JP3767837B2 - Method and apparatus for detecting buried life form - Google Patents

Method and apparatus for detecting buried life form Download PDF

Info

Publication number
JP3767837B2
JP3767837B2 JP15863297A JP15863297A JP3767837B2 JP 3767837 B2 JP3767837 B2 JP 3767837B2 JP 15863297 A JP15863297 A JP 15863297A JP 15863297 A JP15863297 A JP 15863297A JP 3767837 B2 JP3767837 B2 JP 3767837B2
Authority
JP
Japan
Prior art keywords
antenna
deposit
signal
receiving antenna
buried
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP15863297A
Other languages
Japanese (ja)
Other versions
JPH116874A (en
Inventor
真二 後藤
昭雄 高橋
Original Assignee
株式会社タウ技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社タウ技研 filed Critical 株式会社タウ技研
Priority to JP15863297A priority Critical patent/JP3767837B2/en
Publication of JPH116874A publication Critical patent/JPH116874A/en
Application granted granted Critical
Publication of JP3767837B2 publication Critical patent/JP3767837B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Support Of Aerials (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、倒壊した建造物、堆積した瓦礫、土砂、雪など(以下、堆積物という。)の中に閉じ込められた生命体を、探索する技術に関する。このような技術は、特に、災害時における埋没生存者の発見に有用である。
【0002】
【従来の技術】
竿状の支持部材の先端部に小型の送信アンテナと受信アンテナの双方が設けられた構造の竿状アンテナ具を、堆積物の中に挿入して、送信アンテナから放射したマイクロ波の反射波を受信アンテナで受信し、この反射波の特性、例えば位相変化を調べることによって、堆積物の表面や周囲の運動物体からの反射波(ノイズ)の影響を軽減し、呼吸や心拍動に伴う体表面の微少変位あるいは手足など身体各部の動きを感度よく検知して、それにより、埋没している生命体を探知する方法は、既に提案した(特願平8−125475号)。
【0003】
この方法の変形として、同様な竿状の送信アンテナ具と受信アンテナ具を別々に用意し、これらを堆積物の中に挿入して、前記と同じ原理により生命体を探知することも可能である。
【0004】
【発明が解決しようとする課題】
災害時の埋没生存者の探知には、呼吸に伴う体表面の変位を検知するのが最も有望であろうと考えられる。生存していれば必ず呼吸をしており、そして、呼吸に伴う体表面の変位は、かなり顕著で、しかも、定常的かつ周期的であり、したがって、その検知出力をノイズから識別することが比較的容易なはずだからである。
【0005】
しかしながら、その後の研究により、幾つかの問題が生じた。まず、災害時の埋没状況は千差万別で、そのため、呼吸に伴う体表面の変位の検知感度に大きな相違が生じる。埋没者自体の状況としては、どちらを向いているか、立っているのか、寝ているのか、などの違いがある。呼吸による胸部の変形量は、例えば、前後方向と左右方向ではかなり異なり、その結果、身体の向きと電波の送受信の方向の相対的関係により、探知感度に著しい差が生じるものと思われる。
【0006】
また、埋没者の周囲の状況として、大きな電波反射体、例えばスチール家具などが、埋没者の一方の側にあれば、その方向からの放射電波及び/又はその方向への反射電波は大きな減衰を受け、その結果、この方向における探知感度は甚だしく低下する。
【0007】
単一の送受信アンテナ具又は一対の送信アンテナ具と受信アンテナ具の挿入位置を次々に変えて、探知作業を続けていけば、やがては、十分大きい感度が得られる位置を捜し当てることができるであろう。しかしながら、災害時における埋没生存者の探知は一刻を争うので、探知作業に要する時間は極力短縮する必要がある。
【0008】
更に、前記のような構造のアンテナ具を瓦礫等の中に挿入してもなお、堆積物の外部に漏れ出す電波と外部から入り込む電波が、無視できない程度に存在し、その結果、付近にある程度以上大きな運動物体、例えば、作業中の人間や移動中の車両等が存在すると、それも検知してしまうため、肝心な埋没生存者の動きの探知が困難になる場合がある。
【0009】
【課題を解決するための手段】
本発明の方法は、前記のような竿状の送信アンテナ具と受信アンテナ具を、その少なくとも一方は複数本用い、これらを堆積物の異なる位置に挿入して、受信波の検波出力を総合評価する。
【0010】
送信アンテナ具が複数本の場合は、これらの送信アンテナ具から逐次に電波を送出し、それぞれの場合に得られる検波出力を総合評価する。受信アンテナ具が複数本の場合には、それらの受信波を逐次又は並列に検波して出力し、これらの出力を総合評価する。例えば、諸検波出力を見比べて、同じような周期で振幅の異なる幾つかの出力波形があれば、埋没生存者がいることはほぼ確実であると判断してよい。
【0011】
送信アンテナ具及び受信アンテナ具の埋設配置の一例は、送信アンテナ具及び受信アンテナ具のそれぞれのアンテナに、それらの支持部材の長さ方向の緩やかな指向性を持たせて、全てのアンテナ具を、堆積物中のほぼ一点に向けて、放射状に挿入することである。
【0012】
複数の受信アンテナ具を用いる場合に、そのなかの一つを、堆積物の中に挿入せず、外に出しておくのもよい。この受信アンテナ具のアンテナからの検波出力は、主に外部の運動物体の動きを表わすから、それと見比べることにより、堆積物に挿入した受信アンテナ具のアンテナからの検波出力において、埋没生存者の検知出力か外部の運動物体の検知出力かを、識別することが容易になる。
【0013】
前記方法の実施に使用される本発明の装置は、前記のような竿状の複数の送信アンテナ具と、高周波信号を発生する単一の送信器と、前記複数の送信アンテナ具の任意の一つに前記送信器の出力を選択的に供給するための切替スイッチと、やはり竿状の複数の受信アンテナ具と、前記複数の受信アンテナ具にそれぞれ接続されて各受信アンテナ具からの信号を検波する複数の受信器と、前記複数の受信器に接続された出力機器とを備える。
【0014】
検波回路として、受信信号を送信信号の基準信号で位相検波する第1の検波回路と、受信信号を送信信号の基準信号と90度位相が異なる信号で位相検波する第2の検波回路とを設けることにより、埋没生存者の探知の確実性が増す。
【0015】
更に、送信信号の分岐信号を受けてその位相と振幅を調整する調整回路を設けるとともに、各前記受信回路において、前記調整回路の出力を受信信号から減算して受信信号中の静止物体からの反射波に対応する信号を抑制する回路を、検波回路よりも前の段に設けるのが有利である。
【0016】
【発明の実施の形態】
図1は、本発明により、複数の竿状の送信アンテナ具と受信アンテナ具を堆積物中に挿入して、埋没生存者を探知している状態の一例を、概念的に示す。倒壊家屋の残骸などの堆積物1の中に埋没生存者2が閉じ込められており、その脇にはスチール家具3が倒れている。複数の竿状の送信アンテナ具4〜6(TxA〜TxC)と受信アンテナ具7〜9(RxA〜RxC)を、堆積物1の相隔たった箇所に、なるべく深く挿入する。適当な隙間があれば極力それを利用するが、場合によっては、削岩機などを用いて堆積物に穴をあけることも必要であろう。
【0017】
各アンテナ具の先端部には小型のアンテナが取付けられており、ここに説明する実施形態においては、各アンテナがアンテナ具の長さ方向に緩やかな指向性を持っている。その場合、諸アンテナ具は、堆積物内部の適当な1点にほぼ向かうように、放射状に、かつ、送信アンテナ具同士及び受信アンテナ具同士が、それぞれほぼ等角度間隔で分散するように、配置するのがよい。例えば、図示の例のように、3本の送信アンテナ具と3本の受信アンテナ具を用いる場合には、送信アンテナ具と受信アンテナ具を、交互に、約60度の角度間隔で、堆積物のほぼ中心(あるいは、もしも埋没者のいそうな場所が推定できれば、その箇所)に向けて挿入する。このように、複数の送信アンテナ具と受信アンテナ具を堆積物の全周にわたって均等に分散配置することにより、埋没生存者の身体の向きの如何や、スチール家具3などの電波障害物の存在にかかわらず、埋没生存者を探知できる確率を大幅に増すことができる。
【0018】
各送信アンテナ具4〜6と各受信アンテナ具7〜9は、同軸ケーブルのような適当なケーブルにより、送受信器10の送信端子と受信端子に、それぞれ接続される。各受信アンテナからの信号を検波して得られる検知信号は、本実施形態では、ペンレコーダ11に出力される。
【0019】
図2は、本発明で用いられる竿状アンテナ具の一例を示す。(a)は全体図であり、(b)は先端部の断面図である。送信アンテナ具も、受信アンテナ具も、構造は同一である。長さが約1.5メートルのステンレス製の管12の先端に、円蓋で覆われたマイクロストリップアンテナ13が取り付けられており、アンテナと送信器又は受信器を接続するケーブル14が、管12の中を通っている。このアンテナ具の太さは、最も太いところで約7センチメートルである。このアンテナは、アンテナ具の長さ方向に緩やかな指向性を持つ。
【0020】
次に送受信器を説明する。図3は、スーパーヘテロダイン方式の送信器と受信器の回路構造の一例を、ブロック図で示す。送信器20において、高周波発生器21の出力は、分配/合成器22、増幅器23、ミクサ24、増幅器25、分配/合成器26及び増幅器27をこの順で経て、手動又はタイマー制御の切替スイッチ28により、複数の送信アンテナ具4ないし6のアンテナに、所定期間(例えば、1分間)ずつ、順次供給される。
【0021】
一方、複数の受信アンテナ具7ないし9のアンテナは、受信器30、40及び50にそれぞれ接続され、したがって、これら複数の受信アンテナの出力は、同時に出力される。これらの受信器の構造は同一なので、以下、受信器30について説明する。受信器30において、受信アンテナ具7のアンテナからの信号は、増幅器31、減算器32、増幅器33、ミクサ34及び増幅器35をこの順で経て、検波器36に供給され、位相が90度異なる1対の検波出力E1及びE2に変換される。検波出力E1及びE2は、多点ペンレコーダ11により記録される。
【0022】
送信器内のミクサ24と受信器内のミクサ34には、局部発振器60の出力も供給される。局部発信器60の出力を複数の受信器に分配するために、分配/合成器61が挿入されている。送信器内の分配/合成器26の分岐出力epは、不要反射波相殺信号発生器62に供給され、この発生器62の出力eqは、分配/合成器63を介して、受信器内の減算器32に供給される。送信器内の分配/合成器22の分岐出力ecは、更に分配/合成器64により2分され、一方はそのまま、他方は90度移相器65を経て、検波器36に供給される。
【0023】
不要反射波相殺信号発生器62は、可変移相器と可変減衰器からなり、これらにより、分配/合成器26の分岐出力epは位相と振幅がそれぞれ調節されて、不要反射波相殺信号eqとなる。
【0024】
図4は、検波器36の内部構成を示す。増幅器35からの信号erは2分されて、一方は乗算器M1361に被乗数信号として供給され、他方は乗算器M2362に被乗数信号として供給される。また、分配/合成器64の直接出力、すなわち送信器内の分配/合成器22の分岐出力ecは、そのまま乗算器M1に乗数信号として供給され、また、分配/合成器64から更に90度移相器65を経た信号esは、乗算器M2に乗数信号として供給される。乗算器M1及びM2の出力は、それぞれ帯域フィルタ363及び364を通り、増幅器365及び366により増幅されて、検波出力E1及びE2となる。
【0025】
ここで、図3及び4に示された回路、特に受信器の動作を説明する。一般に、送信信号eTと受信信号eRは、下記の式で表わすことができる。

Figure 0003767837
【0026】
説明を簡明にするため、減算器32は無いと仮定すると、検波器36に入力される受信信号erは、次式で表わすことができる。
Figure 0003767837
他方、分配/合成器22により分岐された送信信号の一部ecは、次式で表わすことができる。
c=ac cosωt (4)
【0027】
乗算器M1によりecとerを乗算すると、
Figure 0003767837
また、乗算器M2により、ecを90度移相した信号es、すなわちac sinωtとerを乗算すると、
s×er=(1/2)am{sinω(2t−τ)+sinωτ} (6)
【0028】
(5)式及び(6)式において、右辺を展開したときの第1項は、放射電波の2倍の周波数を持つが、同第2項におけるωτは、反射体が静止物体の場合は一定であり、運動体の場合でも、その変化の周波数は第1項に比して極めて低い。したがって、これら乗算器の出力から低域フィルタにより高周波成分を除くと、(5)式及び(6)式の右辺第1項に対応する成分が除去されて、次式で表わされる出力E1’及びE2’が得られる。
1’=(1/2)am cosωτ (7)
2’=(1/2)am sinωτ (8)
【0029】
以上の説明は、任意の一つの反射波についてのものであり、したがって、探知対象である運動体、例えば生体からの反射波の位相(電波が往復に要する時間)をτoとし、それ以外の障害物、すなわち静止物からの反射波の位相をτnで代表すれば、前掲出力E1’及びE2’は次のようになるはずである。
1’=(1/2)am cosωτo+(1/2)am' cosωτn (9)
2’=(1/2)am sinωτo+(1/2)am' sinωτn (10)
【0030】
上掲2式の右辺第2項は、探知対象とは無関係な、いわばノイズである。ところが、通常、am'はamよりも著しく大きいため、このままでは、第1項、すなわち探知対象に対応する所望の信号がこのノイズの中に埋もれてしまい、十分な感度が得られない。
【0031】
そこで、減算器32及び不要反射波相殺信号発生器62が設けられる。分配/合成器26の分岐出力epの位相と振幅を、可変移相器と可変減衰器により、増幅器31からの受信信号の主要成分のそれらととほぼ等しくなるように調整し、それを減算器32に供給して、増幅器31からの受信信号から差し引く。実際には、減算器32の出力をレベルメータなどで監視しながら、それが最小となるように、前記可変移相器と可変減衰器を調節すればよい。これにより、(9)式と(10)式の右辺第2項の振幅を、同第1項に対する後述の検知処理に支障がない程度に、小さくすることができる。
【0032】
ところで、探知対象である運動体とアンテナの間の距離は、探知対象の表面の動き、例えば、生体の呼吸、心拍、身体各部の動きなどに応じて、僅かであるが変動し、それに起因して、対象物からの反射波の位相τoが変動する。したがって、(9)式及び/又は(10)式の変化分を調べれば、探知対象である運動体を検知することができる。
【0033】
さて、探知対象までの距離の平均値をRoで表わし、変動分をrで表わせば、
ωτo=ω・2(Ro+r)/V=(2ω/V)Ro+(2ω/V)r
ここで、2ω/VとRoは一定であるから、(2ω/V)Ro=A、2ω/V=Bと置けば、(9)式と(10)式は次のように書き替えられる。ただし、前述のようにして低減された不要反射波信号の残渣をΔE1とΔE2で表わす。
1’=(1/2)am cos(A+Br)+ΔE1
2’=(1/2)am sin(A+Br)+ΔE2
【0034】
しかるに、Roは数m程度であるのに対して、rはせいぜい数cm程度であるから、|A|≫|Br|であり、したがって、次の近似式が成り立つ。
1’≒(1/2)am{cosA−Br sinA}+ΔE1 (11)
2’≒(1/2)am{sinA+Br cosA}+ΔE2 (12)
【0035】
これら2式の右辺を展開したときの第1項と第3項は一定、すなわち直流成分であから、高域フィルタによって除去することができ、それにより、第2項が示す反射波信号の変化分、すなわち探知対象である運動体を、検知することができる。
【0036】
図4における帯域フィルタ363及び364は、前記高域フィルタと、先に述べた、(5)及び(6)式から(7)及び(8)式を得るための低域フィルタとを、合成したものと等価なフィルタである。したがって、増幅器365及び366の出力として、探知対象である運動体の動きを示す次式の信号E1及びE2が得られる。
1≒−(1/2)amBr sinA (13)
2≒(1/2)amBr cosA (14)
【0037】
なお、90度位相が異なる検波出力E1及びE2を発生させる理由は、次のとおりである。すなわち、変化量rの係数であるsinAとcosAにおいて、Aすなわち(2ω/V)Roがπの整数倍に近い時には、sinA≒0となるので、E1による検知は不可能になるが、|cosA|≒1となるので、E2による検知の感度は最大となり、また、Aがπ/2の整数倍に近いときには、cosA≒0となるので、E2による検知は不可能となるが、|sinA|≒1となるので、E1による検知の感度は最大となる。したがって、探知対象までの距離の如何にかかわらず、検出不能という事態を避けることができるのである。
【0038】
本実施形態では、検波出力E1及びE2を、そのままペンレコーダ11で記録するが、それに代えて、CRT、液晶等による動的な表示装置に表示してもよい。しかし、この型の表示装置では、複数の送信アンテナから逐次的に送信したときに逐次的に得られる検波出力の全体を、同時に比較観察することができない。これが簡単にできる点で、ペンレコーダが有利である。動的な表示装置でこれを可能にするには、記憶・編集機能が必要であるが、それは、マイクロコンピュータを使えば容易に実現することができる。
【0039】
他の出力形式として、検波出力E1及びE2によりそれぞれ電圧制御型の可変周波発振器を制御し、これらの発振器の出力をヘッドホン等で聴取して、その周波数変化により、対象物の動きを検知することも可能である。その場合、検波出力E1及びE2は、r、すなわち探知対象の距離の変動分に比例しているが、その周波数は通常非常に低い。例えば、心拍は1ヘルツ前後であり、呼吸は0.4ヘルツ前後である。そこで、検波出力E1及びE2に適当なバイアス電圧を加えて、可変周波発振器の発振周波数が、聴取し易い周波数、例えば800ヘルツ付近を中心として、変動するように調整するのがよい。しかし、この方法も、検波出力の全体を同時に比較聴取することはできないのが、難点である。
【0040】
あるいはまた、高速フーリエ変換器により、検波出力E1及びE2の周波数解析を行なって、そのスペクトル分布を表示してもよい。
【0041】
前述の実施形態では、送信アンテナ具と受信アンテナ具の双方を複数個用いたが、どちらか一方を1個にしても、単一の送受信アンテナ具又は1対の送信アンテナ具と受信アンテナ具のみを用いる場合と比較すれば、埋没生存者の探知の確率は大幅に向上する。
【0042】
また、複数の受信アンテナ具にそれぞれ別個の受信回路を固定的に接続する代りに、1個の受信器を複数の受信アンテナ具に順次切替えて接続してもよい。こうすると、検波出力の全体を同時に比較観察するのには甚だ不便であるが、コストは大幅に下げることができる。
【0043】
図5ないし図10は、呼吸に伴う体表面の変位の検知において、埋没生存者自身及びその近辺の状況により変化する検波出力波形の実験例を示す。これらの図において、送信アンテナ具Txと受信アンテナ具Rxは一つの水平面上にあり、両アンテナ具は、この水平面内で90度の角度をなしている。
【0044】
図5は、送信アンテナ具を身体の正面に挿入し、受信アンテナ具を側方に挿入した場合であって、十分な振幅の周期的波形から、呼吸に伴う体表面の変位、すなわち埋没生存者の存在を、明確に検知することができる。
【0045】
図6は、送信アンテナ具を身体の正面から45度外れた所に挿入し、受信アンテナ具を側方から45度後方に挿入した場合であって、この場合でも、呼吸に伴う体表面の変位をかなり明確に検知することができる。
【0046】
図7は、送信アンテナ具を身体の側方に挿入し、受信アンテナ具を後方に挿入した場合であり、図8は、送信アンテナ具を身体の後方に挿入し、、受信アンテナ具を側方に挿入した場合であって、いずれの場合も、出力の振幅が小さく、各種のノイズが多い実際の場面では、呼吸に伴う体表面の変位、すなわち埋没生存者の存在を、明確に検知することは容易ではない。
【0047】
図9は、図5と同じ送信アンテナ具と受信アンテナ具の配置において、埋没生存者の正面に、身体が隠れる程度の大きさの金属板が存在する場合であって、やはり出力の振幅は小さく、実地において呼吸に伴う体表面の変位を明確に検知することは困難である。
【0048】
図10は、図5と同じ送信アンテナ具と受信アンテナ具の配置角度において、堆積物中に挿入した受信アンテナ具(Rx1)と、堆積物の外に出した受信アンテナ具(Rx2)の検波出力を、対比的に示す。波形図の中央付近に現れた大振幅部分は、近くを通った自動車に起因するものであるが、挿入された受信アンテナ具からの出力だけを見たのでは、手足の突発的な動きなのかどうか、判別できない。また、このようなノイズが大小多数現れると、図7ないし9のような場合には特に、呼吸に伴う体表面の変位の検知が困難になる。しかし、このように対比観察すれば、堆積物の外部における運動物体からのノイズが特定できるから、それらがないものとみなすことにより、手足の突発的動きや呼吸に伴う体表面の変位の検知が容易になる。
【0049】
したがって、図1に示した配置において、更に1個の受信アンテナ具とそれに接続された受信器とを追加し、この受信アンテナ具は堆積物の中に挿入せずに、その外に出しておき、その出力も含めて諸検波出力を総合判断するのも、甚だ有用である。
【0050】
【発明の効果】
本発明によれば、堆積物中の埋没生存者を、その埋没状況に左右されることなく、また、周囲の運動物体、例えば作業中の人間や移動中の車両などの影響を受けずに、迅速確実に探知することができる。
【図面の簡単な説明】
【図1】本発明による埋没生存者探知方法の一形態を示す概念図。
【図2】本発明で用いられるアンテナ具の一例を示す図。
【図3】本発明で用いられる送受信器の回路構成の一例を示すブロック図。
【図4】受信器内の検波器の回路構成の一例を示すブロック図。
【図5】埋没状況により変化する検波出力の第1の例を示す図。
【図6】埋没状況により変化する検波出力の第2の例を示す図。
【図7】埋没状況により変化する検波出力の第3の例を示す図。
【図8】埋没状況により変化する検波出力の第4の例を示す図。
【図9】埋没状況により変化する検波出力の第5の例を示す図。
【図10】堆積物中に挿入された受信アンテナ具と外に置かれた受信アンテナ具の検波出力を示す図。
【符号の説明】
1…堆積物 2…埋没者 3…スチール家具 4〜6…送信アンテナ具 7〜9…受信アンテナ具 10…送受信器 11…ペンレコーダ 20…送信器 28…切替スイッチ 30、40、50…受信器 32…減算器 36…検波器 62…不要反射波相殺信号発生器 65…90度移相器[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a technique for searching for a life form confined in a collapsed building, accumulated rubble, earth and sand, snow (hereinafter referred to as sediment). Such a technique is particularly useful for finding buried survivors during disasters.
[0002]
[Prior art]
Insert a saddle-shaped antenna device with a structure in which both a small transmitting antenna and a receiving antenna are provided at the tip of the saddle-shaped support member into the deposit, and reflect the reflected wave of the microwave radiated from the transmitting antenna. Receiving with a receiving antenna and examining the characteristics of this reflected wave, such as phase change, to reduce the influence of the reflected wave (noise) from the surface of the deposit and surrounding moving objects, and the body surface accompanying breathing and heartbeat A method has been already proposed (Japanese Patent Application No. 8-125475) for detecting the movement of each part of the body such as a small displacement or limb with high sensitivity, and thereby detecting the buried life form.
[0003]
As a modification of this method, it is also possible to prepare a similar bowl-shaped transmitting antenna device and receiving antenna device separately, insert them into the deposit, and detect a living object according to the same principle as described above. .
[0004]
[Problems to be solved by the invention]
Detecting the displacement of the body surface due to breathing may be the most promising for detecting buried survivors during a disaster. If you are alive, you are always breathing, and the displacement of the body surface that accompanies the breathing is quite noticeable, and it is steady and periodic, so compare its detection output with noise This should be easy.
[0005]
However, subsequent research has created several problems. First of all, the burial situation at the time of a disaster is very different, and therefore, there is a great difference in the detection sensitivity of the displacement of the body surface accompanying breathing. As for the situation of the buried subject itself, there are differences such as whether they are facing, standing or sleeping. The amount of deformation of the chest due to respiration differs considerably, for example, in the front-rear direction and the left-right direction, and as a result, a significant difference in detection sensitivity is considered to occur due to the relative relationship between the body direction and the radio wave transmission / reception direction.
[0006]
In addition, if there is a large radio wave reflector, such as steel furniture, on one side of the buried person, the radiation wave from that direction and / or the reflected wave wave in that direction will be greatly attenuated. As a result, the detection sensitivity in this direction is significantly reduced.
[0007]
If the detection operation is continued by changing the insertion positions of a single transmission / reception antenna tool or a pair of transmission antenna tools and reception antenna tools one after another, it will eventually be possible to find a position where sufficiently high sensitivity can be obtained. Let's go. However, since detection of buried survivors at the time of a disaster competes for a moment, the time required for detection work must be shortened as much as possible.
[0008]
Furthermore, even if the antenna device having the structure as described above is inserted into debris or the like, the radio waves leaking out of the deposit and the radio waves entering from the outside are not negligible. If there is a large moving object such as a working person or a moving vehicle, it is also detected, which may make it difficult to detect the movement of an important buried survivor.
[0009]
[Means for Solving the Problems]
The method of the present invention uses a plurality of saddle-shaped transmission antennas and reception antennas as described above, at least one of which is inserted at different positions on the deposit, and comprehensively evaluates the detection output of the received waves. To do.
[0010]
When there are a plurality of transmission antenna tools, radio waves are sequentially transmitted from these transmission antenna tools, and the detection output obtained in each case is comprehensively evaluated. When there are a plurality of receiving antennas, these received waves are detected sequentially or in parallel and output, and these outputs are comprehensively evaluated. For example, by comparing various detection outputs, if there are several output waveforms with different amplitudes in the same period, it may be determined that it is almost certain that there are buried survivors.
[0011]
An example of the embedded arrangement of the transmitting antenna tool and the receiving antenna tool is that each antenna of the transmitting antenna tool and the receiving antenna tool has a gentle directivity in the length direction of their supporting members, and all the antenna tools are used. It is to insert radially toward almost one point in the sediment.
[0012]
In the case of using a plurality of receiving antenna tools, one of them may be left outside without being inserted into the deposit. Since the detection output from the antenna of this receiving antenna tool mainly represents the movement of an external moving object, the detection of the buried survivor is detected in the detection output from the antenna of the receiving antenna tool inserted in the sediment by comparing it with it. It becomes easy to identify the output or the detection output of an external moving object.
[0013]
The apparatus of the present invention used to implement the method includes a plurality of saddle-shaped transmission antennas as described above, a single transmitter that generates a high-frequency signal, and any one of the plurality of transmission antennas. A selector switch for selectively supplying the output of the transmitter, a plurality of bowl-shaped receiving antennas, and a signal connected to each of the plurality of receiving antennas to detect signals from the receiving antennas. A plurality of receivers, and an output device connected to the plurality of receivers.
[0014]
As a detection circuit, a first detection circuit that detects a phase of a received signal using a reference signal of a transmission signal and a second detection circuit that detects a phase of the reception signal using a signal that is 90 degrees out of phase with the reference signal of the transmission signal are provided. This increases the certainty of detection of buried survivors.
[0015]
In addition, an adjustment circuit that receives the branch signal of the transmission signal and adjusts the phase and amplitude thereof is provided, and in each of the reception circuits, the output of the adjustment circuit is subtracted from the reception signal and reflected from a stationary object in the reception signal. It is advantageous to provide a circuit for suppressing a signal corresponding to a wave in a stage preceding the detection circuit.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 conceptually shows an example of a state in which a plurality of saddle-like transmitting antenna devices and receiving antenna devices are inserted into a deposit to detect a surviving survivor according to the present invention. A buried survivor 2 is confined in a deposit 1 such as a wreckage of a collapsed house, and a steel furniture 3 has fallen beside it. The plurality of bowl-shaped transmitting antenna tools 4 to 6 (TxA to TxC) and the receiving antenna tools 7 to 9 (RxA to RxC) are inserted as deep as possible into the spaced locations of the deposit 1. If there is an appropriate gap, it will be used as much as possible, but in some cases it will also be necessary to drill holes in the deposit using a rock drill or the like.
[0017]
A small antenna is attached to the tip of each antenna tool. In the embodiment described here, each antenna has a moderate directivity in the length direction of the antenna tool. In that case, the various antenna tools are arranged radially so that they are almost directed to a suitable point inside the deposit, and so that the transmitting antenna tools and the receiving antenna tools are distributed at substantially equal angular intervals. It is good to do. For example, as shown in the example, when three transmitting antenna devices and three receiving antenna devices are used, the transmitting antenna device and the receiving antenna device are alternately arranged at an angular interval of about 60 degrees. Insert it towards the center of (or if you can estimate the likely location of the buried subject). In this way, a plurality of transmitting antenna devices and receiving antenna devices are distributed evenly over the entire circumference of the deposit, so that the direction of the body of the buried survivor and the presence of radio wave obstacles such as the steel furniture 3 can be reduced. Regardless, the probability of detecting buried survivors can be greatly increased.
[0018]
Each of the transmission antenna devices 4 to 6 and each of the reception antenna devices 7 to 9 are connected to the transmission terminal and the reception terminal of the transceiver 10 by an appropriate cable such as a coaxial cable. In this embodiment, the detection signal obtained by detecting the signal from each receiving antenna is output to the pen recorder 11.
[0019]
FIG. 2 shows an example of a bowl-shaped antenna device used in the present invention. (A) is a general view, (b) is a cross-sectional view of the tip. The transmitting antenna device and the receiving antenna device have the same structure. A microstrip antenna 13 covered with a circular lid is attached to the tip of a stainless steel tube 12 having a length of about 1.5 meters, and a cable 14 connecting the antenna and a transmitter or receiver is connected to the tube 12. It passes through. The thickness of this antenna tool is about 7 centimeters at the thickest place. This antenna has a gentle directivity in the length direction of the antenna device.
[0020]
Next, the transceiver will be described. FIG. 3 is a block diagram showing an example of a circuit structure of a superheterodyne transmitter and receiver. In the transmitter 20, the output of the high-frequency generator 21 passes through a distributor / synthesizer 22, an amplifier 23, a mixer 24, an amplifier 25, a distributor / synthesizer 26 and an amplifier 27 in this order, and a manual or timer-controlled changeover switch 28. Thus, the antennas are sequentially supplied to the antennas of the plurality of transmitting antenna devices 4 to 6 for a predetermined period (for example, one minute).
[0021]
On the other hand, the antennas of the plurality of receiving antenna devices 7 to 9 are connected to the receivers 30, 40 and 50, respectively, and therefore the outputs of the plurality of receiving antennas are output simultaneously. Since the structures of these receivers are the same, the receiver 30 will be described below. In the receiver 30, the signal from the antenna of the receiving antenna tool 7 is supplied to the detector 36 through the amplifier 31, the subtractor 32, the amplifier 33, the mixer 34 and the amplifier 35 in this order, and the phase is different by 90 degrees. It is converted into a pair of detection outputs E 1 and E 2 . The detection outputs E 1 and E 2 are recorded by the multipoint pen recorder 11.
[0022]
The output of the local oscillator 60 is also supplied to the mixer 24 in the transmitter and the mixer 34 in the receiver. A distributor / synthesizer 61 is inserted to distribute the output of the local transmitter 60 to a plurality of receivers. Branch output e p of the distributor / combiner 26 in the transmitter is fed to the unnecessary reflected wave cancellation signal generator 62, the output e q of the generator 62, through the distributor / synthesizer 63, the receiver Is supplied to the subtractor 32. Outcoupling e c of the distributor / combiner 22 in the transmitter is further 2 minutes by the distributor / synthesizer 64, one directly, the other is through the 90-degree phase shifter 65, is supplied to the detector 36.
[0023]
Unnecessary reflected wave cancellation signal generator 62 is made variable phase shifter and a variable attenuator, these distribution / branch output e p of the combiner 26 is adjusted phase and amplitude, respectively, unnecessary reflected wave cancellation signal e q .
[0024]
FIG. 4 shows the internal configuration of the detector 36. The signal e r from the amplifier 35 is 2 minutes, one of which is supplied as a multiplicand signal to the multiplier M 1 361, the other is supplied as multiplicand signal to the multiplier M 2 362. Furthermore, the direct output of the distributor / synthesizer 64, i.e. branch output e c of the distributor / combiner 22 in the transmitter is supplied as a multiplier signal directly to the multiplier M 1, also further from the distributor / synthesizer 64 90 signal e s passing through the degrees phase shifter 65 is supplied as a multiplier signal to the multiplier M 2. The outputs of the multipliers M 1 and M 2 pass through band-pass filters 363 and 364, respectively, and are amplified by amplifiers 365 and 366 to become detection outputs E 1 and E 2 .
[0025]
Here, the operation of the circuit shown in FIGS. 3 and 4, particularly the receiver, will be described. In general, the transmission signal e T and the reception signal e R can be expressed by the following equations.
Figure 0003767837
[0026]
For simplicity of explanation, the subtracter 32 is assuming no received signal e r input to the detector 36 can be expressed by the following equation.
Figure 0003767837
On the other hand, some e c of the branch transmission signal by the distributor / combiner 22 can be expressed by the following equation.
e c = a c cosωt (4)
[0027]
Multiplying e c and e r by the multiplier M 1,
Figure 0003767837
Further, by the multiplier M 2, the signal e s by 90 degrees phase shifted e c, that is, multiplying a c sin .omega.t and e r,
e s × e r = (1/2 ) a m {sinω (2t-τ) + sinωτ} (6)
[0028]
In equations (5) and (6), the first term when the right side is expanded has a frequency twice that of the radiated radio wave, but ωτ in the second term is constant when the reflector is a stationary object. Even in the case of a moving body, the frequency of the change is very low compared to the first term. Therefore, when a high frequency component is removed from the outputs of these multipliers by a low-pass filter, the component corresponding to the first term on the right side of the equations (5) and (6) is removed, and an output E 1 ′ expressed by the following equation: And E 2 '.
E 1 '= (1/2) a m cosωτ (7)
E 2 '= (1/2) a m sinωτ (8)
[0029]
The above description is about an arbitrary reflected wave. Therefore, the phase of the reflected wave from the moving object to be detected, for example, the living body (the time required for the radio wave to reciprocate) is τ o , If the phase of the reflected wave from an obstacle, that is, a stationary object is represented by τ n , the outputs E 1 ′ and E 2 ′ should be as follows.
E 1 '= (1/2) a m cosωτ o + (1/2) a m' cosωτ n (9)
E 2 '= (1/2) a m sinωτ o + (1/2) a m' sinωτ n (10)
[0030]
The second term on the right side of the above-mentioned formula 2 is so-called noise that has nothing to do with the detection target. However, since a m ′ is usually much larger than a m , the first term, that is, the desired signal corresponding to the detection target is buried in this noise, and sufficient sensitivity cannot be obtained.
[0031]
Therefore, a subtractor 32 and an unnecessary reflected wave cancellation signal generator 62 are provided. The phase and amplitude of the branched output e p of the distributor / combiner 26, the variable phase shifter and a variable attenuator, adjusted to be approximately equal and their major component of the received signal from the amplifier 31, subtracts it The signal is supplied to the amplifier 32 and subtracted from the received signal from the amplifier 31. In practice, while monitoring the output of the subtractor 32 with a level meter or the like, the variable phase shifter and the variable attenuator may be adjusted so as to minimize the output. As a result, the amplitude of the second term on the right side of Equations (9) and (10) can be reduced to the extent that there is no hindrance to the detection processing described later for the first term.
[0032]
By the way, the distance between the object to be detected and the antenna fluctuates slightly depending on the movement of the surface of the object to be detected, for example, respiration of the living body, heartbeat, movement of each part of the body, and the like. Thus, the phase τ o of the reflected wave from the object varies. Therefore, if the amount of change in Equation (9) and / or Equation (10) is examined, the moving object that is the detection target can be detected.
[0033]
Now, if the average value of the distance to the detection target is represented by R o and the variation is represented by r,
ωτ o = ω · 2 (R o + r) / V = (2ω / V) R o + (2ω / V) r
Here, since 2ω / V and R o are constant, if (2ω / V) R o = A and 2ω / V = B are set, equations (9) and (10) can be rewritten as follows: It is done. However, the residue of the unnecessary reflected wave signal reduced as described above is represented by ΔE 1 and ΔE 2 .
E 1 '= (1/2) a m cos (A + Br) + ΔE 1
E 2 '= (1/2) a m sin (A + Br) + ΔE 2
[0034]
However, since R o is about several meters, r is about several centimeters at most, so | A | >> | Br |. Therefore, the following approximate expression holds.
E 1 '≒ (1/2) a m {cosA-Br sinA} + ΔE 1 (11)
E 2 '≒ (1/2) a m {sinA + Br cosA} + ΔE 2 (12)
[0035]
The first and third terms when the right sides of these two expressions are expanded are constant, that is, they are direct current components, and therefore can be removed by a high-pass filter, thereby changing the reflected wave signal indicated by the second term. Minute, that is, a moving body that is a detection target can be detected.
[0036]
The band-pass filters 363 and 364 in FIG. 4 are a combination of the high-pass filter and the low-pass filter for obtaining the equations (7) and (8) from the equations (5) and (6) described above. It is a filter equivalent to the one. Therefore, as the outputs of the amplifiers 365 and 366, the following signals E1 and E2 indicating the motion of the moving body that is the detection target are obtained.
E 1 ≒ - (1/2) a m Br sinA (13)
E 2 ≒ (1/2) a m Br cosA (14)
[0037]
The reason for generating the detection outputs E 1 and E 2 that are 90 degrees out of phase is as follows. That is, in sinA and cosA which are coefficients of the change amount r, when A, that is, (2ω / V) R o is close to an integral multiple of π, sinA≈0, so detection by E 1 becomes impossible. Since | cosA | ≈1, the sensitivity of detection by E 2 is maximized, and when A is close to an integer multiple of π / 2, cosA≈0, so detection by E 2 is impossible. , | SinA | ≈1, so that the sensitivity of detection by E 1 is maximized. Therefore, it is possible to avoid a situation where detection is impossible regardless of the distance to the detection target.
[0038]
In the present embodiment, the detection outputs E 1 and E 2 are recorded by the pen recorder 11 as they are, but may instead be displayed on a dynamic display device such as a CRT or a liquid crystal. However, in this type of display device, the entire detection output obtained sequentially when transmitting sequentially from a plurality of transmitting antennas cannot be compared and observed simultaneously. A pen recorder is advantageous in that this can be done easily. In order to make this possible with a dynamic display device, a memory / editing function is required, which can be easily realized by using a microcomputer.
[0039]
Other output formats, respectively controls the variable frequency oscillator of the voltage controlled by the detection output E 1 and E 2, and listening to the output of these oscillators with headphones or the like, by its frequency change, detecting the movement of the object It is also possible to do. In this case, the detection outputs E 1 and E 2 are proportional to r, that is, the variation in the distance to be detected, but the frequency is usually very low. For example, the heart rate is around 1 hertz and the respiration is around 0.4 hertz. Therefore, it is preferable that an appropriate bias voltage is applied to the detection outputs E 1 and E 2 so that the oscillation frequency of the variable frequency oscillator is adjusted so as to fluctuate around an easily audible frequency, for example, around 800 Hz. However, this method also has a difficulty in that the entire detection output cannot be compared and listened simultaneously.
[0040]
Alternatively, a frequency analysis of the detection outputs E 1 and E 2 may be performed by a fast Fourier transformer to display the spectrum distribution.
[0041]
In the above-described embodiment, a plurality of transmission antennas and reception antennas are used. However, even if either one is used, only a single transmission / reception antenna tool or a pair of transmission antennas and reception antennas is used. Compared with the use of, the probability of detection of buried survivors is greatly improved.
[0042]
Further, instead of fixedly connecting separate receiving circuits to the plurality of receiving antennas, one receiver may be switched to the plurality of receiving antennas in order. This is very inconvenient for comparing and observing the entire detection output at the same time, but the cost can be greatly reduced.
[0043]
FIGS. 5 to 10 show examples of detection output waveforms that change depending on the situation of the surviving survivor and the vicinity thereof in detecting the displacement of the body surface accompanying breathing. In these drawings, the transmitting antenna device Tx and the receiving antenna device Rx are on one horizontal plane, and both antenna tools form an angle of 90 degrees in this horizontal plane.
[0044]
FIG. 5 shows a case where the transmitting antenna device is inserted in front of the body and the receiving antenna device is inserted sideways, and from the periodic waveform with sufficient amplitude, the displacement of the body surface accompanying respiration, ie, the buried survivor Can be clearly detected.
[0045]
FIG. 6 shows a case where the transmitting antenna device is inserted at a position 45 degrees away from the front of the body, and the receiving antenna device is inserted 45 degrees rearward from the side. Can be detected fairly clearly.
[0046]
FIG. 7 shows a case where the transmitting antenna tool is inserted into the side of the body and the receiving antenna tool is inserted backward, and FIG. 8 shows that the transmitting antenna tool is inserted into the back of the body and the receiving antenna tool is laterally inserted. In any case, the displacement of the body surface that accompanies breathing, that is, the presence of a surviving survivor, should be clearly detected in an actual scene where the output amplitude is small and there are various noises. Is not easy.
[0047]
FIG. 9 shows a case where there is a metal plate that is large enough to hide the body in front of the buried survivor in the same arrangement of the transmitting antenna device and the receiving antenna device as in FIG. In actual practice, it is difficult to clearly detect the displacement of the body surface accompanying breathing.
[0048]
FIG. 10 shows the detection output of the receiving antenna tool (Rx1) inserted into the deposit and the receiving antenna tool (Rx2) put out of the deposit at the same arrangement angle of the transmitting antenna tool and the receiving antenna tool as in FIG. Is shown in contrast. The large-amplitude part that appears near the center of the waveform diagram is due to a car passing nearby, but is it just a sudden movement of the limb when only the output from the inserted receiving antenna tool is seen? I can't tell. Further, when such a large or small amount of noise appears, it becomes difficult to detect the displacement of the body surface due to respiration, particularly in the case of FIGS. However, since this observation can identify noise from moving objects outside the deposit, it can detect sudden movement of the limbs and displacement of the body surface due to breathing by assuming that there is no noise. It becomes easy.
[0049]
Therefore, in the arrangement shown in FIG. 1, an additional receiving antenna device and a receiver connected to the receiving antenna device are added, and this receiving antenna device is not inserted into the deposit, but left outside. It is also very useful to comprehensively judge the detection output including its output.
[0050]
【The invention's effect】
According to the present invention, the survivor buried in the deposit is not affected by the buried state, and without being influenced by surrounding moving objects such as a working person or a moving vehicle, It can be detected quickly and reliably.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram showing an embodiment of a buried survivor detection method according to the present invention.
FIG. 2 is a diagram showing an example of an antenna tool used in the present invention.
FIG. 3 is a block diagram showing an example of a circuit configuration of a transceiver used in the present invention.
FIG. 4 is a block diagram showing an example of a circuit configuration of a detector in the receiver.
FIG. 5 is a diagram showing a first example of a detection output that changes depending on a buried state.
FIG. 6 is a diagram showing a second example of the detection output that changes depending on the buried state.
FIG. 7 is a diagram showing a third example of the detection output that changes depending on the buried state.
FIG. 8 is a diagram showing a fourth example of the detection output that changes depending on the buried state.
FIG. 9 is a diagram showing a fifth example of the detection output that changes depending on the buried state.
FIG. 10 is a diagram showing detection outputs of a receiving antenna tool inserted into a deposit and a receiving antenna tool placed outside.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Deposit 2 ... Buried person 3 ... Steel furniture 4-6 ... Transmitting antenna tool 7-9 ... Reception antenna tool 10 ... Transmitter / receiver 11 ... Pen recorder 20 ... Transmitter 28 ... Changeover switch 30, 40, 50 ... Receiver 32 ... Subtractor 36 ... Detector 62 ... Unnecessary reflected wave cancellation signal generator 65 ... 90 degree phase shifter

Claims (7)

竿状の支持部材の先端部に細いアンテナが設けられた構造の送信アンテナ具と受信アンテナ具を堆積物の異なる位置に挿入し、前記送信アンテナから所定周波数の電波を放射して前記受信アンテナで受信した電波の特性から前記堆積物中に埋没している生命体を探知する方法であって、1個の送信アンテナ具と少なくとも1個の受信アンテナ具を堆積物の異なる位置に挿入し、更に堆積物中に挿入しない1個の受信アンテナ具を外部に配置し、前記複数の受信アンテナ具のアンテナで受信した電波の特性を総合評価して埋没生命体の存否を推定することを特徴とする埋没生命体探知方法。  A transmitting antenna device and a receiving antenna device having a structure in which a thin antenna is provided at the tip of a bowl-shaped support member are inserted into different positions of the deposit, and radio waves of a predetermined frequency are radiated from the transmitting antenna. A method of detecting a living object buried in the deposit from the characteristics of received radio waves, wherein one transmitting antenna tool and at least one receiving antenna tool are inserted at different positions of the deposit, and One receiving antenna tool that is not inserted into the deposit is arranged outside, and characteristics of radio waves received by the antennas of the plurality of receiving antenna tools are comprehensively evaluated to estimate the presence / absence of an embedded life object. Method for detecting buried life forms. 竿状の支持部材の先端部に細いアンテナが設けられた構造の送信アンテナ具と受信アンテナ具を堆積物の異なる位置に挿入し、前記送信アンテナから所定周波数の電波を放射して前記受信アンテナで受信した電波の特性から前記堆積物中に埋没している生命体を探知する方法であって、複数の送信アンテナ具と少なくとも1個の受信アンテナ具を堆積物の異なる位置に挿入し、更に堆積物中に挿入しない1個の受信アンテナ具を外部に配置し、前記複数の送信アンテナ具の送信アンテナから逐次に送信し、前記複数の受信アンテナ具のアンテナで受信した電波の特性を総合評価して埋没生命体の存否を推定することを特徴とする埋没生命体探知方法。  A transmitting antenna device and a receiving antenna device having a structure in which a thin antenna is provided at the tip of a bowl-shaped support member are inserted into different positions of the deposit, and radio waves of a predetermined frequency are radiated from the transmitting antenna. A method of detecting a living object buried in the deposit from the characteristics of received radio waves, wherein a plurality of transmitting antenna tools and at least one receiving antenna tool are inserted at different positions of the deposit, and further deposited. One receiving antenna tool that is not inserted into the object is arranged outside, and the transmission antennas of the plurality of transmitting antenna tools are sequentially transmitted, and the characteristics of the radio waves received by the antennas of the plurality of receiving antenna tools are comprehensively evaluated. A method for detecting a buried life form, wherein the existence of the buried life form is estimated. 前記複数の受信アンテナ具のアンテナで受信した電波を並列に検波し、それらの出力波形を並列に出力することを特徴とする請求項1又は2のいずれかに記載の埋没生命体探知方法。  3. The buried life form detecting method according to claim 1, wherein radio waves received by the antennas of the plurality of receiving antenna tools are detected in parallel and their output waveforms are output in parallel. 前記送信アンテナ具及び受信アンテナ具のアンテナはそれらの支持部材の長さ方向に緩やかな指向性を有し、堆積物に挿入される全てのアンテナ具をその長さ方向が堆積物中のほぼ一点に向かうように方向付けることを特徴とする請求項1ないし3のいずれか1項記載の埋没生命体探知方法。  The antennas of the transmitting antenna device and the receiving antenna device have a gradual directivity in the length direction of their supporting members, and all the antenna devices inserted into the deposit are almost at one point in the deposit. The method for detecting an embedded life form according to any one of claims 1 to 3, characterized in that the direction is directed toward the surface. 竿状の支持部材の先端部に細いアンテナが設けられた構造の複数の送信アンテナ具と、高周波信号を発生する単一の送信器と、前記複数の送信アンテナ具の任意の一つに前記送信器の出力を選択的に供給するための切替スイッチと、竿状の支持部材の先端部に細いアンテナが設けられた構造の堆積物中に挿入される少なくとも1個の受信アンテナ具と、堆積物に挿入されない1個の受信アンテナ具からなる、前記複数の受信アンテナ具にそれぞれ接続されて各受信アンテナ具からの信号を検波する複数の受信器と、前記複数の受信器に接続された出力機器とを備えることを特徴とする埋没生命体探知装置。  A plurality of transmission antenna devices having a structure in which a thin antenna is provided at the tip of a bowl-shaped support member, a single transmitter that generates a high-frequency signal, and the transmission to any one of the plurality of transmission antenna devices A selector switch for selectively supplying the output of the vessel, at least one receiving antenna device to be inserted into the deposit having a structure in which a thin antenna is provided at the tip of the bowl-shaped support member, and the deposit A plurality of receivers connected to the plurality of reception antenna tools and detecting signals from the reception antenna tools, and output devices connected to the plurality of receivers. An embedded life form detecting device characterized by comprising: 各前記受信回路は、受信信号を送信信号の基準信号で位相検波する第1の検波回路と、受信信号を送信信号の基準信号と90度位相が異なる信号で位相検波する第2の検波回路とを有することを特徴とする請求項5記載の埋没生命体探知装置。  Each of the reception circuits includes a first detection circuit that detects a phase of a reception signal using a reference signal of a transmission signal, and a second detection circuit that detects a phase of the reception signal using a signal that is 90 degrees out of phase with the reference signal of the transmission signal. The buried life form detecting apparatus according to claim 5, wherein: 送信信号の分岐信号を受けてその位相と振幅を調整する調整回路を備え、各前記受信回路は、検波回路よりも前の段に、前記調整回路の出力を受信信号から減算して受信信号中の静止物体からの反射波に対応する信号を抑制する回路を有することを特徴とする請求項5または6のいずれかに記載の埋没生命体探知装置。  An adjustment circuit that receives the branch signal of the transmission signal and adjusts the phase and amplitude thereof is provided, and each of the reception circuits subtracts the output of the adjustment circuit from the reception signal before the detection circuit. The buried life form detecting apparatus according to claim 5, further comprising a circuit that suppresses a signal corresponding to a reflected wave from the stationary object.
JP15863297A 1997-06-16 1997-06-16 Method and apparatus for detecting buried life form Expired - Fee Related JP3767837B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15863297A JP3767837B2 (en) 1997-06-16 1997-06-16 Method and apparatus for detecting buried life form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15863297A JP3767837B2 (en) 1997-06-16 1997-06-16 Method and apparatus for detecting buried life form

Publications (2)

Publication Number Publication Date
JPH116874A JPH116874A (en) 1999-01-12
JP3767837B2 true JP3767837B2 (en) 2006-04-19

Family

ID=15675961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15863297A Expired - Fee Related JP3767837B2 (en) 1997-06-16 1997-06-16 Method and apparatus for detecting buried life form

Country Status (1)

Country Link
JP (1) JP3767837B2 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3539895B2 (en) * 1999-07-16 2004-07-07 加藤電機株式会社 Animal exploration device and animal exploration method
FI20040044A0 (en) * 2003-08-20 2004-01-15 Raimo Erik Sepponen Procedure and apparatus for monitoring
US7825669B2 (en) * 2007-03-29 2010-11-02 Hamilton Sundstrand Corporation Microwave position sensing for a turbo machine
JP5757725B2 (en) * 2010-09-22 2015-07-29 シチズンホールディングス株式会社 Position detection device
SE535666C2 (en) * 2011-03-11 2012-10-30 Totalfoersvarets Forskningsins Method and apparatus for crawling racial masses
CN102721961B (en) * 2012-07-02 2013-12-18 中国人民解放军第四军医大学 Time-share rotary scanning detection method for radar vital sign detector
JP6176079B2 (en) * 2013-11-26 2017-08-09 株式会社デンソー Radar equipment
JP6256681B2 (en) * 2013-12-17 2018-01-10 三星電子株式会社Samsung Electronics Co.,Ltd. Calibration apparatus, position estimation apparatus, calibration method, and position estimation method
JP6222454B2 (en) * 2013-12-20 2017-11-01 三星電子株式会社Samsung Electronics Co.,Ltd. Biological information measuring apparatus and biological information measuring method
CN110018522B (en) 2018-01-09 2023-09-01 松下知识产权经营株式会社 Estimation device and estimation method

Also Published As

Publication number Publication date
JPH116874A (en) 1999-01-12

Similar Documents

Publication Publication Date Title
JP4962947B2 (en) Non-contact diagnostic device
JP3877783B2 (en) A method for finding the position of a living organism and a microwave probe using the
JP6914212B2 (en) How and Devices to Detect Vital Signs
JP3767837B2 (en) Method and apparatus for detecting buried life form
ES2314923T3 (en) TECHNIQUE FOR COMPENSATION OF THE TRANSMISSION LEAK IN A RADAR RECEIVER.
US7019692B2 (en) System and method for narrowband pre-detection signal processing for passive coherent location applications
US6462696B1 (en) Radar apparatus
JPS5921515B2 (en) radar device
JP2019505767A (en) Multi-carrier contactless signal detection with noise suppression based on phase-locked loop
JP3367462B2 (en) Active sonar and target detection method thereof
US4016528A (en) Moving target detector
JP3700954B2 (en) Moving object detection device
RU2392853C1 (en) Method of remote breath and heartbeat parametre measurement
EP0152113B1 (en) Ultrasonic diagnostic equipment
KR20020030790A (en) Signal processing method and apparatus and imaging system
RU2392852C2 (en) Impulse superbroadband sensor of remote breath and heartbeat monitoring
US7346311B1 (en) Single frequency repeater
RU67290U1 (en) NARROW-OPERATED PARAMETRIC HYDROLOCATOR
CN108732633A (en) Compound safety check instrument
JP4094121B2 (en) Water leakage detection device
JP2988386B2 (en) CW interference wave canceler
JPH09230038A (en) Electronic monitoring device
JPS59231466A (en) Positional detection of underground article
JP2000237187A (en) Ultrasonic diagnostic device
JP3998333B2 (en) Buried life exploration device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040607

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050912

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050916

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060127

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100210

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110210

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120210

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130210

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140210

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees