JP3784456B2 - Fuel cell power generator and method of operating the same - Google Patents

Fuel cell power generator and method of operating the same Download PDF

Info

Publication number
JP3784456B2
JP3784456B2 JP10388596A JP10388596A JP3784456B2 JP 3784456 B2 JP3784456 B2 JP 3784456B2 JP 10388596 A JP10388596 A JP 10388596A JP 10388596 A JP10388596 A JP 10388596A JP 3784456 B2 JP3784456 B2 JP 3784456B2
Authority
JP
Japan
Prior art keywords
fuel cell
valve means
power generator
air electrode
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10388596A
Other languages
Japanese (ja)
Other versions
JPH09266004A (en
Inventor
正隆 上野
裕 中島
剛一 白石
憲浩 冨岡
さ紀 泉澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Equos Research Co Ltd
Original Assignee
Aisin AW Co Ltd
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd, Equos Research Co Ltd filed Critical Aisin AW Co Ltd
Priority to JP10388596A priority Critical patent/JP3784456B2/en
Publication of JPH09266004A publication Critical patent/JPH09266004A/en
Application granted granted Critical
Publication of JP3784456B2 publication Critical patent/JP3784456B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は燃料電池発電装置およびその運転方法に関する。
【0002】
【従来の技術】
高分子固体電解質型燃料電池またはリン酸型燃料電池等の燃料電池は水素を燃料ガスとして利用し、これを酸化剤ガスである酸素と電気化学的に反応させて発電している。
【0003】
【発明が解決しようとする課題】
燃料電池から排出される余剰水素ガスは、水素を生成する改質器の燃料として再利用することも可能であるが、水/メタノールを原料として改質反応を経て水素を生成させる場合には、改質ガス中に水素の他に二酸化炭素等の副生成物が多量に混入してしまう。このため、改質ガスを燃料電池の燃料ガスとして利用する場合には水素濃度の低いものとなり、また一定の水素濃度が得られないため、定常的に高出力を得ることが困難である。
【0004】
そこで、水素ボンベからの純水素を燃料ガスとして用いることが好適とされるが、従来技術によるときは、発電反応後に残存する余剰水素ガスを燃料電池から系外に排出していた。しかしながら、このような水素ガスのいわば垂れ流しは、水素ガスの利用効率の面で好ましくないだけでなく、燃料電池が電気自動車の駆動源として利用される場合には、ガレージや地下駐車場等の空気循環の悪い空間に水素を排出することとなる。
【0005】
余剰水素ガスを燃料電池から排出させないようにシステム構成することは可能であるが、この場合には燃料ガス中の窒素や水蒸気の分圧が徐々に上昇し、相対的に水素分圧が減少するため、発電性能が劣化する。
【0006】
【課題を解決するための手段】
そこで本発明は、水素ガスを外気に放出しないクローズドシステムを採用することにより安全性および水素の利用効率を向上させ、しかも安定した発電性能を維持することのできる燃料電池発電装置を提供することを目的とする。
【0007】
すなわち本発明は、水素を燃料ガスとする燃料電池を用いた発電装置において、燃料電池の発電に伴い水素分圧が低下した燃料ガスを、バルブ手段を介して燃料極側から空気極側に排出する閉ラインと、前記バルブ手段を開閉制御する制御手段とを備えたことを特徴とする。
【0008】
ここに閉ラインとは、バルブ手段以外には出口のない流路を意味している。したがって、燃料極から排出された燃料極排出ガスは、バルブ手段が閉とされているときは、その全量が空気極に供給されることとなる。
【0009】
制御手段はバルブ手段を常時は閉としつつもこれを間欠的に開とするよう制御する。
【0010】
好ましくは、燃料電池の出力電圧を測定する電圧測定手段が設けられ、制御手段は、該電圧測定手段による測定結果を受けて、燃料電池の出力電圧に実質的な低下を生じさせないようにバルブ手段を開閉制御する。
【0011】
あるいは、燃料電池の出力電圧を測定する電圧測定手段が設けられ、制御手段は、該電圧測定手段による測定結果を基に、バルブ手段を閉として燃料電池を運転したときに出力電圧に実質的な低下が見られるまでの時間間隔のデータを予め作成しており、この時間間隔と実質的に同一または若干短い周期でバルブ手段を開とするようバルブ手段を開閉制御する。
【0012】
さらに好適な実施例によれば、燃料電池の空気極の吸気側と排気側とに接続される循環路が設けられ、該循環路には系外より空気を導入するための吸気口と、空気極から排出される反応生成水を含む空気極排出ガスを系外に排出するための排気口が接続され、これら吸気口と排気口の少なくとも一方の開度を制御することにより反応生成水を含む空気極排出ガスを循環路を介して空気極に再導入するように構成されてなる。
【0013】
また、本発明による燃料電池発電装置の運転方法は、バルブ手段を閉とした状態で起動運転した後、所定の周期で所定時間該バルブ手段を間欠的に開とすることを特徴とする。
【0014】
【発明の実施の形態】
図1は本発明による燃料電池発電装置の構成例を示す概略図であり、燃料電池1の燃料極2には水素ガスボンベ5からの純水素ガスが調圧弁6を介して供給されるとともに、空気極3には酸化剤ガスとしての酸素が供給される。公知のように、燃料極2で得られる水素イオンがプロトンの形態で電解質4中を空気極3へと伝達されることにより発電が行われる。
【0015】
燃料極2に供給された水素ガスは、発電反応に利用されてその多くが消費されるが、なお残存する余剰水素ガスは閉ライン7を流れてバルブ8を介して空気極3に導入される。
【0016】
空気極3に導入された水素ガスは、空気触媒(Pt)上で燃焼して水に転化する。これにより、電解質4に高分子固体イオン交換膜が用いられる高分子固体電解質型燃料電池の場合に、空気極3での通常の電池反応による生成水および余剰水素ガスの燃焼による回収水が、水の濃度差により、水濃度が希薄である電解質膜4に向けて流れるため、電解質膜4が加湿される。すなわち、高分子固体電解質膜4の加湿を、従来の燃料極2側からの加湿に加えて空気極3側から行うことができ、あるいは空気極3側からのみ行うことも可能となる。燃料極2側からの加湿を行わない場合には、燃料極2に供給する水素ガス中に水蒸気を導入して加湿する必要がなくなるため、水素ガスの利用効率が更に向上され且つ安定される。
【0017】
燃料電池1の出力電圧は電圧計9で監視される。制御装置10は、後述のようにして、調圧弁6およびバルブ8の開閉および開度を制御する。
【0018】
図1に示される燃料電池発電装置の運転について説明すると、まず起動時には、バルブ8を閉に保持し、調圧弁6で爆発限界以下の一定の流速で水素が燃料極2に供給されるよう微調整する。
【0019】
バルブ8を閉とした状態で燃料電池1を運転すると、水素ガス中に微量含まれる窒素および水蒸気の分圧が徐々に上昇する。すなわち、燃料極2で消費される水素の分圧は反対に徐々に低下するため、これに伴って出力電圧も低下し、安定した出力が得られなくなる。
【0020】
そこで、バルブ8を閉とした状態で燃料電池1を運転したときに出力電圧が低下し始める時間間隔を予め計測しておき、その時間間隔と実質的に同一または若干短い周期でバルブ8を開とするように、バルブ8を間欠的に開閉制御しながら、燃料電池1を運転する。
【0021】
あるいは、制御装置10は、出力電圧を常時監視する電圧計9からの入力データを解析して、出力電圧の低下開始と同時にバルブ8を一定時間開とするように制御してもよい。
【0022】
図2は本発明の他の実施例による燃料電池発電装置の構成を示し、図1の実施例が水素ガスボンベ5からの純水素を燃料ガスとして供給するのに対して、水/メタノール混合液等の改質原料を改質器12にて改質反応させて水素リッチな改質ガスを生成させ、この改質ガスをタンク13に貯留しておいて、調圧弁6およびバルブ8を介して燃料極2に供給するものである。
【0023】
この実施例による燃料電池発電装置の運転方法も図1に関連して前述したところと同様であるので説明を省略するが、改質ガスを燃料ガスとして用いる場合には水素ガス以外に水蒸気、窒素、二酸化炭素、一酸化炭素等が比較的多量に含まれており、バルブ8を閉として燃料電池1を運転するときの水素分圧低下およびそれに起因する出力電圧低下が比較的短時間に開始されるため、閉とされているバルブ8を開とするまでの周期を短く設定する必要がある。
【0024】
図3は図1または図2に示す実施例の変形として、空気極3から排出される排出ガスを空気極3に循環させる循環流路として構成した実施例を示す。このような構成は、電解質4として高分子固体電解質膜が用いられ、且つ、この電解質膜に対する加湿を専ら空気極3側から行う場合に好適に採用される。
【0025】
すなわち、空気極3からの排出ガスは空気排出ライン14に送り込まれるが、この空気排出ライン14は空気導入ライン15に合流して循環路16を形成しているため、電池反応により空気極3で生成される反応生成水を含む排出ガスを空気極3に導入して、電解質膜4を加湿することが可能とされる。
【0026】
循環路16に接続して排気バルブ17が設けられ、空気極からの排気ガスは、そのうちの排気バルブ17の開度に応じた一定量が系外に排出され、残量は循環路16および空気導入ライン15を介して空気極3に再導入される。排気バルブ17の開度は、燃料電池1に最適な水バランス条件を与えるよう、前述の制御装置10により制御される。
【0027】
このような構成によれば、バルブ8が開のときに閉ライン7を通って空気極3に導入される水素ガスが空気触媒上で燃焼することにより生成される水に加えて、循環路16を経て空気極3に再導入される排気ガス中に含まれる反応生成水が空気極3において水分として存在し、これが水濃度差により電解質膜4に浸透して燃料極2側へと移動し、さらに燃料極2側に移動した水分は電気浸透水として空気極3側へと移動することとなり、これら水分の往復移動によって電解質膜4の加湿が効率的且つ平均的に行われる。このため、燃料極2側からの加湿は不要となり、燃料ガス自体を加湿する必要がないため、水素分圧を高め、発電効率の向上を図ることができる。
【0028】
なお図1ないし図3に示す実施例においては、いずれも、バルブ8が開とされたときに燃料極2から閉ライン7を通じて送り込まれる余剰水素ガスが、酸素とは別の経路で空気極3に導入されるように図示されているが、この余剰水素ガスを酸素導入ラインに合流させるように構成してもよい。特に、空気極3に隣接して設けられる空気供給用マニホールド(図示せず)に余剰水素ガスを導入して空気(酸素)と共に空気極3に導入するよう構成することが、構成の簡略化および小型化の上で好ましい。
【0029】
【発明の効果】
本発明によれば、電池反応において未消費の余剰水素ガスを燃料極より外気に放出することなく、燃料電池発電装置の系内において消費するため、きわめて安全性の高いものであるため特に電気自動車の駆動源として搭載するに適している。
【0030】
また、燃料極に供給する燃料ガス中の水蒸気や窒素等、水素以外の成分の分圧増加が抑制され、燃料ガス中の水素利用効率が向上し、且つ安定化する。
【0031】
さらに、高分子固体イオン交換膜を電解質に用いる高分子固体電解質型燃料電池においては、空気極に導入される余剰水素ガスが空気触媒上で燃焼して水に転化し、これを利用して電解質膜を加湿することができるため、燃料極側からの加湿が不要となる。したがって、燃料ガス中の水素分圧を高め、発電効率の向上および安定化により一層寄与することができる。
【図面の簡単な説明】
【図1】本発明の一実施例による燃料電池発電装置の概略構成を示す模式図である。
【図2】本発明の変形例による燃料電池発電装置の概略構成を示す模式図である。
【図3】本発明のさらに別の実施例による燃料電池発電装置の概略構成を示す模式図である。
【符号の説明】
1 燃料電池
2 燃料極
3 空気極
電解質(電解質膜)
5 水素ガスボンベ
6 調圧弁
閉ライン
8 バルブ
9 電圧計
10 制御装置
12 改質器
13 改質ガスタンク
14 空気排出ライン
15 空気導入ライン
16 循環路
17 バルブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a fuel cell power generator and an operation method thereof.
[0002]
[Prior art]
A fuel cell such as a solid polymer electrolyte fuel cell or a phosphoric acid fuel cell uses hydrogen as a fuel gas, and generates electricity by electrochemically reacting it with oxygen as an oxidant gas.
[0003]
[Problems to be solved by the invention]
The surplus hydrogen gas discharged from the fuel cell can be reused as fuel for the reformer that produces hydrogen, but when hydrogen is produced through a reforming reaction using water / methanol as a raw material, A large amount of by-products such as carbon dioxide is mixed in the reformed gas in addition to hydrogen. For this reason, when the reformed gas is used as the fuel gas of the fuel cell, the hydrogen concentration is low, and a constant hydrogen concentration cannot be obtained, so that it is difficult to constantly obtain a high output.
[0004]
Therefore, it is preferable to use pure hydrogen from a hydrogen cylinder as a fuel gas. However, according to the prior art, surplus hydrogen gas remaining after the power generation reaction is discharged from the fuel cell to the outside of the system. However, the so-called spilling of hydrogen gas is not preferable in terms of the utilization efficiency of hydrogen gas, and when a fuel cell is used as a drive source of an electric vehicle, air in a garage or an underground parking lot is used. Hydrogen will be discharged into a poorly circulated space .
[0005]
Although it is possible to configure the system so that surplus hydrogen gas is not discharged from the fuel cell, in this case, the partial pressure of nitrogen and water vapor in the fuel gas gradually increases, and the hydrogen partial pressure relatively decreases Therefore, the power generation performance is deteriorated.
[0006]
[Means for Solving the Problems]
Accordingly, the present invention provides a fuel cell power generator that can improve safety and hydrogen utilization efficiency by using a closed system that does not release hydrogen gas to the outside air, and can maintain stable power generation performance. Objective.
[0007]
That is, according to the present invention, in a power generation apparatus using a fuel cell using hydrogen as a fuel gas, the fuel gas whose hydrogen partial pressure has decreased due to power generation by the fuel cell is discharged from the fuel electrode side to the air electrode side through the valve means. And a control means for controlling opening and closing of the valve means .
[0008]
Here, the closed line means a flow path having no outlet other than the valve means . Therefore, when the valve means is closed, the entire amount of the fuel electrode exhaust gas discharged from the fuel electrode is supplied to the air electrode.
[0009]
The control means controls the valve means to be opened intermittently while the valve means is normally closed.
[0010]
Preferably, voltage measuring means for measuring the output voltage of the fuel cell is provided, and the control means receives the measurement result by the voltage measuring means, and valve means so as not to cause a substantial drop in the output voltage of the fuel cell. Open / close control.
[0011]
Alternatively, voltage measuring means for measuring the output voltage of the fuel cell is provided, and the control means substantially determines the output voltage when the fuel cell is operated with the valve means closed based on the measurement result by the voltage measuring means. Data of a time interval until a decrease is seen is created in advance, and the valve means is controlled to open and close at a cycle substantially the same as this time interval or slightly shorter.
[0012]
According to a further preferred embodiment, a circulation path connected to the intake side and the exhaust side of the air electrode of the fuel cell is provided. The circulation path is provided with an intake port for introducing air from outside the system, and an air An exhaust port for discharging the air electrode exhaust gas including reaction product water discharged from the electrode to the outside of the system is connected, and the reaction product water is contained by controlling the opening degree of at least one of the intake port and the exhaust port. The air electrode exhaust gas is configured to be reintroduced into the air electrode through a circulation path.
[0013]
The operating method of the fuel cell power generator according to the present invention is characterized in that after starting operation with the valve means closed, the valve means is intermittently opened for a predetermined time at a predetermined cycle.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a schematic view showing a configuration example of a fuel cell power generator according to the present invention. Pure hydrogen gas from a hydrogen gas cylinder 5 is supplied to a fuel electrode 2 of a fuel cell 1 through a pressure regulating valve 6 and air. The pole 3 is supplied with oxygen as an oxidant gas. As is well known, power generation is performed by transferring hydrogen ions obtained at the fuel electrode 2 in the form of protons through the electrolyte 4 to the air electrode 3.
[0015]
Most of the hydrogen gas supplied to the fuel electrode 2 is used for power generation reaction and consumed, but the remaining surplus hydrogen gas flows through the closed line 7 and is introduced into the air electrode 3 through the valve 8. .
[0016]
The hydrogen gas introduced into the air electrode 3 burns on the air catalyst (Pt) and is converted into water. As a result, in the case of a solid polymer electrolyte fuel cell in which a solid polymer ion exchange membrane is used as the electrolyte 4, the water generated by the normal cell reaction at the air electrode 3 and the recovered water by the combustion of surplus hydrogen gas are Due to the difference in concentration, the electrolyte membrane 4 is humidified because it flows toward the electrolyte membrane 4 having a low water concentration. That is, the polymer solid electrolyte membrane 4 can be humidified from the air electrode 3 side in addition to the conventional humidification from the fuel electrode 2 side, or can be performed only from the air electrode 3 side. When humidification from the fuel electrode 2 side is not performed, it is not necessary to introduce water vapor into the hydrogen gas supplied to the fuel electrode 2 for humidification, so that the utilization efficiency of hydrogen gas is further improved and stabilized.
[0017]
The output voltage of the fuel cell 1 is monitored by a voltmeter 9. The control device 10 controls the opening and closing and the opening degree of the pressure regulating valve 6 and the valve 8 as described later.
[0018]
The operation of the fuel cell power generation device shown in FIG. 1 will be described. First, when starting up, the valve 8 is held closed so that the pressure regulating valve 6 supplies hydrogen to the fuel electrode 2 at a constant flow rate below the explosion limit. adjust.
[0019]
When the fuel cell 1 is operated with the valve 8 closed, the partial pressures of nitrogen and water vapor contained in trace amounts in the hydrogen gas gradually increase. That is, since the partial pressure of hydrogen consumed at the fuel electrode 2 gradually decreases, the output voltage also decreases accordingly, and a stable output cannot be obtained.
[0020]
Therefore, a time interval at which the output voltage starts to decrease when the fuel cell 1 is operated with the valve 8 closed is measured in advance, and the valve 8 is opened at a period substantially the same as or slightly shorter than the time interval. As described above, the fuel cell 1 is operated while the valve 8 is intermittently controlled to open and close.
[0021]
Alternatively, the control device 10 may analyze input data from the voltmeter 9 that constantly monitors the output voltage, and may control the valve 8 to be opened for a certain period of time simultaneously with the start of the decrease in the output voltage.
[0022]
FIG. 2 shows a configuration of a fuel cell power generator according to another embodiment of the present invention. In the embodiment of FIG. 1, pure hydrogen from a hydrogen gas cylinder 5 is supplied as a fuel gas, whereas a water / methanol mixture or the like The reformed raw material is reformed in the reformer 12 to generate a hydrogen-rich reformed gas, and this reformed gas is stored in the tank 13, and fuel is supplied via the pressure regulating valve 6 and the valve 8. Supply to the pole 2.
[0023]
The operation method of the fuel cell power generator according to this embodiment is the same as that described above with reference to FIG. 1 and will not be described. However, when the reformed gas is used as the fuel gas, in addition to hydrogen gas, water vapor, nitrogen , Carbon dioxide, carbon monoxide and the like are contained in a relatively large amount, and when the fuel cell 1 is operated with the valve 8 closed, the hydrogen partial pressure drop and the output voltage drop caused thereby are started in a relatively short time. Therefore, it is necessary to set a short period until the closed valve 8 is opened.
[0024]
FIG. 3 shows an embodiment configured as a circulation flow path for circulating the exhaust gas discharged from the air electrode 3 to the air electrode 3 as a modification of the embodiment shown in FIG. Such a configuration is suitably employed when a solid polymer electrolyte membrane is used as the electrolyte 4 and the humidification of the electrolyte membrane is performed exclusively from the air electrode 3 side.
[0025]
That is, the exhaust gas from the air electrode 3 is sent to the air discharge line 14, and this air discharge line 14 joins the air introduction line 15 to form a circulation path 16. The exhaust gas containing the generated reaction product water is introduced into the air electrode 3 so that the electrolyte membrane 4 can be humidified.
[0026]
An exhaust valve 17 is provided in connection with the circulation path 16, and a certain amount of exhaust gas from the air electrode is discharged out of the system according to the opening of the exhaust valve 17, and the remaining amount is the circulation path 16 and the air. It is reintroduced into the air electrode 3 through the introduction line 15. The opening degree of the exhaust valve 17 is controlled by the aforementioned control device 10 so as to give the optimal water balance condition to the fuel cell 1.
[0027]
According to such a structure, in addition to the water produced | generated when the hydrogen gas introduce | transduced into the air electrode 3 through the closed line 7 when the valve | bulb 8 is open is burned on an air catalyst, the circulation path 16 The reaction product water contained in the exhaust gas re-introduced into the air electrode 3 through the water exists as moisture in the air electrode 3, which permeates the electrolyte membrane 4 due to the water concentration difference and moves to the fuel electrode 2 side, Further, the moisture moved to the fuel electrode 2 side moves to the air electrode 3 side as electroosmotic water, and the humidification of the electrolyte membrane 4 is efficiently and averaged by the reciprocating movement of these moisture. For this reason, humidification from the fuel electrode 2 side becomes unnecessary, and it is not necessary to humidify the fuel gas itself, so that the hydrogen partial pressure can be increased and the power generation efficiency can be improved.
[0028]
In any of the embodiments shown in FIGS. 1 to 3, in any case, surplus hydrogen gas fed from the fuel electrode 2 through the closed line 7 when the valve 8 is opened passes through the air electrode 3 through a path different from oxygen. However, the surplus hydrogen gas may be joined to the oxygen introduction line. In particular, the configuration of introducing surplus hydrogen gas into an air supply manifold (not shown) provided adjacent to the air electrode 3 and introducing it into the air electrode 3 together with air (oxygen) can be simplified. This is preferable for downsizing.
[0029]
【The invention's effect】
According to the present invention, surplus hydrogen gas that has not been consumed in the battery reaction is consumed in the system of the fuel cell power generation apparatus without being released from the fuel electrode to the outside air, and therefore, it is extremely safe, so that it is particularly an electric vehicle. It is suitable for mounting as a drive source.
[0030]
In addition, an increase in the partial pressure of components other than hydrogen, such as water vapor and nitrogen in the fuel gas supplied to the fuel electrode, is suppressed, and the efficiency of using hydrogen in the fuel gas is improved and stabilized.
[0031]
Furthermore, in a polymer solid oxide fuel cell that uses a polymer solid ion exchange membrane as an electrolyte, surplus hydrogen gas introduced into the air electrode burns on the air catalyst and is converted to water, which is used for the electrolyte. Since the membrane can be humidified, humidification from the fuel electrode side becomes unnecessary. Therefore, it is possible to increase the hydrogen partial pressure in the fuel gas and further contribute to the improvement and stabilization of power generation efficiency.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing a schematic configuration of a fuel cell power generator according to an embodiment of the present invention.
FIG. 2 is a schematic diagram showing a schematic configuration of a fuel cell power generator according to a modification of the present invention.
FIG. 3 is a schematic diagram showing a schematic configuration of a fuel cell power generator according to still another embodiment of the present invention.
[Explanation of symbols]
1 Fuel Cell 2 Fuel Electrode 3 Air Electrode 4 Electrolyte (electrolyte membrane)
5 Hydrogen gas cylinder 6 Pressure regulating valve 7 Closed line 8 Valve 9 Voltmeter 10 Controller 12 Reformer 13 Reformed gas tank 14 Air discharge line 15 Air introduction line 16 Circulation path 17 Valve

Claims (6)

水素を燃料ガスとする燃料電池を用いた発電装置において、燃料電池の発電に伴い水素分圧が低下した燃料ガスを、バルブ手段を介して燃料極側から空気極側に排出する閉ラインと、前記バルブ手段を開閉制御する制御手段とを備えたことを特徴とする燃料電池発電装置。In a power generation apparatus using a fuel cell that uses hydrogen as a fuel gas, a closed line that discharges the fuel gas having a reduced hydrogen partial pressure accompanying the power generation of the fuel cell from the fuel electrode side to the air electrode side through the valve means; And a control means for controlling opening and closing of the valve means . 前記制御手段は前記バルブ手段を常時は閉としつつもこれを間欠的に開とするよう制御するものであることを特徴とする請求項1の燃料電池発電装置。2. The fuel cell power generator according to claim 1, wherein the control means controls the valve means so as to be opened intermittently while the valve means is normally closed. 前記燃料電池の出力電圧を測定する電圧測定手段が設けられ、前記制御手段は、該電圧測定手段による測定結果を受けて、燃料電池の出力電圧が低下したときに前記バルブ手段を開くように該バルブ手段を制御することを特徴とする請求項2の燃料電池発電装置。Voltage measuring means for measuring the output voltage of the fuel cell is provided, and the control means receives the measurement result by the voltage measuring means and opens the valve means when the output voltage of the fuel cell decreases. 3. The fuel cell power generator according to claim 2, wherein the valve means is controlled. 前記燃料電池の出力電圧を測定する電圧測定手段が設けられ、前記制御手段は、該電圧測定手段による測定結果を基に、前記バルブ手段を閉として前記燃料電池を運転したときに出力電圧に実質的な低下が見られるまでの時間間隔のデータを予め作成しており、この時間間隔と実質的に同一または若干短い周期で前記バルブ手段を開とするよう前記バルブ手段を開閉制御するものであることを特徴とする請求項2の燃料電池発電装置。Voltage measuring means for measuring the output voltage of the fuel cell is provided, and the control means substantially controls the output voltage when the fuel cell is operated with the valve means closed based on a measurement result by the voltage measuring means. Data of a time interval until a typical decrease is seen is created in advance, and the valve means is controlled to open and close so that the valve means is opened at a period substantially the same as or slightly shorter than this time interval. The fuel cell power generator according to claim 2. 前記燃料電池の空気極の吸気側と排気側とに接続される循環路が設けられ、該循環路には系外より空気を導入するための吸気口と、空気極から排出される反応生成水を含む空気極排出ガスを系外に排出するための排気口が接続され、これら吸気口と排気口の少なくとも一方の開度を制御することにより反応生成水を含む空気極排出ガスを循環路を介して空気極に再導入するように構成されてなることを特徴とする請求項1ないし4のいずれかの燃料電池発電装置。A circulation path connected to the intake side and the exhaust side of the air electrode of the fuel cell is provided, and an intake port for introducing air from outside the system to the circulation path and reaction product water discharged from the air electrode An exhaust port for exhausting the air electrode exhaust gas containing gas to the outside of the system is connected, and by controlling the opening degree of at least one of the intake port and the exhaust port, the air electrode exhaust gas containing the reaction product water is passed through the circulation path. 5. The fuel cell power generator according to claim 1, wherein the fuel cell power generator is configured to be reintroduced into the air electrode through the air electrode. 請求項1の燃料電池発電装置の運転方法であって、前記バルブ手段を閉とした状態で起動運転した後、所定の周期で所定時間前記バルブ手段を間欠的に開とすることを特徴とする燃料電池発電装置の運転方法。2. The method of operating a fuel cell power generator according to claim 1, wherein the valve means is intermittently opened for a predetermined time at a predetermined cycle after the start-up operation with the valve means closed. Operation method of fuel cell power generator.
JP10388596A 1996-03-29 1996-03-29 Fuel cell power generator and method of operating the same Expired - Fee Related JP3784456B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10388596A JP3784456B2 (en) 1996-03-29 1996-03-29 Fuel cell power generator and method of operating the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10388596A JP3784456B2 (en) 1996-03-29 1996-03-29 Fuel cell power generator and method of operating the same

Publications (2)

Publication Number Publication Date
JPH09266004A JPH09266004A (en) 1997-10-07
JP3784456B2 true JP3784456B2 (en) 2006-06-14

Family

ID=14365896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10388596A Expired - Fee Related JP3784456B2 (en) 1996-03-29 1996-03-29 Fuel cell power generator and method of operating the same

Country Status (1)

Country Link
JP (1) JP3784456B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317236A (en) 1997-12-22 1999-11-16 Aqueous Reserch:Kk Fuel cell system
JP4543440B2 (en) 1997-12-22 2010-09-15 株式会社エクォス・リサーチ Water direct injection fuel cell system
JP4126741B2 (en) * 1997-12-24 2008-07-30 株式会社エクォス・リサーチ Exhaust method for fuel cell device
EP0980106B1 (en) * 1998-08-10 2012-05-09 Kabushiki Kaisha Equos Research Solid polymer electrolyte fuel cell system with supply of liquid water to the cathode
JP4686814B2 (en) 1999-11-17 2011-05-25 株式会社エクォス・リサーチ Fuel cell device
US6896982B2 (en) * 2002-05-30 2005-05-24 Ballard Power Systems Inc. Conditioning method for fuel cells
JP2004342562A (en) * 2003-05-19 2004-12-02 Toyota Motor Corp Fuel cell system and vehicle carrying this
JP4604512B2 (en) * 2004-02-27 2011-01-05 トヨタ自動車株式会社 Fuel cell system
KR100658743B1 (en) * 2004-11-16 2006-12-15 삼성에스디아이 주식회사 Fuel cell system
JP5041272B2 (en) * 2005-12-12 2012-10-03 トヨタ自動車株式会社 Fuel cell system and moving body
JP2007287584A (en) * 2006-04-19 2007-11-01 Nippon Telegr & Teleph Corp <Ntt> Fuel supply method and system of solid-oxide fuel cell
JP5092418B2 (en) * 2007-01-22 2012-12-05 トヨタ自動車株式会社 Fuel cell system
JP5233126B2 (en) 2007-02-05 2013-07-10 トヨタ自動車株式会社 Fuel cell system
JP2008117780A (en) * 2007-11-19 2008-05-22 Equos Research Co Ltd Fuel cell device

Also Published As

Publication number Publication date
JPH09266004A (en) 1997-10-07

Similar Documents

Publication Publication Date Title
JP3658866B2 (en) Fuel cell power generator
JP3972675B2 (en) Fuel cell system
JP3784456B2 (en) Fuel cell power generator and method of operating the same
US6294278B1 (en) Combination of low and high temperature fuel cell device
US7678480B2 (en) Fuel cell system
KR100456300B1 (en) Fuel cell vehicle
JP4886170B2 (en) Fuel cell system
US20020045080A1 (en) Fuel cell system
JPH09266002A (en) Fuel cell power generating device and its operating method
US20050074641A1 (en) Stop method for fuel cell system
US20070048571A1 (en) Fuel cell system
JP2001223016A (en) Method to make combustor actuate in fuel cell system
JP3923261B2 (en) Method and system for controlling shutdown of a fuel cell
JP4469560B2 (en) Fuel cell system
EP2264819A1 (en) Fuel cell system and method of operating the same
US20090123796A1 (en) Hydrogen and power generation system and method of activating hydrogen generation mode thereof
JP2001243968A (en) Control device and method for heating efficiently fuel processor in fuel cell system
KR101251278B1 (en) System for improved cold start performance of fuel cell
JP2007141744A (en) Fuel cell system
JP3661826B2 (en) Fuel cell power generation control method
US7666537B2 (en) Fuel cell system for preventing hydrogen permeable metal layer degradation
JPH08306369A (en) Hybrid fuel cell generating apparatus
JP3722868B2 (en) Fuel cell system
JP4133614B2 (en) Fuel cell system
US20100285379A1 (en) Transitioning an electrochemical cell stack between a power producing mode and a pumping mode

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050607

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050805

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060315

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140324

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees