に含んで成る。そして、有機溶媒を更に含んで成っていてもよい。このような本発明の組成物は各成分を混合して均一に分散又は溶解させたものでもよく、必要に応じてこの分散物を熱硬化を引き起こさない温度範囲(100〜120℃)で加熱するなどして各成分を混合して溶解させたものや、この溶解物を冷却して常温に保持したものでもよい。組成物を調製する際、その他の条件は特に制限されない。
【0024】
前記熱硬化性オキセタン組成物を加熱して熱硬化させることにより、高いガラス転移温度(Tg)を有していて耐熱性及び寸法安定性に優れた硬化物を得ることができる。
熱硬化性オキセタン組成物が有機溶媒を含まない場合、該組成物を熱硬化させて硬化物を得るには、例えば、A、B、C、D、Eの各成分を容器に所定量取り、100〜120℃で加熱溶解させて均一溶液を得た後、この溶液をガラス板に塗布するか又は円柱状の容器に入れて180〜220℃で加熱すればよい。この加熱時間は1〜3時間程度であればよく、板状又は円柱状の硬化物を得ることができる。
【0025】
また、熱硬化性オキセタン組成物が有機溶媒を含む場合、例えば、A、B、C、D、E、及び有機溶媒の各成分を容器に所定量取り、50〜80℃で加熱溶解させて均一溶液を得た後、この溶液をガラス板に塗布して100〜140℃でプリベイクして大部分の有機溶媒を除去し、次いで180〜240℃でポストベイクすれば残存溶媒を除去する共に板状の硬化物を得ることができる。プリベイクは30〜120分程度で、ポストベイクは30〜180分程度であればよい。なお、熱硬化の際の雰囲気や圧力はいずれも特に制限されない。
【0026】
前記のようにして、本発明の熱硬化性オキセタン組成物から高い硬化速度で不溶不融の三次元網目構造を有する硬化物を得ることができる。得られた硬化物は、150℃を超える(特に160〜205℃の)高いガラス転移温度(Tg)を有することから、耐熱性、寸法安定性に優れた特性を示すものであり、更にビフェニル骨格及びフェニル骨格を多量に含有することから耐湿性等も優れていると予想されるものである。
【0027】
【実施例】
以下、実施例及び比較例を挙げて本発明を具体的に説明する。
実施例1〜3
オキセタン化ビフェニル化合物(A)として4,4’−ビス[(3−エチル−3−オキセタニル)メトキシメチルビフェニル、エポキシ化合物(B)としてYX−4000H(OH当量:180〜192)(油化シェルエポキシ製)、カルボン酸無水物(C)としてa−ビフェニルテトラカルボン酸無水物(a−BPDA)、触媒(D)としてベンジルジメチルアミン(BDMA)を使用し、更に水酸基含有化合物(E)として水を使用して、表1記載の割合で各成分を混合して均一に分散させた。
【0028】
次いで、得られた組成物を120℃で加熱溶解させた後、ガラス板に塗布し、200℃で1時間硬化させて硬化物を得た。硬化物のガラス転移温度(Tg)を常法により測定した結果を表1に示す。
【0029】
比較例1,2
実施例1〜3において、カルボン酸無水物(C)を無水フタル酸又はYH−306(液状の脂環式酸無水物;油化シェルエポキシ製)に代えたほかは、実施例1〜3と同様に組成物を調製して硬化物を得た。組成物の組成及び硬化物のガラス転移温度(Tg)を表1に示す。
【0030】
【表1】
Figure 0003794259
【0031】
実施例4〜6
前記実施例においてエポキシ化合物(B)をNC−3000P(OH当量:268)(日本化薬製)に代えたほかは、前記実施例と同様に組成物を調製して硬化物を得た。組成物の組成及び硬化物のガラス転移温度(Tg)を表2に示す。
【0032】
比較例3,4
実施例4〜6において、カルボン酸無水物(C)を無水フタル酸又はYH−306(液状の脂環式酸無水物;油化シェルエポキシ製)に代えたほかは、実施例4〜6と同様に組成物を調製して硬化物を得た。組成物の組成及び硬化物のガラス転移温度(Tg)を表2に示す。
【0033】
【表2】
Figure 0003794259
【0034】
実施例7,8
前記実施例においてエポキシ化合物(B)を180S(OH当量:205〜220)(油化シェルエポキシ製)に代えたほかは、前記実施例と同様に組成物を調製して硬化物を得た。組成物の組成及び硬化物のガラス転移温度(Tg)を表3に示す。
【0035】
比較例5,6
実施例7,8において、カルボン酸無水物(C)を無水フタル酸又はYH−306(液状の脂環式酸無水物;油化シェルエポキシ製)に代えたほかは、実施例7,8と同様に組成物を調製して硬化物を得た。組成物の組成及び硬化物のガラス転移温度(Tg)を表3に示す。
【0036】
【表3】
Figure 0003794259
【0037】
【発明の効果】
本発明により、先行技術が有する硬化物に係る物性面及び製造プロセス面の問題を解決できる熱硬化性組成物を提供することができる。即ち、本発明により、高い硬化速度を有すると共に、高いガラス転移温度(Tg)を有していて耐熱性及び寸法安定性に優れた硬化物を与える熱硬化性組成物を提供できる。
本発明の熱硬化性オキセタン組成物から高い硬化速度で得られる硬化物は、不溶不融の三次元網目構造を有していて、150℃を超える(特に160〜205℃の)高いガラス転移温度(Tg)を有することから、耐熱性、寸法安定性に優れた特性を示ぶものであり、更にビフェニル骨格及びフェニル骨格を多量に含有することから耐湿性等も優れていると予想されるものである。このような硬化物は、機械的性質、電気的性質、接着性、耐薬品性にも優れ、エポキシ樹脂の代替品として、塗料、コーティング剤、接着剤、電気絶縁材料、封止材料、積層版、及び複合材料などへの用途が大いに期待できるものである。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a thermosetting oxetane composition comprising a compound having an oxetane ring, and more particularly to a thermosetting oxetane composition comprising an oxetated biphenyl compound, an epoxy compound, a carboxylic acid anhydride, and a catalyst. .
[0002]
[Prior art]
Examples of the thermosetting composition comprising a compound having an oxetane ring include a thermosetting oxetane composition comprising a compound having 1 to 4 oxetane rings and a compound having two or more carboxyl groups (Japanese Patent Application Laid-Open (JP-A)). 11-43540) and a thermosetting oxetane composition (Japanese Patent Laid-Open No. 11-60702) comprising a compound having 1 to 4 oxetane rings and a functional acid anhydride or a free acid anhydride. Are known.
[0003]
Furthermore, a thermosetting composition (Japanese Patent Laid-Open No. 11-116663) comprising a compound having 1 to 4 oxetane rings, a compound having 1 or more oxirane rings, and a compound having 2 or more carboxyl groups, , A thermosetting composition comprising a compound having 1 to 4 oxetane rings, a compound having one or more oxirane rings, and a functional acid anhydride or a free acid anhydride (JP-A-11-140171) Is also known.
[0004]
However, each of the above-described compositions has problems in both physical properties and manufacturing process of a cured product obtained by curing the composition. That is, in terms of physical properties, there is a problem that a cured product obtained has a glass transition temperature (Tg) of less than 100 ° C. and a cured product exceeding 150 ° C. is not obtained. Further, in terms of the manufacturing process, there are problems that affect productivity and cost, for example, when curing at 200 ° C., several hours are required for curing.
[0005]
[Problems to be solved by the invention]
This invention makes it a subject to provide the thermosetting composition which can solve the problem of the physical-property surface and manufacturing process surface which concern on the above hardened | cured materials. That is, an object of the present invention is to provide a thermosetting composition that has a high curing rate and a high glass transition temperature (Tg) and gives a cured product excellent in heat resistance and dimensional stability. To do.
[0006]
[Means for Solving the Problems]
An object of the present invention is to provide a thermosetting oxetane composition comprising an oxetated biphenyl compound (A) represented by the following formula, an epoxy compound (B), a carboxylic acid anhydride (C), and a catalyst (D). Solved.
[Formula 4]
Figure 0003794259
(In the formula, R represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
[0007]
DETAILED DESCRIPTION OF THE INVENTION
As the oxetated biphenyl compound (A) used in the present invention, a compound represented by the following formula is preferably exemplified.
[0008]
[Formula 4]
Figure 0003794259
(In the formula, R represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
[0009]
The oxetaneated biphenyl compound is, for example, derived from 3-alkyl-3-hydroxymethyl oxetane or 3-hydroxymethyl oxetane to an alkali metal alcoholate, and then the alkali metal alcoholate is converted to 4,4′-bis (chloromethyl) biphenyl. It can be obtained by reacting.
[0010]
Examples of the oxetated biphenyl compound include 4,4′-bis [(3-oxetanyl) methoxymethylbiphenyl, 4,4′-bis [(3-methyl-3-oxetanyl) methoxymethylbiphenyl, 4,4 ′. Specific examples include -bis [(3-ethyl-3-oxetanyl) methoxymethylbiphenyl.
[0011]
As an epoxy compound (B) used by this invention, at least 1 type of the compound represented by a following formula is mentioned preferably. As for these epoxy compounds, the first compound is 180S (manufactured by Yuka Shell Epoxy), the second compound is NC-3000P (Nihon Kayaku), and the third compound is YX-4000H (manufactured by Yuka Shell Epoxy). Are known. Among epoxy compounds, 180S and NC-3000P are more preferable because a cured product having a higher glass transition temperature (Tg) can be obtained.
[0012]
[Chemical formula 5]
Figure 0003794259
(In the formula, G represents a glycidyl group, and n represents an integer of 0 to 5).
[0013]
Examples of the carboxylic acid anhydride (C) used in the present invention include compounds represented by the following formulas: s-biphenyltetracarboxylic acid anhydride (s-BPDA), a-biphenyltetracarboxylic acid anhydride (a -BPDA) is preferably mentioned. These carboxylic acid anhydrides can be obtained by, for example, dimerizing dimethyl phthalate in the presence of a palladium catalyst and then hydrolyzing and dehydrating the resulting dimer.
[0014]
[Chemical 6]
Figure 0003794259
[0015]
The catalyst (D) used in the present invention may be any compound that can initiate the opening and polymerization of an oxetane ring or an oxirane ring (epoxy group) by heat (heating). Examples of such compounds include amines such as benzyldiethylamine, triethylenediamine, and 2-ethyl-4-methylimidazole, carboxylic acid metal salts such as tin octylate, proton acids such as p-toluenesulfonic acid, tetrabutoxytitanium, and the like. Preferred examples include tetraalkoxytitanium such as tetraisopropoxytitanium. These catalysts are used alone or in combination.
[0016]
In the thermosetting oxetane composition of the present invention, the mixing ratio of the component A and the component B can be arbitrarily selected, but the equivalent of the oxetane ring (oxetanyl group) in the component A: the oxirane ring (epoxy group) in the component B ) Is preferably 1: 5 to 5: 1. The component C is preferably used in an amount of 0.7 to 1.0 equivalent, more preferably 0.8 to 0.9 equivalent, based on the total of the equivalents of the oxetanyl group and the epoxy group. Moreover, it is preferable to use D component at 1.0-7.0 mol% with respect to the sum total of the equivalent of the said oxetanyl group, and the equivalent of an epoxy group, and also 2.0-4.0 mol%. .
[0017]
It is preferable that the thermosetting oxetane composition of this invention contains the hydroxyl-containing compound (E) in addition to the said component. The amount is preferably 2.0 to 10.0 mol%, more preferably 5.0 to 8.0 mol%, based on the total of the equivalents of the oxetanyl group and the epoxy group.
[0018]
That is, as the thermosetting oxetane composition of the present invention, the equivalent of oxetane ring (oxetanyl group) in component A: equivalent of oxirane ring (epoxy group) in component B is 1: 5 to 5: 1, The component is 0.7 to 1.0 equivalent with respect to the sum of the equivalents of the oxetanyl group and the epoxy group, and the component D is 1.0 to 1.0 with respect to the sum of the equivalents of the oxetanyl group and the epoxy group. In addition to these components, the component E is preferably 2.0 to 10.0 mol% based on the total of the equivalents of the oxetanyl group and the epoxy group. The inclusion is more preferable.
[0019]
In the present invention, the equivalent of the oxetane ring (oxetanyl group) in the component A: the equivalent of the oxirane ring (epoxy group) in the component B is 1: 5 to 5: 1, and the equivalent of the oxetanyl group is C component. And 0.8 to 0.9 equivalents based on the total equivalent of epoxy groups, and the component D is 2.0 to 4.0 mol% based on the total equivalents of oxetanyl group and epoxy group. Among them, in addition to these components, a composition containing E component in an amount of 5.0 to 8.0 mol% based on the total of the equivalents of the oxetanyl group and the epoxy group is more preferable. .
[0020]
The hydroxyl group-containing compound is preferably water or an aliphatic alcohol. Examples of aliphatic alcohols include aliphatic monohydric alcohols such as methanol, ethanol, propanol and butanol, aliphatic dihydric alcohols such as 1,4-butanediol and 1,6-hexanediol, trimethylolethane, and trimethylol. Preferred examples include aliphatic polyhydric alcohols (excluding dihydric alcohols) such as propane and pentaerythritol.
[0021]
The thermosetting oxetane composition of the present invention may further contain an organic solvent (excluding the aliphatic alcohol). The amount may be more than an amount sufficient to dissolve or uniformly disperse the A component, the B component, and the C component. Usually, it is preferable to use the organic solvent in such an amount as to give a composition in which the total content of the A component, the B component and the C component is 10 to 70% by weight, more preferably 30 to 60% by weight.
[0022]
Preferred examples of the organic solvent include aprotic polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, and dimethyl sulfoxide. A mixed solvent of these aprotic polar solvents and aromatic hydrocarbons such as toluene, xylene, mesitylene, etc. can also be used. The mixing ratio of the aromatic hydrocarbon may be, for example, about 10 to 50% by volume with respect to the aprotic polar solvent.
[0023]
As described above, the thermosetting oxetane composition of the present invention comprises the oxetated biphenyl compound (A), the epoxy compound (B), the carboxylic acid anhydride (C), and the catalyst (D), preferably It further comprises a hydroxyl group-containing compound (E). And it may further comprise an organic solvent. Such a composition of the present invention may be one in which the respective components are mixed and uniformly dispersed or dissolved, and if necessary, this dispersion is heated in a temperature range (100 to 120 ° C.) that does not cause thermosetting. For example, the components may be mixed and dissolved, or the dissolved product may be cooled and kept at room temperature. When preparing the composition, other conditions are not particularly limited.
[0024]
By heating and thermosetting the thermosetting oxetane composition, a cured product having a high glass transition temperature (Tg) and excellent in heat resistance and dimensional stability can be obtained.
When the thermosetting oxetane composition does not contain an organic solvent, to obtain a cured product by thermosetting the composition, for example, take a predetermined amount of each component of A, B, C, D, E in a container, After heating and dissolving at 100 to 120 ° C. to obtain a uniform solution, this solution may be applied to a glass plate or placed in a cylindrical container and heated at 180 to 220 ° C. The heating time may be about 1 to 3 hours, and a plate-like or columnar cured product can be obtained.
[0025]
When the thermosetting oxetane composition contains an organic solvent, for example, a predetermined amount of each component of A, B, C, D, E, and the organic solvent is taken in a container and dissolved by heating at 50 to 80 ° C. After obtaining the solution, this solution is applied to a glass plate and prebaked at 100 to 140 ° C. to remove most of the organic solvent, and then post-baked at 180 to 240 ° C. to remove the residual solvent and to form a plate. A cured product can be obtained. The pre-baking may be about 30 to 120 minutes, and the post-baking may be about 30 to 180 minutes. There are no particular restrictions on the atmosphere or pressure during thermosetting.
[0026]
As described above, a cured product having an insoluble and infusible three-dimensional network structure can be obtained at a high curing rate from the thermosetting oxetane composition of the present invention. Since the obtained cured product has a high glass transition temperature (Tg) exceeding 150 ° C. (especially 160 to 205 ° C.), it exhibits excellent heat resistance and dimensional stability, and further has a biphenyl skeleton. In addition, since it contains a large amount of phenyl skeleton, moisture resistance and the like are expected to be excellent.
[0027]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
Examples 1-3
4,4′-bis [(3-ethyl-3-oxetanyl) methoxymethylbiphenyl as the oxetaneated biphenyl compound (A), YX-4000H (OH equivalent: 180 to 192) as the epoxy compound (B) (oilized shell epoxy Manufactured product), a-biphenyltetracarboxylic anhydride (a-BPDA) as carboxylic acid anhydride (C), benzyldimethylamine (BDMA) as catalyst (D), and water as hydroxyl-containing compound (E). In use, each component was mixed and uniformly dispersed at the ratio shown in Table 1.
[0028]
Next, after the obtained composition was heated and dissolved at 120 ° C., it was applied to a glass plate and cured at 200 ° C. for 1 hour to obtain a cured product. Table 1 shows the results of measuring the glass transition temperature (Tg) of the cured product by a conventional method.
[0029]
Comparative Examples 1 and 2
In Examples 1 to 3, Examples 1 to 3 were used except that carboxylic anhydride (C) was replaced with phthalic anhydride or YH-306 (liquid alicyclic acid anhydride; manufactured by Yuka Shell Epoxy). Similarly, a composition was prepared to obtain a cured product. Table 1 shows the composition of the composition and the glass transition temperature (Tg) of the cured product.
[0030]
[Table 1]
Figure 0003794259
[0031]
Examples 4-6
Except having replaced the epoxy compound (B) with NC-3000P (OH equivalent: 268) (made by Nippon Kayaku) in the said Example, the composition was prepared similarly to the said Example and the hardened | cured material was obtained. Table 2 shows the composition of the composition and the glass transition temperature (Tg) of the cured product.
[0032]
Comparative Examples 3 and 4
In Examples 4 to 6, Example 4 to 6 except that carboxylic anhydride (C) was replaced with phthalic anhydride or YH-306 (liquid alicyclic acid anhydride; manufactured by Yuka Shell Epoxy) Similarly, a composition was prepared to obtain a cured product. Table 2 shows the composition of the composition and the glass transition temperature (Tg) of the cured product.
[0033]
[Table 2]
Figure 0003794259
[0034]
Examples 7 and 8
A cured product was obtained by preparing a composition in the same manner as in the above example except that the epoxy compound (B) was replaced with 180S (OH equivalent: 205 to 220) (made by oil-coated shell epoxy) in the above example. Table 3 shows the composition of the composition and the glass transition temperature (Tg) of the cured product.
[0035]
Comparative Examples 5 and 6
In Examples 7 and 8, except that carboxylic anhydride (C) was replaced with phthalic anhydride or YH-306 (liquid alicyclic acid anhydride; manufactured by Yuka Shell Epoxy), Similarly, a composition was prepared to obtain a cured product. Table 3 shows the composition of the composition and the glass transition temperature (Tg) of the cured product.
[0036]
[Table 3]
Figure 0003794259
[0037]
【The invention's effect】
According to the present invention, it is possible to provide a thermosetting composition that can solve the problems of physical properties and manufacturing process related to the cured product of the prior art. That is, according to the present invention, it is possible to provide a thermosetting composition that has a high curing rate and a high glass transition temperature (Tg) and gives a cured product having excellent heat resistance and dimensional stability.
The cured product obtained from the thermosetting oxetane composition of the present invention at a high curing rate has an insoluble and infusible three-dimensional network structure, and has a high glass transition temperature exceeding 150 ° C. (especially 160 to 205 ° C.). (Tg) shows excellent characteristics in heat resistance and dimensional stability, and also contains a large amount of biphenyl skeleton and phenyl skeleton, and is expected to have excellent moisture resistance. It is. Such cured products are also excellent in mechanical properties, electrical properties, adhesion, and chemical resistance, and as substitutes for epoxy resins, paints, coating agents, adhesives, electrical insulating materials, sealing materials, laminated plates , And applications for composite materials can be greatly expected.

Claims (6)

次式で表されるオキセタン化ビフェニル化合物(A)、エポキシ化合物(B)、カルボン酸無水物(C)、及び触媒(D)を含んで成る熱硬化性オキセタン組成物。
Figure 0003794259
(式中、Rは水素原子又は炭素数1〜6のアルキル基を表す。)
A thermosetting oxetane composition comprising an oxetated biphenyl compound (A) represented by the following formula, an epoxy compound (B), a carboxylic acid anhydride (C), and a catalyst (D).
Figure 0003794259
(In the formula, R represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms.)
エポキシ化合物(B)が次式で表される化合物の少なくとも一種である、請求項1記載の熱硬化性オキセタン組成物。
Figure 0003794259
(式中、Gはグリシジル基を表し、nは0〜5の整数を表す。)
The thermosetting oxetane composition according to claim 1, wherein the epoxy compound (B) is at least one compound represented by the following formula.
Figure 0003794259
(In the formula, G represents a glycidyl group, and n represents an integer of 0 to 5 ).
カルボン酸無水物(C)が次式で表される化合物の少なくとも一種である、請求項1記載の熱硬化性オキセタン組成物。
Figure 0003794259
The thermosetting oxetane composition according to claim 1, wherein the carboxylic acid anhydride (C) is at least one compound represented by the following formula.
Figure 0003794259
水酸基含有化合物(E)を更に含む、請求項1記載の熱硬化性オキセタン組成物。 The thermosetting oxetane composition according to claim 1 , further comprising a hydroxyl group-containing compound (E) . 水酸基含有化合物(E)が水又は脂肪族アルコールである請求項4記載の熱硬化性オキセタン組成物。The thermosetting oxetane composition according to claim 4 , wherein the hydroxyl group-containing compound (E) is water or an aliphatic alcohol . 請求項1又は4記載の熱硬化性オキセタン組成物を熱硬化させて得られる硬化物。Hardened | cured material obtained by thermosetting the thermosetting oxetane composition of Claim 1 or 4.
JP2000320724A 1999-10-22 2000-10-20 Thermosetting oxetane composition Expired - Fee Related JP3794259B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000320724A JP3794259B2 (en) 1999-10-22 2000-10-20 Thermosetting oxetane composition

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-300585 1999-10-22
JP30058599 1999-10-22
JP2000320724A JP3794259B2 (en) 1999-10-22 2000-10-20 Thermosetting oxetane composition

Publications (2)

Publication Number Publication Date
JP2001187814A JP2001187814A (en) 2001-07-10
JP3794259B2 true JP3794259B2 (en) 2006-07-05

Family

ID=26562384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000320724A Expired - Fee Related JP3794259B2 (en) 1999-10-22 2000-10-20 Thermosetting oxetane composition

Country Status (1)

Country Link
JP (1) JP3794259B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4385537B2 (en) * 2001-03-21 2009-12-16 宇部興産株式会社 Thermosetting composition

Also Published As

Publication number Publication date
JP2001187814A (en) 2001-07-10

Similar Documents

Publication Publication Date Title
JP6689475B1 (en) Maleimide resin, curable resin composition and cured product thereof
Feng et al. A novel bio-based benzoxazine resin with outstanding thermal and superhigh-frequency dielectric properties
JP6429862B2 (en) Aromatic amine resin, maleimide resin, curable resin composition and cured product thereof
US6703124B2 (en) Epoxy resin composition and laminate using the same
JP5682928B2 (en) Phenolic resin, epoxy resin and cured product thereof
JP6091295B2 (en) Epoxy resin composition and cured product thereof
Lin et al. Using Dicyclopentadiene-Derived Polyarylates as Epoxy Curing Agents To Achieve High T g and Low Dielectric Epoxy Thermosets
KR101407434B1 (en) Liquid Epoxy Resin, Epoxy Resin Composition, and Cured Product
JP2016047811A (en) Aryloxysilane oligomer, epoxy resin curing agent and application thereof
JP4104107B2 (en) Epoxy resin composition and use thereof
CN109983055A (en) Active ester solidification reagent compound for thermosetting resin, the flame-retardant composition including it and the article being made from it
JP7005821B1 (en) Maleimide resin and its production method, maleimide solution, and curable resin composition and its cured product.
CN106132974B (en) Phosphorus system epoxide and preparation method thereof includes its epoxy composite
CN112513131B (en) Epoxy resin and composition thereof, resin sheet, prepreg and composite material
JP3794259B2 (en) Thermosetting oxetane composition
JP6783121B2 (en) Allyl group-containing resin, its manufacturing method, resin varnish and laminated board manufacturing method
JP6863679B2 (en) Solution, its manufacturing method, epoxy resin composition and laminate
JP6231067B2 (en) Curable composition
CN116670199A (en) Epoxy resin, method for producing same, curable resin composition, and cured product thereof
JP3894628B2 (en) Modified epoxy resin, epoxy resin composition and cured product thereof
JP6482511B2 (en) Maleimide resin molded body, method for producing maleimide resin molded body, maleimide resin composition and cured product thereof
JP3883149B2 (en) Resin composition, and semiconductor sealing material and laminate using the same
JP4702764B2 (en) Epoxy resin composition and cured product thereof
KR101910134B1 (en) Modified epoxy resin and the method thereof
JP2001146545A (en) Thermosetting resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060322

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees