JP3778216B2 - Hybrid type stepping motor - Google Patents

Hybrid type stepping motor Download PDF

Info

Publication number
JP3778216B2
JP3778216B2 JP35857392A JP35857392A JP3778216B2 JP 3778216 B2 JP3778216 B2 JP 3778216B2 JP 35857392 A JP35857392 A JP 35857392A JP 35857392 A JP35857392 A JP 35857392A JP 3778216 B2 JP3778216 B2 JP 3778216B2
Authority
JP
Japan
Prior art keywords
magnetic pole
rotor
stator
teeth
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP35857392A
Other languages
Japanese (ja)
Other versions
JPH06205574A (en
Inventor
正文 坂本
Original Assignee
日本サーボ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本サーボ株式会社 filed Critical 日本サーボ株式会社
Priority to JP35857392A priority Critical patent/JP3778216B2/en
Publication of JPH06205574A publication Critical patent/JPH06205574A/en
Application granted granted Critical
Publication of JP3778216B2 publication Critical patent/JP3778216B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Control Of Stepping Motors (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Description

【0001】
【産業上の利用分野】
本発明はレ−ザ−ビ−ムプリンタ等のOA機器のアクチュエ−タに使用されるハイブリッド型ステッピングモ−タの改良に関するものである。
【0002】
【従来の技術】
図5〜図10により従来技術の内容・構成を説明する。
図5(A)は従来のハイブリッド型ステッピングモ−タの出力軸となる回転軸3を含んだ縦断正面図である。図5(B)は図5(A)の例えばX−X′断面図である。
図5(A)、(B)において1は固定子鉄心であり、2相巻線の場合は磁極1−1〜1−8の8極方式が一般にとられ、各磁極の先端は複数個(本図では5個)の小歯が設けられている。5は励磁コイルであり、同図(B)に示すように各8極の磁極1−1〜1−8に夫々巻線5−1〜5−8の形で巻かれている。
6はハウジングであり、前、後の各ブラケット7及び7′に嵌合し、これらのブラケット7及び7′は軸受8及び8′を介して回転軸3を回転自在に支承している。2は永久磁石で、2個の回転子磁極2A、2Bで永久磁石2を挟持して回転子Rを構成し、各回転子磁極2A、2Bの外周には図5(B)に示す磁歯が設けられている。なお、永久磁石2は図5(A)に示すようにN、Sの2極に磁化されている。
【0003】
図6は図5に示した磁極1−1〜1−8の小歯が5個であったものを1個とし、回転子Rの回転子磁極2A、2Bの外周に形成される磁歯も50個から10個へと簡略化して示した図であり、励磁コイルは図5と同一符号で示している。
なお、図6(A)は図5(A)のX−X′断面図、図6(B)は図5(A)のY−Y′断面図を示す。図6(A)、(B)より判るように回転子Rの回転子磁極2A、2Bは磁歯位置が1/2ピッチずれて配置されている。
図7は従来技術による固定子小歯と回転子磁極の磁歯がその中心線を一致させて対向配置して示した図であり、固定子の小歯を3個とした場合で示したものである。
励磁コイル5に直流電流が流れて磁極1−1が磁化されると、その極性と反対極性の回転子が図7のように対面することになる。
この時、固定子の小歯の歯幅と回転子磁極の磁歯の幅は1:1か又は回転子磁極の磁歯がやや小さく設計されている。図7は1:1のときの図である。
図8は図6(A)、(B)の固定子と回転子をエアギャップの周方向に直線展開した図であり、図8においては簡単のため同極性に励磁される図6の磁極1−3、1−7をAφ、これとは逆極性に励磁される磁極1−1、1−5を−Aφで示す。
同様に、磁極1−2、1−6の極性をBφ、これと逆極性となる磁極1−8、1−4の極性を−Bφで示す。
図8は1相励磁の状態であり、磁極1−3(1−7)がAφに励磁された時(この時、磁極1−1(1−5)は逆極性の−Aφに励磁される。)であるが、固定子歯幅と回転子磁歯を1:1に設計すると、これらの磁極1−3(1−7)磁極1−1(1−5)の各歯の両サイドのエッヂが回転子磁歯のエッヂと一致し、回転子をエッヂが一致した状態で保持させようとするフリンジング効果が働く。
しかし、例えば、図9に示すように、磁極1−3(1−7)のほか磁極1−2(1−6)も励磁されてAφとBφの極性が生じるように励磁される2相励磁の状態では固定子小歯と回転子磁歯のエッヂが一致するところがなく、フリンジング効果は発揮できない。なお、この場合、Aφ及びBφと夫々逆極性となる磁極1−1(1−5)及び1−8(1−4)も夫々−Aφ及び−Bφの極性となるように励磁されるものである。
このような場合、例えばエアギャップにバラツキがあると、エアギャップの小さな相に回転子が寄せられ静止位置精度も悪くなる。
又、固定子の励磁コイル5に通電されないときの無励磁時のトルクであるデテントトルクは図8、図9の図で固定子が磁化されていない状態であり、図8、図9の固定子の極性N、S、N′、S′を取り去った図で考えて図8及び図9の固定子と回転子の相対位置で夫々バランス点が存在し、図8と図9では回転子の位置はπ/4ずれているため、従来の2相ハイブリッドステッピングモ−タのデテントトルクはπ/4ごとにバランス点(安定点)をもったサイクル波形ということが判る。この従来のデテントトルクと固定子位置と回転子位置の関係を図10に示す。
固定子(ステ−タ)に対し回転子(ロ−タ)が図10の関係位置にあるときは、安定点のためデテントトルクは零であるが、固定子に対し回転子が移動していくと図10に示すようなπ/4ごとに、トルクが零の周期でπ/2となるデテントトルクが発生する。これは回転子の歯のピッチが2πのため、1相を励磁した時の保持トルクは周期が2πであるのに対し、4倍周波となり保持トルクの波形に加わって正弦波から歪んだ波形にし、かつ例えば2相ステッピングモ−タの場合、そのステップ角は電気角表示でπ/2(歯ピッチの1/4)、3相ステッピングモ−タはπ/3、P相モ−タはπ/Pとなり、ステッピングモ−タの入力パルスが毎秒fの時、従来モ−タはステップ角とデテントトルクの周期が一致しているという特質がある。
【0004】
【発明が解決しようとする課題】
上述のような従来の構成では、ステッピングモ−タを毎秒fパルスで駆動する時、上述したデテントトルクの変化分がその周期がステップ角と一致しているために、fサイクルの振動成分となってモ−タを加振する。
このため、ステッピングモ−タをシャ−シ−に取付けた時、又は出力軸を負荷に連結した時にfサイクルの騒音が特に大きくなるという問題点があった。
【0005】
【課題を解決するための手段】
本発明のハイブリッド型のステッピングモ−タでは、請求項1に記載のものでは、複数の放射状に配設した磁性体より成る励磁巻線を有する固定子磁極の内側先端に夫々複数の小磁極歯を有し、空隙を介して上記小磁極歯と対向配置された磁極歯を有する2個の回転子磁極により回転軸方向に磁化した永久磁石を挟持して成る回転子を備えたハイブリッド型ステッピングモ−タにおいて、
上記各回転子磁極の磁極歯ピッチを角度2πとした時、固定子の小磁極歯幅の角度略πとし、前記回転子磁極の磁極歯幅の角度を略π/2とした組み合わせを備えたことを特徴とする。
また、請求項2に記載のものでは、固定子を内側に配置し、回転子は固定子の外周に空隙を介して回転するように配置したアウタロ−タ型のハイブリッド型ステッピングモ−タにおいて、上記回転子の回転子磁極の磁極歯ピッチを角度2πとした時、固定子の小磁極歯幅の角度略πとし、前記回転子磁極の磁極歯幅の角度を略π/2とした組み合わせを備えたことを特徴とする。
この場合、請求項3に記載のように、固定子磁極の両端部は、固定子磁極に形成された複数の小磁極歯の両端の小歯の中心線に対し略±πの範囲で対称形に形成されていることが望ましい。
【0006】
【作用】
本発明のものでは、上記のように固定子の小歯及び回転子磁極の極歯の歯幅と谷幅の比を特定のものに構成し、毎秒fパルスでステッピングモータを駆動しても電気角表示のステップ角度とデテントトルクの周期が大きく異なるようにしたものであるから、デテントトルクの変化は相の切換頻度である毎秒fと異なり、従来のようにfサイクルの成分としては現れなくなる。
【0007】
【実施例】
以下図1〜図4に示す実施例によって本発明を具体的に説明する。
なお、これら各図において、従来のものと対応する構成については、図5〜図10のものと同一の符号を付して示した。
図1は本発明の第1の実施例であるステッピングモ−タの固定子磁極の内の1つとその小歯と回転子歯の関係を示したものである。
まず、本発明の特徴を概括的に言えば、従来のステッピングモ−タの構造である図5(A)、(B)において、固定子の小歯及び回転子磁極の磁歯の歯幅と谷幅の比を特定し、電気角表示のステップ角の1/2がデテントトルクの周期となるように構成した点にその構成上の特徴があるといえる。
次に、この構成の詳細を説明する。
図1において、磁極1−1の小歯は3個の小歯で示している。図1に示したように本発明は回転子磁極2A、2Bの歯ピッチを夫々2π(ラジアン)とした時、これらの回転子磁極2A、2Bの歯幅を夫々π/2、従って谷幅は夫々(3/2)πとし、固定子磁極の小歯の歯幅はπ、従って谷幅もπとなるようにしたものである。
さらに、付言すれば、本発明は同一発明者の特許出願に係わる特願昭58−33751号(特開昭59−159661号)の発明を発展させた内容の発明である。
即ち、特願昭58−33751号の発明では、固定子を2相励磁した時に静止角度誤差を向上させる目的でフリンジング効果を発揮させるための回転子歯幅を限定したものであったが、本発明のものでは、固定子の歯幅をさらに限定させてフリンジング効果がより均等に作用するように改良したもので、その目的はデテントトルクの周期を従来技術に対し1/2とすることでステッピングモ−タ駆動時の振動及び騒音を低下させようとするものである。
図1でコイル5は無励磁の時で回転子が磁極1−1の小歯の右端とエッヂが合致してフリンジング効果が働き、1つの安定点となっていることを示したものである。回転子を左方向へ移動させようとすると、フリンジング効果により現在位置を保とうとする力が働くが、更に大きな外力で回転子を左側へ移動させると回転子は次に固定子小歯の左端とエッヂが合致した所で安定点となってその位置を保とうとする力が働くもので、前述した図7に対し2回安定点を持つようにした点に特徴がある。
【0008】
図3は従来技術の2相励磁時の固定子と回転子の位置関係を示した図9の関係を本発明の場合で対応して示した図である。固定子の小歯より回転子磁極の磁歯が図9のように、はみ出してないことが判る。
【0009】
次に、図4により固定子の小歯幅がπで、回転子磁極の歯幅がπ/2が何故必要か又、その時のデテントトルクの周期について説明する。
図4は従来技術の図10に相当する関係を本発明の場合で説明するための図である。
図4にはAφとなる極性の固定子磁極と回転子磁極の磁歯Nの中心が、従ってこれとは逆極性の−Aφの固定子磁極と回転子磁歯Sの中心が一致した状態を示すものであるが、ここでも各磁極の左右のパ−ミアンスは同一のため1安定点を成す。これはデテントトルクの点線部と横軸の角度との交点に相当する部分である。
図4の固定子と回転子の位置から回転子を外力でずらすと、回転子磁極の磁歯から見た左、右のパ−ミアンスが異なってくる。例えば、Nから出た磁束はBφとなる極性の磁極の固定子の小歯幅部を通って同じBφの磁極の小歯部と対面しているSにもどることになるが、現在位置が安定点である。
従って、この場合は現在位置へもどろうとする力が働くが、フリンジング効果による安定点ではないので点線で示した。図4の位置関係から回転子を左側へ移動させて、Aφの左端と回転子のN極の左端が合致した所が次の安定点であり、これはデテントトルクの実線部と横軸との交点に相当する。
この場合、例えば、回転子S極の左端は−Aφとなる磁極の左端と又S極の右端はBφとなる磁極の右端と合致させることができ、同様にN極もAφとなる磁極の左端、Bφとなる磁極の右端と合致し安定化している。しかし、固定子磁極の小歯幅を例えばπより小さくして回転子磁歯の歯幅はπ/2とすると、回転子のN、S極はAφ及び−Aφとなる各磁極の左端とはエッヂが合致できてもBφ及び−Bφとなる磁極の右端とは合致できずフリンジング効果が各相、均等に働かなくなるものである。
従って、固定子の小歯幅がπとなることが必要となるものである。
図4の場合、回転子位置を固定子に対し移動させていくと、上述したように、安定点は固定子歯幅π及び回転子歯幅π/2の効果で、従来技術のステッピングモ−タの場合の図10に対して2倍となり、デテントトルクの周期は1/2となり図4に示したようなデテントトルクの波形となる。
このため、従来技術のデテントトルクの周期が前述したようにステップ角と一致するため駆動周波数と同一の周波数で大きな振動及び騒音成分が出ていたが、本発明により、デテントトルクの周期を1/2としたため、駆動周波数成分の振動、騒音を大幅に減らすことができる。
【0010】
図2は本発明の第2の実施例を示すものである。次に、この実施例の技術的な考察を図1に示した第1の実施例との比較で説明する。
即ち、図1の磁極1−1の歯溝(谷部)の形状は矩形よりも図1に示したラジアル方向にストレ−トを一部持った円弧状に形成した方がトルクが多く得られるため使用されている。この場合、図1において、3個の磁極1−1の小歯の右端でフリンジング効果が作用する状態にあるが、磁極1−1の右端の小歯の右端はラジアル方向にストレ−トであるのに対し、磁極1−1の中央及び左端の夫々の右端部は円弧状のため回転子から見たパ−ミアンスは大きくなり、保持トルクも大きくできる。
第2の実施例のものでは、この点を考慮した発明であり、図2に示すように、固定子(ステ−タ)の磁極たとえば、磁極1−1′の両端部は、この固定子磁極に形成される小磁極歯の両端の小歯の中心線に対し略±πの範囲で左右に磁気的に対称性を保つような形状に形成した上で、図1の第1の実施例の場合と同様、回転子の回転子磁極の磁極歯ピッチを角度2πとした時、固定子の小磁極歯幅を角度が略πで、回転子磁極の磁極歯幅を略π/2の組合せ又は固定子小磁極歯幅を略π/2で回転子磁極の磁極歯幅を略πの組合せとするように固定子の小歯及び回転子磁極の磁歯の歯幅と谷幅の比を特定したものである。
従って、コイルを入れるスロット部のスペ−スが十分あれば、図2に示す本実施例のように、磁極1−1′の小歯形状は全てその中心線に対し対称とすることにより図1の第1の実施例よりも駆動時の周波数成分で振動、騒音は軽減される。
【0011】
さらに、本発明は図示しないが、固定子を内側に配置し、回転子は固定子の外周に空隙を介して回転するように配置したアウタロ−タ型のハイブリッド型ステッピングモ−タに対して適用しても同等の作用効果が期待できるものであり、この場合には、上記回転子の回転子磁極の磁極歯ピッチを角度2πとした時、固定子の小磁極歯幅を角度が略πで、回転子磁極の磁極歯幅を略π/2の組合せ又は固定子小磁極歯幅を略π/2で回転子磁極の磁極歯幅を略πの組合せとすることになる。
【0012】
【発明の効果】
本発明に成るハイブリッド型ステッピングモ−タは、上記のように構成されるから、次のような優れた効果を有する。
(1)請求項1又は2に記載したように、回転子磁極の磁極歯ピッチの角度を2πとした時、固定子の小磁極歯幅の角度を略πとしたことにより、回転子の位置にかかわりなく、磁束のパーミアンスが一定になり、デテントトルクを低減することができる。また、回転子磁極の磁極歯幅を略π/2とすることにより、残存するデテントトルクの周期を従来技術のものに対し1/2とできる。例えば、2相の場合には第4高調波のものを第8高調波にすることができる。このため、駆動時の周波数成分に振動、騒音が現われず、ステッピングモ−タでありながら静かなアクチュエ−タを実現できる。
従って、レーザービームプリンター等のOA機器用として好適である。
実験によれば、1.8゜ステップ角の2相モ−タで1400ppsで駆動した場合でダイナミックトルクは7%程度減少したが、モ−タの振動は従来技術の2Gが0.4Gと大幅に低減できることが確認されている
(2)さらに、請求項3に記載のように、固定子磁極の両端部を、固定子磁極に形成された複数の小磁極歯の両端の小歯の中心線に対し略±πの範囲で対称形に形成すれば、固定子の各磁極の小歯形状がその各中心線において完全に対称となるので、駆動時の振動、騒音を大幅に軽減することができ、ステッピングモータでありながら、さらに静かなアクチュエータを実現できる。
【図面の簡単な説明】
【図1】 本発明の第1の実施例を示す固定子と回転子の構成を示す要部正面図である。
【図2】 本発明の第2の実施例の固定子と回転子の構成を示す要部正面図である。
【図3】 本発明による2相励磁状態の固定子と回転子の磁極の展開図である。
【図4】 本発明によるステッピングモ−タのデテントトルクの発生関係を固定子、回転子の磁極配置で示す配置図である。
【図5】 従来技術のもののハイブリッド型ステッピングモ−タの構成を示すもので、同図(A)は縦断正面図、同図(B)は同図(A)のX−X′断面図である。
【図6】 図6(A)は図5(A)のX−X′断面図を、また、図6(B)は図5(A)のY−Y′断面図を夫々簡略化して示したものである。
【図7】 従来技術のものの固定子と回転子の構成を示す要部正面図である。
【図8】 従来技術のものの1相励磁状態の固定子と回転子の磁極の展開図である。
【図9】 従来技術のものの2相励磁状態の固定子と回転子の磁極の展開図である。
【図10】 従来技術のもののステッピングモ−タのデテントトルクの発生関係を固定子、回転子の磁極配置で示す配置図である。
【符号の説明】
1−1:磁極
2A、2B:回転子磁極
[0001]
[Industrial application fields]
The present invention relates to an improvement of a hybrid type stepping motor used in an actuator for office automation equipment such as a laser beam printer.
[0002]
[Prior art]
The content and configuration of the prior art will be described with reference to FIGS.
FIG. 5A is a longitudinal front view including a rotary shaft 3 that serves as an output shaft of a conventional hybrid stepping motor. FIG. 5B is a cross-sectional view taken along the line XX ′ of FIG.
In FIGS. 5A and 5B, reference numeral 1 denotes a stator core. In the case of a two-phase winding, an 8-pole system of magnetic poles 1-1 to 1-8 is generally used, and a plurality of tips of each magnetic pole ( There are 5 small teeth in this figure. Reference numeral 5 denotes an exciting coil, which is wound around each 8-pole magnetic pole 1-1 to 1-8 in the form of windings 5-1 to 5-8 as shown in FIG.
Reference numeral 6 denotes a housing, which is fitted to the front and rear brackets 7 and 7 ', and these brackets 7 and 7' rotatably support the rotary shaft 3 via bearings 8 and 8 '. Reference numeral 2 denotes a permanent magnet, and a rotor R is formed by sandwiching the permanent magnet 2 with two rotor magnetic poles 2A and 2B. Magnetic teeth shown in FIG. Is provided. The permanent magnet 2 is magnetized to two poles of N and S as shown in FIG.
[0003]
FIG. 6 shows that the number of the small teeth of the magnetic poles 1-1 to 1-8 shown in FIG. 5 is one, and the magnetic teeth formed on the outer periphery of the rotor magnetic poles 2A and 2B of the rotor R are also shown. It is the figure simplified and shown from 50 pieces to 10 pieces, and the exciting coil is shown with the same numerals as FIG.
6A is a cross-sectional view taken along the line XX ′ of FIG. 5A, and FIG. 6B is a cross-sectional view taken along the line YY ′ of FIG. 5A. As can be seen from FIGS. 6A and 6B, the magnetic pole positions of the rotor magnetic poles 2A and 2B of the rotor R are shifted by 1/2 pitch.
FIG. 7 is a diagram showing the stator small teeth and the magnetic teeth of the rotor magnetic poles according to the prior art arranged so as to face each other with their center lines coinciding with each other, showing the case where there are three small teeth on the stator It is.
When a direct current flows through the exciting coil 5 and the magnetic pole 1-1 is magnetized, a rotor having a polarity opposite to that of the magnetic pole 1-1 faces as shown in FIG.
At this time, the width of the small teeth of the stator and the width of the magnetic teeth of the rotor magnetic pole are 1: 1, or the magnetic teeth of the rotor magnetic pole are designed to be slightly smaller. FIG. 7 is a diagram at 1: 1.
FIG. 8 is a diagram in which the stator and the rotor of FIGS. 6A and 6B are linearly developed in the circumferential direction of the air gap. In FIG. 8, the magnetic pole 1 of FIG. −3 and 1-7 are denoted by Aφ, and magnetic poles 1-1 and 1-5 excited by the opposite polarity are denoted by −Aφ.
Similarly, the polarities of the magnetic poles 1-2 and 1-6 are denoted by Bφ, and the polarities of the magnetic poles 1-8 and 1-4 having the opposite polarity are denoted by −Bφ.
FIG. 8 shows a state of one-phase excitation, when the magnetic pole 1-3 (1-7) is excited to Aφ (at this time, the magnetic pole 1-1 (1-5) is excited to −Aφ of reverse polarity. However, if the stator tooth width and the rotor magnetic teeth are designed to be 1: 1, the magnetic poles 1-3 (1-7) and magnetic poles 1-1 (1-5) have both sides of each tooth. The edge is coincident with the edge of the rotor magnetic teeth, and a fringing effect that tries to hold the rotor in a state where the edge coincides works.
However, for example, as shown in FIG. 9, in addition to the magnetic pole 1-3 (1-7), the magnetic pole 1-2 (1-6) is also excited and excited so that the polarities of Aφ and Bφ are generated. In this state, the edges of the stator small teeth and the rotor magnetic teeth do not match, and the fringing effect cannot be exhibited. In this case, the magnetic poles 1-1 (1-5) and 1-8 (1-4) having opposite polarities to Aφ and Bφ are also excited so as to have the polarities of −Aφ and −Bφ, respectively. is there.
In such a case, for example, if there is variation in the air gap, the rotor is brought close to a phase with a small air gap, and the stationary position accuracy is also deteriorated.
Further, the detent torque, which is a non-excited torque when the excitation coil 5 of the stator is not energized, is a state in which the stator is not magnetized in the diagrams of FIGS. 8 and 9, and the stator of FIGS. FIG. 8 and FIG. 9 each have a balance point at the relative position between the stator and the rotor. In FIG. 8 and FIG. Since π / 4 is shifted, it can be seen that the detent torque of the conventional two-phase hybrid stepping motor is a cycle waveform having a balance point (stable point) every π / 4. The relationship between this conventional detent torque, stator position and rotor position is shown in FIG.
When the rotor (rotor) is in the relative position of FIG. 10 with respect to the stator (stator), the detent torque is zero because of the stable point, but the rotor moves relative to the stator. And every π / 4 as shown in FIG. 10, a detent torque is generated with a torque of π / 2 in a cycle of zero. This is because the pitch of the rotor teeth is 2π, and the holding torque when one phase is excited is 2π, whereas it is 4 times the frequency and added to the waveform of the holding torque, resulting in a distorted waveform from the sine wave. For example, in the case of a two-phase stepping motor, the step angle is π / 2 (1/4 of the tooth pitch) in electrical angle display, the three-phase stepping motor is π / 3, and the P-phase motor is π / P. Thus, when the input pulse of the stepping motor is f per second, the conventional motor has the characteristic that the step angle and the period of the detent torque coincide.
[0004]
[Problems to be solved by the invention]
In the conventional configuration as described above, when the stepping motor is driven at f pulses per second, the amount of change in the detent torque described above becomes the vibration component of the f cycle because the period coincides with the step angle. Shake the motor.
For this reason, there is a problem that the noise of the f-cycle becomes particularly large when the stepping motor is attached to the chassis or when the output shaft is connected to the load.
[0005]
[Means for Solving the Problems]
In the hybrid type stepping motor of the present invention, the plurality of small magnetic pole teeth are respectively provided at the inner tips of the stator magnetic poles having the excitation winding made of a plurality of radially arranged magnetic bodies. Hybrid stepping motor having a rotor having a permanent magnet magnetized in the direction of the rotation axis by two rotor magnetic poles having magnetic pole teeth arranged opposite to the small magnetic pole teeth through a gap In
When the magnetic pole tooth pitch of each of the rotor magnetic poles is 2π, the angle of the small magnetic pole tooth width of the stator is approximately π, and the angle of the magnetic pole tooth width of the rotor magnetic pole is approximately π / 2. characterized in that was.
According to a second aspect of the present invention, in the outer rotor type hybrid stepping motor, the stator is disposed on the inner side, and the rotor is disposed so as to rotate through a gap on the outer periphery of the stator. When the magnetic pole tooth pitch of the rotor magnetic pole of the rotor is 2π, the combination of the small magnetic pole tooth width of the stator is approximately π and the angle of the magnetic pole tooth width of the rotor magnetic pole is approximately π / 2. characterized by comprising.
In this case, as described in claim 3, both end portions of the stator magnetic poles in a range of approximately ± [pi Shi pair core wire in the teeth of both ends of the plurality of small pole teeth formed on the stator magnetic pole It is desirable to form it symmetrically.
[0006]
[Action]
In the present invention, the ratio between the teeth width of the stator small teeth and the pole teeth of the rotor magnetic poles and the valley width is set to a specific one as described above, and even if the stepping motor is driven at f pulses per second, Since the step angle of the angle display and the period of the detent torque are greatly different from each other, the change in the detent torque does not appear as a component of the f cycle unlike the conventional case, unlike the phase change frequency f.
[0007]
【Example】
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in FIGS.
In each of these drawings, the components corresponding to those of the conventional one are indicated by the same reference numerals as those in FIGS.
FIG. 1 shows the relationship between one of the stator poles of a stepping motor according to the first embodiment of the present invention and its small teeth and rotor teeth.
First, generally speaking, the characteristics of the present invention will be described. In FIGS. 5A and 5B, which are the structure of a conventional stepping motor, the tooth width and valley of the stator small teeth and the rotor magnetic pole magnetic teeth. It can be said that there is a structural feature in that the ratio of the width is specified and the step is configured such that 1/2 of the step angle of the electrical angle display is the period of the detent torque.
Next, details of this configuration will be described.
In FIG. 1, the small teeth of the magnetic pole 1-1 are shown by three small teeth. As shown in FIG. 1, in the present invention, when the tooth pitches of the rotor magnetic poles 2A and 2B are 2π (radians), the tooth widths of these rotor magnetic poles 2A and 2B are π / 2, respectively. Each of them is (3/2) π, and the tooth width of the small teeth of the stator magnetic pole is π, so that the valley width is also π.
Further, in addition, the present invention is an invention that has been developed from the invention of Japanese Patent Application No. 58-33751 (Japanese Patent Laid-Open No. 59-159661) relating to the patent application of the same inventor.
That is, in the invention of Japanese Patent Application No. 58-33751, the rotor tooth width for exhibiting the fringing effect was limited for the purpose of improving the stationary angle error when the stator was excited in two phases. In the present invention, the tooth width of the stator is further limited to improve the fringing effect more evenly, and its purpose is to reduce the period of the detent torque to 1/2 that of the prior art. Thus, it is intended to reduce vibration and noise when driving the stepping motor.
FIG. 1 shows that the coil 5 is de-energized, and the rotor is aligned with the right end of the small tooth of the magnetic pole 1-1 so that the fringing effect works and becomes one stable point. . When trying to move the rotor to the left, a force to keep the current position works due to the fringing effect, but if the rotor is moved to the left side by a larger external force, the rotor will then move to the left end of the stator small teeth. A force that acts as a stable point at the position where the edge matches and acts to maintain the position works, and is characterized in that it has two stable points with respect to FIG. 7 described above.
[0008]
FIG. 3 is a diagram showing the relationship of FIG. 9 showing the positional relationship between the stator and the rotor at the time of two-phase excitation according to the prior art, corresponding to the case of the present invention. It can be seen that the magnetic teeth of the rotor magnetic poles do not protrude from the small teeth of the stator as shown in FIG.
[0009]
Next, the reason why the small tooth width of the stator is π and the tooth width of the rotor magnetic pole is π / 2 will be described with reference to FIG. 4, and the period of the detent torque at that time will be described.
FIG. 4 is a diagram for explaining the relationship corresponding to FIG. 10 of the prior art in the case of the present invention.
FIG. 4 shows a state in which the center of the magnetic pole N of the stator magnetic pole and the rotor magnetic pole N with the polarity of Aφ is coincident with the center of the magnetic pole N of the negative polarity -Aφ opposite to this. As shown, since the left and right permeances of each magnetic pole are the same, they form one stable point. This is a portion corresponding to the intersection of the dotted line portion of the detent torque and the angle of the horizontal axis.
When the rotor is displaced from the position of the stator and rotor in FIG. 4 by an external force, the left and right permeances as seen from the magnetic teeth of the rotor magnetic poles are different. For example, the magnetic flux generated from N returns to S facing the small tooth portion of the same Bφ magnetic pole through the small tooth width portion of the magnetic pole stator having the polarity of Bφ, but the current position is stable. Is a point.
Therefore, in this case, a force to return to the current position works, but since it is not a stable point due to the fringing effect, it is indicated by a dotted line. When the rotor is moved to the left from the positional relationship of FIG. 4 and the left end of Aφ and the left end of the N pole of the rotor match, this is the next stable point. This is the relationship between the solid line part of the detent torque and the horizontal axis. Corresponds to the intersection.
In this case, for example, the left end of the rotor S pole can be matched with the left end of the magnetic pole of −Aφ, and the right end of the S pole can be matched with the right end of the magnetic pole of Bφ. , Bφ coincides with the right end of the magnetic pole and stabilizes. However, if the small tooth width of the stator magnetic pole is made smaller than π, for example, and the tooth width of the rotor magnetic tooth is π / 2, the N and S poles of the rotor are the left end of each magnetic pole that becomes Aφ and −Aφ. Even if the edges can be matched, the right ends of the magnetic poles Bφ and -Bφ cannot be matched, and the fringing effect does not work equally for each phase.
Therefore, it is necessary that the small tooth width of the stator be π.
In the case of FIG. 4, when the rotor position is moved with respect to the stator, as described above, the stable point is the effect of the stator tooth width π and the rotor tooth width π / 2. In this case, the detent torque cycle is halved and the detent torque cycle is halved, resulting in a detent torque waveform as shown in FIG.
For this reason, since the period of the detent torque in the prior art coincides with the step angle as described above, a large vibration and noise component is generated at the same frequency as the drive frequency. However, according to the present invention, the period of the detent torque is reduced to 1 / Therefore, the vibration and noise of the drive frequency component can be greatly reduced.
[0010]
FIG. 2 shows a second embodiment of the present invention. Next, technical considerations of this embodiment will be described in comparison with the first embodiment shown in FIG.
That is, more torque can be obtained by forming the tooth groove (valley) of the magnetic pole 1-1 in FIG. 1 into a circular arc shape having a part of the straight in the radial direction shown in FIG. Because it is used. In this case, in FIG. 1, the fringing effect is in effect at the right ends of the small teeth of the three magnetic poles 1-1, but the right end of the small teeth at the right end of the magnetic pole 1-1 is straight in the radial direction. On the other hand, the right end of each of the center and the left end of the magnetic pole 1-1 has an arc shape, so that the permeance seen from the rotor is increased and the holding torque can be increased.
Those of the second embodiment, an invention in consideration of this point, as shown in FIG. 2, the stator - poles of (stearyl data) For example, both end portions of the magnetic pole 1-1 ', the stator magnetic poles on which is shaped to keep the magnetically symmetrical Shi pairs the center line of teeth at both ends of the small magnetic pole teeth formed on the left and right in a range of approximately ± [pi in the first embodiment of FIG. 1 As in the case of, when the magnetic pole tooth pitch of the rotor magnetic pole of the rotor is 2π, the small magnetic pole tooth width of the stator is approximately π and the magnetic pole tooth width of the rotor magnetic pole is approximately π / 2. Alternatively, the ratio between the teeth width and valley width of the stator small teeth and the rotor magnetic pole magnetic teeth is set so that the stator small magnetic pole tooth width is approximately π / 2 and the magnetic pole tooth width of the rotor magnetic pole is approximately π. It has been identified.
Therefore, if there is enough space in the slot for inserting the coil, the small teeth of the magnetic pole 1-1 'are all symmetrical with respect to the center line as in this embodiment shown in FIG. Compared with the first embodiment , vibration and noise are reduced with frequency components during driving.
[0011]
Furthermore, although not shown in the drawings, the present invention is applied to an outer rotor type hybrid stepping motor in which the stator is arranged on the inner side and the rotor is arranged to rotate on the outer periphery of the stator through a gap. However, in this case, when the magnetic pole tooth pitch of the rotor magnetic pole of the rotor is 2π, the small magnetic pole tooth width of the stator is approximately π, The combination of the rotor magnetic pole teeth width is approximately π / 2, or the stator small magnetic pole teeth width is approximately π / 2, and the rotor magnetic pole teeth width is approximately π.
[0012]
【The invention's effect】
Since the hybrid type stepping motor according to the present invention is configured as described above, it has the following excellent effects.
(1) As described in claim 1 or 2, when the angle of the magnetic pole tooth pitch of the rotor magnetic pole is 2π, the angle of the small magnetic pole tooth width of the stator is approximately π, so that the position of the rotor Regardless of this, the permeance of the magnetic flux becomes substantially constant, and the detent torque can be reduced. Further, by setting the magnetic pole tooth width of the rotor magnetic pole to approximately π / 2, the period of the remaining detent torque can be reduced to ½ that of the prior art. For example, in the case of two phases, the fourth harmonic can be changed to the eighth harmonic. Therefore , vibration and noise do not appear in the frequency component during driving, and a quiet actuator can be realized while being a stepping motor.
Therefore, it is suitable for OA equipment such as a laser beam printer.
According to the experiment, the dynamic torque decreased by about 7% when driven by 1400pps with a 2-phase motor with a step angle of 1.8 °, but the vibration of the motor was greatly increased from 0.4G to 2G of the conventional technology. It has been confirmed that it can be reduced .
(2) Further, as described in claim 3, both ends of the stator magnetic pole are within a range of approximately ± π with respect to the center lines of the small teeth at both ends of the plurality of small magnetic pole teeth formed on the stator magnetic pole. If it is formed symmetrically, the small tooth shape of each magnetic pole of the stator is completely symmetric in each center line, so that vibration and noise during driving can be greatly reduced, while being a stepping motor, A quieter actuator can be realized.
[Brief description of the drawings]
FIG. 1 is a front view of a main part showing a configuration of a stator and a rotor according to a first embodiment of the present invention.
FIG. 2 is a front view of a main part showing a configuration of a stator and a rotor according to a second embodiment of the present invention.
FIG. 3 is a development view of magnetic poles of a stator and a rotor in a two-phase excitation state according to the present invention.
FIG. 4 is an arrangement view showing a detent torque generation relationship of a stepping motor according to the present invention in a magnetic pole arrangement of a stator and a rotor.
FIGS. 5A and 5B show the structure of a hybrid stepping motor of the prior art, in which FIG. 5A is a longitudinal front view, and FIG. 5B is a cross-sectional view taken along line XX ′ of FIG. .
6A is a simplified view taken along the line XX ′ of FIG. 5A, and FIG. 6B is a simplified view taken along the line YY ′ of FIG. 5A. It is a thing.
FIG. 7 is a front view of a main part showing a configuration of a stator and a rotor of a prior art.
FIG. 8 is a development view of the magnetic poles of the stator and the rotor in the one-phase excitation state of the prior art.
FIG. 9 is a development view of the magnetic poles of the stator and the rotor in the two-phase excitation state of the prior art.
FIG. 10 is an arrangement view showing a detent torque generation relationship of a stepping motor according to the prior art in a magnetic pole arrangement of a stator and a rotor.
[Explanation of symbols]
1-1: Magnetic pole 2A, 2B: Rotor magnetic pole

Claims (3)

複数の放射状に配設した磁性体より成る励磁巻線を有する固定子磁極の内側先端に夫々複数の小磁極歯を有し、空隙を介して上記小磁極歯と対向配置された磁極歯を有する2個の回転子磁極により回転軸方向に磁化した永久磁石を挟持して成る回転子を備えたハイブリッド型ステッピングモ−タにおいて、
上記各回転子磁極の磁極歯ピッチを角度2πとした時、固定子の小磁極歯幅の角度略πとし、前記回転子磁極の磁極歯幅の角度を略π/2とした組み合わせを備えたことを特徴とするハイブリッド型ステッピングモ−タ。
A plurality of small magnetic pole teeth are respectively provided at the inner tips of the stator magnetic poles having an exciting winding made of a plurality of radially arranged magnetic bodies, and the magnetic pole teeth are arranged to face the small magnetic pole teeth through a gap. In a hybrid stepping motor having a rotor formed by sandwiching a permanent magnet magnetized in the direction of the rotation axis by two rotor magnetic poles,
When the magnetic pole tooth pitch of each rotor magnetic pole is an angle 2π, the angle of the small magnetic pole tooth width of the stator is approximately π, and the angle of the magnetic pole tooth width of the rotor magnetic pole is approximately π / 2. A hybrid stepping motor characterized by that.
固定子を内側に配置し、回転子は固定子の外周に空隙を介して回転するように配置したアウタロ−タ型のハイブリッド型ステッピングモ−タにおいて、
上記回転子の回転子磁極の磁極歯ピッチを角度2πとした時、固定子の小磁極歯幅の角度略πとし、前記回転子磁極の磁極歯幅の角度を略π/2とした組み合わせを備えたことを特徴とするハイブリッド型ステッピングモ−タ。
In the outer rotor type hybrid stepping motor in which the stator is arranged on the inner side and the rotor is arranged so as to rotate through the gap on the outer periphery of the stator,
When the magnetic pole pitch of the rotor magnetic pole of the rotor is 2π, the angle of the small magnetic pole tooth width of the stator is approximately π, and the angle of the magnetic pole tooth width of the rotor magnetic pole is approximately π / 2. hybrid stepper characterized by comprising a - data.
前記固定子磁極の両端部は、前記固定子磁極に形成された複数の小磁極歯の両端の小歯の中心線に対し略±πの範囲で対称形に形成されていることを特徴とする請求項1又は2に記載のハイブリッド型ステッピングモ−タ。 Both end portions of said stator magnetic poles, characterized in that it is formed symmetrically in the range of approximately ± [pi Shi pair core wire in the teeth of both ends of the plurality of small pole teeth formed on said stator poles A hybrid stepping motor according to claim 1 or 2.
JP35857392A 1992-12-28 1992-12-28 Hybrid type stepping motor Expired - Lifetime JP3778216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP35857392A JP3778216B2 (en) 1992-12-28 1992-12-28 Hybrid type stepping motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP35857392A JP3778216B2 (en) 1992-12-28 1992-12-28 Hybrid type stepping motor

Publications (2)

Publication Number Publication Date
JPH06205574A JPH06205574A (en) 1994-07-22
JP3778216B2 true JP3778216B2 (en) 2006-05-24

Family

ID=18460011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP35857392A Expired - Lifetime JP3778216B2 (en) 1992-12-28 1992-12-28 Hybrid type stepping motor

Country Status (1)

Country Link
JP (1) JP3778216B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999050952A1 (en) * 1998-03-26 1999-10-07 Seiko Epson Corporation Stepping motor, printing device using it or paper feeding device, and printer
US7567159B2 (en) * 2005-02-03 2009-07-28 Macken John A Energy absorbing magnetic coupling device

Also Published As

Publication number Publication date
JPH06205574A (en) 1994-07-22

Similar Documents

Publication Publication Date Title
JP3278770B2 (en) Multi-phase hybrid type stepping motor
JP3071064B2 (en) Permanent magnet type stepping motor
JP2652080B2 (en) Hybrid type stepping motor
JP3169276B2 (en) Hybrid type stepping motor
EP0812054A2 (en) Hybrid stepping motor
JP2002199679A (en) Inductor type electric machine having magnet equipped armature
JPH10285899A (en) Stepping motor
JPH0132748B2 (en)
US9006941B2 (en) Permanent magnet motor having teeth with fingers
WO2001057987A1 (en) Brushless dc motor having reduced cogging torque
JPH02151253A (en) Stepping motor having low stopping torque
JPH0378458A (en) Motor
JP3117164B2 (en) Permanent magnet rotating electric machine, control method and control device thereof, and electric vehicle using the same
JP3778216B2 (en) Hybrid type stepping motor
JP2640938B2 (en) Electric motor
JP3178616B2 (en) Outer rotor type stepping motor
JP4056514B2 (en) Permanent magnet type three-phase rotating electric machine
JP3045935B2 (en) Permanent magnet type stepping motor
JP2599082B2 (en) 4-phase stepping motor
JPH0614515A (en) Stepping motor
JPH027270B2 (en)
JPS6331455A (en) Motor
JP2805640B2 (en) Bobbin winding motor
JP3612401B2 (en) 3-phase hybrid stepping motor
JPH07298596A (en) Brushless motor

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040318

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040329

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090310

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100310

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110310

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120310

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130310

Year of fee payment: 7

EXPY Cancellation because of completion of term