JP3778741B2 - Square battery - Google Patents

Square battery Download PDF

Info

Publication number
JP3778741B2
JP3778741B2 JP31008499A JP31008499A JP3778741B2 JP 3778741 B2 JP3778741 B2 JP 3778741B2 JP 31008499 A JP31008499 A JP 31008499A JP 31008499 A JP31008499 A JP 31008499A JP 3778741 B2 JP3778741 B2 JP 3778741B2
Authority
JP
Japan
Prior art keywords
battery
terminal
positive electrode
electrode material
battery case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31008499A
Other languages
Japanese (ja)
Other versions
JP2001135300A (en
Inventor
敬 長瀬
太計男 浜松
雅雄 井上
英之 浅沼
直義 樋之津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP31008499A priority Critical patent/JP3778741B2/en
Priority to US09/670,193 priority patent/US6579640B1/en
Priority to TW089119918A priority patent/TW465135B/en
Priority to HU0003779A priority patent/HUP0003779A3/en
Priority to CNB001331124A priority patent/CN1227755C/en
Priority to EP00121056A priority patent/EP1089363A1/en
Priority to KR1020000056889A priority patent/KR100718386B1/en
Publication of JP2001135300A publication Critical patent/JP2001135300A/en
Application granted granted Critical
Publication of JP3778741B2 publication Critical patent/JP3778741B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、角形蓄電池における端子の構造に関する。
【0002】
【従来の技術】
近年、携帯電話、AV機器、コンピュータなどの携帯機器の需要が高まるに伴い、電池に対する高性能化への要求が急速に高まっており、中でも、ニッケルカドミウム蓄電池、ニッケル水素蓄電池、リチウムイオン二次電池といった二次電池に対して大きな要望がある。
【0003】
このような電池は一般的に密閉タイプであって、電池の形状としては、円筒形などが知られているが、その中で角形密閉式電池は、携帯機器に搭載するに際してスペース効率が優れている点で注目されており、その高性能化や高信頼性に対する要望は大きいと言える。
図6に従来の角形蓄電池である角形ニッケル水素蓄電池の構成を示す。この図に示すように従来の角形ニッケル水素蓄電池300(以下、単に電池300と呼ぶ。)は、有底角筒形の外装缶310の内部に、正極板と負極板とがセパレータを介して配置されてなる発電要素320がアルカリ電解液を含浸させた状態で収納され、外装缶310の開口部311を封口板330で封口された構造である。
【0004】
そして、封口板330は、外装缶310の開口部311に嵌まり込むよう成形された板体であって、その中央部にガス排出弁の機能をも兼用する正極端子331が設けられている。
この正極端子331の構造を詳細に描いたのが図7である。図7は、図6におけるZ−Z線を含む垂直断面図である。
【0005】
この図に基づいて正極端子331の構成を詳しく説明する。まず、ガスケット332を介して貫通孔333aを有するリベット333が、封口板330に電池内部側においてかしめ固定され、当該リベット333の上部において前記貫通孔333aの上端側を覆うようにキャップ334が取着され弁室335が形成されている。そして、この弁室335内には、貫通孔333aを塞ぐ状態に弁部を構成する樹脂材336が配置されている。
【0006】
そして、発電要素を構成する正極板から延設された第一正極板接続材(リード線)337をリベット333と接触した第二正極板接続材338に溶接などの方法によって接続することによって、キャップ334と正極板とが接続されている。
また、従来の角形蓄電池では、封口板330を、有底角筒形の外装缶310の開口部に配置して、レーザ溶接等の手段で溶接している。この時、正極端子331と外装缶310とでは、電気的な極性が異なるため、正極端子と外装缶との間にガスケット332を存在させる必要があり、また、正極端子331がガス排出弁の機能を兼ね備えていたため、正極端子の構造は複雑で、ある程度の大きさが必要であり、電池の薄型化(スリム化)に限界があった。
【0007】
【発明が解決しようとする課題】
ところで、上記のように携帯電話、AV機器、コンピュータなどの携帯機器の需要が高まるに伴い叫ばれてきた高性能な電池開発への要求に応えるには、いまだ改良の余地が残されている。殊に、電池のスリム化と電池の内部抵抗の値はできるだけ低いことが望まれる。
【0008】
例えば、内部抵抗が高いとオーム損が大きくなり放電効率が低下の要因ともなるし、携帯電話などにおけるパルス放電と呼ばれる放電方式(大小の電流を交互にパルス状に流して放電させる方式)を用いて放電を行った場合、内部抵抗が高いとオーム損が大きいため大電流を流したときの放電効率の低下が激しく放電の結果得られるトータルの容量が低下する。
【0009】
そこで、本発明は、かかる点に鑑みてなされたものであって、従来に増して電池の小型化を達成しつつ、電池の内部抵抗においてより低い角形蓄電池を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記目的を達成するために、本発明は、第一の電極材及び第二の電極材とがセパレータを介して配置されてなる発電要素と、当該発電要素を電解液とともに密封収納する金属製の電池ケースとからなり、当該電池ケースに貫設された第一の端子が上記第一の電極材と電気的に接続され、上記第二の電極材が上記電池ケースを介してガス排出弁を兼ねる第二の端子と電気的に接続されてなる角形蓄電池であって、上記第一の端子の上記第一の電極材との接続は、上記第一の電極材から延設された単一の導電材と直接なされており、上記電池ケースは開口部を有する外装缶の当該開口部が封口板によって封口された構成であって、上記第一の端子は、上記封口板に開設された貫通孔に挿設された棒状体であり、棒状体はその電池内部側には平坦面を有し、上記第一の電極材から延設された単一の導電材は当該平坦面に接続され、上記封口板に設けられた上記貫通孔の周辺で電池ケース外部側には突部が設けられており、上記棒状体は、当該突部の先端側にシール材を介して締め付けられていることを特徴とする。
【0011】
これにより、本発明では、溶接等の接続箇所を従来の電池に比べて少なくすることができ、しかも第一の電極材と第一の端子間に単一の導電材以外の部材が介在することがないのでそのぶん接続経路を短くしやすい。これらのために本発明では、内部抵抗を効果的に抑えることが可能となる。また、本発明では、第一の端子とガス排出弁とを分離することによって、即ち、ガス排出弁を兼ねる第二の端子と電池ケースの極性が同じであるので、従来のものより、構造上簡素なものとなり、電池をより薄型(スリム)な角形蓄電池が得られる。そのうえ、本発明では、第一の端子の構成がコンパクトなものとなり、しかも貫通孔に棒状体を挿入して固定することによって端子を組み立てることができるので端子の組み立てが容易になるとともに、効果的に内部抵抗を低減することができるばかりでなく、電池の内部空間を広く確保しやすく、電池の小型化を図りやすい。
【0012】
また、第一の電極材及び第二の電極材とがセパレータを介して配置されてなる発電要素と、当該発電要素を電解液とともに密封収納する金属製の電池ケースとからなり、当該電池ケースに貫設された第一の端子が前記第一の電極材と電気的に接続され、前記第二の電極材が前記電池ケースを介してガス排出弁を兼ねる第二の端子と電気的に接続されてなる角型蓄電池であって、前記第一の端子の前記第一の電極材との接続は、前記第一の電極材と直接なされており、上記電池ケースは開口部を有する外装缶の当該開口部が封口板によって封口された構成であって、上記第一の端子は、上記封口板に開設された貫通孔に挿設された棒状体であり、棒状体は、その電池内部側には平坦面を有し、上記第一の電極材が当該平坦面に接続され、上記封口板に設けられた上記貫通孔の周辺で電池ケース外部側には突部が設けられており、上記棒状体は、当該突部の先端側にシール材を介して締め付けられていることを特徴とする。
【0013】
これにより、本発明では、溶接等の接続箇所を従来の電池に比べてさらに少なくすることができ、しかも第一の電極材と第一の端子間には、他の部材が介在することがないので導電材を介する場合よりも内部抵抗を更に効果的に抑えられる。そのうえ、本発明では、第一の端子の構成がコンパクトなものとなり、しかも貫通孔に棒状体を挿入して固定することによって端子を組み立てることができるので端子の組み立てが容易になるとともに、効果的に内部抵抗を低減することができるばかりでなく、電池の内部空間を広く確保しやすく、電池の小型化を図りやすい。
【0021】
【発明の実施の形態】
以下に図面を参照しながら本発明の蓄電池について具体的に説明する。
初めに第一の実施の形態について説明する。
[実施の形態1]
図1は、蓄電池の一例である本実施の形態にかかるアルカリ蓄電池1(以下、単に「電池1」と呼ぶ。)を示す外観斜視図(一部切欠き)である。
【0022】
この電池1は、水酸化カリウム(例えば、質量比で30%の濃度)などのアルカリ電解液(不図示)を含浸させた状態で発電要素100が収納された外装缶10の開口部11を封口板20で封口されてなる角形のニッケル水素蓄電池である。
外装缶10は、上部(図面上方)に開口部11を有する有底角筒形の所定の厚み(図中Wで表される寸法で、例えば4mm程度)の金属缶である。構成する金属にはニッケルメッキ鋼板を用いることができる。
【0023】
図2は、発電要素100の詳細な構成を示す断面図であり、図1におけるX−X線を含む垂直断面図である。
発電要素100は、負極板101とセパレータ102と正極板103とが交互に配置されて構成されている。
負極板101は、隣接するものどうしがその下部で金属などの導電性の負極板接続材101aで接続され、この負極板接続材101aが外装缶10の内周底面に接触されてある。この負極板101は、パンチングメタルなどの集電板の両面に水素吸蔵合金がポリエチレンオキサイド(PEO)などの結着剤によって結着され、所定の厚み(例えば0.5mm程度)に圧延、成形されてなる。
【0024】
正極板103はその上部で、金属などからなる導電性を有する正極板接続材103aで接続されそれらが合流されて以下に述べるように正極端子部に接続されてある。なお、正極板接続材103aには、外装缶との接触を防ぐためにその表面が絶縁被覆されたものを用いることが望ましい。また、負極板接続材101a及び正極板接続材103aの各電極板への接続は、一般的に予め各電極板に取着された取り付け部材に溶接により行う。
【0025】
この正極板103は、水酸化ニッケルを主成分とする粉末からなる正極活物質がヒドロキシピルセルロース(HPC)などの結着剤によって結着された状態でニッケル3次元多孔体に充填され、所定の厚み(例えば、0.7mm程度)に圧延、成形されてなる。
セパレータ102は、袋状になっていて正極板を包み込んでいる。セパレータとしては、ポリオレフィン系の不織布からなるものを用いることができる。
【0026】
封口板20は、外装缶と同じ素材からなる0.4mm程度の厚みの板体であり、外装缶10の開口部11に嵌め込ませた状態で、レーザ溶接法などの溶接方法によって外装缶内を密封している。そして、この封口板20は、図1に示すように、ガス排出部30と正極端子部40とを備えている。
図3は、ガス排出部30と正極端子部40との詳細な構成を示す断面図であり、図1におけるY−Y線を含む垂直断面図である。
【0027】
ガス排出部30は、O2、H2をはじめとするガスが電池内部で発生して内圧が上昇したときに、ガスを外部に排出する機能を備えた復帰式の弁体である。図3に示すように、このガス排出部30は、封口板20の表面に形成されたガス導入口31を覆うように取着された金属からなるキャップ32によって弁室33が形成され、この弁室33にEPDM(エチレンプロピレンジエンゴム)などからなる樹脂材34をガス導入口31を塞ぐよう押圧された状態に設けられた構成である。キャップ32には、弁室33に導入されたガスを外部に排出するためのガス排出口35が形成されている。
【0028】
このような構成によって、電池内のガス圧が一定圧に達すれば、樹脂材32がガス圧によって上方に収縮しガス導入口31が開放されるので、電池内と弁室33とが連通される。そのため電池内で発生したガスが弁室33にガス導入口31を通って流れ込み、弁室33からキャップに形成されガ排出口35を通って電池外部に排出される。そして、ガスが排出された結果電池内の圧力が一定圧を下回ると、樹脂材32が収縮状態からもとの状態に復帰してガス導入口31をふたたび覆い、電池内部と電池外部とのガスの流通を遮断する。なお、かかる弁体の機構は、いわゆる復帰式と呼ばれ、上記構成以外にも例えば弁部を構成する樹脂材に代えてバネと座板とでガス導入口を塞ぐ構成とすることもできる。復帰式弁を備えたガス排出部30は負極を兼ねており、金属製の外装缶を介して、負極板と電気的に接続されている。
【0029】
次に、正極端子部40について説明する。
正極端子部40は、封口板20表面に設けられた突部41に絶縁密封材42を介して正極端子軸棒43が電池外部から内部に挿入された状態で締め付け固定された構成である。
更に、詳しく正極端子部40について説明する。図4は、正極端子部の組立分解斜視図である。
【0030】
まず、突部41は、封口板20を封口板にプレス加工によって孔41aを形成すると同時に封口板20の板材がプレスした方向に盛り上がって形成されたものである。従って、孔41aは突部41に囲まれた状態に形成される。この孔41aの孔径は、2mm程度であり、孔41aの長さつまり突部41の高さは1mm程度である。
【0031】
絶縁密封材42は、座板42aと挿通部42bとからなる断面T字形のもので、上下方向に貫通孔42cを有している。
正極端子軸棒43は、導電性を有するニッケルメッキ鋼板を打ち抜き加工した断面T字形のリベットであって、挿通部43aと座板43bとからなる。
これらの各構成要素を以下のように組み合せて正極端子部40は形成されている。
【0032】
まず、孔41aの上方から、つまり突部41が形成されている封口板の表面側から絶縁密封材42を挿通し、孔41aの下方から、つまり突部41が形成されていない封口板の裏面側から絶縁性のスペーサ44(スペーサ44は、発電要素を電池内に固定するための絶縁性の部材である。)を介在させて正極端子軸棒43を絶縁密封材42の貫通孔42cの挿通する。ついで、正極端子軸棒の挿通部43aで絶縁密封材42の貫通孔42cから上方に突き出した部分に座板45を挿通して正極端子軸棒43の挿通部43aの上端を押し潰して座板45の中央部分に形成された凹部45aに押し広げ、座板45を下に押え付けることで正極端子軸棒43を突部41の上端41bにかしめ固定する。なお、電池内部の気密性を高めるために、突部41が絶縁密封材42と接触する部位は図に示すように断面形状がテーパ形状となるように加工しておくことが望ましい。
【0033】
そして、正極端子部40の正極端子軸棒43にはその座板43bの下面である平坦面43cにおいて、正極板103に接続された正極板接続材103aが直接的に接続されている。この接続は、溶接によって行うのが一般的である。なお、正極板接続材103aの正極端子軸棒43への接続は、正極端子40を組み立てる前・後の何れの段階でおこなって構わない。ただ、正極端子40を組み立てる前に行う方が、スペーサ44などの部材がないので正極板接続材103aの正極端子軸棒43への接続は行い易い。
【0034】
以上のべたような電池構成において、電池使用時において負極端子である外装缶と正極端子部とが外部端子と接続された場合には、電池全体としておおよそ化1に示すような電気化学的反応が行われる。
【0035】
【化1】

Figure 0003778741
【0036】
以上が電池1の構成についての説明である。
次に、上記電池1における特有の効果について説明する。
まず、既に説明したように電池1においては、ガス排出部30と正極端子部40という全くことなる機能を有するこれら2つの構成要素は分離された構成であった。このように機能単位に分離することによって、従来のものと比べて電池を小型化すること、特に、厚み(図1における幅Wに相当する寸法)を薄くすることが可能となる。即ち、従来の角形アルカリ蓄電池では、正極端子部とガス排出部とは一体的に同じ空間部位に形成するものであるから、正極板からの集電機能を担う部材(本実施の形態における正極端子軸棒に相当するもの)と弁部を構成する樹脂材を設ける弁室とを同じ部位に設けることになるので、その構成が複雑且つ比較的大型なものとならざるを得なかった。その上、封口板を外装缶の開口部にレーザ溶接等する場合に、照射されるレーザ光の熱エネルギーから樹脂性の絶縁材等を保護するために、封口板は正極端子などの構成要素から比較的距離を置いたところを溶接するのが一般的であるので、結局、電池の厚みが大きなものとなってしまっていた。これに対して、電池1では、正極端子部とガス排出部とを一体的に同じ空間部位に形成するのではなく、別な空間部位に分離して形成するので、各部を比較的単純でコンパクトな構成とすることができるため、照射されるレーザ光の熱エネルギーから樹脂性の絶縁材等を保護するために、正極端子などの構成要素から比較的距離を置いて溶接するとしても、従来と比べて小型化を図ることができる。
【0037】
次に、電池1では、正極端子軸棒43が封口板20に形成された突部41の上端でかしめ固定されているので、電池の内部空間を有効に利用することが可能となる。即ち、従来の角形アルカリ蓄電池では、電池内部側において正極端子を絶縁材を介して封口板にかしめ固定されていたため電池内部側に突入した状態で正極端子が形成されていた。このため、電池容量をさほど落とすことなく発電要素を収納するための十分なスペースを確保することが困難であり、結局、電池の更なる小型化を図るのが困難であった。これに対して、電池1では、電池内部側において正極端子が封口板にかしめ固定されているのではなく、突部41の上端つまり電池外部においてかしめ固定されているので、電池容量をさほど落とすことなく発電要素を収納するスペースを比較的広く確保することができ、電池の小型化を図ることができる。
【0038】
次に、電池1では、正極板接続材103aが直接的に正極端子軸棒43に接続されているので、電池の内部抵抗は従来の角形アルカリ蓄電池と同じ条件において比べれば低い。即ち、従来の角形アルカリ蓄電池では、正極板接続材は、正極端子と溶接等の方法によって接続された他の導電部材に接続されていたので、内部抵抗を上昇させる一要因である溶接等の接続箇所が比較的多くしかも正極板と正極端子間に正極板接続材以外の部材が介在することになるので接続距離が長くなり易いため、内部抵抗を抑えるのが困難であった。これに対して、電池1では、正極板接続材は、正極端子と溶接等の方法によって接続された導電部材に接続されているのではなく、正極端子軸棒に直接的に接続されているので、溶接等の接続箇所を従来の電池に比べて少なくすることができ、しかも正極板と正極端子間に単一の正極板接続材以外の部材が介在することがないのでそのぶん接続経路を短くしやすいため内部抵抗が効果的に抑えられる。
【0039】
ここで、このように正極端子軸棒に単一の正極板接続材を直接的に接続することができる理由について説明する。
まず、従来の角形アルカリ蓄電池では、上述のようにガス排出部と正極端子とが一体的に形成されていたうえ、電池内部側において正極端子を絶縁材を介して封口板にかしめ固定する端子構造であったので、正極端子の下端において単一の正極板接続材を直接的に接続するだけの十分な接続面を確保することが困難であった。そして、電池を更に小型化しようとした場合により困難となっていた。これに対して、電池1では、上記のようにガス排出部と正極端子とを分離し、しかも電池外部で正極端子軸棒をかしめ固定する構成とした結果、正極端子軸棒の下端には接続面を十分に確保できる。このため、電池1のように正極端子軸棒に単一の正極板接続材を直接的に接続する構成とすることができたのである。
【0040】
もう一つの理由は、正極板接続材の正極端子軸棒への接続を正極端子を組み立てた前に行い易いことにある。
従来の角形アルカリ蓄電池では、上述のように電池内部側において正極端子を絶縁材を介して封口板にかしめ固定されていたため、正極端子を組み立てる前に正極板接続材の正極端子へ接続してから正極端子を組み立てようとすると接続部分の近傍をかしめることになるので接続部分が断線してしまうなどの問題があり容易に接続することができなかった。これに対して、電池1においては、上記のように電池外部で正極端子軸棒をかしめ固定した構成とした結果、正極板接続材の正極端子軸棒への接続を行った後に正極端子を組み立てても接続部分が断線などは生じ難い。このため、電池1のように正極端子軸棒に単一の正極板接続材を直接的に接続する構成とすることができたのである。
【0041】
以上が正極端子軸棒に単一の正極板接続材を直接的に接続することができる理由についての説明である。
更に、ガス排出部のキャップ32を金属によって形成すれば、電池上部に突出した正極端子及び負極端子両方を備えることになるので、実施の形態2で説明するような組電池を構築するのに有効な構造となる。
【0042】
なお、上記説明では正極端子軸棒と正極板接続材とを別体としていたが、これらを一体的に形成したものを用いることもできる。このような一体的に形成したものを用いれば、正極端子軸棒と正極板接続材とを接続することによる内部抵抗の上昇が抑えられるので電池全体として更に内部抵抗を下げることができる。
以上で本発明の実施の形態1についての説明を終わり、次に上記実施の形態1にかかる角形アルカリ蓄電池の性能ついて実験的に検討した結果について説明する。
【0043】
[実験]上記実施の形態1に基づいて実施例にかかる電池を作製し、内部抵抗値及び高率放電時の放電効率を測定した。比較例として、従来の図6に示す構造の電池を作製し、同様に内部抵抗値及び高率放電時の放電効率を測定した。内部抵抗値測定条件は、AC法(1kHz)で行った。
【0044】
放電効率測定条件は、充電0.1C×16hで行い、1h休止後、放電2C(終止電圧1.0V)で行った。同様に放電4C(終止電圧1.0V)とした。
これらの結果測定結果を内部抵抗値については下記表1、放電効率については下記表2に示す。なお、測定結果は、内部抵抗値については、同様の条件で作製した電池30個についての結果であり、放電効率については、同様の条件で作製した電池10個についての結果である。
【0045】
【表1】
Figure 0003778741
【0046】
【表2】
Figure 0003778741
【0047】
これらの表に示すように、まず、実施例にかかる電池では比較例にかかる電池に比べて内部抵抗値は低かった。次に、実施例にかかる電池では比較例にかかる電池に比べて放電効率は高かった。なお、放電効率は、内部抵抗値が小さいほど向上する特性である。
次に上記実施の形態1の電池1を組電池に適用した場合の実施の形態について説明する。
【0048】
[実施の形態2]
図5は、前記電池1を適用した組電池200の全体構成を示す斜視図(一部切欠き)である。
当該組電池200は、絶縁性の枠体201の内部に電池1が複数個(図では3つ)単位電池として同じ姿勢でしかも電池の幅(図中W’)方向に向けてガス排出部30及び正極端子部40とが直線的に配列する状態に配置収納され直列に接続された構成である。
【0049】
各電池1の間には外装缶どうしが接触しないように絶縁シート202が介在されている。
隣接する電池のガス排出部30と正極端子部40とはブレーカ203を経由して接続線204で接続されている。ブレーカ203は、ガス排出部30と正極端子部40との間のスペース207に収納されている。両端に位置する電池のガス排出部30と正極端子部40とは枠体201に形成された端子露出窓205、206から上端が露出されている。この露出部分が組電池の外部端子を兼ねており外部負荷などとの接続に供される。
【0050】
ブレーカ203には、詳しい内部構造についての説明は省略するが、ある一定以上の電流が流れた時に電池間の電通を遮断する機能を有する公知のブレーカを用いることができる。
以上のような組電池とすることによって以下のような効果を奏する。
まず、組電池200における各単位電池は、実施の形態1で説明した電池1のように電池上部に突出した正極端子及び負極端子両方を備えた構造の電池を用いて構築されているので、上記のように同一姿勢に統一することによって、様々な単位電池の配列の組み合わせのなかでも正極端子と負極端子を比較的短い距離で接続させることができる。従って、組電池の内部抵抗を低くすることができる。
【0051】
また、同一の姿勢に配列されるので、組電池の製造工程において、電池の配列姿勢が異なる2つの電池の搬送系を配備する必要もなく、製造設備をより簡略なものとしても、組電池の内部抵抗の低減を図ることが可能となる。
また、組電池200においては、隣接する単位電池上部に形成されたスペース207にブレーカが配置されているので、電池全体としてコンパクト化を図ることもできる。
【0052】
更に、組電池200においては、接続線で接続するガス排出部30及び正極端子部40の位置関係はいろいろ設定できるので、上記のようにブレーカを収納するのも容易である。
また、幅方向に配列されているので、組電池自体を薄型化するのに好適な配列となっている。
【0053】
【発明の効果】
以上説明してきたように、本発明の角形蓄電池は、第一の電極材及び第二の電極材とがセパレータを介して配置されてなる発電要素と、当該発電要素を電解液とともに密封収納する金属製の電池ケースとからなり、当該電池ケースに貫設された第一の端子が前記第一の電極材と電気的に接続され、前記第二の電極材が前記電池ケースを介してガス排出弁を兼ねる第二の端子と電気的に接続されてなる角形蓄電池であって、前記第一の端子の前記第一の電極材との接続は、前記第一の電極材から延設された単一の導電材と直接なされているので、溶接等の接続箇所を従来の電池に比べて少なくすることができ、しかも第一の電極材と第一の端子間に単一の導電材以外の部材が介在することがないのでそのぶん接続経路を短くしやすい。これらのために内部抵抗を効果的に抑えることが可能となる。また、第一の端子とガス排出弁とを分離することによって、即ち、ガス排出弁を兼ねる第二の端子と電池ケースの極性が同じであるので、従来のものより、構造上簡素なものとなり、電池をより薄型(スリム)な角形蓄電地が得られる。
【0054】
また、本発明の角形蓄電池は、第一の電極材及び第二の電極材とがセパレータを介して配置されてなる発電要素と、当該発電要素を電解液とともに密封収納する金属製の電池ケースとからなり、当該電池ケースに貫設された第一の端子が前記第一の電極材と電気的に接続され、前記第二の電極材が前記電池ケースを介してガス排出弁を兼ねる第二の端子と電気的に接続されてなる角形蓄電池であって、第一の端子は第一の電極材と直接接続された構成であるので、溶接等の接続箇所を従来の電池に比べて少なくすることができ、しかも第一の電極材と第一の端子間には他の部材が介在することがないので内部抵抗が単一の接続材を介する場合よりも更に抑えられる。
【0055】
また、本発明の角形蓄電池は、第一の電極材及び第二の電極材とがセパレータを介して配置されてなる発電要素と、当該発電要素を電解液とともに密封収納する金属製の電池ケースとからなり、当該電池ケースに貫設された第一の端子が前記第一の電極材と電気的に接続され、前記第二の電極材が前記電池ケースを介してガス排出弁を兼ねる第二の端子と電気的に接続されてなる角形蓄電池であって、前記第一の端子は、前記電池ケースに開設された貫通孔に挿設された棒状体であり、当該棒状体は、当該電池外部側においてシール材を介して電池ケースに締め付けられているので、単一の導電材を第一の端子に容易に直接的に接続することができる。このため、電池の内部抵抗を効果的に下げることが可能となる。また、第一の端子とガス排出弁とを分離することによって、即ち、ガス排出弁を兼ねる第二の端子と電池ケースの極性が同じであるので、従来のものより、構造上簡素なものとなり、電池をより薄型(スリム)な角形蓄電地が得られる。
【図面の簡単な説明】
【図1】第一の実施の形態にかかる角形アルカリ蓄電池の構成を示す斜視図(一部切欠き部分を含む。)である。
【図2】前記角形アルカリ蓄電池における発電要素100の詳細な構成を示す断面図であり、図1におけるX−X線を含む垂直断面図である。
【図3】前記角形アルカリ蓄電池におけるガス排出部30と正極端子部40との詳細な構成を示す断面図であり、図1におけるY−Y線を含む垂直断面図である。
【図4】前記角形アルカリ蓄電池における正極端子部40の組立分解斜視図である。
【図5】第二の実施の形態にかかる組電池200の全体構成を示す斜視図(一部切欠き)である。
【図6】従来の角形アルカリ蓄電池の構成を示す斜視図(一部切欠き部分を含む。)である。
【図7】図6におけるZ−Z線を含む垂直断面図である。
【符号の説明】
1 角形アルカリ蓄電池
10 外装缶
11 開口部
20 封口板
30 ガス排出部
31 ガス導入口
32 キャップ
33 弁室
34 樹脂材
35 ガス排出口
40 正極端子部
41 突部
41a 孔
41b 上端
42 絶縁密封材
42a 座板
42b 挿通部
42c 貫通孔
43 正極端子軸棒
43a 挿通部
43b 座板
43c 平坦面
44 スペーサ
45 座板
45a 凹部
100 発電要素
101 負極板
101a 負極板接続材
102 セパレータ
103 正極板
103a 正極板接続材
200 組電池
201 枠体
202 絶縁シート
203 ブレーカ
204 接続線
205,206 端子露出窓
207 スペース[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a structure of a terminal in a prismatic storage battery.
[0002]
[Prior art]
In recent years, as the demand for mobile devices such as mobile phones, AV devices, and computers has increased, the demand for higher performance of batteries has increased rapidly. Among them, nickel cadmium storage batteries, nickel hydride storage batteries, lithium ion secondary batteries, etc. There is a great demand for such secondary batteries.
[0003]
Such a battery is generally a sealed type, and a cylindrical shape or the like is known as the shape of the battery. Among them, the square sealed battery is excellent in space efficiency when mounted on a portable device. It can be said that there is a great demand for higher performance and higher reliability.
FIG. 6 shows a configuration of a prismatic nickel metal hydride storage battery which is a conventional prismatic storage battery. As shown in this figure, a conventional prismatic nickel metal hydride storage battery 300 (hereinafter simply referred to as a battery 300) has a positive electrode plate and a negative electrode plate disposed within a bottomed rectangular tube-shaped outer can 310 via a separator. The generated power generation element 320 is stored in an impregnated state with an alkaline electrolyte, and the opening 311 of the outer can 310 is sealed with a sealing plate 330.
[0004]
The sealing plate 330 is a plate body that is formed so as to be fitted into the opening 311 of the outer can 310, and a positive electrode terminal 331 that also functions as a gas discharge valve is provided at the center thereof.
FIG. 7 shows the structure of the positive terminal 331 in detail. FIG. 7 is a vertical sectional view including the ZZ line in FIG. 6.
[0005]
Based on this figure, the structure of the positive electrode terminal 331 will be described in detail. First, a rivet 333 having a through hole 333a is fixed by caulking to the sealing plate 330 on the battery inner side via a gasket 332, and a cap 334 is attached so as to cover the upper end side of the through hole 333a above the rivet 333. A valve chamber 335 is formed. And in this valve chamber 335, the resin material 336 which comprises a valve part in the state which plugs up the through-hole 333a is arrange | positioned.
[0006]
Then, the first positive electrode plate connecting material (lead wire) 337 extended from the positive electrode plate constituting the power generation element is connected to the second positive electrode plate connecting material 338 in contact with the rivet 333 by a method such as welding. 334 and the positive electrode plate are connected.
Further, in the conventional rectangular storage battery, the sealing plate 330 is disposed in the opening of the bottomed rectangular tube-shaped outer can 310 and welded by means such as laser welding. At this time, since the electrical polarity is different between the positive terminal 331 and the outer can 310, the gasket 332 must be present between the positive terminal and the outer can, and the positive terminal 331 functions as a gas discharge valve. Therefore, the structure of the positive electrode terminal is complicated and requires a certain size, and there is a limit to thinning (slimming) the battery.
[0007]
[Problems to be solved by the invention]
By the way, there is still room for improvement to meet the demand for high-performance battery development that has been screamed as the demand for portable devices such as mobile phones, AV devices, and computers increases as described above. In particular, it is desirable that the battery is slim and the internal resistance of the battery is as low as possible.
[0008]
For example, if the internal resistance is high, the ohmic loss will increase and the discharge efficiency will be reduced, and a discharge method called pulse discharge in a mobile phone or the like (a method in which large and small currents are alternately flowed in pulses) will be used. When the discharge is performed, if the internal resistance is high, the ohmic loss is large, so that the discharge efficiency when a large current flows is drastically reduced, and the total capacity obtained as a result of the discharge is reduced.
[0009]
Therefore, the present invention has been made in view of such a point, and an object of the present invention is to provide a prismatic storage battery having a lower internal resistance of the battery while achieving a reduction in the size of the battery as compared with the prior art.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a power generation element in which a first electrode material and a second electrode material are arranged via a separator, and a metal made to contain and store the power generation element together with an electrolytic solution. A battery case, a first terminal penetrating the battery case is electrically connected to the first electrode material, and the second electrode material also serves as a gas exhaust valve via the battery case. A prismatic storage battery electrically connected to a second terminal, wherein the connection of the first terminal to the first electrode material is a single conductive material extending from the first electrode material. Made directly with the materialThe battery case has a configuration in which the opening of the outer can having an opening is sealed by a sealing plate, and the first terminal is inserted into a through-hole formed in the sealing plate. The rod-shaped body has a flat surface on the battery inner side, and a single conductive material extended from the first electrode material is connected to the flat surface and provided on the sealing plate. A protrusion is provided on the outside of the battery case around the through hole, and the rod-like body is fastened to the tip side of the protrusion via a sealing material.It is characterized by that.
[0011]
  As a result, in the present invention, the number of connection points such as welding can be reduced as compared with conventional batteries, and a member other than a single conductive material is interposed between the first electrode material and the first terminal. It is easy to shorten the connection path. For these reasons, in the present invention, the internal resistance can be effectively suppressed. Further, in the present invention, by separating the first terminal and the gas discharge valve, that is, the second terminal also serving as the gas discharge valve and the battery case have the same polarity. It becomes simple and a square storage battery having a thinner (slim) battery can be obtained. Moreover, in the present invention, the configuration of the first terminal is compact, and since the terminal can be assembled by inserting and fixing the rod-like body in the through hole, the assembly of the terminal is facilitated and effective. In addition to being able to reduce the internal resistance, it is easy to secure a large internal space of the battery and to facilitate downsizing of the battery.
[0012]
The first electrode material and the second electrode material are composed of a power generation element arranged via a separator, and a metal battery case that hermetically stores the power generation element together with an electrolyte solution. The penetrating first terminal is electrically connected to the first electrode material, and the second electrode material is electrically connected to the second terminal also serving as a gas discharge valve via the battery case. In the prismatic storage battery, the connection of the first terminal with the first electrode material is made directly with the first electrode material.The battery case has a configuration in which the opening of the outer can having an opening is sealed by a sealing plate, and the first terminal is inserted into a through-hole formed in the sealing plate. The rod-like body has a flat surface on the battery inner side, the first electrode material is connected to the flat surface, and the battery case is formed around the through hole provided in the sealing plate. A protrusion is provided on the side, and the rod-like body is fastened to the tip side of the protrusion via a sealing material.It is characterized by that.
[0013]
Thereby, in this invention, the connection location, such as welding, can further be reduced compared with the conventional battery, and another member does not intervene between the 1st electrode material and the 1st terminal. Therefore, the internal resistance can be suppressed more effectively than when a conductive material is used. Moreover, in the present invention, the configuration of the first terminal is compact, and since the terminal can be assembled by inserting and fixing the rod-like body in the through hole, the assembly of the terminal is facilitated and effective. In addition to being able to reduce the internal resistance, it is easy to secure a large internal space of the battery and to facilitate downsizing of the battery.
[0021]
DETAILED DESCRIPTION OF THE INVENTION
The storage battery of the present invention will be specifically described below with reference to the drawings.
First, the first embodiment will be described.
  [Embodiment 1]
FIG. 1 is an external perspective view (partially cutaway) showing an alkaline storage battery 1 (hereinafter simply referred to as “battery 1”) according to the present embodiment, which is an example of a storage battery.
[0022]
The battery 1 seals the opening 11 of the outer can 10 in which the power generating element 100 is housed in an impregnated state with an alkaline electrolyte (not shown) such as potassium hydroxide (for example, a concentration of 30% by mass). The prismatic nickel-metal hydride storage battery is sealed with a plate 20.
The outer can 10 is a metal can having a predetermined thickness (a dimension represented by W in the drawing, for example, about 4 mm) having a bottomed rectangular tube shape having an opening 11 in the upper part (upper part of the drawing). A nickel-plated steel plate can be used as the metal to be configured.
[0023]
FIG. 2 is a cross-sectional view showing a detailed configuration of the power generation element 100, and is a vertical cross-sectional view including the XX line in FIG.
The power generation element 100 is configured by alternately arranging negative plates 101, separators 102, and positive plates 103.
Adjacent ones of the negative electrode plates 101 are connected to each other by a conductive negative electrode plate connecting material 101 a such as metal, and the negative electrode plate connecting material 101 a is in contact with the inner peripheral bottom surface of the outer can 10. This negative electrode plate 101 is formed by bonding a hydrogen storage alloy to both surfaces of a current collector plate such as punching metal with a binder such as polyethylene oxide (PEO), rolling to a predetermined thickness (for example, about 0.5 mm). It becomes.
[0024]
The positive electrode plate 103 is connected at its upper part by a positive electrode plate connecting material 103a having conductivity and made of metal or the like, and they are joined together and connected to the positive electrode terminal portion as described below. In addition, it is desirable to use the positive electrode plate connection member 103a whose surface is insulated to prevent contact with the outer can. Further, the connection of the negative electrode plate connecting material 101a and the positive electrode plate connecting material 103a to each electrode plate is generally performed by welding to an attachment member attached to each electrode plate in advance.
[0025]
The positive electrode plate 103 is filled in a nickel three-dimensional porous body in a state in which a positive electrode active material made of a powder mainly composed of nickel hydroxide is bound by a binder such as hydroxypyrcellulose (HPC). It is rolled and molded to a thickness (for example, about 0.7 mm).
The separator 102 has a bag shape and encloses the positive electrode plate. As a separator, what consists of a polyolefin-type nonwoven fabric can be used.
[0026]
The sealing plate 20 is a plate body having a thickness of about 0.4 mm and made of the same material as the outer can. The sealing plate 20 is fitted in the opening 11 of the outer can 10 and is welded inside the outer can by a welding method such as a laser welding method. Sealed. And this sealing board 20 is equipped with the gas exhaust part 30 and the positive electrode terminal part 40, as shown in FIG.
FIG. 3 is a cross-sectional view showing a detailed configuration of the gas discharge part 30 and the positive electrode terminal part 40, and is a vertical cross-sectional view including the YY line in FIG.
[0027]
The gas discharge part 30 is O2, H2This is a resettable valve body having a function of discharging gas to the outside when gas such as is generated inside the battery and the internal pressure rises. As shown in FIG. 3, the gas discharge portion 30 has a valve chamber 33 formed by a cap 32 made of metal attached so as to cover a gas inlet 31 formed on the surface of the sealing plate 20. In the chamber 33, a resin material 34 made of EPDM (ethylene propylene diene rubber) or the like is provided so as to be pressed so as to close the gas inlet 31. The cap 32 is formed with a gas discharge port 35 for discharging the gas introduced into the valve chamber 33 to the outside.
[0028]
With such a configuration, when the gas pressure in the battery reaches a certain pressure, the resin material 32 contracts upward by the gas pressure and the gas inlet 31 is opened, so that the inside of the battery and the valve chamber 33 are communicated. . Therefore, the gas generated in the battery flows into the valve chamber 33 through the gas introduction port 31, is formed in the cap from the valve chamber 33, and is discharged to the outside of the battery through the gas discharge port 35. When the pressure inside the battery falls below a certain pressure as a result of the gas being discharged, the resin material 32 returns from the contracted state to the original state and covers the gas inlet 31 again, and the gas inside and outside the battery is gas. Block the distribution of In addition, the mechanism of this valve body is called what is called a return type | formula, and it can also be set as the structure which replaces with the resin material which comprises a valve part other than the said structure, and closes a gas inlet with a spring and a seat board. The gas discharge unit 30 provided with a return valve also serves as a negative electrode, and is electrically connected to the negative electrode plate via a metal outer can.
[0029]
Next, the positive electrode terminal portion 40 will be described.
The positive electrode terminal portion 40 has a configuration in which a positive electrode terminal shaft bar 43 is fastened and fixed to a protrusion 41 provided on the surface of the sealing plate 20 with an insulating sealing material 42 inserted from the outside of the battery.
Further, the positive electrode terminal portion 40 will be described in detail. FIG. 4 is an exploded perspective view of the positive terminal portion.
[0030]
First, the protrusion 41 is formed by forming the hole 41a by pressing the sealing plate 20 into the sealing plate and at the same time rising in the direction in which the plate material of the sealing plate 20 is pressed. Therefore, the hole 41 a is formed in a state surrounded by the protrusion 41. The diameter of the hole 41a is about 2 mm, and the length of the hole 41a, that is, the height of the protrusion 41 is about 1 mm.
[0031]
The insulating sealing material 42 has a T-shaped cross section composed of a seat plate 42a and an insertion portion 42b, and has a through hole 42c in the vertical direction.
The positive electrode terminal shaft 43 is a rivet having a T-shaped section obtained by punching a nickel-plated steel plate having conductivity, and includes an insertion portion 43a and a seat plate 43b.
The positive electrode terminal portion 40 is formed by combining these components as follows.
[0032]
First, the insulating sealing material 42 is inserted from above the hole 41a, that is, from the surface side of the sealing plate on which the protrusion 41 is formed, and from the lower side of the hole 41a, that is, the back surface of the sealing plate on which the protrusion 41 is not formed. An insulating spacer 44 (spacer 44 is an insulating member for fixing the power generating element in the battery) is inserted from the side, and the positive terminal shaft rod 43 is inserted into the through hole 42c of the insulating sealing material 42. To do. Next, the seat plate 45 is inserted into a portion protruding upward from the through hole 42c of the insulating sealing material 42 at the insertion portion 43a of the positive electrode terminal shaft rod, and the upper end of the insertion portion 43a of the positive electrode terminal shaft rod 43 is crushed. The positive terminal shaft rod 43 is caulked and fixed to the upper end 41 b of the protrusion 41 by spreading and expanding the recess 45 a formed in the central portion of 45 and pressing down the seat plate 45. In addition, in order to improve the airtightness inside the battery, it is desirable to process the portion where the protrusion 41 contacts the insulating sealing material 42 so that the cross-sectional shape becomes a tapered shape as shown in the figure.
[0033]
A positive electrode plate connecting member 103a connected to the positive electrode plate 103 is directly connected to the positive electrode terminal shaft 43 of the positive electrode terminal portion 40 on a flat surface 43c which is the lower surface of the seat plate 43b. This connection is generally made by welding. The connection of the positive electrode plate connection member 103a to the positive electrode terminal shaft 43 may be performed at any stage before or after the positive electrode terminal 40 is assembled. However, it is easier to connect the positive electrode plate connection member 103a to the positive electrode terminal shaft 43 because there is no member such as the spacer 44 when the positive electrode terminal 40 is assembled.
[0034]
In the battery configuration as described above, when the outer can and the positive electrode terminal portion, which are the negative electrode terminals, are connected to the external terminals when the battery is used, the electrochemical reaction as shown in the general formula 1 as a whole battery is performed. Done.
[0035]
[Chemical 1]
Figure 0003778741
[0036]
The above is the description of the configuration of the battery 1.
Next, a specific effect of the battery 1 will be described.
First, as already described, in the battery 1, these two components having completely different functions of the gas discharge unit 30 and the positive electrode terminal unit 40 are separated. By separating the functional units in this way, it is possible to reduce the size of the battery, in particular, to reduce the thickness (dimension corresponding to the width W in FIG. 1) compared to the conventional unit. That is, in the conventional prismatic alkaline storage battery, the positive electrode terminal portion and the gas discharge portion are integrally formed in the same space portion, and therefore, a member that has a function of collecting current from the positive electrode plate (the positive electrode terminal in the present embodiment). Since the valve chamber provided with the resin material that constitutes the valve portion is provided in the same part, the configuration has to be complicated and relatively large. In addition, when the sealing plate is laser welded to the opening of the outer can, the sealing plate is protected from the components such as the positive terminal in order to protect the resinous insulating material from the thermal energy of the irradiated laser beam. Since welding is generally performed at a relatively long distance, the thickness of the battery has been increased. On the other hand, in the battery 1, since the positive electrode terminal portion and the gas discharge portion are not integrally formed in the same space portion, but formed separately in different space portions, each portion is relatively simple and compact. In order to protect the resinous insulating material from the thermal energy of the irradiated laser light, welding is performed at a relatively long distance from the components such as the positive electrode terminal. The size can be reduced compared to the above.
[0037]
Next, in the battery 1, since the positive electrode terminal shaft 43 is caulked and fixed at the upper end of the protrusion 41 formed on the sealing plate 20, the internal space of the battery can be used effectively. That is, in the conventional prismatic alkaline storage battery, since the positive electrode terminal is caulked and fixed to the sealing plate via the insulating material on the inner side of the battery, the positive electrode terminal is formed in a state of entering into the inner side of the battery. For this reason, it is difficult to secure a sufficient space for housing the power generation element without significantly reducing the battery capacity, and it is difficult to further reduce the size of the battery. In contrast, in the battery 1, the positive electrode terminal is not caulked and fixed to the sealing plate on the inner side of the battery, but is caulked and fixed on the upper end of the protrusion 41, that is, outside the battery, so that the battery capacity is greatly reduced. Therefore, a relatively large space for storing the power generation element can be secured, and the battery can be reduced in size.
[0038]
Next, in the battery 1, since the positive electrode plate connecting member 103a is directly connected to the positive electrode terminal shaft rod 43, the internal resistance of the battery is low as compared with the same conditions as those of the conventional prismatic alkaline storage battery. That is, in the conventional prismatic alkaline storage battery, the positive electrode plate connection material is connected to the other conductive member connected to the positive electrode terminal by a method such as welding, so that the connection such as welding is one factor that increases the internal resistance. Since the number of locations is relatively large and a member other than the positive electrode plate connecting material is interposed between the positive electrode plate and the positive electrode terminal, the connection distance tends to be long, so that it is difficult to suppress the internal resistance. On the other hand, in the battery 1, the positive plate connecting material is not connected to the conductive member connected to the positive terminal by a method such as welding, but directly connected to the positive terminal shaft. The number of connection points such as welding can be reduced compared to conventional batteries, and no member other than a single positive electrode plate connection material is interposed between the positive electrode plate and the positive electrode terminal. The internal resistance is effectively suppressed because it is easy to do.
[0039]
Here, the reason why a single positive electrode plate connecting material can be directly connected to the positive electrode terminal shaft in this way will be described.
First, in the conventional prismatic alkaline storage battery, the gas discharge part and the positive electrode terminal are integrally formed as described above, and the positive electrode terminal is caulked and fixed to the sealing plate via an insulating material inside the battery. Therefore, it was difficult to ensure a sufficient connection surface for directly connecting a single positive electrode plate connecting material at the lower end of the positive electrode terminal. And it has become more difficult when the battery is further downsized. On the other hand, in the battery 1, as a result of separating the gas discharge portion and the positive electrode terminal as described above and caulking and fixing the positive electrode terminal shaft rod outside the battery, the battery 1 is connected to the lower end of the positive electrode terminal shaft rod. A sufficient surface can be secured. For this reason, like the battery 1, it was able to be set as the structure which connects a single positive electrode plate connection material directly to a positive electrode terminal shaft bar.
[0040]
Another reason is that it is easy to connect the positive electrode plate connecting material to the positive electrode terminal shaft before assembling the positive electrode terminal.
In the conventional prismatic alkaline storage battery, since the positive terminal is caulked and fixed to the sealing plate via the insulating material on the battery inner side as described above, the positive terminal is connected to the positive terminal of the positive plate connecting material before assembling the positive terminal. When the positive electrode terminal is to be assembled, the vicinity of the connection portion is caulked, so that there is a problem that the connection portion is disconnected and the connection cannot be easily made. On the other hand, in the battery 1, the positive electrode terminal shaft rod is caulked and fixed outside the battery as described above. As a result, the positive electrode terminal is assembled after the positive electrode plate connecting material is connected to the positive electrode terminal shaft rod. However, it is difficult for the connection part to break. For this reason, like the battery 1, it was able to be set as the structure which connects a single positive electrode plate connection material directly to a positive electrode terminal shaft bar.
[0041]
The above is an explanation of the reason why a single positive electrode plate connecting material can be directly connected to the positive electrode terminal shaft.
Furthermore, if the cap 32 of the gas discharge part is made of metal, both the positive electrode terminal and the negative electrode terminal projecting from the upper part of the battery are provided, so that it is effective for constructing an assembled battery as described in the second embodiment. Structure.
[0042]
In the above description, the positive electrode terminal shaft rod and the positive electrode plate connecting material are separated from each other. However, it is also possible to use one in which these are integrally formed. If such an integrally formed member is used, an increase in internal resistance due to connection between the positive electrode terminal shaft rod and the positive electrode plate connecting material can be suppressed, so that the internal resistance of the battery as a whole can be further reduced.
This is the end of the description of the first embodiment of the present invention. Next, the results of an experimental study on the performance of the prismatic alkaline storage battery according to the first embodiment will be described.
[0043]
[Experiment] A battery according to the example was manufactured based on the first embodiment, and the internal resistance value and the discharge efficiency during high rate discharge were measured. As a comparative example, the conventionalFIG.A battery having the structure shown in FIG. 5 was prepared, and the internal resistance value and the discharge efficiency during high rate discharge were measured in the same manner. The internal resistance value was measured by the AC method (1 kHz).
[0044]
The discharge efficiency was measured under the condition of charge 0.1 C × 16 h, and after 1 h rest, discharge 2 C (end voltage 1.0 V) was performed. Similarly, the discharge was 4C (end voltage 1.0V).
The measurement results are shown in Table 1 below for the internal resistance value and in Table 2 below for the discharge efficiency. The measurement results are the results for 30 batteries manufactured under the same conditions for the internal resistance value, and the results for 10 batteries manufactured under the same conditions for the discharge efficiency.
[0045]
[Table 1]
Figure 0003778741
[0046]
[Table 2]
Figure 0003778741
[0047]
As shown in these tables, first, the battery according to the example had a lower internal resistance value than the battery according to the comparative example. Next, the discharge efficiency of the battery according to the example was higher than that of the battery according to the comparative example. The discharge efficiency is a characteristic that improves as the internal resistance value decreases.
Next, an embodiment when the battery 1 of the first embodiment is applied to an assembled battery will be described.
[0048]
  [Embodiment 2]
FIG. 5 is a perspective view (partially cutaway) showing the overall configuration of the assembled battery 200 to which the battery 1 is applied.
The assembled battery 200 includes a gas discharge unit 30 in the same attitude as a plurality of (three in the figure) unit batteries 1 in the insulating frame 201 and in the direction of the battery width (W ′ in the figure). And the positive terminal portion 40 are arranged and housed in a linearly arranged state and connected in series.
[0049]
An insulating sheet 202 is interposed between the batteries 1 so that the outer cans do not contact each other.
The gas discharge part 30 and the positive electrode terminal part 40 of the adjacent battery are connected by a connection line 204 via a breaker 203. The breaker 203 is accommodated in a space 207 between the gas discharge unit 30 and the positive electrode terminal unit 40. The upper ends of the battery gas discharge portion 30 and the positive electrode terminal portion 40 located at both ends are exposed from the terminal exposure windows 205 and 206 formed in the frame body 201. This exposed portion also serves as an external terminal of the assembled battery, and is used for connection to an external load or the like.
[0050]
Although a detailed description of the internal structure is omitted for the breaker 203, a known breaker having a function of cutting off the electrical connection between the batteries when a certain current or more flows can be used.
By using the assembled battery as described above, the following effects can be obtained.
First, each unit battery in the assembled battery 200 is constructed using a battery having a structure including both a positive electrode terminal and a negative electrode terminal protruding from the upper part of the battery as in the battery 1 described in the first embodiment. By unifying the same posture as described above, it is possible to connect the positive electrode terminal and the negative electrode terminal at a relatively short distance among various combinations of unit cell arrangements. Therefore, the internal resistance of the assembled battery can be lowered.
[0051]
In addition, since the batteries are arranged in the same posture, it is not necessary to provide a transport system for two batteries having different battery postures in the manufacturing process of the battery pack. It is possible to reduce internal resistance.
Moreover, in the assembled battery 200, since the breaker is arrange | positioned in the space 207 formed in the adjacent unit battery, it can also achieve size reduction as the whole battery.
[0052]
Furthermore, in the assembled battery 200, since the positional relationship between the gas discharge part 30 and the positive electrode terminal part 40 connected by the connection line can be set in various ways, it is easy to accommodate the breaker as described above.
Moreover, since it is arranged in the width direction, it is a suitable arrangement for reducing the thickness of the assembled battery itself.
[0053]
【The invention's effect】
As described above, the prismatic storage battery according to the present invention includes a power generation element in which a first electrode material and a second electrode material are disposed via a separator, and a metal that hermetically stores the power generation element together with an electrolytic solution. A battery terminal made of a battery, a first terminal penetrating the battery case is electrically connected to the first electrode material, and the second electrode material is connected to the gas discharge valve via the battery case. A rectangular storage battery that is electrically connected to a second terminal that also serves as a first terminal, wherein the first terminal is connected to the first electrode material by a single extending from the first electrode material. Since it is made directly with the conductive material, it is possible to reduce the number of connection points such as welding as compared with the conventional battery, and there is no member other than a single conductive material between the first electrode material and the first terminal. Since there is no interposition, it is easy to shorten the connection path. For these reasons, the internal resistance can be effectively suppressed. In addition, by separating the first terminal and the gas discharge valve, that is, the polarity of the battery terminal and the second terminal also serving as the gas discharge valve is the same, so that the structure is simpler than the conventional one. In addition, a rectangular battery can be obtained with a thinner (slim) battery.
[0054]
In addition, the prismatic storage battery of the present invention includes a power generation element in which a first electrode material and a second electrode material are disposed via a separator, and a metal battery case that hermetically stores the power generation element together with an electrolyte. A first terminal penetrating the battery case is electrically connected to the first electrode material, and the second electrode material also serves as a gas exhaust valve via the battery case. It is a prismatic storage battery that is electrically connected to the terminal, and since the first terminal is directly connected to the first electrode material, the number of connections such as welding should be reduced compared to conventional batteries. In addition, since no other member is interposed between the first electrode material and the first terminal, the internal resistance is further suppressed as compared with the case where a single connection material is interposed.
[0055]
In addition, the prismatic storage battery of the present invention includes a power generation element in which a first electrode material and a second electrode material are disposed via a separator, and a metal battery case that hermetically stores the power generation element together with an electrolyte. A first terminal penetrating the battery case is electrically connected to the first electrode material, and the second electrode material also serves as a gas exhaust valve via the battery case. A prismatic storage battery that is electrically connected to a terminal, wherein the first terminal is a rod-like body inserted into a through-hole formed in the battery case, and the rod-like body is located outside the battery. In this case, the single conductive material can be easily and directly connected to the first terminal. For this reason, it becomes possible to effectively reduce the internal resistance of the battery. In addition, by separating the first terminal and the gas discharge valve, that is, since the polarity of the battery terminal and the second terminal also serving as the gas discharge valve is the same, the structure is simpler than the conventional one. Thus, a rectangular battery can be obtained with a thinner (slim) battery.
[Brief description of the drawings]
FIG. 1 is a perspective view (including a partially cutaway portion) showing a configuration of a prismatic alkaline storage battery according to a first embodiment.
FIG. 2 is a cross-sectional view showing a detailed configuration of a power generation element 100 in the prismatic alkaline storage battery, and is a vertical cross-sectional view including a line XX in FIG.
3 is a cross-sectional view showing a detailed configuration of a gas discharge part 30 and a positive electrode terminal part 40 in the rectangular alkaline storage battery, and is a vertical cross-sectional view including a YY line in FIG.
FIG. 4 is an exploded perspective view of a positive terminal 40 in the prismatic alkaline storage battery.
FIG. 5 is a perspective view (partially cutaway) showing an overall configuration of an assembled battery 200 according to a second embodiment.
FIG. 6 is a perspective view showing a configuration of a conventional prismatic alkaline storage battery (including a partially cut-out portion).
7 is a vertical sectional view including a ZZ line in FIG. 6;
[Explanation of symbols]
1 Square alkaline storage battery
10 Exterior can
11 opening
20 Sealing plate
30 Gas outlet
31 Gas inlet
32 cap
33 Valve chamber
34 Resin material
35 Gas outlet
40 Positive terminal
41 Projection
41a hole
41b top
42 Insulating sealant
42a Seat plate
42b insertion part
42c Through hole
43 Positive terminal shaft
43a insertion part
43b Seat plate
43c flat surface
44 Spacer
45 Seat plate
45a recess
100 Power generation element
101 Negative electrode plate
101a Negative electrode plate connecting material
102 Separator
103 positive electrode plate
103a Positive plate connecting material
200 batteries
201 frame
202 Insulation sheet
203 Breaker
204 connection line
205,206 Terminal exposure window
207 space

Claims (2)

第一の電極材及び第二の電極材とがセパレータを介して配置されてなる発電要素と、当該発電要素を電解液とともに密封収納する金属製の電池ケースとからなり、当該電池ケースに貫設された第一の端子が前記第一の電極材と電気的に接続され、前記第二の電極材が前記電池ケースを介してガス排出弁を兼ねる第二の端子と電気的に接続されてなる角型蓄電池であって、
前記第一の端子の前記第一の電極材との接続は、前記第一の電極材から延設された単一の導電材と直接なされており、
前記電池ケースは開口部を有する外装缶の当該開口部が封口板によって封口された構成であって、前記第一の端子は、前記封口板に開設された貫通孔に挿設された棒状体であり、棒状体はその電池内部側には平坦面を有し、前記第一の電極材から延設された単一の導電材は当該平坦面に接続され、
前記封口板に設けられた前記貫通孔の周辺で電池ケース外部側には突部が設けられており、前記棒状体は、当該突部の先端側にシール材を介して締め付けられていることを特徴とする角型蓄電池。
A power generation element in which a first electrode material and a second electrode material are disposed via a separator, and a metal battery case that hermetically stores the power generation element together with an electrolyte, and is provided in the battery case. The first terminal is electrically connected to the first electrode material, and the second electrode material is electrically connected to the second terminal also serving as a gas discharge valve via the battery case. A prismatic battery,
The connection of the first terminal with the first electrode material is made directly with a single conductive material extending from the first electrode material ,
The battery case has a configuration in which the opening of the outer can having an opening is sealed by a sealing plate, and the first terminal is a rod-like body inserted in a through hole formed in the sealing plate. Yes, the rod-shaped body has a flat surface on the battery inner side, a single conductive material extended from the first electrode material is connected to the flat surface,
A protrusion is provided on the outer side of the battery case around the through hole provided in the sealing plate, and the rod-like body is fastened to the tip side of the protrusion via a sealing material. Characteristic square battery.
第一の電極材及び第二の電極材とがセパレータを介して配置されてなる発電要素と、当該発電要素を電解液とともに密封収納する金属製の電池ケースとからなり、当該電池ケースに貫設された第一の端子が前記第一の電極材と電気的に接続され、前記第二の電極材が前記電池ケースを介してガス排出弁を兼ねる第二の端子と電気的に接続されてなる角型蓄電池であって、
前記第一の端子の前記第一の電極材との接続は、前記第一の電極材と直接なされており、
前記電池ケースは開口部を有する外装缶の当該開口部が封口板によって封口された構成であって、前記第一の端子は、前記封口板に開設された貫通孔に挿設された棒状体であり、棒状体は、その電池内部側には平坦面を有し、前記第一の電極材が当該平坦面に接続され、
前記封口板に設けられた前記貫通孔の周辺で電池ケース外部側には突部が設けられており、前記棒状体は、当該突部の先端側にシール材を介して締め付けられていることを特徴とする角型蓄電池。
A power generation element in which a first electrode material and a second electrode material are disposed via a separator, and a metal battery case that hermetically stores the power generation element together with an electrolyte, and is provided in the battery case. The first terminal is electrically connected to the first electrode material, and the second electrode material is electrically connected to the second terminal also serving as a gas discharge valve via the battery case. A prismatic battery,
The connection of the first terminal with the first electrode material is made directly with the first electrode material ,
The battery case has a configuration in which the opening of the outer can having an opening is sealed by a sealing plate, and the first terminal is a rod-like body inserted in a through hole formed in the sealing plate. Yes, the rod-shaped body has a flat surface on the battery inner side, and the first electrode material is connected to the flat surface,
A protrusion is provided on the outer side of the battery case around the through hole provided in the sealing plate, and the rod-like body is fastened to the tip side of the protrusion via a sealing material. Characteristic square battery.
JP31008499A 1999-09-28 1999-10-29 Square battery Expired - Fee Related JP3778741B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP31008499A JP3778741B2 (en) 1999-10-29 1999-10-29 Square battery
US09/670,193 US6579640B1 (en) 1999-09-28 2000-09-26 Sealed rectangular battery and manufacturing method for the same
HU0003779A HUP0003779A3 (en) 1999-09-28 2000-09-27 Sealed rectangular battery and manufacturing method for the same
CNB001331124A CN1227755C (en) 1999-09-28 2000-09-27 Sealed rectangular batteries and manufacture thereof
TW089119918A TW465135B (en) 1999-09-28 2000-09-27 Sealed rectangular battery and manufacturing method for the same
EP00121056A EP1089363A1 (en) 1999-09-28 2000-09-27 Sealed rectangular battery and manufacturing method for the same
KR1020000056889A KR100718386B1 (en) 1999-09-28 2000-09-28 Sealed rectangular battery and manufacturing method for the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31008499A JP3778741B2 (en) 1999-10-29 1999-10-29 Square battery

Publications (2)

Publication Number Publication Date
JP2001135300A JP2001135300A (en) 2001-05-18
JP3778741B2 true JP3778741B2 (en) 2006-05-24

Family

ID=18001001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31008499A Expired - Fee Related JP3778741B2 (en) 1999-09-28 1999-10-29 Square battery

Country Status (1)

Country Link
JP (1) JP3778741B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5130602B2 (en) * 2001-05-09 2013-01-30 トヨタ自動車株式会社 Storage element and method for manufacturing the same
KR100432952B1 (en) * 2002-03-25 2004-05-28 알티전자 주식회사 Method for forming projection terminal of Lithium ion secondary battery
JP4590911B2 (en) * 2004-04-15 2010-12-01 トヨタ自動車株式会社 battery
KR100599754B1 (en) 2004-06-29 2006-07-12 삼성에스디아이 주식회사 Secondary battery and cap assembly of secondary battery
KR100696777B1 (en) * 2005-04-08 2007-03-19 삼성에스디아이 주식회사 Lithium ion secondary battery
KR100709871B1 (en) 2005-12-29 2007-04-20 삼성에스디아이 주식회사 Secondary battery
JP5344603B2 (en) * 2009-07-16 2013-11-20 トヨタ自動車株式会社 battery
JP2011086760A (en) * 2009-10-15 2011-04-28 Mitsubishi Electric Corp Energy storage element

Also Published As

Publication number Publication date
JP2001135300A (en) 2001-05-18

Similar Documents

Publication Publication Date Title
CN111213257B (en) Energy storage device
US6579640B1 (en) Sealed rectangular battery and manufacturing method for the same
CN100490227C (en) Rechargeable battery
US7883795B2 (en) Secondary battery
EP1025598B1 (en) Prismatic electrochemical cell and multicell battery
US20050221178A1 (en) Electrode package and secondary battery using the same
JP4154136B2 (en) Square sealed battery
JP2001196047A (en) Secondary battery with cap assembly
EP4040552A1 (en) Secondary cell
JP3972804B2 (en) Alkaline storage battery and manufacturing method thereof
JP3778741B2 (en) Square battery
KR100189808B1 (en) Wound electrode plate
JP4023962B2 (en) Square sealed battery
KR20130012469A (en) Energy storage module
JP2001256949A (en) Battery module
CN110299500A (en) Battery structure
JP3691311B2 (en) Assembled battery
CN109075272A (en) Prismatic electrochemical cell unit
US6979514B2 (en) Collector used for an alkali storage battery
JP3317588B2 (en) Prismatic battery
JP3540591B2 (en) Storage battery and method of manufacturing the same
CN219832933U (en) Battery cell and battery module comprising same
KR100572223B1 (en) Sealed battery
JP2000251923A (en) Rectangular storage battery
JP2526211Y2 (en) Prismatic battery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060228

LAPS Cancellation because of no payment of annual fees