JP3784234B2 - Antireflection film comprising silica film and method for producing the same - Google Patents

Antireflection film comprising silica film and method for producing the same Download PDF

Info

Publication number
JP3784234B2
JP3784234B2 JP2000088609A JP2000088609A JP3784234B2 JP 3784234 B2 JP3784234 B2 JP 3784234B2 JP 2000088609 A JP2000088609 A JP 2000088609A JP 2000088609 A JP2000088609 A JP 2000088609A JP 3784234 B2 JP3784234 B2 JP 3784234B2
Authority
JP
Japan
Prior art keywords
film
group component
alkyl group
phenyl group
antireflection film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000088609A
Other languages
Japanese (ja)
Other versions
JP2001272506A (en
Inventor
恭敬 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2000088609A priority Critical patent/JP3784234B2/en
Publication of JP2001272506A publication Critical patent/JP2001272506A/en
Application granted granted Critical
Publication of JP3784234B2 publication Critical patent/JP3784234B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Materials For Photolithography (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Laminated Bodies (AREA)
  • Chemical Vapour Deposition (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、薄膜トランジスタや単結晶薄膜シリコン太陽電池を作製するためのレーザアニール時やフォトレジスト工程において用いられる反射防止膜、太陽電池やレンズでの多重干渉を防止するため用いられる反射防止膜などの基体上に形成された反射防止膜およびその製法に関する。
【0002】
【従来技術】
車両用のフロントガラス、建築用・建装用ガラス、表示パネル、ディスプレイなどの表示部材、レンズ、眼鏡などの光学部品、太陽電池パネルなど種々の製品に高い光透過性と低反射性能を有する膜、すなわち反射防止膜が広範に使用されている。また、薄膜トランジスタや単結晶薄膜シリコン太陽電池を作製するためのレーザアニール時やフォトレジスト工程においても反射防止膜が使用される。
【0003】
MgF2 は、低屈折率材料(屈折率1.22)として知られており、これを多孔質構造にしたものがある(特開平7−150356号公報)。また、多孔質のMgF2 膜は、防曇性被膜としても知られる(特開平11−77876号公報)。また、SiO2 は、屈折率の小さい材料(屈折率1.44〜1.47)であり反射防止膜として用いられる。基体をケイ酸ガラスとして表面を酸処理や電気化学的エッチング処理すれば、多孔質構造のSiO2からなる反射防止膜が得られる(特開平7−300346号公報、特表平10−508113号公報)。
【0004】
また、ゲル法などで形成した塗装層に多孔性SiO2 などの無機微粒子を包含させて熱処理や光照射などを用いてネットワークの間隙に微細孔を形成する方法も種々知られている(特開平6−345487号公報、特開平7−48117号公報、特開平7−48527号公報、特開平10−130537号公報、特開平10−133002号公報、特表平10−510860号公報、特開平11−281802号公報)。無機微粒子とビヒクル成分を基板上に塗布後、活性化ガス処理を施すことで微小空孔と微粒子状無機物より構成される低反射膜を得る方法も知られている(特開昭61−93402号公報)。
【0005】
透明材料中に空孔を分散させた反射防止膜(特開平6−3501号公報)、吸水性膜、多孔質膜、非晶質弗素樹脂膜の3層からなる反射防止膜(特開平10−311902号公報)、含弗素ポリマー層にミクロボイドを有する多孔質光学材料(特開平10−282305号公報)など膜の中に微小空孔を分散させる方法も知られている。特開平9−314715号公報には、平均粒径0.01〜0.20μmの高分子重合体微粒子を含む処理剤をコーティングした後加熱処理して平均径10〜150nmの空孔を有する反射防止膜が開示されている。
【0006】
レーザ耐力の高い反射防止膜の製法としては、SiO2 とNaFとからなる混合膜を蒸着してNaFを溶解してSiO2 からなる多孔性薄膜を形成する方法が知られている(特開昭61−170702号公報、特開平6−167601号公報)。
【0007】
【発明が解決しようとする課題】
レーザアニールや露光などの加工技術及び太陽電池やレンズなどでは反射による光の多重干渉が大きな問題になる。このときの反射防止膜の屈折率は空気の屈折率1とガラスの1.5程度の平方根をとった1.2から1.25程度の値が最も理想的な値となる。そこで、紫外から可視光領域でも効率よく反射を防止するための材料として、この波長領域で1.25程度の屈折率をもつ理想的な材料が求められている。
【0008】
しかしながら、このような理想的な物質は存在しないので、従来1.38程度の屈折率を有するMgF2 をコーティング材料として用いている。MgF2 などの物質を屈折率からその物質中の波長を求め、波長の1/4の膜厚を持つ薄膜を反射防止膜として基体表面にコーティングしてもこの問題は解消できるが、基板表面に反射防止膜を作製した場合、レーザアニールや露光などの加工技術ではレーザ照射後にこの膜を剥離する必要がありプロセスを増やすことになり作製コストをあげることになり有効ではない。
【0009】
大粒径シリコン薄膜を作製するために光の位相差を利用したマスクを用いることはすでに論文などで報告されている。この方法では、基板とマスクを密着または極めて狭い幅で配置してレーザを照射する必要がある。しかしながら、基板やマスクの反りなどの問題や基板とマスクのスペースを調整する装置の精度などの問題からレーザ光の干渉を生じ、目的とするエネルギー分布を得ることは難しい。また、レーザのエネルギーによる発熱のため反射防止膜の組成変化という劣化も生じる。そのため、耐レーザ性の膜であって、レーザ照射後も剥離する必要のない優れた物性を有する反射防止膜が求められている。
【0010】
【課題を解決するための手段】
反射防止膜は光を透過させるためには、光を乱反射させないような微細な穴が必要である。この微細な穴を形成する方法として、本質的に熱的に安定であると考えられる多孔質シリカ膜が適する。本発明者は、アルキル基成分又はフェニル基成分を含むシリカ膜を基体に堆積し、アルキル基成分又はフェニル基成分を気化させて光を散乱することのない微細な気孔を膜中に形成した多孔質シリカ膜を用いることによって上記の課題を解決できることを見出した。
【0011】
すなわち、本発明は、基体上にCVD法を用いて気相で堆積することにより形成されたアルキル基成分又はフェニル基成分を含むシリカ膜中に含まれるアルキル基成分又はフェニル基成分が脱離されたことを特徴とするシリカ膜からなる反射防止膜である。
さらに、本発明は、基体上にCVD法を用いてアルキル基成分又はフェニル基成分を含むシリカ膜を堆積して、その後の真空で、300℃以上の加熱処理により膜中からアルキル基成分又はフェニル基成分を脱離させることを特徴とする上記の反射防止膜の製法である。
【0012】
気孔を有するシリカ膜の形成法の1つ目としては、CVD法を用いて低温でアルキル基成分又はフェニル基成分を含むシリカ膜を基体に堆積して、その後の熱処理によりシリカ膜中からこれらアルキル基成分又はフェニル基成分を脱離して微細な気孔を生じさせるものである。この方法としては、本発明者が先に発明した基板上に水素を含まないシリコン系絶縁膜を堆積する方法(特開平10−189582号公報)において、反応容器中に水素を含まないシリコン系原料と第3種アミン、アルキル基を含む原料を気体として導入して反応させる方法を用いることが好ましい。
【0013】
この方法によれば、アルキル・アミンなどの第3種アミンはダイポールモーメントを有するためにテトラ・イソシアネート・シランおよびビスジメチルアミノジフェニルシランやイソシアン酸フェニルなどのアルキル基又はフェニル基を含む化合物からなる原料と低温で反応してアルキル基成分又はフェニル基成分を含むシリカ膜を生じる。アルキルアミン系の原料の強い分極性を利用することによりテトラ・イソシアネート・シランを200℃以下の低温で熱分解でき、気相で堆積した良質のシリカ膜を形成できる。
【0014】
このシリカ膜にはアルキル基成分又はフェニル基成分が50容積%程度まで含有されるようにすることができ、シリカ膜を300℃以上で加熱するとアルキル基成分又はフェニル基成分は気化しシリカ膜から脱離する。これにより10nm未満の微細な気孔がシリカ膜中に形成される。気孔の容積は0.1〜50%程度にすることができる。
【0015】
また、この方法では、成膜中にテトラ・イソシアネート・シランとトリメチルアミンとイソシアン酸フェニルなどのフェニル基を含む化合物のガスの流量を変えることで膜中の気孔率を変化させることができる。これにより、屈折率の値を広い範囲で制御できるので広範囲の波長領域に亘る反射防止膜を実現できる。
【0016】
CVD法では、原料ガスの流れを制御することで基板上に均一な膜を容易に形成できるのでマスク上や基板であっても容易に形成できる。また、原料として液体を使わずにガスで成膜するので熱処理時に問題となる膜の収縮がなく、原料がガスなのでUSLIなどの表面に存在する微細凹凸をうまく埋め込むことができ、また、反射膜として用いた後にそのまま膜を用いても膜中にOHが残留しないのでUSLIに用いても安定性に優れる。また、基本的にシリコンベースの膜なので、MgF2に比べて硬く耐摩耗性や耐薬品性に優れる。珪酸ガラスを酸処理して形成した膜のようにシリコンUSLIプロセスでは汚染物質として問題になるナトリウムやカリウムは膜中に含まれない。
【0017】
2つ目の方法は、液体のシリカ膜すなわちスピンオングラス(SOG)と呼ばれる方法である。スピンコートして成膜する時に、SOG中に含まれるヨウ素の量とシンナーの量を制御することで膜中の気孔の量を制御できる。ヨウ素とSOGを加えた体積とシンナーの体積の比を40%:60%と一定にして、ヨウ素のSOG(例えば、東京応化学社製のOCD−T10)に対する重量比を15%から25%まで変えることで屈折率を1.32から1.1まで変化させることができる。
【0018】
この場合に、ヨウ素とSOGの比を変えて屈折率が異なる膜を重ねることで1つ目の方法のように広範囲にわたる反射防止膜を実現できる。この方法でも、SOGの粘度やスピンコーティング時の回転速度を制御することで均一な薄膜を容易に形成できる。
【0019】
この方法を用いてアルキル基成分又はフェニル基成分を含むシリカ膜を堆積して、その後の熱処理により膜中からこれらアルキル基成分又はフェニル基成分を脱離して微細な気孔を生じさせる。これにより膜の屈折率を変化させることができる。
【0020】
図1は、本発明の反射防止膜の構造を原理的に示す概略断面図である。図1(a)は、
マスク又は基板1に均一の大きさの気孔3を有する均一気孔反射防止膜2を上記方法により作製したものである。図1(b)は、深さ方向に気孔3の大きさを変化させて気孔の大きさが異なる反射防止膜2を形成したものである。
【0021】
【発明の実施の形態】
図2は、本発明の反射防止膜を製造する方法の説明図である。図2において、反応室(反応容器)1に、第三種アミンを供給管(A)2から供給し、水素を含まないシリコン原料とアルキル基又はフェニル基を含む化合物からなる原料を供給管(B)3から供給し、反応させて反応室1及び基板5表面で、反応生成物7を生成させて、アルキル基成分又はフェニル基成分を含むシリカ膜6を基板5に堆積する。残余の反応原料ガスは排気管4から排気する。
【0022】
第3種アミンとしては、例えば、トリメチルアミン、ジメチルモノエチルアミン、モノメチルジエチルアミン、トリエチルアミン、などのトリアルキルアミン、またはトリフルオロメチルアミン、トリフルオロエチルアミンなどのトリアルキルアミンの水素をハロゲンで置換したものを用いることができる。
【0023】
供給管B3からは、シアネート基を有する化合物からなる原料とアルキル基又はフェニル基またはアルキル基又はフェニル基とシアネート基を同時に含む化合物からなるシリコン系原料、またはアルキル基又はフェニル基とシアネート基を有する化合物からなる原料とシアネート基を有する化合物からなるシリコン原料を供給する。例えば、テトライソシアネートとビスジメチルアミノジフェニルシラン、フェニルトリイソシアネート、フェニレンジイソシアネートを供給する。
【0024】
図2に示す構成において、アルキル基又はフェニル基とシアネート基を同時に有する化合物からなる原料、またはアルキル基又はフェニル基を含む化合物からなる原料とシアネート基を含む化合物からなる原料の混合物であるシリコン系原料を使用して、ガスにより直接、またはその蒸気をキャリアガスを使用して反応室に導入する。供給管(A)2から供給された第3種アミンと供給管(B)3から供給されたシリコン原料とが反応室1において反応し、反応生成物7が低温形成される。
【0025】
上記のとおりCVD法を用いて成膜した後、真空加熱炉内でアルキル基成分又はフェニル基成分を含むシリカ膜を真空で300℃以上で加熱処理することによってアルキル基成分又はフェニル基成分は気化しシリカ膜から脱離する。これにより10nm未満の微細な気孔がシリカ膜中に形成される。
【0026】
図3は、SOGをスピンコートするときに一層及び多層構造にして気孔を膜中に形成する方法を示す。多層構造では重ね塗りすることで気孔率を深さ方向に亘って制御することができる。
【図面の簡単な説明】
【図1】図1は、本発明の反射防止膜の構造を原理的に示す概略断面図である。
【図2】図2は、本発明の反射防止膜をCVD法で製造する方法の説明図である。
【図3】図3は、本発明の反射防止膜をスピンコート法で製造する方法の説明図である。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an antireflection film used in laser annealing and a photoresist process for manufacturing a thin film transistor and a single crystal thin film silicon solar cell, an antireflection film used to prevent multiple interference in a solar cell and a lens, etc. The present invention relates to an antireflection film formed on a substrate and a method for producing the same.
[0002]
[Prior art]
Films that have high light transmission and low reflection performance for various products such as vehicle windshields, architectural and building glass, display panels, display members such as displays, optical components such as lenses and glasses, solar battery panels, That is, antireflection films are widely used. An antireflection film is also used during laser annealing or a photoresist process for manufacturing a thin film transistor or a single crystal thin film silicon solar cell.
[0003]
MgF 2 is known as a low refractive index material (refractive index 1.22), and there is a material having a porous structure (Japanese Patent Laid-Open No. 7-150356). A porous MgF 2 film is also known as an antifogging film (Japanese Patent Laid-Open No. 11-77876). SiO 2 is a material having a low refractive index (refractive index: 1.44 to 1.47) and is used as an antireflection film. When the substrate is made of silicate glass and the surface is subjected to acid treatment or electrochemical etching treatment, an antireflection film made of SiO 2 having a porous structure can be obtained (Japanese Patent Laid-Open No. 7-300346, Japanese Patent Laid-Open No. 10-508113). ).
[0004]
Various methods are also known in which fine particles are formed in the gaps of the network using heat treatment, light irradiation, etc. by including inorganic fine particles such as porous SiO 2 in a coating layer formed by a gel method or the like (Japanese Patent Laid-Open No. Hei. JP-A-6-345487, JP-A-7-48117, JP-A-7-48527, JP-A-10-130537, JP-A-10-13002, JP10-510860, JP-A-11. -281802. There is also known a method for obtaining a low reflection film composed of fine pores and fine inorganic particles by applying an inorganic gas and a vehicle component on a substrate and then applying an activated gas treatment (Japanese Patent Laid-Open No. 61-93402). Publication).
[0005]
Antireflection film comprising three layers of an antireflection film (Japanese Patent Laid-Open No. 6-3501) in which pores are dispersed in a transparent material, a water absorbing film, a porous film, and an amorphous fluorine resin film (Japanese Patent Laid-Open No. 10-2010) 311902), a porous optical material having a microvoid in a fluorine-containing polymer layer (Japanese Patent Laid-Open No. 10-282305), and a method for dispersing micropores in a film are also known. Japanese Patent Application Laid-Open No. 9-314715 discloses an antireflection coating having pores having an average diameter of 10 to 150 nm after coating with a treatment agent containing polymer polymer fine particles having an average particle diameter of 0.01 to 0.20 μm. A membrane is disclosed.
[0006]
As a method for producing an antireflection film having a high laser resistance, a method is known in which a mixed film composed of SiO 2 and NaF is vapor-deposited to dissolve NaF to form a porous thin film composed of SiO 2 (Japanese Patent Application Laid-Open No. Sho). 61-170702, JP-A-6-167601).
[0007]
[Problems to be solved by the invention]
In processing techniques such as laser annealing and exposure, and solar cells and lenses, multiple interference of light due to reflection becomes a big problem. At this time, the refractive index of the antireflection film is most ideally about 1.2 to 1.25, which is the refractive index 1 of air and the square root of about 1.5 of glass. Therefore, an ideal material having a refractive index of about 1.25 in this wavelength region is required as a material for efficiently preventing reflection in the ultraviolet to visible light region.
[0008]
However, since such an ideal substance does not exist, MgF 2 having a refractive index of about 1.38 is conventionally used as a coating material. This problem can be solved by obtaining the wavelength of a substance such as MgF 2 from the refractive index, and coating the substrate surface with a thin film having a thickness of 1/4 of the wavelength as an antireflection film. When an antireflection film is produced, a processing technique such as laser annealing or exposure requires the film to be peeled after laser irradiation, which increases the number of processes and increases the production cost, and is not effective.
[0009]
The use of a mask that utilizes the phase difference of light to produce a large grain silicon thin film has already been reported in papers. In this method, it is necessary to irradiate the laser with the substrate and the mask in close contact or with a very narrow width. However, it is difficult to obtain a target energy distribution by causing interference of laser light due to problems such as warpage of the substrate and mask and problems such as accuracy of an apparatus for adjusting the space between the substrate and the mask. In addition, deterioration due to a change in the composition of the antireflection film also occurs due to heat generated by the energy of the laser. Therefore, an antireflection film having excellent physical properties that is a laser resistant film and does not need to be peeled off even after laser irradiation is required.
[0010]
[Means for Solving the Problems]
In order for the antireflection film to transmit light, a fine hole that does not diffusely reflect light is required. As a method for forming these fine holes, a porous silica film considered to be inherently thermally stable is suitable. The present inventor has a silica film containing an alkyl group component or a phenyl group component is deposited on the substrate, and to vaporize alkyl component or a phenyl group component forms fine pores that does not scatter light in the film porous It has been found that the above problems can be solved by using a porous silica film.
[0011]
That is, according to the present invention, an alkyl group component or a phenyl group component contained in a silica film containing an alkyl group component or a phenyl group component formed by deposition in a gas phase using a CVD method on a substrate is eliminated. This is an antireflection film made of a silica film.
Furthermore, the present invention deposits a silica film containing an alkyl group component or a phenyl group component on a substrate using a CVD method, and then heat treatment at 300 ° C. or higher in vacuum to heat the alkyl group component or phenyl group from the film. it is a preparation of the above anti-reflection film which comprises bringing a group component desorbed.
[0012]
The first method of forming a silica film having pores, a silica film containing an alkyl group component or a phenyl group components at low temperatures is deposited on the substrate by CVD, the alkyl silica film by the subsequent heat treatment The base component or the phenyl group component is eliminated to generate fine pores. As this method, in the method of depositing a silicon-based insulating film containing no hydrogen on the substrate previously invented by the present inventor (Japanese Patent Laid-Open No. 10-189582), a silicon-based material containing no hydrogen in the reaction vessel It is preferable to use a method in which a raw material containing a third amine and an alkyl group is introduced as a gas and reacted.
[0013]
According to this method, since the third type amine such as alkyl amine has a dipole moment, the raw material is composed of a compound containing an alkyl group or a phenyl group such as tetraisocyanate silane and bisdimethylaminodiphenylsilane or phenyl isocyanate. And a silica film containing an alkyl group component or a phenyl group component . By utilizing the strong polarizability of alkylamine-based raw materials, tetra-isocyanate-silane can be thermally decomposed at a low temperature of 200 ° C. or lower, and a high-quality silica film deposited in the gas phase can be formed.
[0014]
The silica film can contain up to about 50% by volume of an alkyl group component or a phenyl group component . When the silica film is heated at 300 ° C. or higher, the alkyl group component or the phenyl group component is vaporized and is removed from the silica film. Detach. Thereby, fine pores of less than 10 nm are formed in the silica film. The volume of the pores can be about 0.1 to 50%.
[0015]
In this method, the porosity in the film can be changed by changing the gas flow rate of a compound containing a phenyl group such as tetraisocyanate, silane, trimethylamine and phenyl isocyanate during film formation. Thereby, since the value of a refractive index can be controlled in a wide range, an antireflection film over a wide wavelength range can be realized.
[0016]
In the CVD method, a uniform film can be easily formed on the substrate by controlling the flow of the source gas, so that it can be easily formed even on the mask or the substrate. In addition, since the film is formed by gas without using liquid as a raw material, there is no shrinkage of the film which becomes a problem at the time of heat treatment, and since the raw material is a gas, fine unevenness existing on the surface such as USLI can be embedded well. Even if the film is used as it is, no OH remains in the film, so that it is excellent in stability even when used in USLI. In addition, since it is basically a silicon-based film, it is harder and more resistant to wear and chemicals than MgF 2 . Like a film formed by acid-treating silicate glass, sodium or potassium which is a problem as a contaminant in the silicon USLI process is not included in the film.
[0017]
The second method is a method called a liquid silica film, that is, spin-on-glass (SOG). When the film is formed by spin coating, the amount of pores in the film can be controlled by controlling the amount of iodine and the amount of thinner contained in the SOG. The ratio of the volume of iodine and SOG added to the volume of the thinner is constant at 40%: 60%, and the weight ratio of iodine to SOG (for example, OCD-T10 manufactured by Tokyo Ohkagaku) is from 15% to 25%. By changing the refractive index, the refractive index can be changed from 1.32 to 1.1.
[0018]
In this case, an antireflection film covering a wide range can be realized as in the first method by changing the ratio of iodine and SOG and stacking films having different refractive indexes. Even in this method, a uniform thin film can be easily formed by controlling the viscosity of SOG and the rotational speed during spin coating.
[0019]
By using this method, a silica film containing an alkyl group component or a phenyl group component is deposited, and these alkyl group components or phenyl group components are desorbed from the film by subsequent heat treatment to generate fine pores. Thereby, the refractive index of the film can be changed.
[0020]
FIG. 1 is a schematic sectional view showing in principle the structure of the antireflection film of the present invention. FIG. 1 (a)
A uniform pore antireflection film 2 having pores 3 of uniform size on a mask or substrate 1 is produced by the above method. FIG. 1B shows an antireflection film 2 having different pore sizes by changing the size of the pores 3 in the depth direction.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 2 is an explanatory view of a method for producing the antireflection film of the present invention. In FIG. 2, a tertiary amine is supplied to a reaction chamber (reaction vessel) 1 from a supply pipe (A) 2 , and a raw material consisting of a silicon raw material not containing hydrogen and a compound containing an alkyl group or a phenyl group is supplied to the supply pipe ( B) A reaction product 7 is supplied from 3 and reacted to generate a reaction product 7 on the surfaces of the reaction chamber 1 and the substrate 5, and a silica film 6 containing an alkyl group component or a phenyl group component is deposited on the substrate 5. The remaining reaction source gas is exhausted from the exhaust pipe 4.
[0022]
Examples of the third type amine include trialkylamines such as trimethylamine, dimethylmonoethylamine, monomethyldiethylamine, and triethylamine, or trialkylamines such as trifluoromethylamine and trifluoroethylamine in which hydrogen is substituted with halogen. be able to.
[0023]
From the supply pipe B3, a raw material composed of a compound having a cyanate group and an alkyl group, a phenyl group, an alkyl group, or a silicon-based raw material composed of a compound containing a phenyl group and a cyanate group at the same time, or an alkyl group, a phenyl group and a cyanate group A silicon raw material comprising a raw material comprising a compound and a compound having a cyanate group is supplied. For example, tetraisocyanate and bisdimethylaminodiphenylsilane, phenyl triisocyanate, and phenylene diisocyanate are supplied.
[0024]
In the structure shown in FIG. 2, a silicon-based material that is a mixture of a raw material composed of a compound having an alkyl group or a phenyl group and a cyanate group at the same time, or a raw material composed of a compound containing an alkyl group or a phenyl group and a compound containing a cyanate group The raw material is used to introduce the vapor directly into the reaction chamber by a gas or by using a carrier gas. The third type amine supplied from the supply pipe (A) 2 and the silicon raw material supplied from the supply pipe (B) 3 react in the reaction chamber 1 to form a reaction product 7 at a low temperature.
[0025]
After forming the film using the CVD method as described above, the alkyl group component or the phenyl group component is removed by heat-treating the silica film containing the alkyl group component or the phenyl group component in a vacuum heating furnace at 300 ° C. or higher in vacuum. Desorbed from the silica film. Thereby, fine pores of less than 10 nm are formed in the silica film.
[0026]
FIG. 3 shows a method of forming pores in a film in a single layer and multilayer structure when SOG is spin coated. In a multilayer structure, the porosity can be controlled in the depth direction by recoating.
[Brief description of the drawings]
FIG. 1 is a schematic sectional view showing in principle the structure of an antireflection film of the present invention.
FIG. 2 is an explanatory view of a method for producing an antireflection film of the present invention by a CVD method.
FIG. 3 is an explanatory view of a method for producing an antireflection film of the present invention by a spin coating method.

Claims (2)

基体上にCVD法を用いて気相で堆積することにより形成されたアルキル基成分又はフェニル基成分を含むシリカ膜中に含まれるアルキル基成分又はフェニル基成分が脱離されたことを特徴とするシリカ膜からなる反射防止膜。An alkyl group component or a phenyl group component contained in a silica film containing an alkyl group component or a phenyl group component formed by deposition in a gas phase using a CVD method on a substrate is desorbed. An antireflection film made of silica film. 基体上にCVD法を用いてアルキル基成分又はフェニル基成分を含むシリカ膜を堆積して、その後の真空で、300℃以上の加熱処理により膜中からアルキル基成分又はフェニル基成分を脱離させることを特徴とする請求項1記載の反射防止膜の製法。A silica film containing an alkyl group component or a phenyl group component is deposited on the substrate using a CVD method, and then the alkyl group component or the phenyl group component is desorbed from the film by a heat treatment at 300 ° C. or higher in a subsequent vacuum. The method for producing an antireflection film according to claim 1.
JP2000088609A 2000-03-24 2000-03-24 Antireflection film comprising silica film and method for producing the same Expired - Fee Related JP3784234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000088609A JP3784234B2 (en) 2000-03-24 2000-03-24 Antireflection film comprising silica film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000088609A JP3784234B2 (en) 2000-03-24 2000-03-24 Antireflection film comprising silica film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2001272506A JP2001272506A (en) 2001-10-05
JP3784234B2 true JP3784234B2 (en) 2006-06-07

Family

ID=18604464

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000088609A Expired - Fee Related JP3784234B2 (en) 2000-03-24 2000-03-24 Antireflection film comprising silica film and method for producing the same

Country Status (1)

Country Link
JP (1) JP3784234B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4471123B2 (en) * 2003-04-17 2010-06-02 日産化学工業株式会社 Porous underlayer film and composition for forming underlayer film for forming porous underlayer film
JP2005018027A (en) * 2003-06-04 2005-01-20 Ricoh Co Ltd Liquid crystal device having porous material layer, method for manufacturing porous material film, and method for manufacturing liquid crystal device having porous material layer
JP2006036598A (en) * 2004-07-28 2006-02-09 Ube Nitto Kasei Co Ltd Method for producing porous silica-based thin film, porous silica-based thin film, and structure
DE102005007825B4 (en) 2005-01-10 2015-09-17 Interpane Entwicklungs-Und Beratungsgesellschaft Mbh Method for producing a reflection-reducing coating, reflection-reducing layer on a transparent substrate and use of such a layer
TW200746123A (en) 2006-01-11 2007-12-16 Pentax Corp Optical element having anti-reflection coating
US8419955B2 (en) 2009-01-07 2013-04-16 Panasonic Corporation Antireflection structure, lens barrel including antireflection structure, method for manufacturing antireflection structure
JP2011048081A (en) * 2009-08-26 2011-03-10 Sony Corp Optical element, reflection reducing working device, and reflection reducing working method
US9279918B2 (en) * 2009-10-24 2016-03-08 3M Innovative Properties Company Gradient low index article and method
FR2979108B1 (en) * 2011-08-18 2013-08-16 Saint Gobain ANTIREFLECTION GLAZING WITH POROUS COATING
CN110867393A (en) * 2019-11-21 2020-03-06 晶澳(扬州)太阳能科技有限公司 Characterization method for compactness of deposited film and manufacturing method of battery piece

Also Published As

Publication number Publication date
JP2001272506A (en) 2001-10-05

Similar Documents

Publication Publication Date Title
US4436797A (en) X-Ray mask
JP3696939B2 (en) Method for forming silica-based coating
JP3784234B2 (en) Antireflection film comprising silica film and method for producing the same
JP4401125B2 (en) Substrates especially for microlithography
FR2893610A1 (en) Surface structuring of glass products by plastic or viscoplastic deformation by contact and pressure against a structuring mask, for applications in buildings, automobiles and electronics
AU748748B2 (en) Method for preparing a multilayer optical material with crosslinking-densifying by ultraviolet radiation and resulting optical material
EP0999459A2 (en) UV-visible light polarizer and methods
Yamaguchi et al. Anti-reflective coatings of flowerlike alumina on various glass substrates by the sol–gel process with the hot water treatment
KR20090033526A (en) Preparation of non-colored and high transparent f-dopped tin oxide film by postprocessing of polymer
JP5027980B2 (en) Method for depositing fluorinated silica thin film
西井準治 et al. Two Dimensional Antireflection Microstructure on Silica Glass.
KR20140063663A (en) Method for producing high transmission glass coatins
CN113031151B (en) Chalcogenide slit optical waveguide structure and preparation method thereof
JP2005221911A (en) Optical element having reflection preventing film
WO2002006560A1 (en) Graded material and method for synthesis thereof and method for processing thereof
US10921491B2 (en) Method of making a surface with improved mechanical and optical properties
WO2010019946A2 (en) Anti-reflective surfaces and methods for making the same
CN111378968A (en) Anti-corrosion nano coating and plasma preparation method thereof
JP5810975B2 (en) Manufacturing method of polarizing element
JPS60235711A (en) Formation of sio2 film
WO2008001612A1 (en) Antireflection film and method for producing the same
Takahashi et al. Formation of convex shaped poly (phenylsilsesquioxane) micropatterns on indium tin oxide substrates with hydrophobic-hydrophilic patterns using the electrophoretic sol-gel deposition method
JPH05181031A (en) Optical waveguide and its production
JPH0926514A (en) Thin film material for three-dimensional optical waveguide and its production
WO2011116099A1 (en) Coatings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040115

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20050830

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050928

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20051109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060307

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060314

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees