JP3775176B2 - Semiconductor wafer manufacturing method and manufacturing apparatus - Google Patents

Semiconductor wafer manufacturing method and manufacturing apparatus Download PDF

Info

Publication number
JP3775176B2
JP3775176B2 JP2000197037A JP2000197037A JP3775176B2 JP 3775176 B2 JP3775176 B2 JP 3775176B2 JP 2000197037 A JP2000197037 A JP 2000197037A JP 2000197037 A JP2000197037 A JP 2000197037A JP 3775176 B2 JP3775176 B2 JP 3775176B2
Authority
JP
Japan
Prior art keywords
polishing
semiconductor wafer
silicon wafer
manufacturing
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000197037A
Other languages
Japanese (ja)
Other versions
JP2002016025A (en
Inventor
徹 谷口
五十六 小野
芳克 栗原
竜一 谷本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumco Corp
Original Assignee
Sumco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumco Corp filed Critical Sumco Corp
Priority to JP2000197037A priority Critical patent/JP3775176B2/en
Publication of JP2002016025A publication Critical patent/JP2002016025A/en
Application granted granted Critical
Publication of JP3775176B2 publication Critical patent/JP3775176B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、低コストで高集積度に対応可能な超高平坦度を得ることができる半導体ウェーハの製造方法及び製造装置に関する。
【0002】
【従来の技術】
シリコンウェーハ等の半導体ウェーハを平坦化する技術として、表面または裏面の被加工面を研磨する方法が用いられている。これらの研磨を行う装置として、特に高い平坦度が得られる両面研磨装置が用いられている。
【0003】
一般的な両面研磨装置としては、研磨面を有する上下の定盤間に複数のウェーハを保持したウェーハキャリアを複数配置し、これらウェーハキャリアの中央にサンギアを配して各ウェーハキャリアを自転させる、いわゆるサンギア型両面研磨装置が知られている。また、サンギアを用いず、回転する上下の定盤間に配置したウェーハキャリアを、自転しない円運動をさせ、保持されたウェーハを旋回移動させる、いわゆる揺動キャリア型両面研磨装置等が用いられている。
【0004】
揺動キャリア型両面研磨装置は、例えば特開平11−254302号公報に提案されているように、ウェーハキャリアが定盤よりも径が大きく、研磨時にウェーハ周辺が定盤から外方に一時的に出るオーバーハング機構を備えることが容易なため、研磨時に生じてしまうウェーハ周辺の研磨だれを抑制することができる利点等を有している。
【0005】
これらの両面研磨装置では、機械的化学的研磨において砥粒(シリカなど)を含有した研磨液が用いられ、ウェーハの表面及び裏面が同様に研磨される。しかしながら、両面研磨装置で研磨されたウェーハは、表面だけでなく裏面側も研磨加工されるため、鏡面化された表裏面を区別し難いと共に、静電チャック等でウェーハの裏面を吸着した場合に、ウェーハをリリースし難いという取扱い上の不都合があった。このため、両面研磨されたものではなく、片面研磨されていると共に両面研磨されたものと同様の高平坦度のウェーハが要望されている。
【0006】
このような要望に対応するため、高平坦化加工法として有効である両面研磨装置を用い、片面のみを研磨する技術が提案されている。例えば、従来、研磨前にウェーハの裏面のみにLTO(Low Temperature Oxide)等を熱処理で成膜しておき、両面研磨装置で研磨する際に、裏面側をLTOで保護して表面側のみを研磨する技術等が提案されている。例えば、特開平10−303154号公報には、シリコンウェーハの非研磨予定面にCVD装置等で酸化膜を設けた後、両面研磨装置を用いてメカノケミカル研磨を行う技術が提案されている。
【0007】
【発明が解決しようとする課題】
しかしながら、上記従来の研磨技術には、以下のような課題が残されている。すなわち、両面研磨装置を用いて片面のみを研磨する技術として、研磨前にウェーハ裏面にLTO等を熱処理で成膜しておく場合、LTOの成膜及び除去の工程追加のために製造コストが増大し、スループットが低下してしまう問題や、熱工程による汚染や膜除去時のパーティクルの発生等の問題が生じるおそれがあった。また、メカノケミカル研磨のように多くの砥粒を含んだ研磨液を用いる場合、砥粒によって表面に微細な加工ダメージが生じやすくなる不都合があると共に、砥粒製造のコストが高く、研磨液の低コスト化が要望されていた。
【0008】
本発明は、前述の課題に鑑みてなされたもので、LTO等の保護膜を形成する工程を追加する必要が無く、片面研磨でも低コストで両面研磨と同様の高平坦度を得ることができる半導体ウェーハの製造方法及び製造装置を提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、前記課題を解決するために以下の構成を採用した。すなわち、本発明の半導体ウェーハの製造方法は、半導体ウェーハを表裏面側から挟む研磨面を有した一対の定盤と半導体ウェーハとを相対的に移動させると共に研磨面に研磨液を供給して半導体ウェーハを研磨する研磨工程を有した半導体ウェーハの製造方法であって、前記研磨工程前の自然放置中又は洗浄中に生じた前記半導体ウェーハの表裏面の薄膜のうち表面側の薄膜のみを除去する表面膜除去工程と、前記表面膜除去工程後に、前記半導体ウェーハの材料に対する研磨速度が前記薄膜に対する研磨速度よりも高い前記研磨液を供給して半導体ウェーハの表面側を選択的に化学的研磨する表面研磨工程とを備えていることを特徴とする。
前記酸化膜の厚みが0.5〜10nmとされる手段か、前記アルカリ性溶液における砥粒濃度が0%とされる手段か、前記表面研磨工程において、前記シリコンウェーハの表面の研磨速度が、前記シリコンウェーハの裏面の研磨速度より高くなるように設定されている手段を採用することもできる。
【0010】
この半導体ウェーハの製造方法では、表面膜除去工程において、研磨工程前の自然放置中又は洗浄中に生じた前記半導体ウェーハの表裏面の薄膜のうち表面側の薄膜のみを除去することにより、裏面側の薄膜だけを保護膜として残しておき、表面研磨工程において、半導体ウェーハの材料に対する研磨速度が前記薄膜に対する研磨速度よりも高い前記研磨液を供給して半導体ウェーハの表面側を選択的に化学的研磨(ケミカル研磨)することにより、裏面側は研磨レイトが低く薄膜が残って研磨がほとんど進まないのに対し、表面側は研磨レイトが高く良好な研磨が行われ、実質的に片面研磨状態となる。なお、ケミカル研磨であるので、表面側を研磨している間、裏面側の薄膜が機械的作用によって研磨されて除去されることを防ぐことができる。すなわち、メカノケミカル研磨ではなく、ケミカル研磨を行うことにより、厚い酸化膜等を裏面に形成するような保護膜形成工程を追加しなくても、通常の洗浄工程や自然放置中に生じた酸化膜等の薄膜を十分に保護膜として機能させることができる。
【0011】
本発明の半導体ウェーハの製造装置は、半導体ウェーハを表裏面側から挟む研磨面を有した一対の定盤と半導体ウェーハとを相対的に移動させると共に研磨面に研磨液を供給して半導体ウェーハを研磨する半導体ウェーハの製造装置であって、前記半導体ウェーハの材料に対する研磨速度が前記研磨前の自然放置中又は洗浄中に生じた半導体ウェーハ表面の薄膜に対する研磨速度よりも高い前記研磨液を供給する研磨液供給機構を備え、前記半導体ウェーハの表面に接する研磨面が、半導体ウェーハの裏面に接する研磨面よりも半導体ウェーハの研磨速度が高い構造又は材質の研磨布で構成されていることを特徴とする。
前記別研磨液供給機構が供給する別の研磨液が砥粒濃度が0重量%以上1重量%以下のアルカリ性溶液とされる手段を採用することもできる。
【0012】
この半導体ウェーハの製造装置では、研磨液供給機構により、半導体ウェーハの材料に対する研磨速度が前記研磨前の自然放置中又は洗浄中に生じた半導体ウェーハ表面の薄膜に対する研磨速度よりも高い前記研磨液を供給し、半導体ウェーハの表面に接する研磨面が、半導体ウェーハの裏面に接する研磨面よりも半導体ウェーハの研磨速度が高い構造又は材質の研磨布で構成されているので、研磨時に表面側の薄膜が裏面側よりも速く研磨されて除去される。そして、裏面側は薄膜が残っているため、研磨レイトが低く研磨がほとんど進まないのに対し、表面側は薄膜が除去されているため研磨レイトが高く良好な研磨が行われ、実質的に片面研磨状態となる。
【0013】
すなわち、上記の半導体ウェーハの製造方法及び製造装置では、両面研磨装置と同様に表裏面に接触する定盤はどちらも相対的に移動するが、表面のみが研磨されるため、両面研磨と同様の精度で片面研磨が可能になる。また、研磨工程前に通常行われる工程である自然放置中や洗浄中に自然に生じた酸化膜等の薄膜を利用するので、裏面保護のために特別な保護膜形成処理を導入する必要が無い。
【0014】
また、本発明の半導体ウェーハの製造方法及び製造装置では、前記半導体ウェーハが、シリコンウェーハであると共に、前記薄膜が、酸化膜であり、前記研磨液が、砥粒濃度が0重量%以上1重量%以下のアルカリ性溶液であることが好ましい。
すなわち、これらの半導体ウェーハの製造方法及び製造装置では、研磨液が、砥粒濃度が0重量%以上1重量%以下のアルカリ性溶液であるので、砥粒による機械的研磨作用がほとんど無く、アルカリ性溶液による化学的研磨作用だけで研磨が行われることにより、裏面の酸化膜、すなわちSiO2はほとんど研磨されず、例えば0.5nmから10nmの極薄い酸化膜でも保護膜として機能し、表面のシリコンだけを良好に研磨することができる。なお、砥粒濃度が0重量%、すなわち砥粒を含まないアルカリ性溶液が最も好適であるが、1重量%以下であれば、アルカリによる化学的研磨作用に比べて砥粒による機械的研磨作用をほとんど無視することができ、メカノケミカル研磨ではなくケミカル研磨となる。また、砥粒の削減により、表面への微細な加工ダメージを低減すると共に研磨液のコストを下げることができる。
【0015】
なお、上述した特開平10−303154号公報記載の従来例では、裏面側がSiO2で保護されているために研磨レートが低いだけであり、メカノケミカル研磨により、かなりの量の裏面側のSiO2が研磨液中の砥粒で研磨されることになる。したがって、削り落とされた裏面側のSiO2膜が表面側の鏡面研磨面を傷つける原因になる不都合があるが、本願発明では、機械的研磨作用が無視でき、裏面側の研磨量は理想的にゼロに近い状態となり、上記のような表面側への影響がほとんどない。具体的には、0.5nm程度の裏面酸化膜の場合でも、本願発明で1時間研磨しても膜が残っており、実質的に研磨されていないとみなせる。また、上記従来技術では、裏面のSiO2が削られる分を見越して、所定の厚さを確保した成膜を施さなければならないのに対し、本願発明の場合では、通常の状態で付いた膜、すなわち、ウェーハに雰囲気中等で自然に付いた酸化膜や洗浄工程で付いた酸化膜で極薄い膜で十分に加工が可能になる利点を有している。
【0016】
さらに、本発明の半導体ウェーハの製造方法では、前記表面膜除去工程において、フッ酸系エッチング液で前記酸化膜を除去することが好ましい。すなわち、フッ酸系エッチング液を用いれば、シリコンウェーハの表面側に生じた酸化膜であるSiO2を良好に除去することができる。
【0017】
また、本発明の半導体ウェーハの製造装置では、前記半導体ウェーハの表裏面に接する研磨面のうち、表面に接する研磨面のみが砥粒を含む固定砥粒研磨布で構成されていることが好ましい。
すなわち、この半導体ウェーハの製造装置では、表面に接する研磨面のみが砥粒を含む固定砥粒研磨布で構成され、裏面に接する研磨面が砥粒を含まない研磨布で構成されていることにより、固定砥粒研磨布が接する表面側の薄膜のみが研磨され、砥粒を含まない研磨布が接する裏面側では薄膜が研磨されずに残ることになる。このように、固定砥粒研磨布を表面側にのみ設けることにより、上述した前処理としての表面酸化膜除去作業が不要になる利点がある。
【0018】
また、本発明の半導体ウェーハの製造装置では、前記半導体ウェーハの表面に接する研磨面が、複数の溝が表面に形成された研磨布で構成され、前記半導体ウェーハの裏面に接する研磨面が、平坦な表面の研磨布で構成されていることが好ましい。
すなわち、この半導体ウェーハの製造装置では、裏面に接する研磨布が平坦な表面であるため、裏面の薄膜をほとんど研磨しないのに対し、表面に接する研磨布が複数の溝が形成された表面であるため、平坦な裏面側の研磨布よりも研磨レイトが高く、表面の薄膜が研磨されて除去される。
【0019】
また、本発明の半導体ウェーハの製造方法では、前記表面研磨完了後に引き続いて、砥粒濃度が1重量%を越える研磨液を供給して前記半導体ウェーハの表面と同時に裏面を研磨する表裏面研磨工程を備えていてもよい。
また、本発明の半導体ウェーハの製造装置では、前記研磨液供給機構が、前記研磨液よりも砥粒濃度が高い別の研磨液を供給する別研磨液供給機構を備えていることが好ましい。
すなわち、これらの半導体ウェーハの製造方法及び製造装置では、砥粒濃度が1重量%を越える研磨液を供給して表面と共に裏面を研磨することにより、裏面の光沢度を制御することができる。
【0020】
【発明の実施の形態】
以下、本発明に係る第1実施形態を、図1から図4を参照しながら説明する。
【0021】
図1から図3は、本実施形態のシリコンウェーハの研磨装置であって、前述した揺動キャリア型両面研磨装置と同様の動き、すなわち回転する上下の上定盤1と下定盤2との間に配置したウェーハキャリア3を、自転しない円運動をさせ、保持されたシリコンウェーハWを旋回移動させるものであるが、シリコンウェーハWの表面Sのみを研磨するための片面研磨装置である。
【0022】
すなわち、この研磨装置は、同じ軸心で逆方向に回転する上下に配された上定盤1及び下定盤2と、上定盤1と下定盤2の間に配置され複数のシリコンウェーハWを保持する平板状のウェーハキャリア3と、上定盤1及び下定盤2を回転させる定盤駆動機構4と、ウェーハキャリア3を旋回移動させるキャリア駆動機構5とを備えている。
【0023】
上定盤1及び下定盤2は、それぞれの表面に研磨布6が接着され、これらの研磨布6が研磨面を構成する。なお、研磨布6としては、表面が平坦である不織布等が用いられる。
上定盤1には、複数の供給孔1aが設けられ(図3中には代表的に供給孔1aひとつを記載している)、各供給孔1aは研磨面へ研磨液を供給する研磨液供給機構7に接続されている。
【0024】
研磨液供給機構7は、シリコンに対する研磨速度がその酸化膜(SiO2)に対する研磨速度よりも高い研磨液として砥粒(シリカ)濃度が0重量%以上1重量%以下のアルカリ性溶液を供給可能な第1供給機構8と、砥粒濃度が1重量%を越えるアルカリ性溶液である光沢度調整用の研磨液を供給可能な第2供給機構(別研磨液供給機構)9とからなり、第1供給機構8又は第2供給機構9の一方を任意に選択可能になっている。
【0025】
なお、第1供給機構8で供給する研磨液は、砥粒濃度が0重量%、すなわち砥粒を含まないアルカリ性溶液であることが好ましい。
アルカリ性溶液としては、無機アルカリ(KOH、NaOH等)又は有機アルカリ及びこれらの混合溶液などがあるが、本実施形態では、有機アルカリでありアミンを主成分としたもの(例えば、ピペラジン、エチレンジアミン等)を使用する。
【0026】
ウェーハキャリア3は、上定盤1及び下定盤2よりも径が大きく、例えばガラスエポキシ板で形成され、シリコンウェーハWを遊嵌状態に保持するための保持孔3aが複数形成されている。また、ウェーハキャリア3は、シリコンウェーハWの厚さよりも所定量だけ若干薄く設定されている。なお、保持孔3a内に保持されたシリコンウェーハWは、保持孔3a内で自転可能である。
【0027】
定盤駆動機構4は、上定盤1及び下定盤2に接続されこれらを回転させるモータ等の駆動源10、11を備えている。
キャリア駆動機構5は、ウェーハキャリア3をその表裏面と平行な面内で自転しない円運動をさせ、保持孔3a内で保持されて上定盤1と下定盤2とによって挟持されたシリコンウェーハWを旋回移動させるものである。すなわち、キャリア駆動機構5は、ウェーハキャリア3の外周部に取り付けられた円環状のキャリアホルダ12と、キャリアホルダ12に回転可能に連結された4つの偏心部材13と、これらの偏心部材13に接続されこれらを同期して円運動させる偏心部材同期機構14とを備えている。
【0028】
偏心部材13は、円柱形状であり、下面には回転軸部13aが突出して設けられ、上面には偏心軸部13bが回転軸部13aの回転軸から偏心した位置に突出して設けられている。また、偏心部材13は、回転軸部13aを装置の基体14に設けられた支持孔14aに回転可能に貫通させて支持されている。
キャリアホルダ12には、互いに等間隔に円周上に離間した4つの貫通孔12aが設けられ、これらの貫通孔12aにそれぞれ偏心軸部13bが回転可能に挿入されている。
【0029】
偏心部材同期機構14は、各偏心部材13の回転軸部13aに巻回されたタイミングチェーン15と、一つの偏心部材13の回転軸部13aにモータ側ギア16で接続された駆動用モータ17とを備えている。すなわち、駆動用モータ17の出力軸に設けられたモータ側ギア16が、回転軸部13a下端に設けられた軸部側ギア18に噛み合っており、駆動用モータ17を駆動すると、モータ側ギア16及び軸部側ギア18を介して一つの偏心部材13が回転すると共に、タイミングチェーン15を介して他の偏心部材13が同時に同期して回転するようになっている。
【0030】
この際、各偏心部材13は、回転軸部13aを中心に回転するが、偏心軸部13bは回転軸部13aの回転軸を中心に旋回する。すなわち、偏心軸部13bで支持されているキャリアホルダ12及びウェーハキャリア3は、偏心軸部13bの旋回により自転しない円運動を行うことになる。したがって、ウェーハキャリア3に保持されたシリコンウェーハWも旋回移動することになる。また、上記ウェーハキャリア3は、シリコンウェーハW周辺が上定盤1及び下定盤2から外方に一時的に出る動き、いわゆるオーバーハングするようになっている。
【0031】
次に、本実施形態によるシリコンウェーハの研磨方法(半導体ウェーハの製造方法)について、図4を参照して説明する。
【0032】
〔表面酸化膜除去工程〕(表面膜除去工程)
まず、図4の(a)に示すように、研磨前の洗浄(例えば、オゾン洗浄)中又は搬送中に生じたシリコンウェーハWの表裏面の酸化膜(薄膜:SiO2)OXのうち、図4の(b)に示すように、表面Sの酸化膜OXのみをフッ酸系エッチング液(例えば、フッ酸(HF))で予め除去する。なお、表面Sの酸化膜OXは、極薄い酸化膜であるので、フッ酸系エッチング液で容易に除去される。
なお、研磨前に、SC1洗浄を行った場合、当該洗浄中に形成される酸化膜も上記表裏面の酸化膜OXに含まれ、この工程で表面S側の酸化膜のみが除去される。また、これらの酸化膜は、その厚さが0.5nmから10nm未満の極薄いものである。
【0033】
〔表面研磨工程〕
次に、このシリコンウェーハWをウェーハキャリア3の保持孔3aにセットし、このウェーハキャリア3を研磨装置に取り付け、図4の(c)に示すように、表面Sの研磨を行う。すなわち、定盤駆動機構4により上定盤1及び下定盤2を回転させると共に、キャリア駆動機構5によりウェーハキャリア3を自転しない円運動させる。そして、同時に研磨液供給機構7の第1供給機構8により、アルカリ性溶液の研磨液を研磨面に供給する。
【0034】
このとき、シリコンウェーハWの表裏面の酸化膜OXのうち表面Sの酸化膜OXのみが除去されて、裏面R側の酸化膜OXだけを保護膜として残してあるので、シリコンとSiO2との研磨選択比が大きいアルカリ性溶液の研磨液がシリコンウェーハWの表面Sを選択的に研磨することにより、裏面R側は研磨レイトが低く酸化膜OXが残って研磨がほとんど進まないのに対し、表面S側は研磨レイトが高く良好な研磨が行われ、実質的に片面研磨状態となる。
【0035】
また、研磨液が、砥粒濃度が0重量%以上1重量%以下のアルカリ性溶液であるので、砥粒による機械的研磨作用がほとんど無く、アルカリ性溶液による化学的研磨作用だけで研磨が行われることにより、裏面Rの酸化膜OX、すなわちSiO2をほとんど研磨せずに、表面Sのシリコンだけを良好に研磨することができる。
【0036】
〔裏面研磨工程〕
なお、研磨されていない裏面Rは粗く、光沢度が低いため、裏面Rの凹凸にパーティクルが入り、発塵の原因になるおそれがある。このため、裏面Rに対してある程度高い光沢度が要望される場合がある。
このような場合、表面Sの研磨が終了した後、図4の(d)に示すように、必要に応じて、いわゆるスライトポリッシュを行う。すなわち、第2供給機構9により砥粒(シリカ)濃度が1重量%を越える研磨液(例えば、砥粒濃度5重量%)をシリコンウェーハWの裏面Rに接する研磨面のみに供給して裏面Rを所望の光沢度になるまで研磨する。
【0037】
このとき、光沢度調整用の研磨液は、表面研磨に使用した研磨液に比べて砥粒濃度が高く、機械的作用が強いことから、表面研磨の際にはほとんど研磨されなかった裏面Rの酸化膜OXが容易に除去され、さらに裏面Rが研磨されて光沢度が増加する。例えば、表面研磨を終了した時点で、裏面Rの光沢度は70〜90%程度であるが、この裏面研磨工程により裏面Rを研磨することにより、光沢度を320%程度まで任意にコントロールすることができる。なお、光沢度制御だけの短時間の研磨であるため、既に研磨されている表面Sへの影響はほとんどない。
【0038】
このように本実施形態では、両面研磨装置と同様に表裏面に接触する上定盤1及び下定盤2はどちらも相対的に移動するが、表面Sのみが研磨されるため、両面研磨と同様の精度で片面研磨を行うことができる。また、研磨工程前に通常行われる工程である洗浄中や自然放置中に自然に生じた酸化膜を利用するので、裏面保護のために特別な保護膜形成処理を導入する必要が無く、低コストで研磨を行うことができる。
【0039】
次に、本発明に係る第2実施形態を、図5を参照して説明する。
【0040】
第2実施形態と第1実施形態との異なる点は、第1実施形態では上定盤1及び下定盤2の研磨面を構成する研磨布6は両方とも同様のものを用いたのに対し、第2実施形態の研磨装置(半導体ウェーハの製造装置)では、図4に示すように、下定盤2の研磨面、すなわちシリコンウェーハWの表面Sに接する研磨面が、上定盤1の研磨面、すなわちシリコンウェーハWの裏面Rに接する研磨面よりもシリコン及びSiO2の研磨速度が高い構造の研磨布である溝付き研磨布19で構成されている点である。
すなわち、本実施形態の上定盤1には、表面に溝がない通常の平坦な研磨布6が接着され、下定盤2には、表面に溝19aが複数形成された溝付き研磨布19が接着されている。
【0041】
さらに、第1実施形態では、表面酸化膜除去工程において、表面S側の酸化膜OXのみを除去して、表面研磨工程において、表面Sのみを研磨したのに対し、第2実施形態では、表面酸化膜除去工程を行わず、第1実施形態の表面研磨工程と同様の研磨液を用いて、表裏面両方に酸化膜OXを残したままで上記研磨装置で研磨を行って、表面Sのみの酸化膜除去及び研磨を行う点で異なっている。
【0042】
したがって、本実施形態の研磨装置では、平坦な研磨布6が裏面Rに接するため、裏面Rの酸化膜OXをほとんど研磨しないのに対し、溝付き研磨布19が表面Sに接するため、表面Sの酸化膜OXが裏面S側よりも速く研磨されて除去される。
【0043】
研磨時に裏面Rの酸化膜OXが残るため、裏面R側は研磨レイトが低く研磨がほとんど進まないのに対し、表面S側は酸化膜OXが除去されているため研磨レイトが高く良好な研磨が行われ、実質的に片面研磨状態となる。このように、本実施形態では、表面酸化膜除去工程が不要になるため、さらに製造コストを低減させることができる。
【0044】
なお、本実施形態の別の例として、シリコンウェーハWの表面Sに接する研磨面を裏面Rに接する研磨面よりも研磨速度が高い材質の研磨布で構成しても構わない。すなわち、下定盤2に研磨布として溝付き研磨布19ではなく砥粒を予め含んだ固定砥粒研磨布を接着してもよい。この場合、表面S側に接触する研磨面だけが固定砥粒研磨布で構成されているので、表面S側の酸化膜OXだけが固定砥粒研磨布中の砥粒による機械的作用で除去されて表面Sを研磨することができる。
なお、固定砥粒研磨布は、研磨布中に砥粒が固定状態に含まれているため、遊離砥粒のように裏面R側に砥粒が回って裏面Rの酸化膜OXを研磨してしまうことを防ぐことができる。
【0045】
【実施例】
次に、本発明に係る上記実施形態を実施例により具体的に説明する。
上記第1実施形態により上記研磨を行った際のデータを、図6に示す。なお、図6の(a)は従来の片面研磨方式、図6の(b)は従来の両面研磨方式、図6の(c)は上記実施形態の実施例であって、それぞれGBIR(Global Backside Ideal Reference)に対する頻度を示したヒストグラムを示したものである。用いた研磨液は、ピペラジン、アミノエチルアミノエタノールとKOHの混合溶液である。
この研磨結果からわかるように、片面研磨であるにもかかわらず、両面研磨と同様の平坦度を得ることができた。
【0046】
なお、本発明の技術範囲は上記実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、上記各実施形態では、定盤を上下に配したが、シリコンウェーハを立てた状態でシリコンウェーハの左右に定盤を配して挟持する縦型の研磨装置に適用しても構わない。
また、上記各実施形態では、研磨前にシリコンウェーハ表裏面に生じた薄膜が酸化膜(SiO2)であったが、研磨前の自然放置中又は洗浄中に生じた他の薄膜であっても構わない。例えば、研磨前の有機化学薬品を用いた洗浄中に生じる有機膜などであっても構わない。この場合、この有機膜よりもシリコンの方が研磨速度の十分に高い研磨液が用いられる。
【0047】
また、上記各実施形態では、揺動キャリアタイプの研磨装置に適用したが、他の方式の研磨装置に適用しても構わない。例えば、上述したサンギアタイプの研磨装置に適用してもよい。
さらに、上記各実施形態では、半導体ウェーハとしてシリコンウェーハに適用したが、他の半導体ウェーハ、例えば、化合物半導体のウェーハ(ガリウム・ヒ素のウェーハ等)の製造方法に適用してもよい。
【0048】
【発明の効果】
本発明の導体ウェーハの製造方法によれば、表面膜除去工程において、研磨工程前の自然放置中又は洗浄中に生じた前記半導体ウェーハの表裏面の薄膜のうち表面側の薄膜のみを除去し、表面研磨工程において、半導体ウェーハの材料に対する研磨速度が前記薄膜に対する研磨速度よりも高い前記研磨液を供給して半導体ウェーハの表面側を選択的に化学的研磨するので、研磨液の研磨選択比により、実質的に表面側のみの片面研磨を行うことができる。
【0049】
本発明の半導体ウェーハの製造装置によれば、研磨液供給機構により、半導体ウェーハの材料に対する研磨速度が前記研磨前の自然放置中又は洗浄中に生じた半導体ウェーハ表面の薄膜に対する研磨速度よりも高い前記研磨液を供給し、半導体ウェーハの表面に接する研磨面が、半導体ウェーハの裏面に接する研磨面よりも半導体ウェーハの研磨速度が高い構造又は材質の研磨布で構成されているので、研磨時に表面側の薄膜が裏面側よりも速く研磨されて除去され、裏面側を薄膜で保護した状態で、研磨液の研磨選択比により、実質的に表面側のみの片面研磨を行うことができる。
【0050】
すなわち、本発明の半導体ウェーハの製造方法及び製造装置では、両面研磨装置と同様に表裏面に接触する定盤がどちらも相対的に移動するため、両面研磨と同様の精度で片面研磨を行うことができる。
また、研磨工程前に通常行われる工程である自然放置中や洗浄中に自然に生じた酸化膜等の薄膜を利用するので、裏面保護のために特別な保護膜形成処理を導入する必要が無く、保護膜形成及び膜除去の工程追加による製造コストの増大、スループットの低下及び熱工程での汚染やパーティクル発生等を防いで、低コストかつ高品質で高集積度にも対応可能な超高平坦度のウェーハを得ることができる。
さらに、使用する研磨液は、砥粒を含まないか又は僅かであるために、砥粒による微細な加工ダメージを抑制することができると共に、研磨液にかかるコストを低減することができる。
【図面の簡単な説明】
【図1】 本発明に係る第1実施形態における研磨装置を示す要部の断面図である。
【図2】 本発明に係る第1実施形態における研磨装置の定盤とウェーハキャリアとの位置関係を示す平面図である。
【図3】 本発明に係る第1実施形態における研磨装置を示す模式的な拡大断面図である。
【図4】 本発明に係る第1実施形態における研磨方法の各工程でのシリコンウェーハを示す模式的な拡大断面図である。
【図5】 本発明に係る第2実施形態における研磨装置を示す模式的な拡大断面図である。
【図6】 従来の片面研磨方式、従来の両面研磨方式及び本発明に係る実施例における研磨方式での研磨後の各平坦度(GBIRに対する頻度)を示すグラフである。
【符号の説明】
1 上定盤
2 下定盤
3 ウェーハキャリア
5 キャリア駆動機構
6 研磨布
7 研磨液供給機構
8 第1供給機構
9 第2供給機構(別研磨液供給機構)
19 溝付き研磨布
OX 酸化膜
S シリコンウェーハの表面
R シリコンウェーハの裏面
W シリコンウェーハ(半導体ウェーハ)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor wafer manufacturing method and a manufacturing apparatus capable of obtaining ultra-high flatness that can cope with high integration at low cost.
[0002]
[Prior art]
As a technique for flattening a semiconductor wafer such as a silicon wafer, a method of polishing a surface to be processed on the front surface or the back surface is used. As a device for performing such polishing, a double-side polishing device capable of obtaining particularly high flatness is used.
[0003]
As a general double-side polishing apparatus, a plurality of wafer carriers holding a plurality of wafers are arranged between upper and lower surface plates having a polishing surface, and a sun gear is arranged in the center of these wafer carriers to rotate each wafer carrier. A so-called sun gear type double-side polishing apparatus is known. In addition, a so-called oscillating carrier type double-side polishing apparatus or the like is used in which a wafer carrier disposed between rotating upper and lower surface plates does not rotate without using a sun gear, and a held wafer is swung. Yes.
[0004]
In the oscillating carrier type double-side polishing apparatus, for example, as proposed in Japanese Patent Laid-Open No. 11-254302, the diameter of the wafer carrier is larger than that of the surface plate, and the periphery of the wafer temporarily moves outward from the surface plate during polishing. Since it is easy to provide an overhang mechanism that comes out, there is an advantage that polishing dripping around the wafer that occurs during polishing can be suppressed.
[0005]
In these double-side polishing apparatuses, a polishing liquid containing abrasive grains (such as silica) is used in mechanical chemical polishing, and the front and back surfaces of the wafer are similarly polished. However, since the wafer polished by the double-side polishing machine is polished not only on the front surface but also on the back surface side, it is difficult to distinguish the mirrored front and back surfaces, and when the back surface of the wafer is attracted by an electrostatic chuck or the like There was an inconvenience in handling that it was difficult to release the wafer. For this reason, there is a demand for a wafer having a high flatness similar to that which has been polished on both sides and not polished on both sides.
[0006]
In order to meet such a demand, a technique for polishing only one side using a double-side polishing apparatus effective as a high planarization processing method has been proposed. For example, conventionally, LTO (Low Temperature Oxide) or the like is deposited on the back side of the wafer by heat treatment before polishing, and when polishing with a double-side polishing machine, the back side is protected with LTO and only the front side is polished. Techniques to do this have been proposed. For example, Japanese Patent Laid-Open No. 10-303154 proposes a technique in which an oxide film is provided on a non-polished surface of a silicon wafer using a CVD apparatus and then mechanochemical polishing is performed using a double-side polishing apparatus.
[0007]
[Problems to be solved by the invention]
However, the following problems remain in the conventional polishing technique. That is, as a technique for polishing only one side using a double-side polishing apparatus, when LTO or the like is formed on the back surface of the wafer by heat treatment before polishing, the manufacturing cost increases due to the addition of LTO film formation and removal processes. However, there is a possibility that problems such as a decrease in throughput, contamination due to a thermal process, and generation of particles during film removal may occur. In addition, when using a polishing liquid containing many abrasive grains as in mechanochemical polishing, there is a disadvantage that fine processing damage is likely to occur on the surface due to the abrasive grains, and the cost of manufacturing the abrasive grains is high. There has been a demand for cost reduction.
[0008]
The present invention has been made in view of the above-mentioned problems, and it is not necessary to add a step of forming a protective film such as LTO, and even with single-side polishing, high flatness similar to double-side polishing can be obtained at low cost. An object of the present invention is to provide a semiconductor wafer manufacturing method and manufacturing apparatus.
[0009]
[Means for Solving the Problems]
  The present invention employs the following configuration in order to solve the above problems. That is, in the semiconductor wafer manufacturing method of the present invention, a pair of surface plates having a polishing surface sandwiching the semiconductor wafer from the front and back sides and the semiconductor wafer are relatively moved, and a polishing liquid is supplied to the polishing surface to provide a semiconductor. A method for manufacturing a semiconductor wafer having a polishing step for polishing a wafer, wherein only the thin film on the front side is removed from the thin films on the front and back surfaces of the semiconductor wafer that are left in the natural state before the polishing step or during the cleaning. After the surface film removing step and the surface film removing step, the polishing liquid is supplied at a polishing rate higher than the polishing rate for the thin film to selectively chemically polish the surface side of the semiconductor wafer. And a surface polishing step.
  In the surface polishing step, the polishing rate of the surface of the silicon wafer is the means in which the thickness of the oxide film is 0.5 to 10 nm or the means in which the abrasive concentration in the alkaline solution is 0%. Means set so as to be higher than the polishing rate of the back surface of the silicon wafer can also be adopted.
[0010]
In this method of manufacturing a semiconductor wafer, in the surface film removal step, by removing only the thin film on the front side from the thin film on the front and back surfaces of the semiconductor wafer that was left in the natural state before the polishing step or during the cleaning, In the surface polishing step, the surface of the semiconductor wafer is selectively chemically treated by supplying the polishing liquid whose polishing rate for the material of the semiconductor wafer is higher than the polishing rate for the thin film. By polishing (chemical polishing), the polishing rate on the back side is low and the thin film remains, and the polishing hardly progresses. On the other hand, the polishing rate on the surface side is high and the polishing is performed substantially. Become. In addition, since it is chemical grinding | polishing, it can prevent that the thin film of the back surface side is grind | polished and removed by a mechanical action, while grind | polishing the surface side. In other words, by performing chemical polishing instead of mechanochemical polishing, an oxide film generated during normal cleaning process or natural standing without adding a protective film forming process that forms a thick oxide film on the back surface. Or the like can sufficiently function as a protective film.
[0011]
  The semiconductor wafer manufacturing apparatus of the present invention relatively moves a pair of surface plates having a polishing surface sandwiching the semiconductor wafer from the front and back sides and the semiconductor wafer, and supplies a polishing liquid to the polishing surface to supply the semiconductor wafer. An apparatus for manufacturing a semiconductor wafer to be polished, wherein the polishing liquid is supplied at a polishing rate higher than a polishing rate for a thin film on the surface of a semiconductor wafer generated during natural standing or cleaning before the polishing. A polishing liquid supply mechanism is provided, and the polishing surface in contact with the surface of the semiconductor wafer is composed of a polishing cloth having a structure or material having a higher polishing speed of the semiconductor wafer than the polishing surface in contact with the back surface of the semiconductor wafer. To do.
  Another polishing liquid supplied by the separate polishing liquid supply mechanism may be an alkaline solution having an abrasive concentration of 0% by weight to 1% by weight.
[0012]
In this semiconductor wafer manufacturing apparatus, the polishing liquid supply mechanism allows the polishing liquid to have a polishing speed higher than the polishing speed for the thin film on the surface of the semiconductor wafer generated during natural standing or cleaning before the polishing. Since the polishing surface that is in contact with the surface of the semiconductor wafer is composed of a polishing cloth having a structure or material that has a higher polishing speed of the semiconductor wafer than the polishing surface that is in contact with the back surface of the semiconductor wafer, the thin film on the surface side during polishing is It is polished and removed faster than the back side. And since the thin film remains on the back side, the polishing rate is low and polishing hardly progresses, whereas the thin film is removed on the front side, so that the polishing rate is high and good polishing is performed. It will be in a polishing state.
[0013]
That is, in the above-described semiconductor wafer manufacturing method and manufacturing apparatus, both the surface plates in contact with the front and back surfaces move relatively as in the double-side polishing apparatus, but only the front surface is polished. Single-side polishing is possible with accuracy. In addition, since a thin film such as an oxide film naturally generated during natural standing or cleaning, which is a process normally performed before the polishing process, is used, there is no need to introduce a special protective film forming process for protecting the back surface. .
[0014]
In the method and apparatus for manufacturing a semiconductor wafer according to the present invention, the semiconductor wafer is a silicon wafer, the thin film is an oxide film, and the polishing liquid has an abrasive concentration of 0% by weight or more and 1% by weight. % Alkaline solution is preferred.
That is, in these semiconductor wafer manufacturing methods and manufacturing apparatuses, since the polishing liquid is an alkaline solution having an abrasive grain concentration of 0 wt% or more and 1 wt% or less, there is almost no mechanical polishing action by the abrasive grains, and the alkaline solution Polishing is carried out only by the chemical polishing action by the oxide, so that the oxide film on the back surface, ie2Is hardly polished. For example, even a very thin oxide film of 0.5 nm to 10 nm functions as a protective film, and only silicon on the surface can be polished well. An abrasive solution having an abrasive concentration of 0% by weight, that is, an alkaline solution containing no abrasive grains is most suitable. However, if it is 1% by weight or less, the mechanical polishing action by the abrasive grains is higher than the chemical polishing action by the alkali. Almost negligible, chemical polishing rather than mechanochemical polishing. Further, by reducing the abrasive grains, it is possible to reduce fine processing damage to the surface and reduce the cost of the polishing liquid.
[0015]
In the conventional example described in JP-A-10-303154 described above, the back side is SiO.2The polishing rate is only low because it is protected with a large amount of SiO2 on the back side by mechanochemical polishing.2Is polished with abrasive grains in the polishing liquid. Therefore, the SiO2 on the back side that has been scraped off.2Although there is a disadvantage that the film causes damage to the mirror-polished surface on the front side, in the present invention, the mechanical polishing action can be ignored, and the polishing amount on the back side is ideally close to zero, and the surface as described above There is almost no influence on the side. Specifically, even in the case of a backside oxide film of about 0.5 nm, the film remains even after polishing for 1 hour in the present invention, and it can be considered that the film is not substantially polished. In the above prior art, the backside SiO 22In the case of the present invention, a film attached in a normal state, i.e., a film attached in a normal state, i.e., naturally attached to the wafer in an atmosphere etc. Further, it has an advantage that it can be sufficiently processed with an extremely thin film, such as an oxide film or an oxide film attached in a cleaning process.
[0016]
Furthermore, in the semiconductor wafer manufacturing method of the present invention, it is preferable that the oxide film is removed with a hydrofluoric acid-based etchant in the surface film removal step. That is, if a hydrofluoric acid-based etching solution is used, SiO, which is an oxide film formed on the surface side of the silicon wafer.2Can be removed satisfactorily.
[0017]
In the semiconductor wafer manufacturing apparatus of the present invention, it is preferable that only the polishing surface in contact with the surface of the polishing surface in contact with the front and back surfaces of the semiconductor wafer is composed of a fixed abrasive polishing cloth containing abrasive grains.
That is, in this semiconductor wafer manufacturing apparatus, only the polishing surface in contact with the front surface is composed of a fixed abrasive polishing cloth containing abrasive grains, and the polishing surface in contact with the back surface is composed of a polishing cloth not containing abrasive grains. Only the thin film on the surface side in contact with the fixed abrasive polishing cloth is polished, and the thin film remains unpolished on the back surface side in contact with the polishing cloth not containing abrasive grains. Thus, by providing the fixed abrasive polishing cloth only on the surface side, there is an advantage that the surface oxide film removing operation as the pretreatment described above becomes unnecessary.
[0018]
Further, in the semiconductor wafer manufacturing apparatus of the present invention, the polishing surface in contact with the surface of the semiconductor wafer is composed of a polishing cloth having a plurality of grooves formed on the surface, and the polishing surface in contact with the back surface of the semiconductor wafer is flat. It is preferable that the surface is composed of a polishing cloth having a smooth surface.
That is, in this semiconductor wafer manufacturing apparatus, since the polishing cloth in contact with the back surface is a flat surface, the thin film on the back surface is hardly polished, whereas the polishing cloth in contact with the surface is a surface on which a plurality of grooves are formed. Therefore, the polishing rate is higher than that of the flat backside polishing cloth, and the thin film on the surface is polished and removed.
[0019]
Further, in the method for producing a semiconductor wafer of the present invention, the front and back surface polishing step of polishing the back surface simultaneously with the surface of the semiconductor wafer by supplying a polishing liquid having an abrasive concentration exceeding 1% by weight after completion of the surface polishing. May be provided.
In the semiconductor wafer manufacturing apparatus of the present invention, it is preferable that the polishing liquid supply mechanism includes another polishing liquid supply mechanism that supplies another polishing liquid having a higher abrasive grain concentration than the polishing liquid.
That is, in these semiconductor wafer manufacturing methods and manufacturing apparatuses, the glossiness of the back surface can be controlled by supplying a polishing liquid having an abrasive concentration exceeding 1% by weight and polishing the back surface together with the front surface.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
A first embodiment according to the present invention will be described below with reference to FIGS.
[0021]
1 to 3 show a silicon wafer polishing apparatus according to the present embodiment, which moves in the same manner as the swing carrier type double-side polishing apparatus described above, that is, between the rotating upper and lower upper surface plates 1 and 2. This is a single-side polishing apparatus for polishing only the surface S of the silicon wafer W, which causes the wafer carrier 3 arranged in the above to move in a circular motion that does not rotate, and to rotate the held silicon wafer W.
[0022]
That is, this polishing apparatus is arranged between an upper surface plate 1 and a lower surface plate 2 which are arranged in the opposite directions and rotate in the opposite direction around the same axis, and a plurality of silicon wafers W arranged between the upper surface plate 1 and the lower surface plate 2. A flat plate wafer carrier 3 to be held, a surface plate driving mechanism 4 for rotating the upper surface plate 1 and the lower surface plate 2, and a carrier driving mechanism 5 for rotating the wafer carrier 3 are provided.
[0023]
The upper surface plate 1 and the lower surface plate 2 have a polishing cloth 6 bonded to their respective surfaces, and these polishing cloths 6 constitute a polishing surface. As the polishing cloth 6, a nonwoven fabric having a flat surface is used.
The upper surface plate 1 is provided with a plurality of supply holes 1a (one supply hole 1a is representatively shown in FIG. 3), and each supply hole 1a is a polishing liquid for supplying a polishing liquid to the polishing surface. It is connected to the supply mechanism 7.
[0024]
The polishing liquid supply mechanism 7 has a polishing rate for silicon having an oxide film (SiO2).2) And a first supply mechanism 8 capable of supplying an alkaline solution having an abrasive grain (silica) concentration of 0 wt% or more and 1 wt% or less as a polishing liquid higher than the polishing rate, and an alkaline solution having an abrasive grain concentration exceeding 1 wt% And a second supply mechanism (separate polishing liquid supply mechanism) 9 capable of supplying a polishing liquid for adjusting glossiness, and one of the first supply mechanism 8 and the second supply mechanism 9 can be arbitrarily selected. Yes.
[0025]
The polishing liquid supplied by the first supply mechanism 8 is preferably an alkaline solution having an abrasive grain concentration of 0% by weight, that is, no abrasive grains.
Examples of the alkaline solution include an inorganic alkali (KOH, NaOH, etc.), an organic alkali, and a mixed solution thereof. In this embodiment, the alkaline solution is an organic alkali and contains an amine as a main component (for example, piperazine, ethylenediamine, etc.). Is used.
[0026]
The wafer carrier 3 is larger in diameter than the upper surface plate 1 and the lower surface plate 2, and is formed of, for example, a glass epoxy plate, and a plurality of holding holes 3a for holding the silicon wafer W in a loosely fitted state are formed. The wafer carrier 3 is set to be slightly thinner than the thickness of the silicon wafer W by a predetermined amount. The silicon wafer W held in the holding hole 3a can rotate in the holding hole 3a.
[0027]
The surface plate drive mechanism 4 includes drive sources 10 and 11 such as motors that are connected to the upper surface plate 1 and the lower surface plate 2 and rotate them.
The carrier drive mechanism 5 causes the wafer carrier 3 to make a circular motion that does not rotate in a plane parallel to the front and back surfaces thereof, and is held in the holding hole 3 a and held between the upper surface plate 1 and the lower surface plate 2. Is swiveled. That is, the carrier drive mechanism 5 is connected to the annular carrier holder 12 attached to the outer periphery of the wafer carrier 3, four eccentric members 13 rotatably connected to the carrier holder 12, and these eccentric members 13. And an eccentric member synchronizing mechanism 14 for synchronously moving these in a circular motion.
[0028]
The eccentric member 13 has a columnar shape, and a rotary shaft portion 13a protrudes from the lower surface, and an eccentric shaft portion 13b protrudes from the upper surface at a position eccentric from the rotation shaft of the rotary shaft portion 13a. Further, the eccentric member 13 is supported by allowing the rotary shaft portion 13a to rotate through a support hole 14a provided in the base 14 of the apparatus.
The carrier holder 12 is provided with four through holes 12a spaced on the circumference at equal intervals from each other, and eccentric shaft portions 13b are rotatably inserted into the through holes 12a, respectively.
[0029]
The eccentric member synchronization mechanism 14 includes a timing chain 15 wound around the rotation shaft portion 13a of each eccentric member 13, and a drive motor 17 connected to the rotation shaft portion 13a of one eccentric member 13 by a motor side gear 16. It has. That is, the motor-side gear 16 provided on the output shaft of the drive motor 17 is engaged with the shaft-side gear 18 provided at the lower end of the rotating shaft portion 13a, and when the drive motor 17 is driven, the motor-side gear 16 is driven. One eccentric member 13 rotates via the shaft side gear 18 and the other eccentric member 13 rotates simultaneously and synchronously via the timing chain 15.
[0030]
At this time, each eccentric member 13 rotates around the rotation shaft portion 13a, but the eccentric shaft portion 13b turns around the rotation shaft of the rotation shaft portion 13a. That is, the carrier holder 12 and the wafer carrier 3 supported by the eccentric shaft portion 13b perform a circular motion that does not rotate by the turning of the eccentric shaft portion 13b. Accordingly, the silicon wafer W held on the wafer carrier 3 also turns. In addition, the wafer carrier 3 moves so that the periphery of the silicon wafer W temporarily moves outward from the upper surface plate 1 and the lower surface plate 2, so-called overhang.
[0031]
Next, the silicon wafer polishing method (semiconductor wafer manufacturing method) according to the present embodiment will be described with reference to FIG.
[0032]
[Surface oxide film removal process] (Surface film removal process)
First, as shown in FIG. 4A, oxide films (thin film: SiO2) on the front and back surfaces of the silicon wafer W generated during cleaning before polishing (for example, ozone cleaning) or during conveyance.2) Of OX, as shown in FIG. 4B, only the oxide film OX on the surface S is removed in advance with a hydrofluoric acid-based etching solution (for example, hydrofluoric acid (HF)). Since the oxide film OX on the surface S is an extremely thin oxide film, it can be easily removed with a hydrofluoric acid-based etching solution.
When SC1 cleaning is performed before polishing, the oxide film formed during the cleaning is also included in the front and back oxide films OX, and only the oxide film on the front surface S side is removed in this step. These oxide films are extremely thin with a thickness of 0.5 nm to less than 10 nm.
[0033]
[Surface polishing process]
Next, the silicon wafer W is set in the holding hole 3a of the wafer carrier 3, the wafer carrier 3 is attached to a polishing apparatus, and the surface S is polished as shown in FIG. That is, the upper surface plate 1 and the lower surface plate 2 are rotated by the surface plate driving mechanism 4 and the wafer carrier 3 is circularly moved by the carrier driving mechanism 5 so as not to rotate. At the same time, the first supply mechanism 8 of the polishing liquid supply mechanism 7 supplies the polishing liquid of the alkaline solution to the polishing surface.
[0034]
At this time, only the oxide film OX on the front surface S of the oxide film OX on the front and back surfaces of the silicon wafer W is removed, and only the oxide film OX on the back surface R side is left as a protective film.2The polishing solution of an alkaline solution with a large polishing selectivity ratio selectively polishes the surface S of the silicon wafer W, so that the polishing rate on the back surface R side is low and the oxide film OX remains and the polishing hardly progresses. On the surface S side, the polishing rate is high and good polishing is performed, so that the single-side polishing state is substantially achieved.
[0035]
Moreover, since the polishing liquid is an alkaline solution having an abrasive concentration of 0 wt% or more and 1 wt% or less, there is almost no mechanical polishing action by the abrasive grains, and polishing is performed only by the chemical polishing action by the alkaline solution. Oxide film OX on the back surface R, that is, SiO2It is possible to satisfactorily polish only the silicon on the surface S.
[0036]
[Back polishing process]
In addition, since the back surface R which is not polished is rough and has a low glossiness, particles may enter the irregularities of the back surface R and cause dust generation. For this reason, a certain degree of high glossiness may be required for the back surface R.
In such a case, after the polishing of the surface S is finished, as shown in FIG. That is, the second supply mechanism 9 supplies a polishing liquid (for example, an abrasive concentration of 5% by weight) having an abrasive grain (silica) concentration exceeding 1% by weight only to the polishing surface that is in contact with the back surface R of the silicon wafer W. Is polished until the desired glossiness is obtained.
[0037]
At this time, the polishing liquid for adjusting the glossiness has a higher abrasive grain concentration and a stronger mechanical action than the polishing liquid used for the front surface polishing. The oxide film OX is easily removed, and the back surface R is polished to increase the glossiness. For example, when the surface polishing is completed, the glossiness of the back surface R is about 70 to 90%. By polishing the back surface R by this back surface polishing process, the glossiness can be arbitrarily controlled to about 320%. Can do. In addition, since it is a short time polishing only for gloss control, there is almost no influence on the already polished surface S.
[0038]
As described above, in this embodiment, both the upper surface plate 1 and the lower surface plate 2 that are in contact with the front and back surfaces move relatively as in the double-side polishing apparatus, but only the surface S is polished, so that the same as in double-side polishing. It is possible to perform single-side polishing with an accuracy of. In addition, since an oxide film that naturally occurs during cleaning or natural standing, which is a process that is normally performed before the polishing process, is used, there is no need to introduce a special protective film forming process for backside protection, and the cost is low. Polishing can be performed.
[0039]
Next, a second embodiment according to the present invention will be described with reference to FIG.
[0040]
The difference between the second embodiment and the first embodiment is that, in the first embodiment, the polishing cloth 6 constituting the polishing surface of the upper surface plate 1 and the lower surface plate 2 is the same for both. In the polishing apparatus (semiconductor wafer manufacturing apparatus) of the second embodiment, the polishing surface of the lower surface plate 2, that is, the polishing surface in contact with the surface S of the silicon wafer W is the polishing surface of the upper surface plate 1, as shown in FIG. In other words, silicon and SiO 2 than the polished surface in contact with the back surface R of the silicon wafer W.2This is because the grooved polishing cloth 19 is a polishing cloth having a structure with a high polishing rate.
That is, a normal flat polishing cloth 6 having no grooves on the surface is bonded to the upper surface plate 1 of the present embodiment, and a grooved polishing cloth 19 having a plurality of grooves 19 a formed on the surface is attached to the lower surface plate 2. It is glued.
[0041]
Furthermore, in the first embodiment, only the oxide film OX on the surface S side is removed in the surface oxide film removing step, and only the surface S is polished in the surface polishing step, whereas in the second embodiment, the surface oxide film OX is polished. Using the same polishing liquid as that used in the front surface polishing step of the first embodiment without performing the oxide film removal step, polishing is performed with the above polishing apparatus while leaving the oxide film OX on both the front and back surfaces, thereby oxidizing only the surface S. It differs in that the film is removed and polished.
[0042]
Therefore, in the polishing apparatus of this embodiment, since the flat polishing cloth 6 is in contact with the back surface R, the oxide film OX on the back surface R is hardly polished, whereas the grooved polishing cloth 19 is in contact with the surface S. The oxide film OX is polished and removed faster than the back surface S side.
[0043]
Since the oxide film OX on the back surface R remains at the time of polishing, the polishing rate on the back surface R side is low and the polishing hardly proceeds, whereas the oxide film OX is removed on the front surface S side, so that the polishing rate is high and good polishing is performed. Is performed, and is substantially in a single-side polished state. Thus, in this embodiment, since the surface oxide film removal process is unnecessary, the manufacturing cost can be further reduced.
[0044]
As another example of the present embodiment, the polishing surface in contact with the surface S of the silicon wafer W may be made of a polishing cloth made of a material having a higher polishing rate than the polishing surface in contact with the back surface R. That is, instead of the grooved polishing cloth 19 as a polishing cloth, a fixed abrasive polishing cloth containing abrasive grains in advance may be bonded to the lower surface plate 2. In this case, since only the polishing surface in contact with the surface S side is composed of the fixed abrasive polishing cloth, only the oxide film OX on the surface S side is removed by the mechanical action of the abrasive grains in the fixed abrasive polishing cloth. Thus, the surface S can be polished.
In the fixed abrasive polishing cloth, since the abrasive grains are included in the fixed state in the polishing cloth, the abrasive grains turn to the back surface R side to polish the oxide film OX on the back surface R like the free abrasive particles. Can be prevented.
[0045]
【Example】
Next, the above embodiment according to the present invention will be specifically described by way of examples.
FIG. 6 shows data when the polishing is performed according to the first embodiment. 6A shows a conventional single-side polishing method, FIG. 6B shows a conventional double-side polishing method, and FIG. 6C shows an example of the above embodiment. The histogram which showed the frequency with respect to (Ideal Reference) is shown. The polishing liquid used is a mixed solution of piperazine, aminoethylaminoethanol and KOH.
As can be seen from this polishing result, the flatness similar to that of double-side polishing could be obtained despite single-side polishing.
[0046]
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in each of the above embodiments, the surface plates are arranged up and down, but the present invention may be applied to a vertical polishing apparatus in which the surface plates are arranged on both the left and right sides of the silicon wafer in a standing state.
In each of the above embodiments, the thin film formed on the front and back surfaces of the silicon wafer before polishing is an oxide film (SiO 22However, it may be another thin film formed during natural standing before cleaning or during cleaning. For example, an organic film generated during cleaning using an organic chemical before polishing may be used. In this case, a polishing liquid having a sufficiently higher polishing rate is used for silicon than for the organic film.
[0047]
In each of the above embodiments, the present invention is applied to a rocking carrier type polishing apparatus, but may be applied to other types of polishing apparatuses. For example, the present invention may be applied to the above-described sun gear type polishing apparatus.
Further, in each of the above embodiments, the semiconductor wafer is applied to a silicon wafer. However, the present invention may be applied to a method of manufacturing another semiconductor wafer, for example, a compound semiconductor wafer (gallium / arsenic wafer, etc.).
[0048]
【The invention's effect】
According to the method for producing a conductor wafer of the present invention, in the surface film removal step, only the thin film on the front side of the thin film on the front and back surfaces of the semiconductor wafer generated during natural standing or cleaning before the polishing step is removed, In the surface polishing step, the polishing liquid is supplied at a polishing rate higher than the polishing rate for the thin film to selectively chemically polish the surface side of the semiconductor wafer. The single-side polishing can be performed substantially only on the surface side.
[0049]
According to the semiconductor wafer manufacturing apparatus of the present invention, the polishing rate for the semiconductor wafer material is higher than the polishing rate for the thin film on the surface of the semiconductor wafer generated during the natural standing before the polishing or during the cleaning by the polishing liquid supply mechanism. The polishing surface that supplies the polishing liquid and is in contact with the surface of the semiconductor wafer is composed of a polishing cloth having a structure or material that has a higher polishing rate of the semiconductor wafer than the polishing surface that contacts the back surface of the semiconductor wafer. With the thin film on the side being polished and removed faster than the back side, and the back side is protected by the thin film, the single side polishing of only the front side can be performed by the polishing selectivity of the polishing liquid.
[0050]
That is, in the semiconductor wafer manufacturing method and manufacturing apparatus of the present invention, both the surface plates that contact the front and back surfaces move relatively as in the double-side polishing apparatus, so that single-side polishing is performed with the same accuracy as double-side polishing. Can do.
In addition, since a thin film such as an oxide film that naturally occurs during natural standing or cleaning, which is a process normally performed before the polishing process, is used, there is no need to introduce a special protective film forming process for protecting the back surface. , Ultra high flatness that is low cost, high quality, and high integration can be achieved by preventing the increase of manufacturing cost by adding protective film formation and film removal process, lowering of throughput and contamination and particle generation in thermal process Degree wafers can be obtained.
Furthermore, since the polishing liquid to be used does not contain or is very small, it is possible to suppress fine processing damage due to the abrasive grains and to reduce the cost of the polishing liquid.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a main part showing a polishing apparatus in a first embodiment according to the present invention.
FIG. 2 is a plan view showing a positional relationship between a surface plate and a wafer carrier of the polishing apparatus according to the first embodiment of the present invention.
FIG. 3 is a schematic enlarged sectional view showing the polishing apparatus according to the first embodiment of the present invention.
FIG. 4 is a schematic enlarged cross-sectional view showing a silicon wafer in each step of the polishing method according to the first embodiment of the present invention.
FIG. 5 is a schematic enlarged sectional view showing a polishing apparatus according to a second embodiment of the present invention.
FIG. 6 is a graph showing each flatness (frequency with respect to GBIR) after polishing in a conventional single-side polishing method, a conventional double-side polishing method, and a polishing method in an embodiment according to the present invention.
[Explanation of symbols]
1 Upper surface plate
2 Lower surface plate
3 Wafer carrier
5 Carrier drive mechanism
6 Abrasive cloth
7 Polishing fluid supply mechanism
8 First supply mechanism
9 Second supply mechanism (separate polishing liquid supply mechanism)
19 Abrasive cloth with grooves
OX oxide film
S Silicon wafer surface
R Back side of silicon wafer
W Silicon wafer (semiconductor wafer)

Claims (8)

シリコンウェーハを表裏面側から挟む研磨面を有した一対の定盤とシリコンウェーハとを相対的に移動させると共に研磨面に研磨液を供給してシリコンウェーハを研磨する研磨工程を有した半導体ウェーハの製造方法であって、
前記研磨工程前の自然放置中又は洗浄中に生じた前記シリコンウェーハの表裏面の酸化膜のうち表面側の酸化膜のみをフッ酸系エッチング液で除去する表面膜除去工程と、
前記表面膜除去工程後に、前記シリコンウェーハの材料に対する研磨速度が前記薄膜に対する研磨速度よりも高い前記研磨液として砥粒濃度が0重量%以上1重量%以下のアルカリ性溶液を供給してシリコンウェーハの表面側を選択的に化学的研磨する表面研磨工程と
前記表面研磨完了後に引き続いて、砥粒濃度が1重量%を越える研磨液を供給して前記シリコンウェーハの表面と同時に裏面を研磨する表裏面研磨工程とを備えていることを特徴とする半導体ウェーハの製造方法。
A semiconductor wafer having a polishing process in which a pair of surface plates having a polishing surface sandwiching a silicon wafer from the front and back sides and the silicon wafer are relatively moved and a polishing liquid is supplied to the polishing surface to polish the silicon wafer. A manufacturing method comprising:
A surface film removing step of removing only the oxide film on the front side of the oxide film on the front and back surfaces of the silicon wafer generated during natural standing or cleaning before the polishing step with a hydrofluoric acid-based etching solution ;
After the surface layer removing process, abrasive concentration of the silicon wafer by supplying a 0 wt% or more than 1% by weight of the alkaline solution as the polishing liquid is higher than the polishing rate polishing rate of the material of the silicon wafer for the thin film A surface polishing step for selectively chemically polishing the surface side ;
A semiconductor wafer comprising a front and back surface polishing step for polishing a back surface simultaneously with the surface of the silicon wafer by supplying a polishing liquid having an abrasive concentration exceeding 1% by weight after completion of the surface polishing. Manufacturing method.
請求項1に記載の半導体ウェーハの製造方法において、
前記酸化膜の厚みが0.5〜10nmとされることを特徴とする半導体ウェーハの製造方法。
In the manufacturing method of the semiconductor wafer according to claim 1,
A method of manufacturing a semiconductor wafer, wherein the oxide film has a thickness of 0.5 to 10 nm .
請求項1または2に記載の半導体ウェーハの製造方法において、
前記アルカリ性溶液における砥粒濃度が0%とされることを特徴とする半導体ウェーハの製造方法。
In the manufacturing method of the semiconductor wafer of Claim 1 or 2,
A method for producing a semiconductor wafer, wherein the abrasive concentration in the alkaline solution is 0% .
請求項1から3のいずれかに記載の半導体ウェーハの製造方法において、
前記表面研磨工程において、前記シリコンウェーハの表面の研磨速度が、前記シリコンウェーハの裏面の研磨速度より高くなるように設定されていることを特徴とする半導体ウェーハの製造方法。
In the manufacturing method of the semiconductor wafer in any one of Claim 1 to 3,
The method of manufacturing a semiconductor wafer, wherein, in the surface polishing step, the polishing rate of the surface of the silicon wafer is set to be higher than the polishing rate of the back surface of the silicon wafer .
シリコンウェーハを表裏面側から挟む研磨面を有した一対の定盤とシリコンウェーハとを相対的に移動させると共に研磨面に研磨液を供給してシリコンウェーハを研磨する半導体ウェーハの製造装置であって、
前記シリコンウェーハの材料に対する研磨速度が前記研磨前の自然放置中又は洗浄中に生じたシリコンウェーハ表面の酸化膜に対する研磨速度よりも高い前記研磨液として砥粒濃度が0重量%以上1重量%以下のアルカリ性溶液を供給する研磨液供給機構を備え、
前記シリコンウェーハの表面に接する研磨面が、前記シリコンウェーハの裏面に接する研磨面よりもシリコンウェーハの研磨速度が高い構造又は材質の研磨布で構成され
前記研磨液供給機構は、前記研磨液よりも砥粒濃度が高い別の研磨液を供給する別研磨液供給機構を備えていることを特徴とする半導体ウェーハの製造装置。
A semiconductor wafer manufacturing apparatus for polishing a silicon wafer by relatively moving a pair of surface plates having a polishing surface sandwiching a silicon wafer from the front and back sides and the silicon wafer and supplying a polishing liquid to the polishing surface. ,
Abrasive concentration is less than 1 wt% 0 wt% or more as the polishing liquid is higher than the polishing rate of oxide film polishing rate of the silicon wafer surface generated during natural standing or during cleaning before the polishing of the material of the silicon wafer A polishing liquid supply mechanism for supplying an alkaline solution of
Polished surface in contact with the surface of the silicon wafer, the polishing rate of the silicon wafer than the polishing surface in contact with the backside of the silicon wafer is constituted by the polishing cloth high structural or material,
The apparatus for manufacturing a semiconductor wafer, wherein the polishing liquid supply mechanism includes another polishing liquid supply mechanism for supplying another polishing liquid having a higher abrasive grain concentration than the polishing liquid .
請求項5に記載の半導体ウェーハの製造装置において、
前記半導体ウェーハの表裏面に接する研磨面のうち、表面に接する研磨面のみが砥粒を含む固定砥粒研磨布で構成されていることを特徴とする半導体ウェーハの製造装置。
In the manufacturing apparatus of the semiconductor wafer of Claim 5,
Of the polishing surfaces in contact with the front and back surfaces of the semiconductor wafer, only the polishing surface in contact with the front surface is composed of a fixed abrasive polishing cloth containing abrasive grains.
請求項5又は6に記載の半導体ウェーハの製造装置において、
前記半導体ウェーハの表面に接する研磨面は、複数の溝が表面に形成された研磨布で構成され、
前記半導体ウェーハの裏面に接する研磨面は、平坦な表面の研磨布で構成されていることを特徴とする半導体ウェーハの製造装置。
In the semiconductor wafer manufacturing apparatus according to claim 5 or 6,
The polishing surface in contact with the surface of the semiconductor wafer is composed of a polishing cloth having a plurality of grooves formed on the surface,
An apparatus for manufacturing a semiconductor wafer, wherein a polishing surface in contact with the back surface of the semiconductor wafer is made of a polishing cloth having a flat surface.
請求項5から7のいずれかに記載の半導体ウェーハの製造装置において、
前記別研磨液供給機構が供給する別の研磨液が砥粒濃度が0重量%以上1重量%以下のアルカリ性溶液とされることを特徴とする。
In the semiconductor wafer manufacturing apparatus according to any one of claims 5 to 7,
Another polishing liquid supplied by the separate polishing liquid supply mechanism is an alkaline solution having an abrasive concentration of 0 wt% or more and 1 wt% or less .
JP2000197037A 2000-06-29 2000-06-29 Semiconductor wafer manufacturing method and manufacturing apparatus Expired - Fee Related JP3775176B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000197037A JP3775176B2 (en) 2000-06-29 2000-06-29 Semiconductor wafer manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000197037A JP3775176B2 (en) 2000-06-29 2000-06-29 Semiconductor wafer manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JP2002016025A JP2002016025A (en) 2002-01-18
JP3775176B2 true JP3775176B2 (en) 2006-05-17

Family

ID=18695425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000197037A Expired - Fee Related JP3775176B2 (en) 2000-06-29 2000-06-29 Semiconductor wafer manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JP3775176B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106466808A (en) * 2016-09-23 2017-03-01 江苏吉星新材料有限公司 A kind of thinning processing method of twin grinding pad sapphire window piece

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2003071592A1 (en) * 2002-02-20 2005-06-16 株式会社荏原製作所 Polishing method and apparatus
US20090317974A1 (en) 2006-03-15 2009-12-24 Dupont Airproducts Nanomaterials Limited Liability Company Polishing composition for silicon wafer, polishing composition kit for silicon wafer and method of polishing silicon wafer
JP5024305B2 (en) * 2009-02-04 2012-09-12 住友電気工業株式会社 Polishing method of GaN substrate
DE102009030297B3 (en) * 2009-06-24 2011-01-20 Siltronic Ag Method for polishing a semiconductor wafer
JP5703133B2 (en) * 2011-05-31 2015-04-15 京セラクリスタルデバイス株式会社 Wafer polishing method and nanobubble circulation polishing apparatus
JP2016215342A (en) * 2015-05-22 2016-12-22 信越半導体株式会社 Wafer collection method and double side polishing device
JP2017098350A (en) * 2015-11-20 2017-06-01 株式会社ディスコ Wafer manufacturing method
JP2018037671A (en) * 2017-10-18 2018-03-08 株式会社Sumco Method for polishing silicon wafer
CN113471067B (en) * 2021-07-28 2022-11-29 上海申和投资有限公司 Waste wafer surface film stripping regeneration treatment process and device thereof
CN115415914B (en) * 2022-08-26 2023-09-15 江苏东水智慧节水灌溉科技有限公司 Polishing equipment for reel type sprinkling irrigation accessories
JP7464088B2 (en) 2022-08-31 2024-04-09 株式会社Sumco Double-sided polishing method for semiconductor wafers, manufacturing method for polished wafers, and double-sided polishing apparatus for semiconductor wafers

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106466808A (en) * 2016-09-23 2017-03-01 江苏吉星新材料有限公司 A kind of thinning processing method of twin grinding pad sapphire window piece

Also Published As

Publication number Publication date
JP2002016025A (en) 2002-01-18

Similar Documents

Publication Publication Date Title
JP6312976B2 (en) Manufacturing method of semiconductor wafer
US7951718B2 (en) Edge removal of silicon-on-insulator transfer wafer
JP3620554B2 (en) Semiconductor wafer manufacturing method
JP4835069B2 (en) Silicon wafer manufacturing method
US6352927B2 (en) Semiconductor wafer and method for fabrication thereof
WO2015122072A1 (en) Method for manufacturing semiconductor wafer
JP3775176B2 (en) Semiconductor wafer manufacturing method and manufacturing apparatus
JP6027346B2 (en) Manufacturing method of semiconductor wafer
KR20190057394A (en) Polishing method of silicon wafer and method of manufacturing silicon wafer
JP2007067179A (en) Mirror-finished surface polishing method and system for semiconductor wafer
WO2005070619A1 (en) Method of grinding wafer and wafer
JP2003109931A (en) Cleaning drying method of semiconductor wafer
JP2004356336A (en) Double-sided polishing method of semiconductor wafer
JP2003142434A (en) Method of manufacturing mirror-surface wafer
JP3528501B2 (en) Semiconductor manufacturing method
JP3552908B2 (en) Wafer polishing method
JP4154683B2 (en) Manufacturing method of high flatness back surface satin wafer and surface grinding back surface lapping apparatus used in the manufacturing method
JP6941420B2 (en) Wafer surface treatment equipment
JP2004319717A (en) Method of manufacturing semiconductor wafer
JP2003133273A (en) Raw material wafer for polishing and method of manufacturing the same
JPH10308368A (en) Manufacture of semiconductor wafer
JP3435165B2 (en) Polishing method and polishing apparatus
JP2006179593A (en) Method of cleaning and drying semiconductor wafer
JP2003133264A (en) Manufacturing method of mirror face wafer
JP2004255541A (en) Semiconductor wafer manufacturing method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050728

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060213

R150 Certificate of patent or registration of utility model

Ref document number: 3775176

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100303

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110303

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120303

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130303

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140303

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees