JP3779626B2 - Waste ozone treatment equipment - Google Patents

Waste ozone treatment equipment Download PDF

Info

Publication number
JP3779626B2
JP3779626B2 JP2002033413A JP2002033413A JP3779626B2 JP 3779626 B2 JP3779626 B2 JP 3779626B2 JP 2002033413 A JP2002033413 A JP 2002033413A JP 2002033413 A JP2002033413 A JP 2002033413A JP 3779626 B2 JP3779626 B2 JP 3779626B2
Authority
JP
Japan
Prior art keywords
exhaust
exhaust ozone
ozone
decomposer
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002033413A
Other languages
Japanese (ja)
Other versions
JP2003236336A (en
Inventor
淳司 札木
仁 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Mitsubishi Electric Industrial Systems Corp
Daiichi Jitsugyo Co Ltd
Original Assignee
Toshiba Mitsubishi Electric Industrial Systems Corp
Daiichi Jitsugyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Mitsubishi Electric Industrial Systems Corp, Daiichi Jitsugyo Co Ltd filed Critical Toshiba Mitsubishi Electric Industrial Systems Corp
Priority to JP2002033413A priority Critical patent/JP3779626B2/en
Publication of JP2003236336A publication Critical patent/JP2003236336A/en
Application granted granted Critical
Publication of JP3779626B2 publication Critical patent/JP3779626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Description

【0001】
【発明の属する技術分野】
この発明は、例えば紙パルプのオゾン漂白処理装置等から排出される未反応オゾンを含有した排ガスを処理する排オゾン処理装置に関するものである。
【0002】
【従来の技術】
図5は例えば特開平9−75666号公報等に記載された従来の加熱分解式の排オゾン処理装置の構成を示すブロック図である。
図において、1はオゾン漂白処理装置(図示せず)から排出される未反応オゾンを含有した排ガスを導入する導入口、2はこの導入口1に接続された入口弁、3は導入された排ガスを所定の温度に加熱するヒータで、例えばサイリスタレギュレータ等の電源装置4により作動されている。5はヒータ3によって加熱された排ガス中の未反応オゾンを分解する加熱式排オゾン分解器、6はこの加熱式排オゾン分解器5の出口近傍に設けられ、通過する排ガスの温度を検出する温度検出器である。
【0003】
7はヒータ3の入口側に接続され加熱式排オゾン分解器5から排出される高温の排ガスにより、導入口1から導入される排ガスを予熱する第1の熱回収器、8はこの第1の熱回収器7を通過した高温の排ガスを冷却水により冷却する第2の熱回収器、9はこの第2の熱回収器8の出口側に接続され、排ガスに流速を与えるための増圧ファン、10は第2の熱回収器8と増圧ファン9の間を外気と連通させる通気弁、11は増圧ファン9の出口側に出口弁12を介して設けられ、排ガスを排出するための排出口、13は増圧ファン9と出口弁12の間から分岐し、第1の熱回収器7の入口側に接続される流通路、14はこの流通路13中に接続されるバイパス弁である。
【0004】
次に、上記のように構成される従来の排オゾン処理装置の動作を図に基づいて説明する。
まず、入口弁2および出口弁12をそれぞれ閉、通気弁10およびバイパス弁14をそれぞれ開の状態にして、増圧ファン9の運転を開始するとともに、電源装置4を運転することによりヒータ3を動作させる。すると、通気弁10を介して導入される外気は、増圧ファン9の働きにより流通路13→第1の熱回収器7→ヒータ3→加熱式排オゾン分解器5→第1の熱回収器7→第2の熱回収器8の順に循環され、温度検出器6で検出される温度が規定値以上(通常、オゾン分解に必要な350℃以上)となるまでこの運転が継続される。
【0005】
次いで、温度検出器6で検出される温度が規定値以上になると、通気弁10およびバイパス弁14をそれぞれ閉、入口弁2および出口弁12をそれぞれ開の状態とし、オゾン漂白処理装置から排出される排ガス(この段階では、オゾン漂白処理装置は動作しておらず、排ガス中に未反応オゾンは含まれていない)を導入し、さらに運転が継続されて排オゾン処理装置の運転が順調と確認された段階で、オゾン漂白処理装置が運転を開始する。以後、排ガス中に含まれる未反応オゾンは加熱式排オゾン分解器5内で順次分解され、人体に害を及ぼさないレベルの状態となって排出口11より外気中に排出される。
【0006】
【発明が解決しようとする課題】
従来の排オゾン処理装置は以上のように構成され、ヒータ3により排ガスの温度を規定値以上に保持して、加熱式排オゾン分解器5内で排ガス中に含まれる未反応オゾンを分解するようにしているので、万一、排オゾン処理装置が故障してヒータ3が停止すると、排ガスの温度が規定値以下に低下して、加熱式排オゾン分解器5内での分解が十分でなくなり、人体に有害な未反応オゾンが排出される恐れがあるため、安全上、オゾン漂白装置を停止、ひいては抄紙プラント全体を停止することも必要となり、信頼性が低下するという問題点があり、又、排オゾン処理装置を運転している間、ヒータ3を動作させておかなければならず、多くのエネルギーを必要とするという問題点があった。
【0007】
この発明は上記のような問題点を解消するためになされたもので、信頼性の向上および省エネ運転が可能な排オゾン処理装置を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
この発明の請求項1に係る排オゾン処理装置は、排ガスの導入口および排出口の間に並列に接続されそれぞれ排ガス中の排オゾンを分解する加熱式排オゾン分解器および非加熱式排オゾン分解器、
両排オゾン分解器のいずれか一方を選択して導入口および排出口の間に連通させる切換手段、
および切換手段を制御して、定常運転時には加熱式排オゾン分解器を選択し、加熱式排オゾン分解器を通過する排ガスの温度が所定の分解温度以下に低下した場合の運転時には非加熱式排オゾン分解器を選択する制御手段とを備えたものである。
【0009】
又、この発明の請求項2に係る排オゾン処理装置は、排ガスの導入口および排出口の間に並列に接続されそれぞれ排ガス中の排オゾンを分解する加熱式排オゾン分解器および非加熱式排オゾン分解器、
両排オゾン分解器のいずれか一方を選択して導入口および排出口の間に連通させる切換手段、
および切換手段を制御して、運転開始時には加熱式排オゾン分解器を選択し、定常運転時には非加熱式排オゾン分解器を選択する制御手段を備えたものである。
【0010】
又、この発明の請求項3に係る排オゾン処理装置は、排ガスの導入口および排出口の間に接続され排ガス中の排オゾンを分解する加熱式排オゾン分解器、
加熱式排オゾン分解器と直列に接続され並列に分岐する一対の分岐路、
分岐路のいずれか一方に接続され排ガス中の排オゾンを分解する非加熱式排オゾン分解器、
分岐路のいずれか一方を選択して加熱式排オゾン分解器と直列に連通させる切換手段、
および切換手段を制御して、定常運転時には分岐路の他方を選択して加熱式排オゾン分解器を運転し、加熱式排オゾン分解器を通過する排ガスの温度が所定の分解温度以下に低下した場合の運転時には分岐路の一方を選択して非加熱式排オゾン分解器を運転させる制御手段を備えたものである。
【0011】
又、この発明の請求項4に係る排オゾン処理装置は、排ガスの導入口および排出口の間に接続され排ガス中の排オゾンを分解する加熱式排オゾン分解器、
加熱式排オゾン分解器と直列に接続され並列に分岐する一対の分岐路、
分岐路のいずれか一方に接続され排ガス中の排オゾンを分解する非加熱式排オゾン分解器、
分岐路のいずれか一方を選択して加熱式排オゾン分解器と直列に連通させる切換手段、
切換手段を制御して、運転開始時には分岐路の他方を選択して加熱式排オゾン分解器を運転し、定常運転時には分岐路の一方を選択して非加熱式排オゾン分解器を運転する制御手段を備えたものである。
【0012】
又、この発明の請求項5に係る排オゾン処理装置は、請求項1ないし4のいずれかにおいて、非加熱式排オゾン分解器として、触媒分解器を用いたものである。
【0013】
又、この発明の請求項6に係る排オゾン処理装置は、請求項1ないし4のいずれかにおいて、非加熱式排オゾン分解器として、薬液洗浄分解器を用いたものである。
【0014】
【発明の実施の形態】
以下、この発明の実施の形態を図に基づいて説明する。
実施の形態1.
図1はこの発明の実施の形態1における排オゾン処理装置の構成を示すブロック図である。
図において、21はオゾン漂白処理装置(図示せず)から排出される未反応オゾンを含有した排ガスを導入する導入口、22はこの導入口21に接続された入口弁、23は導入された排ガスを所定の温度に加熱するヒータで、例えばサイリスタレギュレータ等の電源装置24により作動されている。25はヒータ23によって加熱された排ガス中の未反応オゾンを分解する加熱式排オゾン分解器、26はこの加熱式排オゾン分解器25の出口近傍に設けられ、通過する排ガスの温度を検出する温度検出器である。
【0015】
27はヒータ23の入口側に接続され加熱式排オゾン分解器25から排出される高温の排ガスにより、導入口21から導入される排ガスを予熱する第1の熱回収器、28はこの第1の熱回収器27を通過した高温の排ガスを冷却水により冷却する第2の熱回収器、29はこの第2の熱回収器28の出口側に接続され、排ガスに流速を与えるための増圧ファン、30は第2の熱回収器28と増圧ファン29の間を外気と連通させる通気弁、31は増圧ファン29の出口側に出口弁32を介して設けられ、排ガスを排出するための排出口、33は増圧ファン29と出口弁32の間から分岐し、第1の熱回収器27の入口側に接続される流通路、34はこの流通路33中に接続されるバイパス弁である。
【0016】
35は入口弁22の出口側の分岐点35aから分岐し、第2の熱回収器28の出口側に接続される分岐路、36はこの分岐路35の分岐点35aと第1の熱回収器27との間に接続される第1の切換弁、37は分岐路35の分岐点35aの近傍に接続される第2の切換弁で、第1の切換弁36と共に切換手段を構成している。38は第2の切換弁37の出口側に接続され、排ガス中の未反応オゾンを分解する非加熱式排オゾン分解器としての触媒分解器である。
【0017】
39は切換手段としての第1および第2の切換弁36、37を制御する制御手段で、定常運転時には第1の切換弁36を開放し、加熱式排オゾン分解器25を導入口21および排出口31の間に連通させ、温度検出器26で検出される加熱式排オゾン分解器25を通過する排ガスの温度が規定値、すなわち所定の分解温度以下に低下した場合の運転時には第2の切換弁37を開放し、触媒分解器38を導入口21および排出口31の間に連通させる。
【0018】
次に、上記のように構成される実施の形態1における排オゾン処理装置の動作を図に基づいて説明する。
まず、入口弁22および出口弁32をそれぞれ閉、通気弁30およびバイパス弁34をそれぞれ開の状態にするとともに、制御手段39の制御により第1の切換弁36を開、第2の切換弁37を閉の状態にして、増圧ファン29の運転を開始するとともに、電源装置24を運転することによりヒータ23を動作させる。すると、通気弁30を介して導入される外気は、増圧ファン29の働きにより流通路33→第1の熱回収器27→ヒータ23→加熱式排オゾン分解器25→第1の熱回収器27→第2の熱回収器28の順に循環され、温度検出器26で検出される温度が規定値以上(通常、オゾン分解に必要な350℃以上)となるまで運転が継続される。
【0019】
次いで、温度検出器26で検出される温度が規定値以上になると、通気弁30およびバイパス弁34をそれぞれ閉、入口弁22および出口弁32をそれぞれ開の状態とし、オゾン漂白装置から排出される排ガス(この段階では、オゾン漂白装置は動作しておらず、排ガス中の未反応オゾンは含まれていない)を導入し、さらに運転が継続されて排オゾン処理装置の運転が順調と確認された段階で、オゾン漂白装置が運転を開始する。以後、排ガス中に含まれる未反応オゾンは加熱式排オゾン分解器25内で順次分解され、人体に害を及ぼさないレベルの状態となって排出口31より外気中に排出される。
【0020】
そして、上記運転中に何らかの理由で、温度検出器26で検出される加熱式排オゾン分解器25を通過する排ガスの温度が規定値以下に低下した場合、制御手段39は第1の切換弁36を閉止するとともに第2の切換弁37を開放する。すると、今まで加熱式排オゾン分解器25側を流れていた排ガスは、非加熱式排オゾン分解器としての触媒分解器38側に流れを変え、排ガス中に含まれる未反応オゾンは触媒分解器38内で順次分解され、人体に害を及ぼさないレベルの状態となって排出口31より外気中に排出される。
【0021】
このように上記実施の形態1によれば、制御手段39により、定常運転時には第1の切換弁36側を開放して、加熱式排オゾン分解器25で排ガス中に含まれる未反応オゾンの分解を行い、又、加熱式排オゾン分解器25を通過する排ガスの温度が規定値以下に低下した場合は、第1の切換弁36を閉止するとともに第2の切換弁37側を開放して、触媒分解器38で排オゾン中に含まれる未反応オゾンの分解を行うようにしているので、ヒータ23の停止等により排ガスの温度が規定値以下に低下しても、人体に有害な未反応オゾンが外気中に排出される心配も無くなり、信頼性の向上を図ることができる。
【0022】
又、非加熱式排オゾン分解器として触媒分解器38を用いているので、構成が簡単でスペースをとらず小形化が可能となり、さらに又、上記はしていないが非加熱式排オゾン分解器として薬液洗浄分解器を用いれば、触媒の取り替え等の作業が不要となり、メンテナンスが容易になる。
【0023】
実施の形態2.
図2はこの発明の実施の形態2における排オゾン処理装置の構成を示すブロック図である。
図において、21ないし38は上記実施の形態1におけると同様なので同一符号を付して説明を省略する。
40は切換手段としての第1および第2の切換弁36、37を制御する制御手段で、運転開始時には第1の切換弁36を開放し、加熱式排オゾン分解器25を導入口21および排出口31間に連通させて運転し、定常運転時には第2の切換弁37を開放し、触媒分解器38を導入口21および排出口31の間に連通させる。
【0024】
次に、上記のように構成される実施の形態2における排オゾン処理装置の動作を図に基づいて説明する。
まず、上記実施の形態1におけると同様に、入口弁22および出口弁32をそれぞれ閉、通気弁30およびバイパス弁34をそれぞれ開の状態にするとともに、制御手段40の制御により第1の切換弁36を開、第2の切換弁37を閉の状態にして、増圧ファン29の運転を開始するとともに、電源装置24を運転することによりヒータ23を動作させる。すると、通気弁30を介して導入される外気は、増圧ファン29の働きにより流通路33→第1の熱回収器27→ヒータ23→加熱式排オゾン分解器25→第1の熱回収器27→第2の熱回収器28の順に循環され、温度検出器26で検出される温度が規定値以上(通常、オゾン分解に必要な350℃以上)となるまで運転が継続される。
【0025】
次いで、温度検出器26で検出される温度が規定値以上になると、通気弁30およびバイパス弁34をそれぞれ閉、入口弁22および出口弁32をそれぞれ開の状態とし、オゾン漂白装置から排出される排ガス(この段階では、オゾン漂白装置は動作しておらず、排ガス中の未反応オゾンは含まれていない)を導入し、さらに運転が継続されて排オゾン処理装置の運転が順調と確認された段階で、オゾン漂白装置が運転を開始する。そして、運転開始時には、排ガス中に含まれる濃度の高い未反応オゾンは加熱式排オゾン分解器25内で順次分解され、人体に害を及ぼさないレベルの状態となって排出口31より外気中に排出される。
【0026】
その後、所定の時間が経過して排ガス中に含まれる未反応オゾンの濃度が低くなり定常運転になると、制御手段40は第1の切換弁36を閉止するとともに第2の切換弁37を開放する。すると、今まで加熱式排オゾン分解器25側を流れていた排ガスは、非加熱式排オゾン分解器としての触媒分解器38側に流れを変え、排ガス中に含まれる濃度の低い未反応オゾンは触媒分解器38内で順次分解され、人体に害を及ぼさないレベルの状態となって排出口31より外気中に排出される。
【0027】
このように上記実施の形態2によれば、制御手段40の制御により、切換手段としての第1および第2の切換弁36、37を切り換えて、排ガス中に含まれる未反応オゾンの濃度が高い運転開始時には加熱式排オゾン分解器25で、又、未反応オゾンの濃度の低い定常運転時には触媒分解器38でそれぞれ分解するようにしているので、ヒータ23の動作時間を大幅に短縮することができるため省エネ運転が可能になり、又、触媒分解器38の容量を下げることができるため、コストの低減が可能になる。
【0028】
実施の形態3.
図3はこの発明の実施の形態3における排オゾン処理装置の構成を示すブロック図である。
図において、21ないし31、33、34は上記各実施の形態1、2におけると同様なので同一符号を付して説明を省略する。41、42は増圧ファン29の出口側から分岐し、排出口31に接続される第1および第2の分岐路、43、44は第1および第2の分岐路41、42中にそれぞれ接続される切換手段としての第1および第2の切換弁である。
【0029】
45は第2の分岐路42の第2の切換弁44の出口側に接続され、排ガス中の未反応オゾンを分解する非加熱式排オゾン分解器としての触媒分解器、46は第1および第2の切換弁43、44を制御する制御手段で、定常運転時には第1の切換弁43を開放し、第1の分岐路41を介して加熱式排オゾン分解器25を導入口21および排出口31の間に連通させ、温度検出器26で検出される加熱式排オゾン分解器25を通過する排ガスの温度が規定値以下に低下した場合の運転時には第2の切換弁44を開放し、触媒分解器45を導入口21および排出口31の間に連通させる。
【0030】
次に、上記のように構成される実施の形態3における排オゾン処理装置の動作を図に基づいて説明する。
まず、入口弁22、第1および第2の切換弁43、44を閉、通気弁30およびバイパス弁34をそれぞれ開の状態にして、増圧ファン29の運転を開始するとともに、電源装置24を運転することによりヒータ23を動作させる。すると、通気弁30を介して導入される外気は、増圧ファン29の働きにより流通路33→第1の熱回収器27→ヒータ23→加熱式排オゾン分解器25→第1の熱回収器27→第2の熱回収器28の順に循環され、温度検出器26で検出される温度が規定値以上(通常、オゾン分解に必要な350℃以上)となるまで運転が継続される。
【0031】
次いで、温度検出器26で検出される温度が規定値以上になると、通気弁30およびバイパス弁34をそれぞれ閉、入口弁22および第1の切換弁43をそれぞれ開の状態とし、オゾン漂白装置から排出される排ガス(この段階では、オゾン漂白装置は動作しておらず、排ガス中の未反応オゾンは含まれていない)を導入し、さらに運転が継続されて排オゾン処理装置の運転が順調と確認された段階で、オゾン漂白装置が運転を開始する。以後、排ガス中に含まれる未反応オゾンは加熱式排オゾン分解器25内で順次分解され、人体に害を及ぼさないレベルの状態となって排出口31より外気中に排出される。
【0032】
そして、上記運転中に何らかの理由で、温度検出器26で検出される加熱式排オゾン分解器25を通過する排ガスの温度が規定値以下に低下した場合、制御手段46はヒータ23を停止し第1の切換弁43を閉止するとともに第2の切換弁44を開放する。すると、今まで第1の分岐路41側を流れていた排ガスは、第2の分岐路42を介して非加熱式排オゾン分解器としての触媒分解器45側に流れを変え、排ガス中に含まれる未反応オゾンは触媒分解器45内で順次分解され、人体に害を及ぼさないレベルの状態となって排出口31より外気中に排出される。
【0033】
このように上記実施の形態3によれば、制御手段46により、定常運転時には第1の切換弁43側を開放して、加熱式排オゾン分解器25で排ガス中に含まれる未反応オゾンの分解を行い、又、加熱式排オゾン分解器25を通過する排ガスの温度が規定値以下に低下した場合は、第1の切換弁43を閉止するとともに第2の切換弁44側を開放して、触媒分解器45で排オゾン中に含まれる未反応オゾンの分解を行うようにしているので、ヒータ23の停止等により排ガスの温度が規定値以下に低下しても、人体に有害な未反応オゾンが外気中に排出される心配も無くなり、信頼性の向上を図ることができる。
【0034】
実施の形態4.
図4はこの発明の実施の形態4における排オゾン処理装置の構成を示すブロック図である。
図において、21ないし31、33、34、41ないし45は上記実施の形態3におけると同様なので同一符号を付して説明を省略する。
47は第1および第2の切換弁43、44を制御する制御手段で、運転開始時には第1の切換弁43側を開放し、加熱式排オゾン分解器25を導入口21および排出口31間に連通させて運転し、定常運転時には第2の切換弁側を開放し、触媒分解器45を導入口21および排出口31の間に連通させて運転する。
【0035】
このように構成される実施の形態4における排オゾン処理装置も、上記実施の形態3におけると同様に動作するが、制御手段47の制御により、切換手段としての第1および第2の切換弁43、44を切り換えて、排ガス中に含まれる未反応オゾンの濃度が高い運転開始時には加熱式排オゾン分解器25で、又、未反応オゾンの濃度の低い定常運転時には触媒分解器45でそれぞれ分解するようにしているので、ヒータ23の動作時間を大幅に短縮することができるため省エネ運転が可能になり、又、触媒分解器45の容量を下げることができるため、コストの低減が可能になる。
【0036】
【発明の効果】
以上のように、この発明の請求項1によれば、排ガスの導入口および排出口の間に並列に接続されそれぞれ排ガス中の排オゾンを分解する加熱式排オゾン分解器および非加熱式排オゾン分解器、
両排オゾン分解器のいずれか一方を選択して導入口および排出口の間に連通させる切換手段、
および切換手段を制御して、定常運転時には加熱式排オゾン分解器を選択し、加熱式排オゾン分解器を通過する排ガスの温度が所定の分解温度以下に低下した場合の運転時には非加熱式排オゾン分解器を選択する制御手段とを備えたので、信頼性の向上を図ることが可能な排オゾン処理装置を提供することができる。
【0037】
又、この発明の請求項2によれば、排ガスの導入口および排出口の間に並列に接続されそれぞれ排ガス中の排オゾンを分解する加熱式排オゾン分解器および非加熱式排オゾン分解器、
両排オゾン分解器のいずれか一方を選択して導入口および排出口の間に連通させる切換手段、
および切換手段を制御して、運転開始時には加熱式排オゾン分解器を選択し、定常運転時には非加熱式排オゾン分解器を選択する制御手段を備えたので、省エネ運転およびコストの低減が可能な排オゾン処理装置を提供することができる。
【0038】
又、この発明の請求項3によれば、排ガスの導入口および排出口の間に接続され排ガス中の排オゾンを分解する加熱式排オゾン分解器、
加熱式排オゾン分解器と直列に接続され並列に分岐する一対の分岐路、
分岐路のいずれか一方に接続され排ガス中の排オゾンを分解する非加熱式排オゾン分解器、
分岐路のいずれか一方を選択して加熱式排オゾン分解器と直列に連通させる切換手段、
および切換手段を制御して、定常運転時には分岐路の他方を選択して加熱式排オゾン分解器を運転し、加熱式排オゾン分解器を通過する排ガスの温度が所定の分解温度以下に低下した場合の運転時には分岐路の一方を選択して非加熱式排オゾン分解器を運転させる制御手段を備えたので、信頼性の向上を図ることが可能な排オゾン処理装置を提供することができる。
【0039】
又、この発明の請求項4によれば、排ガスの導入口および排出口の間に接続され排ガス中の排オゾンを分解する加熱式排オゾン分解器、
加熱式排オゾン分解器と直列に接続され並列に分岐する一対の分岐路、
分岐路のいずれか一方に接続され排ガス中の排オゾンを分解する非加熱式排オゾン分解器、
分岐路のいずれか一方を選択して加熱式排オゾン分解器と直列に連通させる切換手段、
切換手段を制御して、運転開始時には分岐路の他方を選択して加熱式排オゾン分解器を運転し、定常運転時には分岐路の一方を選択して非加熱式排オゾン分解器を運転する制御手段を備えたので、省エネ運転およびコストの低減が可能な排オゾン処理装置を提供することができる。
【0040】
又、この発明の請求項5によれば、請求項1ないし4のいずれかにおいて、非加熱式排オゾン分解器として、触媒分解器を用いたので、小形化が可能な排オゾン処理装置を提供することができる。
【0041】
又、この発明の請求項6によれば、請求項1ないし4のいずれかにおいて、非加熱式排オゾン分解器として、薬液洗浄分解器を用いたので、メンテナンスの容易な排オゾン処理装置を提供することができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1における排オゾン処理装置の構成を示すブロック図である。
【図2】 この発明の実施の形態2における排オゾン処理装置の構成を示すブロック図である。
【図3】 この発明の実施の形態3における排オゾン処理装置の構成を示すブロック図である。
【図4】 この発明の実施の形態4における排オゾン処理装置の構成を示すブロック図である。
【図5】 従来の排オゾン処理装置の構成を示すブロック図である。
【符号の説明】
21 導入口、25 加熱式排オゾン分解器、31 排出口、
36,43 第1の切換弁(切換手段)、
37,44 第2の切換弁(切換手段)、38,45 触媒分解器、
39,40,46,47 制御手段、41 第1の分岐路、
42 第2の分岐路。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an exhaust ozone treatment apparatus for treating exhaust gas containing unreacted ozone discharged from, for example, an ozone bleach treatment apparatus for paper pulp.
[0002]
[Prior art]
FIG. 5 is a block diagram showing a configuration of a conventional pyrolysis-type exhaust ozone treatment apparatus described in, for example, Japanese Patent Application Laid-Open No. 9-75666.
In the figure, 1 is an inlet for introducing exhaust gas containing unreacted ozone discharged from an ozone bleaching apparatus (not shown), 2 is an inlet valve connected to the inlet 1, and 3 is exhaust gas introduced. Is heated by a power supply device 4 such as a thyristor regulator. 5 is a heated exhaust ozone decomposer that decomposes unreacted ozone in the exhaust gas heated by the heater 3, and 6 is a temperature that is provided near the outlet of the heated exhaust ozone decomposer 5 and detects the temperature of the exhaust gas that passes through it. It is a detector.
[0003]
Reference numeral 7 denotes a first heat recovery unit which is connected to the inlet side of the heater 3 and preheats the exhaust gas introduced from the inlet 1 with high-temperature exhaust gas discharged from the heating exhaust ozone decomposing unit 5. A second heat recovery unit 9 for cooling the high-temperature exhaust gas that has passed through the heat recovery unit 7 with cooling water is connected to the outlet side of the second heat recovery unit 8, and a pressure increasing fan for giving a flow rate to the exhaust gas 10 is a vent valve that communicates between the second heat recovery unit 8 and the booster fan 9 with the outside air, and 11 is provided on the outlet side of the booster fan 9 via the outlet valve 12 for discharging exhaust gas. A discharge port 13 branches from between the pressure increasing fan 9 and the outlet valve 12, and a flow passage connected to the inlet side of the first heat recovery unit 7, 14 is a bypass valve connected to the flow passage 13. is there.
[0004]
Next, the operation of the conventional exhaust ozone treatment device configured as described above will be described with reference to the drawings.
First, the inlet valve 2 and the outlet valve 12 are closed, the vent valve 10 and the bypass valve 14 are opened, and the operation of the pressure-increasing fan 9 is started. Make it work. Then, the outside air introduced through the vent valve 10 is moved by the function of the pressure increasing fan 9 to the flow passage 13 → the first heat recovery device 7 → the heater 3 → the heated exhaust ozone decomposing device 5 → the first heat recovery device. This operation is continued until the temperature detected by the temperature detector 6 reaches a specified value or higher (usually 350 ° C. or higher necessary for ozone decomposition).
[0005]
Next, when the temperature detected by the temperature detector 6 exceeds a specified value, the vent valve 10 and the bypass valve 14 are closed, the inlet valve 2 and the outlet valve 12 are opened, respectively, and discharged from the ozone bleaching apparatus. Exhaust gas (at this stage, the ozone bleaching device is not operating, and the exhaust gas does not contain unreacted ozone), and the operation is continued and the operation of the exhaust ozone processing device is confirmed to be smooth. At this stage, the ozone bleaching apparatus starts operation. Thereafter, the unreacted ozone contained in the exhaust gas is sequentially decomposed in the heating exhaust ozone decomposing unit 5 and discharged to the outside air from the discharge port 11 in a state that does not cause harm to the human body.
[0006]
[Problems to be solved by the invention]
The conventional exhaust ozone treatment apparatus is configured as described above, and the heater 3 keeps the temperature of the exhaust gas at a specified value or higher so as to decompose unreacted ozone contained in the exhaust gas in the heated exhaust ozone decomposer 5. Therefore, if the exhaust ozone treatment device breaks down and the heater 3 stops, the temperature of the exhaust gas falls below the specified value, and the decomposition in the heated exhaust ozone decomposer 5 becomes insufficient, Since unreacted ozone harmful to the human body may be discharged, it is necessary to stop the ozone bleaching device, and in turn to stop the entire papermaking plant for safety, and there is a problem that the reliability decreases. While operating the exhaust ozone treatment device, the heater 3 had to be operated, and there was a problem that a lot of energy was required.
[0007]
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide an exhaust ozone treatment device capable of improving reliability and energy-saving operation.
[0008]
[Means for Solving the Problems]
The exhaust ozone treatment apparatus according to claim 1 of the present invention is connected in parallel between an exhaust gas inlet and an exhaust port, and is connected to a heated exhaust ozone decomposer that decomposes exhaust ozone in the exhaust gas and a non-heated exhaust ozone decomposition vessel,
A switching means for selecting one of the two exhaust ozone decomposing units and communicating between the inlet and the outlet;
And a switching means to select a heated exhaust ozone decomposer during steady operation, and during operation when the temperature of exhaust gas passing through the heated exhaust ozone decomposer falls below a predetermined decomposition temperature, And a control means for selecting an ozonolysis device.
[0009]
Further, the exhaust ozone treatment apparatus according to claim 2 of the present invention is connected in parallel between the exhaust gas introduction port and the exhaust port, respectively, and a heating type exhaust ozone decomposing unit and a non-heating type exhaust gas decomposition unit for decomposing exhaust ozone in the exhaust gas. Ozonolysis unit,
A switching means for selecting one of the two exhaust ozone decomposing units and communicating between the inlet and the outlet;
And a control means for controlling the switching means to select a heated exhaust ozonolysis device at the start of operation and to select a non-heated exhaust ozonolysis device during steady operation.
[0010]
A waste ozone treatment apparatus according to claim 3 of the present invention is a heating exhaust ozone decomposer connected between an exhaust gas inlet and an exhaust port for decomposing exhaust ozone in the exhaust gas,
A pair of branch paths that are connected in series with the heated exhaust ozone decomposer and branch in parallel,
A non-heating type exhaust ozone decomposing unit that is connected to one of the branch paths and decomposes exhaust ozone in the exhaust gas,
Switching means for selecting any one of the branch paths and communicating in series with the heated exhaust ozone decomposer,
And the switching means is controlled, and the other of the branch paths is selected during steady operation to operate the heating exhaust ozone decomposer, and the temperature of the exhaust gas passing through the heating exhaust ozone decomposer falls below a predetermined decomposition temperature. In the case of operation, a control means is provided for selecting one of the branch paths and operating the non-heating type exhaust ozone decomposer.
[0011]
A waste ozone treatment apparatus according to claim 4 of the present invention is a heating exhaust ozone decomposer connected between an exhaust gas inlet and an exhaust port for decomposing exhaust ozone in the exhaust gas,
A pair of branch paths that are connected in series with the heated exhaust ozone decomposer and branch in parallel,
A non-heating type exhaust ozone decomposing unit that is connected to one of the branch paths and decomposes exhaust ozone in the exhaust gas,
Switching means for selecting any one of the branch paths and communicating in series with the heated exhaust ozone decomposer,
Control the switching means to select the other of the branch path at the start of operation to operate the heated exhaust ozone decomposer and to select one of the branch path to operate the non-heated exhaust ozone decomposer during steady operation Means are provided.
[0012]
According to a fifth aspect of the present invention, there is provided an exhaust ozone treatment apparatus according to any one of the first to fourth aspects, wherein a catalyst decomposer is used as the non-heated exhaust ozone decomposer.
[0013]
According to a sixth aspect of the present invention, there is provided an exhaust ozone treatment apparatus according to any one of the first to fourth aspects, wherein a chemical cleaning decomposing device is used as the non-heated exhaust ozone decomposing device.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is a block diagram showing a configuration of an exhaust ozone treatment apparatus according to Embodiment 1 of the present invention.
In the figure, 21 is an inlet for introducing exhaust gas containing unreacted ozone discharged from an ozone bleaching apparatus (not shown), 22 is an inlet valve connected to this inlet 21, and 23 is exhaust gas introduced. Is heated by a power supply device 24 such as a thyristor regulator. Reference numeral 25 denotes a heated exhaust ozone decomposer that decomposes unreacted ozone in the exhaust gas heated by the heater 23, and reference numeral 26 denotes a temperature that is provided in the vicinity of the outlet of the heated exhaust ozone decomposer 25 and detects the temperature of the exhaust gas passing therethrough. It is a detector.
[0015]
Reference numeral 27 denotes a first heat recovery unit that is connected to the inlet side of the heater 23 and preheats the exhaust gas introduced from the inlet 21 by high-temperature exhaust gas discharged from the heating exhaust ozone decomposing unit 25, and 28 denotes the first heat recovery unit. A second heat recovery unit 29 for cooling the high-temperature exhaust gas that has passed through the heat recovery unit 27 with cooling water is connected to the outlet side of the second heat recovery unit 28, and a pressure increasing fan for giving a flow rate to the exhaust gas , 30 is a vent valve for communicating between the second heat recovery unit 28 and the pressure increasing fan 29 with outside air, and 31 is provided on the outlet side of the pressure increasing fan 29 via an outlet valve 32 for exhausting exhaust gas. The discharge port 33 is branched from between the pressure increasing fan 29 and the outlet valve 32, and the flow passage 34 connected to the inlet side of the first heat recovery device 27 is a bypass valve connected to the flow passage 33. is there.
[0016]
Reference numeral 35 denotes a branch path that branches from the branch point 35a on the outlet side of the inlet valve 22 and is connected to the outlet side of the second heat recovery unit 28. Reference numeral 36 denotes a branch point 35a of the branch path 35 and the first heat recovery unit. Reference numeral 37 denotes a first switching valve 37 connected to the second switching valve 37 in the vicinity of the branch point 35a of the branch path 35, and constitutes a switching means together with the first switching valve 36. . Reference numeral 38 denotes a catalytic decomposer as an unheated exhaust ozone decomposer that is connected to the outlet side of the second switching valve 37 and decomposes unreacted ozone in the exhaust gas.
[0017]
39 is a control means for controlling the first and second switching valves 36, 37 as switching means. During steady operation, the first switching valve 36 is opened, and the heating exhaust ozone decomposer 25 is connected to the inlet 21 and the exhaust. The second switching is performed during operation when the temperature of the exhaust gas that is communicated between the outlets 31 and passes through the heated exhaust ozone decomposer 25 detected by the temperature detector 26 is lowered to a predetermined value, that is, a predetermined decomposition temperature or lower. The valve 37 is opened, and the catalyst decomposer 38 is communicated between the inlet 21 and the outlet 31.
[0018]
Next, operation | movement of the waste ozone treatment apparatus in Embodiment 1 comprised as mentioned above is demonstrated based on figures.
First, the inlet valve 22 and the outlet valve 32 are closed, the vent valve 30 and the bypass valve 34 are opened, and the first switching valve 36 is opened and the second switching valve 37 is controlled by the control means 39. Is closed, and the operation of the pressure increasing fan 29 is started, and the heater 23 is operated by operating the power supply device 24. Then, the outside air introduced through the vent valve 30 is flowed by the pressure-increasing fan 29 to the flow path 33 → the first heat recovery device 27 → the heater 23 → the heating exhaust ozone decomposing device 25 → the first heat recovery device. The operation is continued until the temperature detected by the temperature detector 26 becomes equal to or higher than a specified value (usually 350 ° C. or higher necessary for ozone decomposition).
[0019]
Next, when the temperature detected by the temperature detector 26 exceeds a specified value, the vent valve 30 and the bypass valve 34 are closed, the inlet valve 22 and the outlet valve 32 are opened, and the ozone bleaching apparatus is discharged. Introduced exhaust gas (at this stage, the ozone bleaching device is not operating and does not contain unreacted ozone in the exhaust gas), and the operation was continued and the operation of the exhaust ozone treatment device was confirmed to be smooth. At the stage, the ozone bleaching device starts operation. Thereafter, the unreacted ozone contained in the exhaust gas is sequentially decomposed in the heating exhaust ozone decomposing unit 25 and is discharged to the outside air from the discharge port 31 in a state that does not cause harm to the human body.
[0020]
If, for some reason during the operation, the temperature of the exhaust gas passing through the heated exhaust ozone decomposing unit 25 detected by the temperature detector 26 falls below a specified value, the control means 39 controls the first switching valve 36. Is closed and the second switching valve 37 is opened. Then, the exhaust gas that has been flowing through the heated exhaust ozone decomposer 25 side is changed to the catalytic decomposer 38 side as a non-heated exhaust ozone decomposer, and unreacted ozone contained in the exhaust gas is converted into the catalytic decomposer. The gas is sequentially decomposed in the air and is discharged to the outside air from the discharge port 31 in a state that does not harm the human body.
[0021]
As described above, according to the first embodiment, the control unit 39 opens the first switching valve 36 side during the steady operation, and decomposes unreacted ozone contained in the exhaust gas by the heating exhaust ozone decomposing unit 25. In addition, when the temperature of the exhaust gas passing through the heating exhaust ozone decomposing unit 25 falls below a specified value, the first switching valve 36 is closed and the second switching valve 37 side is opened, Since the unreacted ozone contained in the exhausted ozone is decomposed by the catalyst decomposer 38, even if the temperature of the exhaust gas falls below a specified value due to the heater 23 being stopped, the unreacted ozone harmful to the human body. There is no need to worry about being discharged into the outside air, and reliability can be improved.
[0022]
Further, since the catalytic cracker 38 is used as the non-heating type exhaust ozone decomposing unit, the structure is simple and it is possible to reduce the size without taking up space. Further, although not described above, the non-heating type exhaust ozone decomposing unit is not used. If a chemical solution cleaning / decomposing device is used, work such as catalyst replacement is not required, and maintenance is facilitated.
[0023]
Embodiment 2. FIG.
FIG. 2 is a block diagram showing the configuration of the exhaust ozone treatment apparatus according to Embodiment 2 of the present invention.
In the figure, reference numerals 21 to 38 are the same as those in the first embodiment, so the same reference numerals are given and the description thereof is omitted.
Reference numeral 40 denotes control means for controlling the first and second switching valves 36 and 37 as switching means. At the start of operation, the first switching valve 36 is opened, and the heating type exhaust ozone decomposer 25 is connected to the inlet 21 and the exhaust. The second switching valve 37 is opened during the steady operation, and the catalyst decomposer 38 is communicated between the inlet 21 and the outlet 31.
[0024]
Next, operation | movement of the waste ozone treatment apparatus in Embodiment 2 comprised as mentioned above is demonstrated based on figures.
First, as in the first embodiment, the inlet valve 22 and the outlet valve 32 are closed, the vent valve 30 and the bypass valve 34 are opened, and the first switching valve is controlled by the control means 40. 36 is opened, the second switching valve 37 is closed, the operation of the pressure-increasing fan 29 is started, and the heater 23 is operated by operating the power supply device 24. Then, the outside air introduced through the vent valve 30 is flowed by the pressure-increasing fan 29 to the flow path 33 → the first heat recovery device 27 → the heater 23 → the heating exhaust ozone decomposing device 25 → the first heat recovery device. The operation is continued until the temperature detected by the temperature detector 26 becomes equal to or higher than a specified value (usually 350 ° C. or higher necessary for ozone decomposition).
[0025]
Next, when the temperature detected by the temperature detector 26 exceeds a specified value, the vent valve 30 and the bypass valve 34 are closed, the inlet valve 22 and the outlet valve 32 are opened, and the ozone bleaching apparatus is discharged. Introduced exhaust gas (at this stage, the ozone bleaching device is not operating and does not contain unreacted ozone in the exhaust gas), and the operation was continued and the operation of the exhaust ozone treatment device was confirmed to be smooth. At the stage, the ozone bleaching device starts operation. At the start of operation, the unreacted ozone having a high concentration contained in the exhaust gas is sequentially decomposed in the heating exhaust ozone decomposing unit 25 and becomes a level that does not cause harm to the human body. Discharged.
[0026]
Thereafter, when a predetermined time elapses and the concentration of unreacted ozone contained in the exhaust gas becomes low and the operation is steady, the control means 40 closes the first switching valve 36 and opens the second switching valve 37. . Then, the exhaust gas that has been flowing through the heated exhaust ozone decomposer 25 side is changed to flow toward the catalytic decomposer 38 as a non-heated exhaust ozone decomposer, and unreacted ozone having a low concentration contained in the exhaust gas is The catalyst is sequentially decomposed in the catalyst decomposing unit 38 and is discharged to the outside air from the discharge port 31 in a state that does not cause harm to the human body.
[0027]
As described above, according to the second embodiment, the concentration of unreacted ozone contained in the exhaust gas is high by switching the first and second switching valves 36 and 37 as switching means under the control of the control means 40. Since the heating-type exhaust ozone decomposer 25 is decomposed at the start of operation and the catalyst decomposer 38 is decomposed at the time of steady operation where the concentration of unreacted ozone is low, the operation time of the heater 23 can be greatly shortened. Therefore, energy saving operation is possible, and the capacity of the catalyst decomposer 38 can be reduced, so that the cost can be reduced.
[0028]
Embodiment 3 FIG.
FIG. 3 is a block diagram showing the configuration of the exhaust ozone treatment apparatus according to Embodiment 3 of the present invention.
In the figure, 21 to 31, 33, and 34 are the same as those in the first and second embodiments, and are therefore denoted by the same reference numerals and description thereof is omitted. Reference numerals 41 and 42 branch from the outlet side of the pressure increasing fan 29, and the first and second branch paths connected to the discharge port 31, and 43 and 44 connect to the first and second branch paths 41 and 42, respectively. These are first and second switching valves as switching means.
[0029]
45 is connected to the outlet side of the second switching valve 44 of the second branch passage 42 and is a catalytic cracker as a non-heated exhaust ozone decomposer for decomposing unreacted ozone in the exhaust gas, and 46 is a first and second catalyst decomposer. 2 is a control means for controlling the two switching valves 43 and 44. During the steady operation, the first switching valve 43 is opened, and the heated exhaust ozone decomposer 25 is connected to the inlet 21 and the outlet through the first branch passage 41. 31, the second switching valve 44 is opened during operation when the temperature of the exhaust gas passing through the heated exhaust ozone decomposer 25 detected by the temperature detector 26 falls below a specified value. The decomposer 45 is communicated between the inlet 21 and the outlet 31.
[0030]
Next, operation | movement of the waste ozone treatment apparatus in Embodiment 3 comprised as mentioned above is demonstrated based on figures.
First, the inlet valve 22, the first and second switching valves 43 and 44 are closed, the ventilation valve 30 and the bypass valve 34 are opened, and the operation of the pressure increasing fan 29 is started. The heater 23 is operated by operating. Then, the outside air introduced through the vent valve 30 is flowed by the pressure-increasing fan 29 to the flow path 33 → the first heat recovery device 27 → the heater 23 → the heating exhaust ozone decomposing device 25 → the first heat recovery device. The operation is continued until the temperature detected by the temperature detector 26 becomes equal to or higher than a specified value (usually 350 ° C. or higher necessary for ozone decomposition).
[0031]
Next, when the temperature detected by the temperature detector 26 exceeds a specified value, the vent valve 30 and the bypass valve 34 are closed, the inlet valve 22 and the first switching valve 43 are opened, and the ozone bleaching apparatus The exhaust gas to be discharged (at this stage, the ozone bleaching device is not operating and the unreacted ozone in the exhaust gas is not included), and the operation is continued and the operation of the exhaust ozone treatment device is smooth. At the confirmed stage, the ozone bleaching unit starts operation. Thereafter, the unreacted ozone contained in the exhaust gas is sequentially decomposed in the heating exhaust ozone decomposing unit 25 and is discharged to the outside air from the discharge port 31 in a state that does not cause harm to the human body.
[0032]
When the temperature of the exhaust gas passing through the heating exhaust ozone decomposing unit 25 detected by the temperature detector 26 is lowered below a specified value for some reason during the operation, the control means 46 stops the heater 23 and The first switching valve 43 is closed and the second switching valve 44 is opened. Then, the exhaust gas that has been flowing through the first branch passage 41 side is changed to flow through the second branch passage 42 to the catalyst decomposer 45 side as an unheated exhaust ozone decomposer, and is contained in the exhaust gas. The unreacted ozone is sequentially decomposed in the catalyst decomposing unit 45 and is discharged to the outside air from the discharge port 31 in a state that does not cause harm to the human body.
[0033]
As described above, according to the third embodiment, the control unit 46 opens the first switching valve 43 side during the steady operation, and decomposes unreacted ozone contained in the exhaust gas by the heating exhaust ozone decomposer 25. In addition, when the temperature of the exhaust gas passing through the heating exhaust ozone decomposer 25 has dropped below a specified value, the first switching valve 43 is closed and the second switching valve 44 side is opened, Since the unreacted ozone contained in the exhausted ozone is decomposed by the catalyst decomposer 45, even if the temperature of the exhaust gas falls below a specified value due to the heater 23 being stopped, the unreacted ozone harmful to the human body. There is no need to worry about being discharged into the outside air, and reliability can be improved.
[0034]
Embodiment 4 FIG.
FIG. 4 is a block diagram showing the configuration of the exhaust ozone treatment apparatus according to Embodiment 4 of the present invention.
In the figure, reference numerals 21 to 31, 33, 34, 41 to 45 are the same as those in the third embodiment, so that the same reference numerals are given and description thereof is omitted.
47 is a control means for controlling the first and second switching valves 43, 44. At the start of operation, the first switching valve 43 side is opened, and the heating type exhaust ozone decomposer 25 is connected between the inlet 21 and the outlet 31. The second switching valve side is opened during steady operation, and the catalyst decomposer 45 is operated between the introduction port 21 and the discharge port 31.
[0035]
The exhaust ozone treatment apparatus according to the fourth embodiment configured as described above operates in the same manner as in the third embodiment, but the first and second switching valves 43 serving as switching means are controlled by the control means 47. , 44 are switched to be decomposed by the heated exhaust ozone decomposer 25 at the start of operation when the concentration of unreacted ozone contained in the exhaust gas is high, and by the catalyst decomposer 45 at the time of steady operation where the concentration of unreacted ozone is low. As a result, the operation time of the heater 23 can be significantly shortened, so that an energy saving operation is possible, and the capacity of the catalyst decomposer 45 can be reduced, so that the cost can be reduced.
[0036]
【The invention's effect】
As described above, according to the first aspect of the present invention, the heated exhaust ozone decomposer and the non-heated exhaust ozone that are connected in parallel between the exhaust gas inlet and the exhaust port and decompose the exhaust ozone in the exhaust gas, respectively. Decomposer,
A switching means for selecting one of the two exhaust ozone decomposing units and communicating between the inlet and the outlet;
And a switching means to select a heated exhaust ozone decomposer during steady operation, and during operation when the temperature of exhaust gas passing through the heated exhaust ozone decomposer falls below a predetermined decomposition temperature, Since the control means for selecting the ozonolysis device is provided, it is possible to provide an exhaust ozone treatment apparatus capable of improving the reliability.
[0037]
According to claim 2 of the present invention, a heated exhaust ozone decomposer and a non-heated exhaust ozone decomposer that are connected in parallel between the exhaust gas inlet and the exhaust port and decompose the exhaust ozone in the exhaust gas,
A switching means for selecting one of the two exhaust ozone decomposing units and communicating between the inlet and the outlet;
And a control means for controlling the switching means to select a heated exhaust ozonolysis device at the start of operation and to select a non-heated exhaust ozonolysis device at the time of steady operation, thus enabling energy saving operation and cost reduction. An exhaust ozone treatment apparatus can be provided.
[0038]
Further, according to claim 3 of the present invention, a heating type exhaust ozone decomposer that is connected between the exhaust gas inlet and the exhaust port and decomposes exhaust ozone in the exhaust gas,
A pair of branch paths that are connected in series with the heated exhaust ozone decomposer and branch in parallel,
A non-heating type exhaust ozone decomposing unit that is connected to one of the branch paths and decomposes exhaust ozone in the exhaust gas,
Switching means for selecting any one of the branch paths and communicating in series with the heated exhaust ozone decomposer,
And the switching means is controlled, and the other of the branch paths is selected during steady operation to operate the heating exhaust ozone decomposer, and the temperature of the exhaust gas passing through the heating exhaust ozone decomposer falls below a predetermined decomposition temperature. Since the control means for operating the non-heating type exhaust ozone decomposing device by selecting one of the branch paths at the time of operation in this case, the exhaust ozone treatment device capable of improving the reliability can be provided.
[0039]
According to claim 4 of the present invention, a heating exhaust ozone decomposing device connected between the exhaust gas inlet and the exhaust port for decomposing exhaust ozone in the exhaust gas,
A pair of branch paths that are connected in series with the heated exhaust ozone decomposer and branch in parallel,
A non-heating type exhaust ozone decomposing unit that is connected to one of the branch paths and decomposes exhaust ozone in the exhaust gas,
Switching means for selecting any one of the branch paths and communicating in series with the heated exhaust ozone decomposer,
Control the switching means to select the other of the branch path at the start of operation to operate the heated exhaust ozone decomposer and to select one of the branch path to operate the non-heated exhaust ozone decomposer during steady operation Since the means is provided, it is possible to provide an exhaust ozone treatment device capable of energy saving operation and cost reduction.
[0040]
According to claim 5 of the present invention, in any one of claims 1 to 4, since the catalyst decomposer is used as the non-heated exhaust ozone decomposer, an exhaust ozone treatment device that can be miniaturized is provided. can do.
[0041]
According to claim 6 of the present invention, in any one of claims 1 to 4, a chemical cleaning scrubber is used as the non-heating type waste ozone decomposer, so that an exhaust ozone treatment device with easy maintenance is provided. can do.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an exhaust ozone treatment apparatus according to Embodiment 1 of the present invention.
FIG. 2 is a block diagram showing a configuration of an exhaust ozone treatment device according to Embodiment 2 of the present invention.
FIG. 3 is a block diagram showing a configuration of an exhaust ozone treatment apparatus according to Embodiment 3 of the present invention.
FIG. 4 is a block diagram showing a configuration of an exhaust ozone treatment apparatus according to Embodiment 4 of the present invention.
FIG. 5 is a block diagram showing a configuration of a conventional exhaust ozone treatment device.
[Explanation of symbols]
21 inlet, 25 heated exhaust ozone decomposer, 31 outlet,
36, 43 first switching valve (switching means),
37, 44 second switching valve (switching means), 38, 45 catalytic cracker,
39, 40, 46, 47 control means, 41 first branch path,
42 Second branch.

Claims (6)

排ガスの導入口および排出口の間に並列に接続されそれぞれ排ガス中の排オゾンを分解する加熱式排オゾン分解器および非加熱式排オゾン分解器、
上記両排オゾン分解器のいずれか一方を選択して上記導入口および排出口の間に連通させる切換手段、
および上記切換手段を制御して、定常運転時には上記加熱式排オゾン分解器を選択し、上記加熱式排オゾン分解器を通過する上記排ガスの温度が所定の分解温度以下に低下した場合の運転時には上記非加熱式排オゾン分解器を選択する制御手段とを備えたことを特徴とする排オゾン処理装置。
A heated exhaust ozone decomposer and an unheated exhaust ozone decomposer that are connected in parallel between the exhaust gas inlet and the exhaust port and decompose the exhaust ozone in the exhaust gas,
Switching means for selecting any one of the two exhaust ozone decomposing units and communicating between the inlet and the outlet;
And controlling the switching means to select the heating exhaust ozone decomposing device during steady operation, and during operation when the temperature of the exhaust gas passing through the heating exhaust ozone decomposing device falls below a predetermined decomposition temperature. An exhaust ozone treatment apparatus comprising: control means for selecting the non-heating type exhaust ozone decomposer.
排ガスの導入口および排出口の間に並列に接続されそれぞれ排ガス中の排オゾンを分解する加熱式排オゾン分解器および非加熱式排オゾン分解器、
上記両排オゾン分解器のいずれか一方を選択して上記導入口および排出口の間に連通させる切換手段、
および上記切換手段を制御して、運転開始時には上記加熱式排オゾン分解器を選択し、定常運転時には上記非加熱式排オゾン分解器を選択する制御手段を備えたことを特徴とする排オゾン処理装置。
A heated exhaust ozone decomposer and an unheated exhaust ozone decomposer that are connected in parallel between the exhaust gas inlet and the exhaust port and decompose the exhaust ozone in the exhaust gas,
Switching means for selecting any one of the two exhaust ozone decomposing units and communicating between the inlet and the outlet;
And a control means for controlling the switching means to select the heating-type exhaust ozone decomposing device at the start of operation and to select the non-heating type exhaust ozone decomposing device at the time of steady operation. apparatus.
排ガスの導入口および排出口の間に接続され排ガス中の排オゾンを分解する加熱式排オゾン分解器、
上記加熱式排オゾン分解器と直列に接続され並列に分岐する一対の分岐路、
上記分岐路のいずれか一方に接続され排ガス中の排オゾンを分解する非加熱式排オゾン分解器、
上記分岐路のいずれか一方を選択して上記加熱式排オゾン分解器と直列に連通させる切換手段、
および上記切換手段を制御して、定常運転時には上記分岐路の他方を選択して上記加熱式排オゾン分解器を運転し、上記加熱式排オゾン分解器を通過する上記排ガスの温度が所定の分解温度以下に低下した場合の運転時には上記分岐路の一方を選択して上記非加熱式排オゾン分解器を運転させる制御手段を備えたことを特徴とする排オゾン処理装置。
A heated exhaust ozone decomposer that is connected between the exhaust gas inlet and outlet and decomposes exhaust ozone in the exhaust gas,
A pair of branch passages connected in series with the heating exhaust ozone decomposer and branching in parallel;
A non-heating type exhaust ozone decomposer that is connected to any one of the branch paths and decomposes exhaust ozone in the exhaust gas;
Switching means for selecting any one of the branch paths and communicating in series with the heated exhaust ozone decomposing unit;
And controlling the switching means to select the other of the branch paths during steady operation to operate the heating exhaust ozone decomposing device, and the temperature of the exhaust gas passing through the heating exhaust ozone decomposing device is predetermined decomposition An exhaust ozone treatment apparatus comprising control means for selecting one of the branch paths and operating the non-heated exhaust ozone decomposer during operation when the temperature drops below the temperature.
排ガスの導入口および排出口の間に接続され排ガス中の排オゾンを分解する加熱式排オゾン分解器、
上記加熱式排オゾン分解器と直列に接続され並列に分岐する一対の分岐路、
上記分岐路のいずれか一方に接続され排ガス中の排オゾンを分解する非加熱式排オゾン分解器、
上記分岐路のいずれか一方を選択して上記加熱式排オゾン分解器と直列に連通させる切換手段、
上記切換手段を制御して、運転開始時には上記分岐路の他方を選択して上記加熱式排オゾン分解器を運転し、定常運転時には上記分岐路の一方を選択して上記非加熱式排オゾン分解器を運転する制御手段を備えたことを特徴とする排オゾン処理装置。
A heated exhaust ozone decomposer that is connected between the exhaust gas inlet and outlet and decomposes exhaust ozone in the exhaust gas,
A pair of branch passages connected in series with the heating exhaust ozone decomposer and branching in parallel;
A non-heating type exhaust ozone decomposer that is connected to any one of the branch paths and decomposes exhaust ozone in the exhaust gas;
Switching means for selecting any one of the branch paths and communicating in series with the heated exhaust ozone decomposing unit;
By controlling the switching means, the other of the branch path is selected at the start of operation to operate the heated exhaust ozone decomposer, and one of the branch paths is selected during steady operation to perform the non-heated exhaust ozone decomposition An exhaust ozone treatment apparatus comprising control means for operating the vessel.
非加熱式排オゾン分解器は、触媒分解器であることを特徴とする請求項1ないし4のいずれかに記載の排オゾン処理装置。The exhaust ozone treatment apparatus according to any one of claims 1 to 4, wherein the non-heating type exhaust ozone decomposer is a catalyst decomposer. 非加熱式排オゾン分解器は、薬液洗浄分解器であることを特徴とする請求項1ないし4のいずれかに記載の排オゾン処理装置。The exhaust ozone treatment apparatus according to any one of claims 1 to 4, wherein the non-heating type exhaust ozone decomposing device is a chemical cleaning decomposing device.
JP2002033413A 2002-02-12 2002-02-12 Waste ozone treatment equipment Expired - Fee Related JP3779626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002033413A JP3779626B2 (en) 2002-02-12 2002-02-12 Waste ozone treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002033413A JP3779626B2 (en) 2002-02-12 2002-02-12 Waste ozone treatment equipment

Publications (2)

Publication Number Publication Date
JP2003236336A JP2003236336A (en) 2003-08-26
JP3779626B2 true JP3779626B2 (en) 2006-05-31

Family

ID=27776217

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002033413A Expired - Fee Related JP3779626B2 (en) 2002-02-12 2002-02-12 Waste ozone treatment equipment

Country Status (1)

Country Link
JP (1) JP3779626B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4907988B2 (en) * 2005-12-29 2012-04-04 株式会社東芝 Gas purification device
JP5287315B2 (en) * 2009-02-10 2013-09-11 日本電気株式会社 Communication terminal, telephone book registration method, communication terminal handling method, and programs thereof
JP6333036B2 (en) * 2014-04-15 2018-05-30 アクア株式会社 Ozone treatment equipment

Also Published As

Publication number Publication date
JP2003236336A (en) 2003-08-26

Similar Documents

Publication Publication Date Title
KR20080043821A (en) Control assembly for controlling a fuel cell system during shutdown and restart
KR101904556B1 (en) Method and device for separating carbon dioxide from an exhaust gas of a fossil-fired power generating plant
US20230235469A1 (en) Method for operating a water electrolysis device
JP5760749B2 (en) Fuel cell cogeneration system
JP3779626B2 (en) Waste ozone treatment equipment
KR20170000934A (en) Purge and non-purge type compressed air dryer that recycling tank using dryed and compressed air in cooling process and compressed air drying method
KR20190140013A (en) How water electrolysis device works
ATE458134T1 (en) NOX CATALYST WITH EXHAUST TEMPERATURE CONTROL
JP2002216828A (en) Fuel cell system
JP3961639B2 (en) Hazardous gas purification apparatus and method having a buffer
WO2007043655A1 (en) Sterilization apparatus
JP2005044684A (en) Fuel cell power generation apparatus
JPH04326924A (en) Intermittent type apparatus and method for purifying catalyst
JP3815815B2 (en) Semiconductor device manufacturing method and exhaust gas treatment apparatus
KR101728241B1 (en) compressed air dryer that recycling the compress air in cooling process and compressed air drying method
CN106938177A (en) A kind of organic waste gas treatment equipment
KR19990044627A (en) Method and apparatus for separating hydrogen from gas mixture
CN209815682U (en) Hydrogen purification system
JPH0975666A (en) Waste ozone decomposition apparatus
JP2000015047A (en) Exhaust gas detoxifying apparatus
JP2000290004A (en) Device and method for supplying ozone
JP7241217B1 (en) VOC treatment device and method
CN220485336U (en) Hydrogen purification system and hydrogen production system
JP2005032654A (en) Water treatment system of fuel cell power generator, its control method, and fuel cell power generator
JP3553298B2 (en) Waste ozone treatment equipment

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040315

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050209

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050209

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060302

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees