JP3771417B2 - Fine particle measurement method and apparatus - Google Patents

Fine particle measurement method and apparatus Download PDF

Info

Publication number
JP3771417B2
JP3771417B2 JP2000077516A JP2000077516A JP3771417B2 JP 3771417 B2 JP3771417 B2 JP 3771417B2 JP 2000077516 A JP2000077516 A JP 2000077516A JP 2000077516 A JP2000077516 A JP 2000077516A JP 3771417 B2 JP3771417 B2 JP 3771417B2
Authority
JP
Japan
Prior art keywords
light
particles
fluid
measured
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000077516A
Other languages
Japanese (ja)
Other versions
JP2001264232A (en
Inventor
勲 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2000077516A priority Critical patent/JP3771417B2/en
Publication of JP2001264232A publication Critical patent/JP2001264232A/en
Application granted granted Critical
Publication of JP3771417B2 publication Critical patent/JP3771417B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は大容量の流体(媒質)中に混在する、サイズが数ミクロン(μm)からサブミクロン(μm)あるいはサイズが数十ナノメートル(nm)以下の微量の微粒子の検出に好適な微粒子測定方法およびその装置に関するものであり、特に可干渉多波長光が混合された通常に射出される細いレーザ光束を、またはレーザスポット径が数100μm以下の微細で光強度の強い光束を、平行走査して広いレーザ光照射領域をつくり、粒子による光散乱の検出部とあわせて広い測定視界を形成し、これを利用して微粒子の複数の形状や寸法の識別、組成毎の粒子サイズ、さらには各形状・寸法粒子ごとの存在位置の計測を、同時に瞬時に行うことができる微粒子測定方法およびその装置に関するものである。
【0002】
【従来の技術】
従来より、微細粒子などの形状、サイズ等を観察する手法として顕微鏡観察が良く知られている。例えば、数リットルの水道中に数個混在するサイズが数μmのクリプトスポリジウム原虫などを検出するために、従来は多量の水道水をフィルタで濾して異物を捕らえ、これらの異物に着色して顕微鏡観察しながら原虫を検出していた。しかし、顕微鏡などを用いて人間の眼で粒子の形状・サイズを検出する方法は長時間識別が困難であり、ひとの習熟度によっては客観的識別が困難であり、測定に膨大な時間と労力を要した。
【0003】
また、光散乱等の粒子径測定法で原虫や生体細胞を検出しようとする場合には、通常、M1E散乱粒子カウント法で(数百μm)3 程度の微細な測定体積中に入る細胞粒子などの散乱光強度から粒子径を推定しているが、このような通常の光散乱法では粒子の形状の識別ができない。
【0004】
さらに、本発明者らが開発してきた粒子の形状識別法である多重マッチトフィルタ法では測定視界が小さく、空間で三次元的に広く分布する微細な被測定粒子をその測定視界に導くために測定器自体を動かすか、粒子を微細な測定視界に吸引せねばならず測定に多くの時間が必要である。
【0005】
また極微細粒子の組成別サイズ測定法である2光束光熱偏向分光法ではレーザ光をレンズで絞って測定視界としているため、その微細な測定視界中の粒子しか測定できず、更に粒子サイズ識別のための偏向位置検出をフーリエ変換面で行えば簡便に偏向位置が測定されるということがわからず、プローブ光偏向位置測定に光検出の適切な方法が無く、複雑な光電測定システムを用いなければならず粒子サイズ測定が困難であるという欠点があった。
【0006】
このようなことから、生体細胞などの微粒子の組成別サイズや形状を従来の方法で測定するためには小さな視野で微弱な光散乱強度の検出や、粒子画像処理法が行われなければならず、大容量媒体中に存在する微量の微粒子の形状、サイズ、組成の1項目ごとの測定にも膨大な測定時間と労力を要し、実際上では組成ごとの粒子のサイズや形状の大視野識別はほとんど不可能であった。
【0007】
一方、近年においてnmオーダの生体細胞や薬剤粒子などの組成別粒子サイズの測定は極微小視界での測定法の開発研究が始まったばかりである。特に、水道水の源流中にクリプトスポリジウム原虫などが存在するか否かを大量の水の中から迅速に検出する技術、大気中に懸濁する杉花粉などの粒子を大量の空気中から非接触で迅速に測定する技術、掃除機で吸引した空気中に入ったアレルゲン粒子としての家ダニの非接触迅速自動測定技術など、大量の媒質中に存在する数μm程度以上の形状・サイズ別粒子群の非接触迅速測定は,従来の技術では解決が不可能であり、社会的に緊急にその技術の開発が望まれている。また、高度医療技術として薬剤や遺伝子を細胞のレセプタに運ぶ数nmから数百nmのリポゾームの測定や,抗体や薬剤の細胞レセプタとの相互作用の観測などを可能にする技術開発が医学、薬学、生物学などで学術的にも社会的にも緊急に必要とされている。
【0008】
【発明が解決しようとする課題】
本発明は上記のような緊急な医学的・社会的な問題を解決するためになされたものであり、その特徴は可干渉多波長光が混合された通常に射出される細いレーザ光束を、またはレーザスポット径が数100μm以下の微細で光強度の強い光束を、平行走査して広いレーザ光照射領域をつくり、粒子による光散乱の検出部とあわせて広い測定視界を形成し、測定視野中の微粒子の光散乱や光回折パターンから粒子の複数の形状や寸法の識別を、また光熱偏向分光から組成ごとの粒子サイズおよび各形状・寸法粒子ごとの存在位置の計測を、同時に瞬時に行うものである。
【0009】
粒子形状と粒子径寸法の同時識別は粒子による光回折パターンの形状と拡がりから識別することができる。粒子群の形状・サイズの識別は具体的には一枚のホログラムである多重マッチトフィルタを用いた多重マッチトフィルタ法で行われる。多重マッチトフィルタは識別したい粒子群の形状・サイズを持つ複数の参照粒子群からの光回折パターンを一枚のホログラムに搭載したものである。従来の多重マッチトフィルタ法では通常のあるいは拡大した1本のレーザの平行光束中の凸レンズの前焦点面に入った粒子が識別されるが、その測定視野は必ずしも広くない。本発明では被測定粒子がレンズの前焦点面に限らず測定容器内の焦点面を外れた何処にあっても平行走査の照射レーザ光中にあれば、粒子形状・粒子サイズが測定できる。その理由は粒子からの光回折パターンはフーリエ変換レンズの後焦点面では同一形状・同一サイズの粒子が何処にあっても全く同じ形状・同じ拡がりをするからフーリエ変換レンズの後焦点面に多重マッチトフィルタを設置すれば、マッチトフィルタの後に設置した像形成レンズの後焦点面の点対称の位置に識別自己相関光が出現することを利用すればよい。なお、被測定粒子が測定容器内の焦点面の前または後にあれば、自己相関光の出現位置(焦点位置)はFa3の前または後となる。
【0010】
また、粒子組成ごとの粒子サイズおよび各形状・寸法粒子ごとの存在位置の計測は、光強度は弱いが光強度の時間的変動がなく一定の強さであるプローブ光と強くて粒子に共鳴吸収され易いポンプ光を光軸を合わせて照射すればポンプ光は粒子に共鳴吸収されて粒子は熱せられ、同軸で粒子に照射されていたプローブ光が熱による屈折率変化で粒子サイズに応じて曲げられる。この光熱偏向分光法を用いることで、粒子からの光熱偏向を凸レンズの後焦点面でその拡がりを自動的に検出するか、または光強度変換して、偏向角から粒子径サイズ、存在位置の自動測定を可能にする。
【0011】
本発明は上述の二つの方法を同時に三次元的に大視野で行う手段を提供するものである。即ち、コヒーレントなポンプ光とプローブ光の可干渉多波長光(少なくとも2波長レーザ光)を同軸で混合し平行走査して意図的に大視野を作り被識別粒子に照射するという大視野測定法を行う。レーザ光を平行照射する理由は光束の扇型走査等を行うと、光束走査領域が重なったり走査しない領域ができたり、また扇型走査は空間での光線の時間的存在密度が異なり、同種同一径粒子であっても散乱光の単位時間当たりの強度が空間によって異なり、それらによって正確な粒子測定が困難になるためである。さらに平行走査する理由は受光光学系の構成を容易にするためである。
【0012】
なお、照射レーザ光は走査光の代わりにシート状平行光などの強い拡大平行光束を用いてもよい。さらに発明は、大視野中での粒子群を同時に識別するために、形状・サイズは広い測定視野中での粒子による光散乱や光回折パターンをまた組成別粒子サイズはポンプ光の組み合わせによる広い視野を有する独自の受光光学系により1点に集めて、それを1枚の多重マッチトフィルタまたは位置傾斜光強度フィルタで識別しCCDアレイセンサで同時実時間で判別する。
【0013】
粒子形状の識別を主眼とするときには、被識別粒子は剪断流路を流れて姿勢制御する方法をとってもよい。即ち、透明ガラス流路の上下幅を狭く上下を平行平面ガラスで構成して水平に広い流路をつくり下から流れに対して垂直に一次元走査されるレーザ光(または拡大平行レーザ光束)を照射して流れる媒質中に存在する微粒子が必ず走査レーザ光束を横切るようにする。流路は平行平面ガラスで流れる媒質に剪断力をかけ媒質中の流路の姿勢制御を行うようになっている。走査レーザ光束中を姿勢制御された粒子が通過する時ポンプ光に光回折パターンが現れる。そのポンプ光の光回折パターンを流路中心を前焦点として設置された開口の大きな凸レンズで構成されるフーリエ変換光学系で受ければ、凸レンズの後焦点面にそれぞれの流路からのポンプ光の光回折パターンが凸レンズの光軸中心を中心として重なって現れる。これを1枚の多重マッチトフィルタで識別すれば粒子群のサイズや形状が実時間で自己相関光の輝点としてそれぞれの粒子形状識別領域に粒子存在位置と点対称に現れる。これらの相関光群をイメージインテンシファイア付き高速度CCDカメラで撮りこみディスプレイ上に表示すればそれぞれの形状・サイズ毎の粒子の存在位置がin−siteに測定される。なお、高速度CCDカメラからの信号をデジタル処理して各形状・サイズの粒子がどこに存在するかをコンピュータ画面上に表示することもできる。なお、フーリエ変換光学系の前に短焦点のレンズアレイまたは短焦点の凸レンズと比較的焦点の長い凸レンズを組み合わせたリレーレンズ系を置いてもよい。
【0014】
被測定粒子がnmオーダで非常に小さいときには、光回折パターンを識別に使えないから、粒子の組成別サイズ識別に多光束光熱偏向分光法を用いる。粒子の測定容器は比較的広くて深い透明ガラス製であってもよい。可干渉性の多波長同軸レーザ光を容器中に平行走査し、走査光を前方光散乱測定光学システムと同じ光学系で観測する。走査平行光束中に微粒子が入ったときポンプ光は共鳴吸収され光熱効果によりプローブ光は偏向を受ける。プローブ光のその偏向を凸レンズで構成するフーリエ変換光学系で集光し、凸レンズの後焦点面に設置された位置傾斜光強度フィルタを通してさらに凸レンズで集光すれば最後尾凸レンズの後焦点面に粒子のサイズに比例した光度で粒子位置と点対称の位置に識別信号光の光点が現れる。なお、粒子サイズ識別には、粒子の大きさに対応して光軸の外側に偏向するプローブ光を、光軸より外側に行くに従って光透過度が高くなるように設定された位置傾斜光強度フィルタを信号光のフーリエ変換面に設置する。それは、粒子が測定視界のどこにあっても同サイズの粒子からの偏向光はフーリエ変換面では必ず同じ位置を通るという理由による。位置傾斜光強度フィルタを通った偏向光はさらにフーリエ変換面を前焦点とする凸レンズで集光されてレンズの後焦点面に被測定粒子があった位置と点対称の位置に粒子像がサイズに比例した光強度で現れる。このようにして本発明は、組成毎の粒子のサイズと位置を同時に識別することができるという独創的なシステムを構築している。
【0015】
【課題を解決するための手段】
このため、本発明が採用した課題解決手段は、
可干渉多波長光が混合されたレーザ光束を、平行走査して広いレーザ光照射領域をつくり、そのレーザ光照射領域内に被検査流体を流し、その流体の測定視野中の粒子の光散乱や光回折パターンから粒子の複数の形状や寸法の識別を、また、光熱偏向分光から組成別粒子のサイズと存在位置の計測を同時に行うことを特徴とする微粒子測定方法である。
また、前記レーザ光束はレーザスポット径が数100μm以下の微細で光強度の強いレーザ光束であることを特徴とする微粒子測定方法である。
また、前記粒子の光散乱や回折パターンは多重マッチトフィルタによって計測することを特徴とする微粒子測定方法である。
また、前記粒子の光熱偏向分光は位置傾斜強度フィルタによって計測することを特徴とする微粒子測定方法である。
また、コヒーレントなポンプ光とプローブ光のレーザ光を同軸で混合して光レール上に射出されるレーザ光束と、このレーザ光束を平行走査する走査手段と、前記走査手段の後方に配置される被測定流体と、被測定流体を透過した光束を吸収する遮光板と、前記被測定流体の粒子の光熱偏向分光から粒子の組成別粒子のサイズと存在位置の計測を行う位置傾斜強度フィルタとを備えてなることを特徴とする微粒子測定装置である。
また、コヒーレントなポンプ光とプローブ光のレーザ光を同軸で混合して光レール上に射出されるレーザ光束と、このレーザ光束を平行走査する走査手段と、前記走査手段の後方に配置される被測定流体と、被測定流体を透過した光束を吸収する遮光板と、前記被測定流体の粒子からの光散乱や光回折パターンと被測定流体中の粒子の光熱偏向分光とを分離するハーフミラーと、被測定流体中の粒子の光散乱や光回折パターンから粒子の複数の形状や寸法を識別する多重マッチトフィルタと、被測定流体中の粒子の光熱偏向分光から粒子サイズと存在位置の計測を行う位置傾斜強度フィルタとを備えてなることを特徴とする微粒子測定装置である。
また、コヒーレントなポンプ光とプローブ光のレーザ光を同軸で混合して光レール上に射出されるレーザ光束と、このレーザ光束を平行走査する走査手段と、前記走査手段の後方に配置される被測定流体と、被測定流体を透過した光束を吸収する遮光板と、前記被測定流体の粒子からの光散乱や光回折パターンと被測定流体中の粒子の光熱偏向分光とを分離するハーフミラーと、被測定流体中の粒子の光散乱や光回折パターンから粒子の複数の形状や寸法を識別する多重マッチトフィルタと、被測定流体中の粒子の光熱偏向分光から粒子サイズと存在位置の計測を行う位置傾斜強度フィルタと、前記多重マッチトフィルタ上に前焦点がある凸レンズと、前記傾斜光強度フィルタ上に前焦点のある凸レンズと、前記多重マッチトフィルタ上に前焦点がある凸レンズに隣接して前側に配置した変形回折格子フィルタと、前記傾斜光強度フィルタ上に前焦点のある凸レンズに隣接して前側に配置した変形回折格子フィルタとを備え、さらに各凸レンズの後焦点面に撮像装置を設けたことを特徴とする微粒子測定装置である。
また、前記ハーフミラーは特定波長だけを透過または反射するダイクロイックミラーであることを特徴とする微粒子測定装置である。
また、前記走査手段はガルバノミラー、シリコンマイクロ光スキャナーまたはポリゴンミラーであることを特徴とする微粒子測定装置である。
【0016】
【発明の実施の形態】
以下図面を参照して本発明の実施形態について説明すると、図1は粒子の組成、形状、粒度、空間分布、挙動などの計測を行う第1実施形態に係る微粒子測定装置の光学系構成図である。
【0017】
図において、1は一本の光学レール、2は光学台上に載せられたポンプ光源、3は光学台上にのせられたプローブ光源3であり、ポンプ光源2およびプローブ光源3からは強いシングルモードのレーザ光が射出される。また光学レール上には光走査用ミラー(例えばガルバノミラー)5、凸レンズ6が、さらに、凸レンズ6の後方には被測定流体が流れる流路7、平行光束を吸収する遮光板8が配置される。遮光板8の後方にはプローブ光とポンプ光とを分離するハーフミラー9が配置されており、さらにハーフミラー9の透過光軸上には、流路7内に前焦点F1を持ち、後焦点がFa2である凸レンズ10が配置される。そして前記凸レンズ10の後焦点Fa2位置に、粒子の形状・サイズを識別する多重マッチトフィルタ12が配置され、さらにハーフミラー9の反射光軸上には凸レンズ11、粒子サイズに対応した偏向角に比例した光強度を抽出する傾斜光強度フィルタ13、凸レンズ15が配置される。なお、多重マッチトフィルタ12は光導電プラスチックホログラム(PPH)自動現像装置の感光面を凸レンズ10の後焦点面に置いて、参照光と流路中の被識別粒子測定位置に置いた参照形状粒子からでる光散乱や光回折パターンとで作成されるホログラムとすることができ、このときホログラム作成用の参照光はハーフミラー16、ミラー24、25、凸レンズ17、ミラー18、凸レンズ19、ミラー20等を用いて作成された拡大平行光として照射されるようにする。また、凸レンズ14、15の後焦点Fa3、Fb3 面を中心に出現する被識別信号光群はそれぞれCCDカメラ等で取り込まれ、データ処理・表示器上に測定結果が表示することができる。
【0018】
以上の構成からなる微粒子測定装置の作動を説明すると、光学台に載せられたそれぞれのレーザ2、3から射出される強いシングルモードのポンプ光とプローブ光はハーフミラー16やミラー21、22、23を用いて光軸を合わせて混合された1本のレーザ光線となり、焦点距離の比較的長い凸レンズ4を通ってガルバノミラー5に照射される。ガルバノミラー5で反射されたレーザ光線は凸レンズ6を通って、扇形に広がらず平行で被識別物体よりも大きく、凸レンズ4と凸レンズ6の焦点距離の比によって決定される直径を持った強い光束として一次元的に平行に走査される。
なお、凸レンズ4の後焦点面および凸レンズ6の前焦点はいずれも光走査ミラー5上にある。
【0019】
走査光束は鉛直に流れる(図面の紙面に対して垂直方向へ流れる)流路7の側面から流れに直交する断面で2次元的に照射される。即ち、流路7に流れ方向と垂直に走査される。流路7は平行平面ガラスで形作られており、流路7は、幅広くとってもよく、また、左右の幅を狭くしたせん断流路であってもよい。左右の幅を狭くするのは流体中に懸濁している粒子がせん断流中を流れて姿勢制御されるように作られるためである。なお走査光束は、流れに直交方向とある角度を持たせることもできる。この角度は流路中を流路方向に長い被識別物体が通過するとき、これによる光回折パターンの拡がりが流路と直交する方向に伸びるから、光回折パターンが後述する遮光板8に妨げられないような配慮による。走査される一次元平行光束は流路7のガラス側壁を通り反対側面ガラス壁を通り抜けて遮光板8で吸収される。
【0020】
平行平板ガラスで形作られた流路を流れる粒子が走査平行光束中に入ると、粒子によって光回折パターンまたは光熱偏向光が生ずる。
即ちサブミクロン以上のサイズの粒子からは光回折パターンが観測され、サブミクロン以下の極微細粒子ではポンプ光が粒子の共鳴吸収光である場合にはプローブ光が光熱偏向を受ける。その光回折パターンまたは光熱偏向光はハーフミラー9を通り、流路を横切る走査光の流路中心部を前焦点として設置された凸レンズ10または凸レンズ11あるいはその両方によって集光される。
【0021】
具体的にはハーフミラー9を特定波長だけ反射するダイクロイックミラーとして構成し、これによって粒子からの散乱光または光熱偏向分光光のうち、プローブ光分を反射させ、ポンプ光分を透過させてそれぞれの波長光を凸レンズ10または凸レンズ11によってポンプ光の回折光とプローブ光の偏向光または回折光とをそれぞれレンズの後焦点面Fa2、Fb2に投射する。組成が同じで形状とサイズが同じ粒子は図2に示すように測定視野中のどこにあっても、それぞれの焦点面Fa2、Fb2上では回折光は同じ形状や拡がり角で同じ位置に、光熱偏向光は同じ偏向角で同じ位置に、それぞれの光軸を中心に現れる。このことから、Fa2面上に多重マッチトフィルタ12を、Fb2面上に傾斜光強度フィルタ13を、設置すれば、回折光は多重マッチトフィルタによって識別され、識別信号である相関光が凸レンズ14によって集光されて粒子の形状・サイズの識別領域毎に現れる。なお、図2中で測定容器内の焦点面F1の前または後に入った被測定粒子による自己相関光の出現位置(焦点位置)はFa3の前または後になる。また、光熱偏向分光は傾斜光強度フィルタを通って、粒子サイズに対応した偏向角に比例した光強度が得られ、それが凸レンズ15で集光され、後焦点面を中心に粒子サイズに比例した強度の光点が粒子位置と点対称に現れる。なお、凸レンズ14、15の前焦点はそれぞれFa2、Fb2上にある。従って、自己相関光輝点の出現位置によって粒子の形状・サイズ毎の位置がわかり、偏向光像の強さと位置によって組成別の粒子サイズが分かれる。
【0022】
なお、多重マッチトフィルタは光導電プラスチックホログラム(PPH)自動現像装置の感光面を凸レンズ10の後焦点面に置いて、参照光と流路中の被識別粒子測定位置に置いた参照形状粒子からでる光散乱や光回折パターンとで作成されるホログラムであってもよい。このときホログラム作成用の参照光はハーフミラー16、凸レンズ17、ミラー18、凸レンズ19、ミラー20等を用いて作成された拡大平行光を図のように照射してもよい。また、レンズ14、15の後焦点Fa3、Fb3 面を中心に出現する被識別信号光群はそれぞれCCDカメラ等で取り込まれ、データ処理・表示器上に測定結果が表示される。
【0023】
また光軸中心に小さな遮光膜を置き、零次光を遮光すれば走査平行光束と凸レンズとで形成される測定視界に入った粒子による光散乱や光回折パターンまたは光熱偏向光はより明瞭に観測される。粒子からの情報光がそれぞれの光フィルタに当たれば、粒子形状と粒度の情報や特定の組成を持つ粒子サイズごとの情報は実時間で自動的に並列識別され,指定された形状・組成・粒度ごとの識別番号が自己相関光と偏向信号光としてそれぞれの識別領域ごとに現れる。それらの信号光を見ればいつどんな形状,粒度の粒子がまた、特定の組成を持つ粒子がサイズごとにどこを通過したかが実時間で測定される。
【0024】
つづいて、本発明の他の実施形態を説明すると、図3は第2実施形態、図4は第3実施形態の光学系の構成図であり、第2実施形態は、第1実施形態中の光回折パターンから粒子の複数の形状や寸法を識別する測定方法および装置を、また第3実施形態は第1実施形態中の光熱偏向分光から粒子サイズと存在位置の計測を行う方法および装置を夫々独立させた光学系としたものであり、図中、第1実施形態と同じ部材には同一符号を使用する。
【0025】
第2実施形態では、光学台に載せられたそれぞれのレーザ2、3から射出される強いシングルモードのポンプ光とプローブ光は第1実施形態と同様に1本のレーザ光線となり、焦点距離の比較的長い凸レンズ4を通って光走査ミラー(ガルバノミラー)5に照射される。ガルバノミラー5で反射されたレーザ光線は凸レンズ6を通って、凸レンズ4と凸レンズ6の焦点距離の比によって決定される直径を持った強い光束として一次元的に平行に走査される。走査光束は鉛直に流れる流路7の側面から流れに直交する断面で2次元的に照射され、流路7のガラス側壁を通り反対側面ガラス壁を通り抜けて遮光板8で吸収される。
【0026】
また、平行平板ガラスで形作られた流路を流れる粒子が走査平行光束中に入ると、粒子によって光回折パターンが生ずる。この光回折パターンを流路を横切る走査光の流路中心部を前焦点として設置された凸レンズ10によって集光し後焦点面Fa2に投射する。このFa2面上に多重マッチトフィルタ12を設置すれば、多重マッチトフィルタに照射された回折光によって生じた相関光が粒子の形状・サイズの識別領域毎に現れ、これにより光散乱や光回折パターンから粒子の複数の形状や寸法の識別することができる。
【0027】
第3実施形態では、レーザ2、3から射出される強いシングルモードのポンプ光とプローブ光は1本のレーザ光線となり、光走査ミラー(ガルバノミラー)5に照射される。ガルバノミラー5で反射されたレーザ光線は凸レンズ6を通って、凸レンズ4と凸レンズ6の焦点距離の比によって決定される直径を持った強い光束として一次元的に平行に走査される。走査光束は鉛直に流れる流路7の側面から流れに直交する断面で2次元的に照射され、流路7のガラス側壁を通り反対側面ガラス壁を通り抜けて遮光板8で吸収される。
【0028】
平行平板ガラスで形作られた流路を流れる粒子が走査平行光束中に入ると、粒子によって光回折パターンまたは光熱偏向光が生ずる。
サブミクロン以下の極微細粒子ではポンプ光が粒子の共鳴吸収光である場合にはプローブ光が光熱偏向を受ける。その光熱偏向光を流路を横切る走査光の流路中心部を前焦点として設置された凸レンズ10によって集光し、後焦点面Fb2に投射する。Fb2面上に傾斜光強度フィルタ13を設置すると光熱偏向分光は傾斜光強度フィルタ13を通って、粒子サイズに対応した偏向角に比例した光強度となり、それが凸レンズ15で集光され、同レンズ15の後焦点面を中心に粒子サイズに比例した強度の光点が粒子位置と点対称に後焦点Fb3 面上あるいはその前後面上に出現する。その被識別信号光群をそれぞれCCDカメラ等で取り込み、データ処理することで表示器上に測定結果が表示される。
【0029】
また、識別結果を表示する相関信号光群の三次元位置の測定は、走査ミラーで行うかまたは光収束の前後位置を横方向にずらす機能を持つ変形回折格子フィルタによって行う。この例(第4実施形態)を図5に示す。図5において、符号34、35は凸レンズ14、15に隣接して前側に配置した変形回折格子フィルタであり、他の構成は第1実施形態と同様である。
この光学系では、識別信号光の焦点深度方向のずれは凸レンズ14または凸レンズ15の前に隣接して設置した変形回折格子フィルタによって相関光スポットあるいは光熱偏向光は走査光方向と垂直方向にずれてFa3、Fb3面上に焦点を結ぶように設定されている。従って、同一径粒子を大視野測定領域で測定した場合に粒子検出信号光の位置は、照射光走査方向の位置の違いはFa3、またはFb3面の光軸中心に照射光走査方向に粒子位置と点対称にずれ、焦点深度方向の粒子位置の違いは光照射方向と直交方向の位置のずれとして現れ、こうして識別結果を表示する相関信号光群の三次元位置の測定を行うことができる。
【0030】
以上本発明に係わる実施形態では、測定視野中の微粒子の光散乱や光回折パターンから粒子の複数の形状や寸法の識別方法と、多光束光熱偏向分光から組成ごとの粒子サイズおよび各形状・寸法粒子ごとの存在位置の計測を行う識別方法とを同時または別々に測定する形態について説明したが、図1に示す光散乱や光回折パターン光学系Fa2、多光束光熱偏向分光識別光学系Fb2の位置を入れ替えることも可能である。
なお、上記各実施形態では、光走査ミラーに向けて照射されるレーザ光は2波長光のものについて説明してあるが、このレーザ光は可干渉多波長光とすることもでき、多波長とすることにより、被識別粒子の限界を広げることが可能である。
また、本発明はその精神または主要な特徴から逸脱することなく、他のいかなる形でも実施できる。そのため、前述の実施形態はあらゆる点で単なる例示にすぎず限定的に解釈してはならない。
【0031】
【発明の効果】
以上詳細に説明したように、本発明によれば、微小粒子の空間分布やその粒子群の挙動を二次元的大視野で定量測定することができ、二次元的視野を走査することにより三次元的大視野で粒子群の空間分布や挙動の定量測定ができる。
また、粒子の形状測定、形状・サイズごとの空間分布・数密度の測定、粒子の形状・粒度ごとの挙動の測定あるいは粒子の組成ごとの粒度の測定ができる。
さらに、それぞれの粒子の屈折率に無関係に粒子の形状・サイズの正確な測定ができる。
具体的には、たとえば水道水の源流中にクリプトスポリジウム原虫などが存在するか否かを大量の水の中から迅速に検出したり、大気中に懸濁する杉花粉などの粒子を大量の空気中から非接触で迅速に測定したり、掃除機で吸引した空気中に入ったアレルゲン粒子としての家ダニを非接触で迅速に測定することができる。このように本発明は緊急な医学的・社会的な問題解決のために有効であり、産業技術としても需要が多く、広く活用でき、本発明の波及効果は非常に大である等々の優れた効果を奏することができる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る粒子の組成、形状、粒度、空間分布、挙動などの計測を行う微粒子測定装置の光学系構成図である。
【図2】同じで形状とサイズが同じ粒子は測定視野中のどこにあっても、それぞれの焦点面Fa2、Fb2上では回折光は同じ形状や拡がり角で同じ位置に、光熱偏向光は同じ偏向角で同じ位置に、それぞれの光軸を中心に現れることを説明する図である。
【図3】第2実施形態の光学系の構成図である。
【図4】第3実施形態の光学系の構成図である。
【図5】第4実施形態の光学系の構成図である。
【符号の説明】
1 光学レール
2 ポンプ光源
3 プローブ光源
4 凸レンズ
5 ガルバノミラー
6 凸レンズ
7 流路
8 遮光板
9 ハーフミラー
10 凸レンズ
11 凸レンズ
12 多重マッチトフィルタ
13 傾斜光強度フィルタ
14 凸レンズ
15 凸レンズ
16 ハーフミラー
17 凸レンズ
18 ミラー
19 凸レンズ
20 ミラー
34、35 変形回折格子フィルタ
[0001]
BACKGROUND OF THE INVENTION
The present invention is a fine particle measurement suitable for detecting a minute amount of fine particles having a size of several microns (μm) to a submicron (μm) or a size of several tens of nanometers (nm) mixed in a large volume of fluid (medium). The present invention relates to a method and an apparatus thereof, and in particular, scans in parallel a normally emitted thin laser beam mixed with coherent multi-wavelength light, or a fine and strong light beam having a laser spot diameter of several hundred μm or less. A wide laser light irradiation area is created, and a wide measurement field of view is formed together with the light scattering detector by the particle, and this is used to identify multiple shapes and dimensions of fine particles, the particle size for each composition, and each The present invention relates to a fine particle measurement method and apparatus capable of instantaneously measuring the position of each shape / size particle at the same time.
[0002]
[Prior art]
Conventionally, microscopic observation is well known as a technique for observing the shape, size, and the like of fine particles. For example, in order to detect Cryptosporidium protozoa with a size of several μm in a few liters of tap water, conventionally, a large amount of tap water is filtered through a filter to catch foreign substances, and these foreign substances are colored and microscopes are used. The protozoa were detected while observing. However, the method of detecting the shape and size of particles with a human eye using a microscope is difficult to identify for a long time, and it is difficult to objectively identify depending on the level of proficiency of humans. Cost.
[0003]
When protozoa or biological cells are to be detected by a particle size measurement method such as light scattering, the M1E scattering particle count method is usually used (several hundred μm). Three Although the particle diameter is estimated from the scattered light intensity of cell particles or the like entering a minute measurement volume, particle shape cannot be identified by such a normal light scattering method.
[0004]
Furthermore, in the multiple matched filter method, which is a particle shape identification method developed by the present inventors, the measurement field of view is small, and in order to introduce fine particles to be measured that are three-dimensionally widely distributed in space to the measurement field of view. The measuring device itself must be moved or the particles must be sucked into a fine measuring field, which requires a lot of time for the measurement.
[0005]
In the two-beam photothermal deflection spectroscopy, which is a method for measuring the size of ultrafine particles by composition, the laser beam is focused by a lens to make a measurement field of view, so only particles in the fine measurement field can be measured. If the deflection position detection for this is performed on the Fourier transform plane, it is not known that the deflection position can be easily measured, and there is no appropriate method of light detection for probe light deflection position measurement, and a complicated photoelectric measurement system is not used. In other words, the particle size measurement is difficult.
[0006]
For this reason, in order to measure the size and shape of fine particles such as living cells by the conventional method, detection of weak light scattering intensity and particle image processing must be performed with a small field of view. In addition, enormous amounts of measurement time and labor are required to measure the shape, size, and composition of a minute amount of fine particles present in a large-capacity medium. Was almost impossible.
[0007]
On the other hand, in recent years, the development of measurement methods in the ultra-small field of view has been just started for the measurement of particle sizes by composition, such as biological cells in the order of nm and drug particles. In particular, technology to quickly detect from a large amount of water whether Cryptosporidium protozoa, etc. are present in the source of tap water, non-contact particles of cedar pollen suspended in the atmosphere from a large amount of air Such as technology for quick measurement with a vacuum, non-contact rapid automatic measurement technology for house mites as allergen particles in the air aspirated by a vacuum cleaner, particles by shape and size of several μm or more present in a large amount of medium The conventional non-contact rapid measurement cannot be solved by the conventional technique, and the development of the technique is urgently required socially. In addition, as advanced medical technology, technology development that enables measurement of liposomes ranging from several nanometers to several hundred nanometers that carry drugs and genes to cell receptors, and observation of interaction of antibodies and drugs with cell receptors is performed in medicine and pharmacy. There is an urgent need for both biology and other academic and social issues.
[0008]
[Problems to be solved by the invention]
The present invention has been made to solve the urgent medical and social problems as described above, and is characterized by a normally emitted thin laser beam mixed with coherent multi-wavelength light, or A laser beam with a small laser spot diameter of several hundred μm or less and a strong light intensity is scanned in parallel to create a wide laser light irradiation area, and together with a particle light scattering detector, a wide measurement field of view is formed. Identifying multiple shapes and dimensions of particles from light scattering and light diffraction patterns of fine particles, and measuring the particle size for each composition and the location of each shape and size from photothermal deflection spectroscopy at the same time. is there.
[0009]
The simultaneous identification of the particle shape and particle diameter can be identified from the shape and spread of the light diffraction pattern by the particles. Specifically, the shape and size of the particle group is identified by a multiple matched filter method using a multiple matched filter that is a single hologram. The multiple matched filter is a hologram in which light diffraction patterns from a plurality of reference particle groups having the shape and size of a particle group to be identified are mounted. In the conventional multiple matched filter method, particles entering the front focal plane of the convex lens in the parallel light beam of a normal or enlarged single laser are identified, but the measurement field of view is not necessarily wide. In the present invention, the particle shape and particle size can be measured as long as the particle to be measured is not in the front focal plane of the lens but in the irradiation laser beam of parallel scanning wherever the focal plane in the measurement container is off. The reason is that the light diffraction pattern from the particles has the same shape and the same spread on the back focal plane of the Fourier transform lens wherever there are particles of the same shape and size. If a filter is installed, it is sufficient to use the fact that identification autocorrelation light appears at a point-symmetrical position on the back focal plane of the image forming lens installed after the matched filter. If the particle to be measured is before or after the focal plane in the measurement container, the appearance position (focus position) of the autocorrelation light is before or after Fa3.
[0010]
In addition, measurement of the particle size for each particle composition and the location of each shape and size of the particle makes it possible to resonate with the probe light, which is strong with the probe light, which is weak in light intensity but does not change with time and has a constant intensity. When pump light that is easily aligned is irradiated with the optical axis aligned, the pump light is resonantly absorbed by the particles and the particles are heated, and the probe light that is irradiated coaxially to the particles is bent according to the particle size due to the refractive index change due to heat. It is done. By using this photothermal deflection spectroscopy, the photothermal deflection from the particle is automatically detected on the back focal plane of the convex lens, or the light intensity is converted, and the particle diameter size and location are automatically detected from the deflection angle. Enable measurement.
[0011]
The present invention provides means for performing the above two methods simultaneously in a three-dimensional manner with a large field of view. That is, a large-field measurement method in which coherent pump light and probe coherent multi-wavelength light (at least two-wavelength laser light) are mixed coaxially and scanned in parallel to intentionally create a large field of view and irradiate the identified particles. Do. The reason for parallel irradiation with laser light is that when fan scanning of the light beam is performed, the light beam scanning regions overlap or do not scan, and fan scanning differs in the temporal existence density of light beams in space and is the same type This is because the intensity per unit time of scattered light varies depending on the space even if it is a diameter particle, which makes accurate particle measurement difficult. The reason for further parallel scanning is to facilitate the configuration of the light receiving optical system.
[0012]
The irradiation laser light may be a strong expanded parallel light beam such as a sheet-like parallel light instead of the scanning light. Furthermore, in order to identify the particle group in the large field of view at the same time, the shape and size of the light scattering and light diffraction pattern by the particle in the wide field of measurement , The particle size by composition is collected at one point by a unique light receiving optical system with a wide field of view by combination of pump light, identified by one multiple matched filter or position gradient light intensity filter, and simultaneously by CCD array sensor Judge by real time.
[0013]
When focusing on the identification of the particle shape, a method may be adopted in which the identified particles flow through the shear flow path to control the posture. That is, a laser beam (or an expanded parallel laser beam) that is one-dimensionally scanned perpendicularly to the flow from the bottom by forming a horizontally wide channel by forming the transparent glass channel narrow in the vertical width and parallel in the top and bottom. The fine particles present in the irradiated and flowing medium must be sure to cross the scanning laser beam. The flow path is configured to apply a shearing force to the medium flowing in the parallel flat glass to control the posture of the flow path in the medium. When the particle whose posture is controlled passes through the scanning laser beam, an optical diffraction pattern appears in the pump light. If the light diffraction pattern of the pump light is received by a Fourier transform optical system composed of a convex lens having a large aperture with the center of the flow path as the front focal point, the light of the pump light from each flow path is formed on the rear focal plane of the convex lens. Diffraction patterns appear overlapping on the center of the optical axis of the convex lens. If this is identified by a single multiple matched filter, the size and shape of the particle group appear in point symmetry with the particle location in each particle shape identification region as a bright spot of autocorrelation light in real time. When these correlated light groups are captured by a high-speed CCD camera with an image intensifier and displayed on a display, the presence positions of particles for each shape and size are measured in-site. It is also possible to digitally process the signal from the high-speed CCD camera and display on the computer screen where the particles of each shape and size exist. A short focus lens array or a relay lens system in which a short focus convex lens and a relatively long convex lens are combined may be placed in front of the Fourier transform optical system.
[0014]
When the particle to be measured is very small on the order of nm, the light diffraction pattern cannot be used for identification. Therefore, multi-beam photothermal deflection spectroscopy is used for particle size classification. The particle measuring container may be made of relatively wide and deep transparent glass. Coherent multi-wavelength coaxial laser light is scanned in parallel in the container, and the scanned light is observed by the same optical system as the forward light scattering measurement optical system. When fine particles enter the scanning parallel light beam, the pump light is resonantly absorbed and the probe light is deflected by the photothermal effect. If the deflection of the probe light is collected by a Fourier transform optical system composed of a convex lens, and further condensed by a convex lens through a position-gradient light intensity filter installed on the rear focal plane of the convex lens, the particles on the rear focal plane of the last convex lens The light spot of the identification signal light appears at a point-symmetrical position with respect to the particle position at a light intensity proportional to the size of. For the particle size identification, the position gradient light intensity filter is set so that the probe light deflected outside the optical axis in accordance with the particle size is set so that the light transmittance increases toward the outside from the optical axis. Is installed on the Fourier transform plane of the signal light. This is because the deflected light from the same size particle always passes through the same position on the Fourier transform plane, regardless of where the particle is in the measurement field of view. The deflected light that has passed through the position-gradient light intensity filter is further condensed by a convex lens with the Fourier transform surface as the front focal point, and the particle image is sized symmetrically with the position where the particle to be measured was located on the rear focal plane of the lens. Appears with proportional light intensity. In this way, the present invention constructs an original system that can simultaneously identify the size and position of particles for each composition.
[0015]
[Means for Solving the Problems]
Therefore, the problem solving means adopted by the present invention is:
A laser beam mixed with coherent multi-wavelength light is scanned in parallel to create a wide laser light irradiation area, a fluid to be inspected is flowed in the laser light irradiation area, and light scattering of particles in the measurement field of the fluid is performed. Identification of multiple shapes and dimensions of particles from light diffraction patterns Also, This is a fine particle measurement method characterized by simultaneously measuring the size and location of particles by composition from photothermal deflection spectroscopy.
The laser beam is a fine particle measuring method characterized in that the laser beam is a fine laser beam having a laser spot diameter of several hundreds μm or less and a high light intensity.
The particle scattering method is characterized in that the light scattering and diffraction patterns of the particles are measured by a multiple matched filter.
Further, the photothermal deflection spectroscopy of the particles is measured by a position gradient intensity filter.
Also, a laser beam that is coaxially mixed with the coherent pump light and the probe light laser beam and emitted onto the optical rail, a scanning unit that scans the laser beam in parallel, and a target that is disposed behind the scanning unit. A measurement fluid, a light-shielding plate that absorbs a light beam transmitted through the fluid to be measured, and photothermal deflection spectroscopy of the particles of the fluid to be measured. Measurement of particle size and location by composition It is a fine particle measuring device characterized by comprising a position inclination intensity filter for performing.
Also, a laser beam that is coaxially mixed with the coherent pump light and the probe light laser beam and emitted onto the optical rail, a scanning unit that scans the laser beam in parallel, and a target that is disposed behind the scanning unit. A measurement fluid, a light-shielding plate that absorbs a light beam that has passed through the fluid to be measured, a half mirror that separates light scattering and light diffraction patterns from the particles of the fluid to be measured and photothermal deflection spectroscopy of the particles in the fluid to be measured; Multiple matched filters that identify multiple shapes and dimensions of particles from light scattering and light diffraction patterns of particles in the fluid under measurement, and particle size and location measurement from photothermal deflection spectroscopy of particles in the fluid under measurement A fine particle measuring apparatus comprising a position gradient intensity filter.
Also, a laser beam that is coaxially mixed with the coherent pump light and the probe light laser beam and emitted onto the optical rail, a scanning unit that scans the laser beam in parallel, and a target that is disposed behind the scanning unit. A measurement fluid, a light-shielding plate that absorbs a light beam that has passed through the fluid to be measured, a half mirror that separates light scattering and light diffraction patterns from the particles of the fluid to be measured and photothermal deflection spectroscopy of the particles in the fluid to be measured; Multiple matched filters that identify multiple shapes and dimensions of particles from light scattering and light diffraction patterns of particles in the fluid under measurement, and particle size and location measurement from photothermal deflection spectroscopy of particles in the fluid under measurement A position gradient intensity filter, a convex lens having a front focal point on the multiple matched filter, a convex lens having a front focal point on the inclined light intensity filter, and a front lens on the multiple matched filter. And a modified diffraction grating filter disposed on the front side adjacent to the convex lens having a point, and a modified diffraction grating filter disposed on the front side adjacent to the convex lens having the front focal point on the tilted light intensity filter. A fine particle measuring apparatus comprising an imaging device on a back focal plane.
The half mirror is a dichroic mirror that transmits or reflects only a specific wavelength.
The scanning means may be a galvanometer mirror, a silicon micro light scanner, or a polygon mirror.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
The embodiment of the present invention will be described below with reference to the drawings. FIG. 1 is an optical system configuration diagram of the fine particle measuring apparatus according to the first embodiment that measures the composition, shape, particle size, spatial distribution, behavior, etc. of particles. is there.
[0017]
In the figure, 1 is a single optical rail, 2 is a pump light source mounted on the optical bench, 3 is a probe light source 3 placed on the optical bench, and the pump light source 2 and the probe light source 3 have a strong single mode. Laser beam is emitted. An optical scanning mirror (for example, a galvanometer mirror) 5 and a convex lens 6 are disposed on the optical rail, and a flow path 7 through which the fluid to be measured flows and a light shielding plate 8 that absorbs a parallel light beam are disposed behind the convex lens 6. . A half mirror 9 for separating the probe light and the pump light is disposed behind the light shielding plate 8. Further, on the transmission optical axis of the half mirror 9, the front focal point F 1 is provided in the flow path 7, and the rear focal point is provided. A convex lens 10 having a value Fa2 is disposed. A multiple matched filter 12 for identifying the shape and size of the particles is disposed at the position of the rear focal point Fa2 of the convex lens 10. Further, the convex lens 11 on the reflection optical axis of the half mirror 9 has a deflection angle corresponding to the particle size. An inclined light intensity filter 13 and a convex lens 15 that extract a proportional light intensity are arranged. The multi-matched filter 12 is a reference-shaped particle placed at the measurement position of the identification light in the flow path with the photosensitive surface of the photoconductive plastic hologram (PPH) automatic developing device placed on the back focal plane of the convex lens 10. Holograms created by light scattering or light diffraction patterns emitted from the light source can be used. At this time, the reference light for creating the hologram is a half mirror 16, mirrors 24 and 25, a convex lens 17, a mirror 18, a convex lens 19, a mirror 20, and the like. It is made to irradiate as expansion parallel light created using. The identified signal light groups appearing around the back focal points Fa3 and Fb3 of the convex lenses 14 and 15 are captured by a CCD camera or the like, respectively, and the measurement result can be displayed on the data processing / display unit.
[0018]
The operation of the particle measuring apparatus having the above configuration will be described. Strong single mode pump light and probe light emitted from the lasers 2 and 3 mounted on the optical bench are half mirror 16 and mirrors 21, 22, and 23. Is used to make a single laser beam mixed with the optical axis aligned, and irradiates the galvanometer mirror 5 through the convex lens 4 having a relatively long focal length. The laser beam reflected by the galvanometer mirror 5 passes through the convex lens 6, does not spread in a fan shape, is parallel and larger than the object to be identified, and is a strong light beam having a diameter determined by the ratio of the focal lengths of the convex lens 4 and convex lens 6. It is scanned one dimensionally in parallel.
The rear focal plane of the convex lens 4 and the front focal point of the convex lens 6 are both on the optical scanning mirror 5.
[0019]
The scanning light beam is irradiated two-dimensionally in a cross section orthogonal to the flow from the side surface of the flow path 7 that flows vertically (flows in a direction perpendicular to the paper surface of the drawing). That is, the channel 7 is scanned perpendicular to the flow direction. The flow path 7 is formed of parallel plane glass, and the flow path 7 may be wide or may be a shear flow path with narrow left and right widths. The reason for narrowing the width on the left and right is that the particles suspended in the fluid are made to flow in the shear flow and the posture is controlled. The scanning light beam can also have a certain angle with the orthogonal direction to the flow. This angle is such that when an object to be identified that is long in the flow path direction passes through the flow path, the spread of the light diffraction pattern thereby extends in a direction perpendicular to the flow path, so that the light diffraction pattern is hindered by the light shielding plate 8 described later. Due to no consideration. The one-dimensional parallel light beam to be scanned passes through the glass side wall of the flow path 7, passes through the opposite side glass wall, and is absorbed by the light shielding plate 8.
[0020]
When particles flowing through a flow path formed of parallel flat glass enter the scanning parallel light flux, the particles generate an optical diffraction pattern or photothermal deflection light.
That is, an optical diffraction pattern is observed from particles having a size of submicron or larger, and probe light is subjected to photothermal deflection when pump light is resonance absorption light of particles of submicron or smaller. The light diffraction pattern or photothermal deflection light passes through the half mirror 9 and is collected by the convex lens 10 and / or the convex lens 11 installed with the center of the flow path of the scanning light crossing the flow path as the front focal point.
[0021]
Specifically, the half mirror 9 is configured as a dichroic mirror that reflects only a specific wavelength, thereby reflecting the probe light component of the scattered light from the particles or the photothermal deflection spectroscopic light, and transmitting the pump light component. The diffracted light of the pump light and the deflected light or diffracted light of the probe light are projected onto the rear focal planes Fa2 and Fb2 of the lens by the convex lens 10 or the convex lens 11, respectively. As shown in FIG. 2, particles having the same composition and shape and size are diffracted light on the focal planes Fa2 and Fb2 at the same position with the same shape and divergence angle, as shown in FIG. The light appears at the same position at the same deflection angle and centered on each optical axis. Therefore, if the multiple matched filter 12 is installed on the Fa2 surface and the inclined light intensity filter 13 is installed on the Fb2 surface, the diffracted light is identified by the multiple matched filter, and the correlated light as the identification signal is detected by the convex lens 14. And appear for each identification region of the shape and size of the particle. In FIG. 2, the appearance position (focal position) of the autocorrelation light by the measured particles entering before or after the focal plane F1 in the measurement container is before or after Fa3. In addition, the photothermal deflection spectroscopy passes through the gradient light intensity filter, and a light intensity proportional to the deflection angle corresponding to the particle size is obtained, which is condensed by the convex lens 15 and proportional to the particle size around the back focal plane. An intense light spot appears in point symmetry with the particle position. The front focal points of the convex lenses 14 and 15 are on Fa2 and Fb2, respectively. Therefore, the position of each particle shape and size can be determined by the appearance position of the autocorrelation bright spot, and the particle size by composition is divided by the intensity and position of the deflected light image.
[0022]
The multiple matched filter is formed from reference shaped particles placed at the measurement position of the identified particles in the flow path with the photosensitive surface of the photoconductive plastic hologram (PPH) automatic developing device placed on the back focal plane of the convex lens 10. It may be a hologram created by light scattering or light diffraction pattern. At this time, the reference light for creating the hologram may be irradiated with expanded parallel light created using the half mirror 16, the convex lens 17, the mirror 18, the convex lens 19, the mirror 20, and the like as shown in the figure. Further, the signal light groups to be identified that appear around the back focal points Fa3 and Fb3 of the lenses 14 and 15 are captured by a CCD camera or the like, and the measurement results are displayed on the data processing / display unit.
[0023]
If a small light-shielding film is placed in the center of the optical axis and the zero-order light is shielded, light scattering, light diffraction patterns, or photothermal deflection light from particles entering the measurement field of view formed by a scanning parallel light beam and a convex lens can be observed more clearly. Is done. If the information light from the particles hits each optical filter, the particle shape and particle size information and the information for each particle size with a specific composition are automatically identified in parallel in real time, and the specified shape, composition, and particle size Each identification number appears for each identification region as autocorrelation light and deflection signal light. By looking at these signal lights, it is possible to measure in real time when and what shape and particle size of particles, and where a particle with a specific composition has passed by size.
[0024]
Next, another embodiment of the present invention will be described. FIG. 3 is a second embodiment, FIG. 4 is a configuration diagram of an optical system of the third embodiment, and the second embodiment is the same as the first embodiment. A measurement method and apparatus for identifying a plurality of shapes and dimensions of particles from an optical diffraction pattern, and the third embodiment is a method and apparatus for measuring particle size and location from photothermal deflection spectroscopy in the first embodiment. This is an independent optical system, and the same reference numerals are used for the same members as in the first embodiment in the figure.
[0025]
In the second embodiment, the strong single-mode pump light and probe light emitted from the lasers 2 and 3 mounted on the optical bench become one laser beam as in the first embodiment, and the focal lengths are compared. An optical scanning mirror (galvanometer mirror) 5 is irradiated through a long convex lens 4. The laser beam reflected by the galvanometer mirror 5 passes through the convex lens 6 and is scanned in parallel one-dimensionally as a strong light beam having a diameter determined by the ratio of the focal lengths of the convex lens 4 and the convex lens 6. The scanning light beam is irradiated two-dimensionally from the side surface of the flow path 7 that flows perpendicularly in a cross section orthogonal to the flow, passes through the glass side wall of the flow path 7, passes through the opposite side glass wall, and is absorbed by the light shielding plate 8.
[0026]
Further, when particles flowing through a flow path formed of parallel flat glass enter the scanning parallel light flux, an optical diffraction pattern is generated by the particles. The light diffraction pattern is condensed by a convex lens 10 installed with the central portion of the flow path of the scanning light crossing the flow path as the front focal point, and projected onto the rear focal plane Fa2. If the multiple matched filter 12 is installed on the Fa2 surface, the correlated light generated by the diffracted light irradiated to the multiple matched filter appears in each particle shape / size identification region, thereby causing light scattering and light diffraction. A plurality of shapes and dimensions of particles can be identified from the pattern.
[0027]
In the third embodiment, the strong single mode pump light and the probe light emitted from the lasers 2 and 3 become one laser beam and are applied to the optical scanning mirror (galvano mirror) 5. The laser beam reflected by the galvanometer mirror 5 passes through the convex lens 6 and is scanned in parallel one-dimensionally as a strong light beam having a diameter determined by the ratio of the focal lengths of the convex lens 4 and the convex lens 6. The scanning light beam is irradiated two-dimensionally from the side surface of the flow path 7 that flows perpendicularly in a cross section orthogonal to the flow, passes through the glass side wall of the flow path 7, passes through the opposite side glass wall, and is absorbed by the light shielding plate 8.
[0028]
When particles flowing through a flow path formed of parallel flat glass enter the scanning parallel light flux, the particles generate an optical diffraction pattern or photothermal deflection light.
For ultrafine particles of submicron or less, the probe light is subjected to photothermal deflection when the pump light is the resonant absorption light of the particles. The photothermal deflection light is condensed by the convex lens 10 installed with the flow path center of the scanning light crossing the flow path as the front focal point, and is projected onto the rear focal plane Fb2. When the tilted light intensity filter 13 is installed on the Fb2 surface, the photothermal deflection spectroscopy passes through the tilted light intensity filter 13 and becomes a light intensity proportional to the deflection angle corresponding to the particle size, which is condensed by the convex lens 15, and the same lens. A light spot having an intensity proportional to the particle size around the back focal plane 15 appears on the back focal plane Fb3 or on the front and rear surfaces thereof in a point symmetry with the particle position. Each of the identified signal light groups is captured by a CCD camera or the like and processed, and the measurement result is displayed on the display.
[0029]
Further, the measurement of the three-dimensional position of the correlation signal light group for displaying the identification result is performed by a scanning mirror or a modified diffraction grating filter having a function of shifting the position before and after the light convergence in the horizontal direction. This example (fourth embodiment) is shown in FIG. In FIG. 5, reference numerals 34 and 35 denote modified diffraction grating filters arranged on the front side adjacent to the convex lenses 14 and 15, and other configurations are the same as those in the first embodiment.
In this optical system, the deviation in the depth of focus direction of the identification signal light is shifted in the direction perpendicular to the scanning light direction by the modified diffraction grating filter installed adjacent to the convex lens 14 or the convex lens 15. The focal point is set on the Fa3 and Fb3 surfaces. Therefore, when the same diameter particles are measured in the large visual field measurement region, the position of the particle detection signal light differs from the position of the irradiation light scanning direction in the irradiation light scanning direction with respect to the optical axis center of the Fa3 or Fb3 surface. The difference in the particle position in the focal depth direction, which is shifted symmetrically, appears as a position shift in the direction perpendicular to the light irradiation direction, and thus the three-dimensional position of the correlated signal light group displaying the identification result can be measured.
[0030]
As described above, in the embodiment according to the present invention, a method for identifying a plurality of shapes and dimensions of particles from light scattering and light diffraction patterns of fine particles in a measurement visual field, a particle size for each composition and each shape and dimension from multi-beam photothermal deflection spectroscopy. Although the form which measures simultaneously the identification method which measures the presence position for every particle | grains separately or separately was demonstrated, the position of the light scattering shown in FIG. 1, optical diffraction pattern optical system Fa2, multi-beam photothermal deflection | distribution identification optical system Fb2 Can also be replaced.
In each of the above-described embodiments, the laser light emitted toward the optical scanning mirror is described as having two wavelengths, but this laser light can also be coherent multi-wavelength light. By doing so, it is possible to widen the limit of the identified particles.
In addition, the present invention can be implemented in any other form without departing from the spirit or main features thereof. Therefore, the above-described embodiment is merely an example in all respects and should not be interpreted in a limited manner.
[0031]
【The invention's effect】
As described above in detail, according to the present invention, the spatial distribution of microparticles and the behavior of the particle group can be quantitatively measured in a two-dimensional large field of view, and three-dimensional by scanning the two-dimensional field of view. Quantitative measurement of the spatial distribution and behavior of particles in a large field of view.
In addition, particle shape measurement, spatial distribution / number density for each shape / size, behavior for each particle shape / particle size, or particle size for each particle composition can be measured.
Furthermore, the particle shape and size can be accurately measured regardless of the refractive index of each particle.
Specifically, for example, the presence of Cryptosporidium protozoa in the source water of tap water can be quickly detected from a large amount of water, or particles such as cedar pollen suspended in the atmosphere can be detected in a large amount of air. It is possible to quickly measure without contact from the inside, and to quickly measure house mites as allergen particles in the air sucked by a vacuum cleaner without contact. As described above, the present invention is effective for solving urgent medical and social problems, has a large demand as industrial technology, can be widely used, and the ripple effect of the present invention is very great. There is an effect.
[Brief description of the drawings]
FIG. 1 is an optical system configuration diagram of a fine particle measuring apparatus that measures particle composition, shape, particle size, spatial distribution, behavior, and the like according to a first embodiment of the present invention.
FIG. 2 shows that the same shape and size of particles in the measurement field are the same on the focal planes Fa2 and Fb2, the diffracted light has the same shape and divergence angle, and the photothermal deflection light has the same deflection. It is a figure explaining appearing centering on each optical axis in the same position by a corner.
FIG. 3 is a configuration diagram of an optical system according to a second embodiment.
FIG. 4 is a configuration diagram of an optical system according to a third embodiment.
FIG. 5 is a configuration diagram of an optical system according to a fourth embodiment.
[Explanation of symbols]
1 Optical rail
2 Pump light source
3 Probe light source
4 Convex lens
5 Galvano mirror
6 Convex lens
7 Channel
8 Shading plate
9 Half mirror
10 Convex lens
11 Convex lens
12 Multiple matched filters
13 Inclined light intensity filter
14 Convex lens
15 Convex lens
16 half mirror
17 Convex lens
18 Mirror
19 Convex lens
20 mirror
34, 35 Modified diffraction grating filter

Claims (9)

可干渉多波長光が混合されたレーザ光束を、平行走査して広いレーザ光照射領域をつくり、そのレーザ光照射領域内に被検査流体を流し、その流体の測定視野中の粒子の光散乱や光回折パターンから粒子の複数の形状や寸法の識別を、また、光熱偏向分光から組成別粒子のサイズと存在位置の計測を同時に行うことを特徴とする微粒子測定方法。A laser beam mixed with coherent multi-wavelength light is scanned in parallel to create a wide laser light irradiation area, a fluid to be inspected is flowed in the laser light irradiation area, and light scattering of particles in the measurement field of the fluid is performed. A method for measuring fine particles, wherein a plurality of particle shapes and dimensions are identified from an optical diffraction pattern, and the size and position of each particle by composition are simultaneously measured from photothermal deflection spectroscopy. 前記レーザ光束はレーザスポット径が数100μm以下の微細で光強度の強いレーザ光束であることを特徴とする請求項1に記載の微粒子測定方法。2. The fine particle measuring method according to claim 1, wherein the laser light beam is a fine laser beam having a laser spot diameter of several hundred μm or less and a high light intensity. 前記粒子の光散乱や回折パターンは多重マッチトフィルタによって計測することを特徴とする請求項1または請求項2に記載の微粒子測定方法。 Claim 1 or particle measurement method in claim 2 serial mounting, wherein the light scattering or diffraction pattern for measuring by multiple matched filter of the particles. 前記粒子の光熱偏向分光は位置傾斜強度フィルタによって計測することを特徴とする請求項1〜請求項3のいずれかに記載の微粒子測定方法。4. The fine particle measuring method according to claim 1, wherein the photothermal deflection spectroscopy of the particles is measured by a position gradient intensity filter. コヒーレントなポンプ光とプローブ光のレーザ光を同軸で混合して光レール上に射出されるレーザ光束と、このレーザ光束を平行走査する走査手段と、前記走査手段の後方に配置される被測定流体と、被測定流体を透過した光束を吸収する遮光板と、前記被測定流体の粒子の光熱偏向分光から粒子の組成別粒子のサイズと存在位置の計測を行う位置傾斜強度フィルタとを備えてなることを特徴とする微粒子測定装置。A laser beam that is coaxially mixed with coherent pump light and probe laser beam and emitted onto the optical rail, a scanning unit that scans the laser beam in parallel, and a fluid to be measured disposed behind the scanning unit And a light shielding plate that absorbs the light flux that has passed through the fluid to be measured, and a position gradient intensity filter that measures the size and location of the particles by composition from the photothermal deflection spectroscopy of the particles of the fluid to be measured. A fine particle measuring apparatus. コヒーレントなポンプ光とプローブ光のレーザ光を同軸で混合して光レール上に射出されるレーザ光束と、このレーザ光束を平行走査する走査手段と、前記走査手段の後方に配置される被測定流体と、被測定流体を透過した光束を吸収する遮光板と、前記被測定流体の粒子からの光散乱や光回折パターンと被測定流体中の粒子の光熱偏向分光とを分離するハーフミラーと、被測定流体中の粒子の光散乱や光回折パターンから粒子の複数の形状や寸法を識別する多重マッチトフィルタと、被測定流体中の粒子の光熱偏向分光から粒子サイズと存在位置の計測を行う位置傾斜強度フィルタとを備えてなることを特徴とする微粒子測定装置。A laser beam that is coaxially mixed with coherent pump light and probe laser beam and emitted onto the optical rail, a scanning unit that scans the laser beam in parallel, and a fluid to be measured disposed behind the scanning unit A light-shielding plate that absorbs the light flux that has passed through the fluid to be measured, a half mirror that separates light scattering and light diffraction patterns from the particles of the fluid to be measured and photothermal deflection spectroscopy of the particles in the fluid to be measured, Multiple matched filters that identify multiple shapes and dimensions of particles from light scattering and light diffraction patterns of particles in the measurement fluid, and positions where particle size and location are measured from photothermal deflection spectroscopy of particles in the fluid under measurement A fine particle measuring apparatus comprising a gradient intensity filter. コヒーレントなポンプ光とプローブ光のレーザ光を同軸で混合して光レール上に射出されるレーザ光束と、このレーザ光束を平行走査する走査手段と、前記走査手段の後方に配置される被測定流体と、被測定流体を透過した光束を吸収する遮光板と、前記被測定流体の粒子からの光散乱や光回折パターンと被測定流体中の粒子の光熱偏向分光とを分離するハーフミラーと、被測定流体中の粒子の光散乱や光回折パターンから粒子の複数の形状や寸法を識別する多重マッチトフィルタと、被測定流体中の粒子の光熱偏向分光から粒子サイズと存在位置の計測を行う位置傾斜強度フィルタと、前記多重マッチトフィルタ上に前焦点がある凸レンズ14と、前記傾斜光強度フィルタ上に前焦点のある凸レンズ15と、前記多重マッチトフィルタ上に前焦点がある凸レンズ14に隣接して前側に配置した変形回折格子フィルタ34と、前記傾斜光強度フィルタ13上に前焦点のある凸レンズ15に隣接して前側に配置した変形回折格子フィルタ35とを備え、さらに各凸レンズ14、15の後焦点面に撮像装置を設けたことを特徴とする微粒子測定装置。A laser beam that is coaxially mixed with coherent pump light and probe laser beam and emitted onto the optical rail, a scanning unit that scans the laser beam in parallel, and a fluid to be measured disposed behind the scanning unit A light-shielding plate that absorbs the light flux that has passed through the fluid to be measured, a half mirror that separates light scattering and light diffraction patterns from the particles of the fluid to be measured and photothermal deflection spectroscopy of the particles in the fluid to be measured, Multiple matched filters that identify multiple shapes and dimensions of particles from light scattering and light diffraction patterns of particles in the measurement fluid, and positions where particle size and location are measured from photothermal deflection spectroscopy of particles in the fluid under measurement An inclined intensity filter, a convex lens 14 having a front focal point on the multiple matched filter, a convex lens 15 having a front focal point on the inclined light intensity filter, and the multiple matched filter A modified diffraction grating filter 34 disposed on the front side adjacent to the convex lens 14 having the focus, and a modified diffraction grating filter 35 disposed on the front side adjacent to the convex lens 15 having the front focus on the inclined light intensity filter 13 are provided. In addition, the fine particle measuring apparatus further includes an imaging device on the back focal plane of each of the convex lenses 14 and 15. 前記ハーフミラーは特定波長だけを透過または反射するダイクロイックミラーであることを特徴とする請求項6または請求項7に記載の微粒子測定装置。8. The particle measuring apparatus according to claim 6, wherein the half mirror is a dichroic mirror that transmits or reflects only a specific wavelength. 前記走査手段はガルバノミラー、シリコンマイクロ光スキャナーまたはポリゴンミラーであることを特徴とする請求項6〜請求項8のいずれかに記載の微粒子測定装置。9. The particle measuring apparatus according to claim 6 , wherein the scanning unit is a galvanometer mirror, a silicon micro light scanner, or a polygon mirror.
JP2000077516A 2000-03-21 2000-03-21 Fine particle measurement method and apparatus Expired - Fee Related JP3771417B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000077516A JP3771417B2 (en) 2000-03-21 2000-03-21 Fine particle measurement method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000077516A JP3771417B2 (en) 2000-03-21 2000-03-21 Fine particle measurement method and apparatus

Publications (2)

Publication Number Publication Date
JP2001264232A JP2001264232A (en) 2001-09-26
JP3771417B2 true JP3771417B2 (en) 2006-04-26

Family

ID=18595071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000077516A Expired - Fee Related JP3771417B2 (en) 2000-03-21 2000-03-21 Fine particle measurement method and apparatus

Country Status (1)

Country Link
JP (1) JP3771417B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016892A3 (en) * 2009-05-15 2011-04-21 Michigan Aerospace Corporation Range imaging lidar
CN102506720A (en) * 2011-11-03 2012-06-20 上海理工大学 Light-scattering device and method for measuring diameter and length of short carbon nano-tube

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030045729A (en) * 2003-05-07 2003-06-11 최희규 Selection method of optimum Reflex Index(R.I) on measurement of poly component particle system
JP2005315850A (en) * 2004-03-29 2005-11-10 Kgt Inc Three-dimensional position measuring instrument
US7430046B2 (en) * 2004-07-30 2008-09-30 Biovigilant Systems, Inc. Pathogen and particle detector system and method
CN100365408C (en) * 2005-05-08 2008-01-30 哈尔滨工业大学 On-line detection evaluating method for cryptosporozoam in drinking water treatment process
US8030082B2 (en) * 2006-01-13 2011-10-04 Honeywell International Inc. Liquid-particle analysis of metal materials
JP4102836B2 (en) * 2006-03-22 2008-06-18 株式会社神戸製鋼所 Separation and purification analyzer
EP2522982B1 (en) * 2007-08-15 2015-09-16 Malvern Instruments Limited Broad-Range Spectrometer
JP4509166B2 (en) * 2007-11-02 2010-07-21 ソニー株式会社 Method and apparatus for measuring fine particles
JP5859154B1 (en) 2015-03-06 2016-02-10 リオン株式会社 Particle counter
CN109100272B (en) * 2018-04-24 2020-11-10 天津大学 Method for measuring orientation and size of transparent ellipsoid particles
CN113135402A (en) * 2021-04-07 2021-07-20 国电汉川发电有限公司 Belt blockage detection method and system based on laser scanning

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011016892A3 (en) * 2009-05-15 2011-04-21 Michigan Aerospace Corporation Range imaging lidar
US8427649B2 (en) 2009-05-15 2013-04-23 Michigan Aerospace Corporation Range imaging lidar
CN102506720A (en) * 2011-11-03 2012-06-20 上海理工大学 Light-scattering device and method for measuring diameter and length of short carbon nano-tube
CN102506720B (en) * 2011-11-03 2014-06-18 上海理工大学 Light-scattering device and method for measuring diameter and length of short carbon nano-tube

Also Published As

Publication number Publication date
JP2001264232A (en) 2001-09-26

Similar Documents

Publication Publication Date Title
US5644388A (en) Imaging flow cytometer nearly simultaneously capturing a plurality of images
JP3771417B2 (en) Fine particle measurement method and apparatus
US6888148B2 (en) Arrangement for the optical capture of excited and /or back scattered light beam in a sample
US6947127B2 (en) Arrangement for the optical capture of excited and/or back scattered light beam in a sample
JP2019200212A (en) System for detecting or reviewing defect in semiconductor sample
US8014063B2 (en) Optical projection tomography
US8767216B2 (en) Holographically illuminated imaging devices
US8633432B2 (en) Reflective focusing and transmissive projection device
JP2004170977A (en) Method and arrangement for optically grasping sample with depth of resolution
JP2002526788A (en) High throughput microscope
CN109387157A (en) It is imaged by lateral visual angle to characterize the height profile of sample
JP2006177955A (en) Improved scanning and condensing method for rare-cell detector
US20220276169A1 (en) Illumination for fluorescence imaging using objective lens
JP2007140322A (en) Optical apparatus
JP2006275964A (en) Shading correction method for scanning fluorescence microscope
JP6796379B2 (en) Laser microdissection and laser microdissection method
EP3752815A1 (en) Systems, devices and methods for three-dimensional imaging of moving particles
JP6360481B2 (en) Optical microscope apparatus using single luminescent particle detection technique, microscope observation method, and computer program for microscope observation
JP2004361087A (en) Biomolecule analyzer
WO2020175189A1 (en) Cell observation system and cell observation method
JP2004354345A (en) Biomolecule analysis apparatus
JPH01270644A (en) Particle analyser
JP2001272355A (en) Foreign matter inspecting apparatus
JP3454575B2 (en) Scanning optical measuring device
Arnold et al. Development of inspection system for the detection and analysis of solid particles and oil droplets in process water of the petrochemical industry using hyperspectral imaging and fluorescence imaging

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051122

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060209

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100217

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110217

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120217

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130217

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140217

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees