JP3764470B1 - Anode for non-aqueous electrolyte secondary battery - Google Patents

Anode for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP3764470B1
JP3764470B1 JP2005047827A JP2005047827A JP3764470B1 JP 3764470 B1 JP3764470 B1 JP 3764470B1 JP 2005047827 A JP2005047827 A JP 2005047827A JP 2005047827 A JP2005047827 A JP 2005047827A JP 3764470 B1 JP3764470 B1 JP 3764470B1
Authority
JP
Japan
Prior art keywords
negative electrode
active material
current collecting
layer
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005047827A
Other languages
Japanese (ja)
Other versions
JP2006108066A (en
Inventor
智善 松島
仁彦 本田
善樹 坂口
正浩 百武
清隆 安田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Original Assignee
Mitsui Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP2005047827A priority Critical patent/JP3764470B1/en
Priority to PCT/JP2005/012062 priority patent/WO2006027886A1/en
Priority to US11/174,645 priority patent/US7838154B2/en
Priority to TW094123271A priority patent/TWI310994B/en
Application granted granted Critical
Publication of JP3764470B1 publication Critical patent/JP3764470B1/en
Publication of JP2006108066A publication Critical patent/JP2006108066A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

【課題】 充放電に起因する活物質の体積変化に起因する応力を緩和でき、負極の変形を防止し得る非水電解液二次電池用負極を提供すること。
【解決手段】 非水電解液二次電池用負極10は、活物質の粒子2aを含む活物質層2を備えている。活物質層2には、電解めっきによって析出した金属材料4が粒子間に浸透している。負極10は、その少なくとも一方の面において開孔し且つ活物質層2の厚み方向に延びる縦孔5を多数有している。電解液と接する一対の集電層3a,3bを更に備え、集電層3a,3b間に活物質層2が介在配置されている。
【選択図】 図1
PROBLEM TO BE SOLVED: To provide a negative electrode for a non-aqueous electrolyte secondary battery that can relieve stress caused by volume change of an active material caused by charge / discharge and can prevent deformation of the negative electrode.
A non-aqueous electrolyte secondary battery negative electrode 10 includes an active material layer 2 containing active material particles 2a. In the active material layer 2, the metal material 4 deposited by electrolytic plating penetrates between the particles. The negative electrode 10 has a number of vertical holes 5 that are open on at least one surface thereof and extend in the thickness direction of the active material layer 2. A pair of current collecting layers 3a and 3b in contact with the electrolytic solution is further provided, and the active material layer 2 is disposed between the current collecting layers 3a and 3b.
[Selection] Figure 1

Description

本発明は、リチウムイオン二次電池などの非水電解液二次電池用の負極に関する。   The present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.

リチウムと合金を作る金属元素とリチウムと合金を作らない金属元素を構成要素として有し、負極の電解液と接し正極と対向する表面及び出力端子につながる部分で、リチウムと合金を作らない金属元素の含有率が高いリチウム二次電池用の負極が提案されている(特許文献1参照)。この負極によれば、充放電に起因してリチウムと合金を作る金属元素が微粉化しても、リチウムと合金を作らない金属を介して導電性が保たれるとされている。   A metal element that has a metal element that forms an alloy with lithium and a metal element that does not form an alloy with lithium as a constituent element and that does not form an alloy with lithium at the surface that is in contact with the electrolyte of the negative electrode and is connected to the surface facing the positive electrode and the output terminal A negative electrode for a lithium secondary battery with a high content of is proposed (see Patent Document 1). According to this negative electrode, even when a metal element that forms an alloy with lithium is pulverized due to charge and discharge, conductivity is maintained through a metal that does not form an alloy with lithium.

前記の特許文献1には、負極の具体的な構造として、リチウムと合金を作る金属元素を含有する粉体状の部材を、結着剤で、リチウムと合金を作らない金属の集電部材に結着させた構造や、それを焼成した構造が提案されている。また、リチウムと合金を作る金属元素を含有する層の上に、リチウムと合金を作らない金属元素を配置することも提案されている。リチウムと合金を作らない金属元素は例えばめっきによって形成される。   In Patent Document 1, as a specific structure of the negative electrode, a powdery member containing a metal element that forms an alloy with lithium is used as a metal current collecting member that does not form an alloy with lithium using a binder. A bonded structure and a fired structure have been proposed. It has also been proposed to dispose a metal element that does not form an alloy with lithium on a layer containing a metal element that forms an alloy with lithium. The metal element that does not form an alloy with lithium is formed by plating, for example.

しかし、前記の特許文献1に記載の負極は、負極表面を覆う、リチウムと合金を作らない金属の層の厚さが50nm程度と非常に薄いことに起因して、十分な表面被覆率及び強度を得ることができない。その結果、充放電によって活物質が膨張収縮することに起因する体積変化による応力を十分に緩和できず、負極の著しい変形が生じてしまう。また活物質が膨張収縮することに起因して微粉化した場合に、その脱落を効果的に防止することができない。従って負極のサイクル特性を向上させることは容易でない。   However, the negative electrode described in Patent Document 1 has a sufficient surface coverage and strength due to the fact that the thickness of the metal layer that does not form an alloy with lithium covering the negative electrode surface is as thin as about 50 nm. Can't get. As a result, the stress due to the volume change caused by the expansion and contraction of the active material due to charge / discharge cannot be sufficiently relaxed, and the negative electrode is significantly deformed. Moreover, when the active material is pulverized due to expansion and contraction, it cannot be effectively prevented from falling off. Therefore, it is not easy to improve the cycle characteristics of the negative electrode.

前記の特許文献とは別に、活物質層を貫通する孔を有する非水電解液二次電池用負極が提案されている(特許文献2参照)。しかしこの負極においては、活物質が膨張収縮することに起因して微粉化した場合に、導電性を維持させることは困難であるし、貫通孔の側壁からの活物質の脱落が起こる可能性がある。従って負極のサイクル特性を向上させることは容易でない。   Apart from the above-mentioned patent document, a negative electrode for a non-aqueous electrolyte secondary battery having a hole penetrating the active material layer has been proposed (see Patent Document 2). However, in this negative electrode, when the active material is pulverized due to expansion and contraction, it is difficult to maintain conductivity, and the active material may fall off from the side wall of the through hole. is there. Therefore, it is not easy to improve the cycle characteristics of the negative electrode.

特開平8−50922号公報JP-A-8-50922 特開2001−76761号公報JP 2001-76761 A

従って本発明の目的は、前述した従来技術が有する種々の欠点を解消し得る非水電解液二次電池用負極を提供することにある。   Accordingly, an object of the present invention is to provide a negative electrode for a non-aqueous electrolyte secondary battery that can eliminate the various drawbacks of the above-described conventional technology.

本発明は、活物質の粒子を含む活物質層を備えた非水電解液二次電池用負極において、
前記活物質層には、電解めっきによって析出したリチウム化合物の形成能の低い金属材料が粒子間に浸透しており、また
前記負極の少なくとも一方の面において開孔し且つ前記活物質層の厚み方向に延びる縦孔を多数有することを特徴とする非水電解液二次電池用負極を提供することにより前記目的を達成したものである。
The present invention relates to a negative electrode for a non-aqueous electrolyte secondary battery including an active material layer containing active material particles.
In the active material layer, a metal material having a low ability to form a lithium compound deposited by electrolytic plating penetrates between the particles, and the active material layer is open in at least one surface of the negative electrode and has a thickness direction of the active material layer. The above object is achieved by providing a negative electrode for a non-aqueous electrolyte secondary battery, characterized in that it has a number of vertical holes extending in the direction.

また本発明は、前記負極を備えていることを特徴とする非水電解液二次電池を提供するものである。   The present invention also provides a non-aqueous electrolyte secondary battery comprising the negative electrode.

本発明によれば、活物質層の厚さ方向に延びる縦孔が、充放電に起因する活物質の体積変化に起因する応力を十分に緩和することができるので、負極の著しい変形を効果的に防止することができる。従ってサイクル寿命が大幅に長くなり、充放電効率も高くなる。また、活物質層における活物質の粒子間に金属材料が析出しているので、充放電に起因して活物質の粒子が微粉化しても、電気的に孤立した活物質が存在することが効果的に防止され、十分な集電性を得ることができる。   According to the present invention, the vertical holes extending in the thickness direction of the active material layer can sufficiently relieve the stress caused by the volume change of the active material due to charging / discharging, so that significant deformation of the negative electrode is effective. Can be prevented. Therefore, the cycle life is significantly increased, and the charge / discharge efficiency is also increased. In addition, since the metal material is deposited between the active material particles in the active material layer, even if the active material particles are pulverized due to charge / discharge, there is an effect that an electrically isolated active material exists. Therefore, sufficient current collecting property can be obtained.

以下本発明を、その好ましい実施形態に基づき図面を参照しながら説明する。先ず図1に示す第1の実施形態の負極について説明する。本実施形態の負極10は、電解液と接する表裏一対の面である第1の面1a及び第2の面1bを有している。負極10は、活物質層2を備えている。活物質層2は、該層2の各面にそれぞれ形成された一対の集電層3a,3bによって連続的に被覆されている。各集電層3a,3bは、第1の面1a及び第2の面1bをそれぞれ含んでいる。また図1から明らかなように電極10は、従来の電極に用いられてきた集電体と呼ばれる集電用の厚膜導電体(例えば厚さ12〜35μm程度の金属箔やエキスパンドメタル)を有していない。   The present invention will be described below based on preferred embodiments with reference to the drawings. First, the negative electrode of the first embodiment shown in FIG. 1 will be described. The negative electrode 10 of the present embodiment has a first surface 1a and a second surface 1b which are a pair of front and back surfaces in contact with the electrolytic solution. The negative electrode 10 includes an active material layer 2. The active material layer 2 is continuously covered with a pair of current collecting layers 3 a and 3 b formed on each surface of the layer 2. Each of the current collecting layers 3a and 3b includes a first surface 1a and a second surface 1b. As is clear from FIG. 1, the electrode 10 has a current collector thick film conductor (for example, a metal foil or expanded metal having a thickness of about 12 to 35 μm) that has been used for a conventional electrode. Not done.

集電層3a,3bは、本実施形態の負極10における集電機能を担っている。また集電層3a,3bは、活物質層2に含まれる活物質が充放電に起因して体積変化し微粉化して脱落することを防止するためにも用いられている。   The current collecting layers 3a and 3b have a current collecting function in the negative electrode 10 of the present embodiment. The current collecting layers 3a and 3b are also used to prevent the active material contained in the active material layer 2 from changing in volume due to charge and discharge, being pulverized, and falling off.

各集電層3a,3bは、従来の電極に用いられている集電用の厚膜導電体よりもその厚みが薄いものである。具体的には0.3〜10μm程度、特に0.4〜8μm程度、とりわけ0.5〜5μm程度の薄層であることが好ましい。これによって、必要最小限の厚みで活物質層2をほぼ満遍なく連続的に被覆することができる。その結果、微粉化した活物質の脱落を防止することができる。またこの程度の薄層とすること、及び集電用の厚膜導電体を有していないことで、負極全体に占める活物質の割合が相対的に高くなり、単位体積当たり及び単位重量当たりのエネルギー密度を高めることができる。従来の電極では、電極全体に占める集電用の厚膜導電体の割合が高かったので、エネルギー密度を高めることに限界があった。前記範囲の集電層3a,3bは、後述するように電解めっきによって形成されることが好ましい。なお2つの集電層3a,3bはその厚みが同じでもよく、或いは異なっていてもよい。   Each of the current collecting layers 3a and 3b is thinner than the current collecting thick film conductor used in the conventional electrode. Specifically, a thin layer of about 0.3 to 10 μm, particularly about 0.4 to 8 μm, particularly about 0.5 to 5 μm is preferable. As a result, the active material layer 2 can be continuously coated almost uniformly with the minimum necessary thickness. As a result, the pulverized active material can be prevented from falling off. In addition, by making such a thin layer and not having a thick film conductor for current collection, the proportion of the active material in the whole negative electrode becomes relatively high, and per unit volume and per unit weight. Energy density can be increased. In the conventional electrode, the ratio of the thick film conductor for current collection to the entire electrode is high, so there is a limit to increasing the energy density. The current collecting layers 3a and 3b in the above range are preferably formed by electrolytic plating as will be described later. The two current collecting layers 3a and 3b may have the same thickness or different thicknesses.

先に述べた通り、2つの集電層3a,3bは第1の面1a及び第2の面1bをそれぞれ含んでいる。本実施形態の負極10が電池に組み込まれた場合、第1の面1a及び第2の面1bは電解液と接する面となる。これとは対照的に、従来の電極における集電用の厚膜導電体は、その両面に活物質層が形成されている場合には電解液と接することはなく、また片面に活物質層が形成されている場合であっても一方の面しか電解液と接しない。つまり本実施形態の負極10には、従来の電極で用いられていた集電用の厚膜導電体が存在せず、電極の最外面に位置する層、即ち集電層3a,3bが、集電機能と、微粉化した活物質の脱落を防止する機能とを兼ねている。   As described above, the two current collecting layers 3a and 3b include the first surface 1a and the second surface 1b, respectively. When the negative electrode 10 of the present embodiment is incorporated in a battery, the first surface 1a and the second surface 1b are surfaces in contact with the electrolytic solution. In contrast, a thick film conductor for collecting current in a conventional electrode does not come into contact with the electrolyte solution when the active material layer is formed on both sides thereof, and the active material layer is not provided on one side. Even if it is formed, only one surface is in contact with the electrolyte. In other words, the negative electrode 10 of the present embodiment does not have the current collecting thick film conductor used in the conventional electrode, and the layers positioned on the outermost surface of the electrode, that is, the current collecting layers 3a and 3b are collected. It has both an electric function and a function to prevent the pulverized active material from falling off.

第1の面1a及び第2の面1bをそれぞれ含む各集電層3a,3bは何れも集電機能を有しているので、本実施形態の負極10を電池に組み込んだ場合には、何れの集電層3a,3bにも電流取り出し用のリード線を接続することができるという利点がある。   Since each of the current collecting layers 3a and 3b including the first surface 1a and the second surface 1b has a current collecting function, when the negative electrode 10 of this embodiment is incorporated in a battery, The current collecting layers 3a and 3b also have an advantage that a lead wire for current extraction can be connected.

各集電層3a,3bは、非水電解液二次電池の集電体となり得る金属から構成されている。特にリチウムイオン二次電池の集電体となり得る金属から構成されていることが好ましい。そのような金属としては例えば、リチウム化合物の形成能の低い元素が挙げられる。リチウム化合物の形成能の低い元素としては銅、ニッケル、鉄、コバルト又はこれらの金属の合金などが挙げられる。これらの金属のうち銅若しくはニッケル又はそれらの合金を用いることが特に好適である。特に、ニッケル−タングステン合金を用いると、集電層3a,3bを高強度となすことができるので好ましい。2つの集電層3a,3bは、その構成材料が同じであってもよく、或いは異なっていてもよい。「リチウム化合物の形成能が低い」とは、リチウムと金属間化合物若しくは固溶体を形成しないか、又は形成したとしてもリチウムが微量であるか若しくは非常に不安定であることを意味する。   Each current collecting layer 3a, 3b is made of a metal that can be a current collector of a non-aqueous electrolyte secondary battery. In particular, it is preferably made of a metal that can be a current collector of a lithium ion secondary battery. Examples of such a metal include an element having a low ability to form a lithium compound. Examples of the element having a low ability to form a lithium compound include copper, nickel, iron, cobalt, and alloys of these metals. Of these metals, it is particularly preferable to use copper or nickel or an alloy thereof. In particular, it is preferable to use a nickel-tungsten alloy because the current collecting layers 3a and 3b can have high strength. The two current collecting layers 3a and 3b may have the same or different materials. “Lithium compound forming ability is low” means that lithium does not form an intermetallic compound or solid solution, or even if formed, lithium is in a very small amount or very unstable.

各集電層3a,3b間に位置する活物質層2は、活物質の粒子2aを含んでいる。活物質層2は例えば、活物質の粒子2aを含む導電性スラリーを塗布して形成されている。   The active material layer 2 positioned between the current collecting layers 3a and 3b includes active material particles 2a. The active material layer 2 is formed, for example, by applying a conductive slurry containing active material particles 2a.

活物質としては、例えばシリコン系材料やスズ系材料、アルミニウム系材料、ゲルマニウム系材料が挙げられる。特にシリコン系材料が好ましい。活物質層2は2つの集電層3a,3bによって被覆されているので、充放電に起因して活物質が微粉化して脱落することが効果的に防止される。また、後述する縦孔が形成されていることによって、活物質の粒子2aは電解液と接することができるので、電極反応が妨げられることもない。 Examples of the active material include silicon-based materials, tin-based materials, aluminum-based materials, and germanium-based materials. In particular, a silicon-based material is preferable. Since the active material layer 2 is covered with the two current collecting layers 3a and 3b, the active material is effectively prevented from being pulverized and falling off due to charge / discharge. Further, since the vertical holes described later are formed, the active material particles 2a can be in contact with the electrolytic solution, so that the electrode reaction is not hindered.

活物質の粒子2aはその最大粒径が好ましくは30μm以下であり、更に好ましくは10μm以下である。また粒子の粒径をD50値で表すと0.1〜8μm、特に0.3〜2μmであることが好ましい。最大粒径が30μm超であると、粒子の脱落が起こりやすくなり、電極の寿命が短くなる場合がある。粒径の下限値に特に制限はなく小さいほど好ましい。該粒子の製造方法に鑑みると、下限値は0.01μm程度である。粒子の粒径は、レーザー回折散乱式粒度分布測定、電子顕微鏡観察(SEM観察)によって測定される。 The active material particles 2a preferably have a maximum particle size of 30 μm or less, and more preferably 10 μm or less. Moreover, when the particle diameter of the particle is expressed by a D 50 value, it is preferably 0.1 to 8 μm, particularly preferably 0.3 to 2 μm. When the maximum particle size is more than 30 μm, the particles are likely to fall off, and the life of the electrode may be shortened. There is no particular limitation on the lower limit of the particle size, and the smaller the better. In view of the method for producing the particles, the lower limit is about 0.01 μm. The particle size of the particles is measured by laser diffraction / scattering particle size distribution measurement and electron microscope observation (SEM observation).

負極全体に対する活物質の量が少なすぎると電池のエネルギー密度を十分に向上させにくく、逆に多すぎると活物質の脱落が起こりやすくなる傾向にある。これらを勘案すると、活物質の量は負極全体に対して好ましくは5〜80重量%であり、更に好ましくは10〜50重量%、一層好ましくは20〜50重量%である。   If the amount of the active material relative to the whole negative electrode is too small, it is difficult to sufficiently improve the energy density of the battery. Conversely, if the amount is too large, the active material tends to fall off. Considering these, the amount of the active material is preferably 5 to 80% by weight, more preferably 10 to 50% by weight, and still more preferably 20 to 50% by weight with respect to the whole negative electrode.

活物質層2の厚みは、負極全体に対する活物質の量の割合や活物質の粒径に応じて適宜調節することができ、本実施形態においては特に臨界的なものではない。一般には1〜100μm、特に3〜60μm程度である。活物質層は、後述するように、活物質の粒子を含む導電性スラリーを塗布することによって形成されることが好ましい。   The thickness of the active material layer 2 can be appropriately adjusted according to the ratio of the amount of the active material to the whole negative electrode and the particle size of the active material, and is not particularly critical in the present embodiment. Generally, the thickness is about 1 to 100 μm, particularly about 3 to 60 μm. The active material layer is preferably formed by applying a conductive slurry containing particles of the active material, as will be described later.

活物質層2においては、図1に示すように、該層中に含まれる粒子間に、リチウム化合物の形成能の低い金属材料4が浸透している。金属材料4は、電解めっきによって粒子間に析出したものである。金属材料4は、活物質層2の厚み方向全域に亘って浸透していることが好ましい。そして浸透した当該材料中に活物質の粒子2aが存在していることが好ましい。つまり活物質の粒子2aは負極10の表面に実質的に露出しておらず集電層3a,3bの内部に包埋されていることが好ましい。これによって、活物質層2と集電層3a,3bとの密着性が強固なものとなり、活物質の脱落が一層防止される。また活物質層2中に浸透した前記材料4を通じて集電層3a,3bと活物質との間に電子伝導性が確保されるので、電気的に孤立した活物質が生成すること、特に活物質層2の深部に電気的に孤立した活物質が生成することが効果的に防止され、集電機能が保たれる。その結果、負極としての機能低下が抑えられる。更に負極の長寿命化も図られる。このことは、活物質として半導体であり電子伝導性の乏しい材料、例えばシリコン系材料を用いる場合に特に有利である。   In the active material layer 2, as shown in FIG. 1, a metal material 4 having a low lithium compound forming ability penetrates between particles contained in the layer. The metal material 4 is deposited between the particles by electrolytic plating. It is preferable that the metal material 4 penetrates over the entire thickness direction of the active material layer 2. The active material particles 2a are preferably present in the permeated material. That is, it is preferable that the active material particles 2a are not substantially exposed on the surface of the negative electrode 10 and are embedded in the current collecting layers 3a and 3b. Thereby, the adhesiveness between the active material layer 2 and the current collecting layers 3a and 3b becomes strong, and the active material is further prevented from falling off. In addition, since electronic conductivity is ensured between the current collecting layers 3a and 3b and the active material through the material 4 that has penetrated into the active material layer 2, it is possible to generate an electrically isolated active material, particularly an active material. Generation of an electrically isolated active material in the deep part of the layer 2 is effectively prevented, and the current collecting function is maintained. As a result, functional degradation as a negative electrode is suppressed. In addition, the life of the negative electrode can be extended. This is particularly advantageous when a material that is a semiconductor and has poor electron conductivity, such as a silicon-based material, is used as the active material.

活物質層2中に浸透しているリチウム化合物の形成能の低い金属材料4は導電性を有するものであり、その例としては銅、ニッケル、鉄、コバルト又はこれらの金属の合金などの金属材料が挙げられる。当該材料は、集電層3a,3bを構成する材料と同種の材料であってもよく、或いは異種の材料であってもよい。   The metal material 4 having a low ability to form a lithium compound penetrating into the active material layer 2 has conductivity, and examples thereof include metal materials such as copper, nickel, iron, cobalt, and alloys of these metals. Is mentioned. The material may be the same kind of material as the material constituting the current collecting layers 3a and 3b, or may be a different kind of material.

活物質層2中に浸透しているリチウム化合物の形成能の低い金属材料4は、活物質層2をその厚み方向に貫いていることが好ましい。それによって2つの集電層3a,3bは金属材料4を通じて電気的に導通することになり、負極全体としての電子伝導性が一層高くなる。つまり本実施形態の負極10は、その全体が一体として集電機能を有する。リチウム化合物の形成能の低い金属材料4が活物質層2の厚み方向全域に亘って浸透していることは、該材料を測定対象とした電子顕微鏡マッピングによって確認できる。リチウム化合物の形成能の低い金属材料4を、活物質層2中に浸透させるための好ましい方法は後述する。   It is preferable that the metal material 4 having a low ability of forming a lithium compound penetrating into the active material layer 2 penetrates the active material layer 2 in the thickness direction. As a result, the two current collecting layers 3a and 3b are electrically conducted through the metal material 4, and the electron conductivity of the whole negative electrode is further increased. That is, the negative electrode 10 of the present embodiment as a whole has a current collecting function. The permeation of the metal material 4 having a low lithium compound forming ability throughout the thickness direction of the active material layer 2 can be confirmed by electron microscope mapping using the material as a measurement target. A preferable method for infiltrating the metal material 4 having a low lithium compound forming ability into the active material layer 2 will be described later.

活物質層2における活物質の粒子2aの間は、リチウム化合物の形成能の低い金属材料4で完全に満たされているのではなく、該粒子間に空隙が存在していることが好ましい。この空隙の存在によって、充放電に起因する活物質の粒子2aの体積変化に起因する応力が緩和される。この観点から、活物質層2における空隙の割合は0.1〜30体積%程度、特に0.5〜5体積%程度であることが好ましい。空隙の割合は、電子顕微鏡マッピングによって求めることができる。活物質層2は活物質の粒子2aを含む導電性スラリーを塗布し乾燥させることによって形成されることから、活物質層2には自ずと空隙が形成される。従って空隙の割合を前記範囲にするためには、例えば活物質の粒子2aの粒径、導電性スラリーの組成、スラリーの塗布条件を適切に選択すればよい。またスラリーを塗布乾燥して活物質層2を形成した後、適切な条件下でプレス加工して空隙の割合を調整してもよい。なお、ここでいう空隙には、後述する縦孔5は含まれないことに留意すべきである。   The space between the active material particles 2a in the active material layer 2 is preferably not completely filled with the metal material 4 having a low lithium compound forming ability, but preferably has voids between the particles. Due to the presence of the voids, the stress caused by the volume change of the active material particles 2a caused by charging / discharging is relieved. From this viewpoint, the proportion of voids in the active material layer 2 is preferably about 0.1 to 30% by volume, particularly about 0.5 to 5% by volume. The void ratio can be determined by electron microscope mapping. Since the active material layer 2 is formed by applying and drying a conductive slurry containing the active material particles 2 a, voids are naturally formed in the active material layer 2. Accordingly, in order to set the void ratio within the above range, for example, the particle diameter of the active material particles 2a, the composition of the conductive slurry, and the application conditions of the slurry may be appropriately selected. In addition, after the slurry is applied and dried to form the active material layer 2, the proportion of voids may be adjusted by pressing under appropriate conditions. It should be noted that the voids mentioned here do not include the vertical holes 5 described later.

活物質層中には活物質の粒子2aに加えて導電性炭素材料が含まれていても良い。これによって負極10に電子伝導性が一層付与される。この観点から活物質層中に含まれる導電性炭素材料の量は0.1〜20重量%、特に1〜10重量%であることが好ましい。導電性炭素材料としては例えばアセチレンブラックやグラファイトなどの粒子が用いられる。これらの粒子の粒径は40μm以下、特に20μm以下であることが、電子伝導性の一層付与の点から好ましい。該粒子の粒径の下限値に特に制限はなく小さいほど好ましい。該粒子の製造方法に鑑みると、その下限値は0.01μm程度となる。   The active material layer may contain a conductive carbon material in addition to the active material particles 2a. This further imparts electronic conductivity to the negative electrode 10. From this viewpoint, the amount of the conductive carbon material contained in the active material layer is preferably 0.1 to 20% by weight, particularly 1 to 10% by weight. For example, particles such as acetylene black and graphite are used as the conductive carbon material. The particle diameter of these particles is preferably 40 μm or less, and particularly preferably 20 μm or less from the viewpoint of further imparting electron conductivity. The lower limit of the particle size of the particles is not particularly limited and is preferably as small as possible. In view of the method for producing the particles, the lower limit is about 0.01 μm.

図1に示すように、負極10においては、負極10の表面において開孔し且つ活物質層2及び各集電層3a,3bの厚み方向に延びる縦孔5を多数有している。縦孔5は、負極10の厚み方向に貫通している。活物質層2においては、縦孔5の壁面において活物質層2が露出している。縦孔5の役割は大別して次のようなものが挙げられる。   As shown in FIG. 1, the negative electrode 10 has a number of vertical holes 5 that are open in the surface of the negative electrode 10 and extend in the thickness direction of the active material layer 2 and the current collecting layers 3 a and 3 b. The vertical hole 5 penetrates in the thickness direction of the negative electrode 10. In the active material layer 2, the active material layer 2 is exposed on the wall surface of the vertical hole 5. The roles of the vertical holes 5 can be broadly classified as follows.

一つは、縦孔5の壁面において露出した活物質層2を通じて電解液を活物質層内に供給する役割である。この場合、縦孔5の壁面において活物質層2が露出しているが、活物質層内の活物質の粒子2a間に金属材料4が浸透しているので、該粒子2aが脱落することが防止されている。   One is the role of supplying the electrolytic solution into the active material layer through the active material layer 2 exposed on the wall surface of the vertical hole 5. In this case, the active material layer 2 is exposed at the wall surface of the vertical hole 5, but the metal material 4 permeates between the active material particles 2 a in the active material layer, so that the particles 2 a may fall off. It is prevented.

もう一つは、充放電に起因して活物質層内の活物質の粒子2aが体積変化した場合、その体積変化に起因する応力を緩和する役割である。体積変化に起因する応力の緩和は、主として負極10の平面方向に生ずる。即ち、充電によって体積が増加した活物質の粒子2aの体積の増加分が、空間となっている縦孔5に吸収される。その結果、負極10の著しい変形が効果的に防止される。   The other is the role of relieving the stress caused by the volume change when the volume of the active material particles 2a in the active material layer changes due to charge / discharge. The relaxation of the stress due to the volume change occurs mainly in the planar direction of the negative electrode 10. That is, the increase in the volume of the active material particles 2 a whose volume has been increased by charging is absorbed by the vertical holes 5 serving as spaces. As a result, significant deformation of the negative electrode 10 is effectively prevented.

縦孔5の他の役割として、負極内に発生したガスを、その外部に放出できるという役割がある。詳細には、負極中に微量に含まれている水分に起因して、H2、CO、CO2等のガスが発生することがある。これらのガスが負極内に蓄積すると分極が大きくなり、充放電のロスの原因となる。縦孔5を形成することで、これを通じて前記のガスが負極の外部に放出されるので、該ガスに起因する分極を小さくできる。更に、縦孔5の他の役割として、負極の放熱の役割がある。詳細には、縦孔5が形成されることによって負極の比表面積が増大するので、Liの吸蔵に伴い発生する熱が負極外部に効率よく放出される。また、活物質の粒子2aの体積変化に起因して応力が発生すると、それが原因で熱が発生する場合がある。縦孔5が形成されることで、その応力が緩和されるので、熱の発生自体が抑えられる。 Another role of the vertical hole 5 is that the gas generated in the negative electrode can be released to the outside. Specifically, gas such as H 2 , CO, and CO 2 may be generated due to moisture contained in a minute amount in the negative electrode. When these gases accumulate in the negative electrode, the polarization increases and causes charge / discharge loss. By forming the vertical hole 5, the gas is released to the outside of the negative electrode through this, so that the polarization caused by the gas can be reduced. Further, as another role of the vertical hole 5, there is a role of heat dissipation of the negative electrode. Specifically, since the specific surface area of the negative electrode is increased by forming the vertical holes 5, the heat generated with the insertion of Li is efficiently released to the outside of the negative electrode. Further, when stress is generated due to the volume change of the active material particles 2a, heat may be generated due to the stress. Since the stress is relieved by forming the vertical hole 5, the generation of heat itself is suppressed.

活物質層内に電解液を十分に供給する観点及び活物質の粒子2aの体積変化に起因する応力を効果的に緩和する観点から、負極10の表面において開孔している縦孔5の開孔率、即ち縦孔5の面積の総和を、負極10の表面の見掛けの面積で除して100を乗じた値は0.3〜30%、特に2〜15%であることが好ましい。同様の理由により、負極10の表面において開孔している縦孔5の開孔径は5〜500μm、特に20〜100μmであることが好ましい。また、縦孔5のピッチを好ましくは20〜600μm、更に好ましくは45〜400μmに設定することで、活物質層内に電解液を十分に供給でき、また活物質の粒子2aの体積変化による応力を効果的に緩和できるようになる。更に、負極10の表面における任意の部分に着目したとき、1cm×1cmの正方形の観察視野内に平均して100〜250000個、特に1000〜40000個、とりわけ5000〜20000個の縦孔5が開孔していることが好ましい。   From the viewpoint of sufficiently supplying the electrolytic solution into the active material layer and effectively reducing the stress caused by the volume change of the active material particles 2a, the opening of the vertical hole 5 opened on the surface of the negative electrode 10 is opened. The value obtained by dividing the porosity, that is, the total area of the vertical holes 5 by the apparent area of the surface of the negative electrode 10 and multiplying by 100 is preferably 0.3 to 30%, particularly 2 to 15%. For the same reason, the opening diameter of the vertical hole 5 opened on the surface of the negative electrode 10 is preferably 5 to 500 μm, particularly preferably 20 to 100 μm. Also, by setting the pitch of the vertical holes 5 to preferably 20 to 600 μm, more preferably 45 to 400 μm, the electrolyte can be sufficiently supplied into the active material layer, and the stress due to the volume change of the active material particles 2 a Can be effectively mitigated. Further, when attention is paid to an arbitrary portion on the surface of the negative electrode 10, an average of 100 to 250,000, particularly 1000 to 40000, especially 5000 to 20000, vertical holes 5 are opened in a 1 cm × 1 cm square observation field. It is preferable to have holes.

本実施形態の負極10においては、縦孔5は負極10の厚さ方向に貫通している。しかし、活物質層内に電解液を十分に供給し、また活物質の粒子2aの体積変化に起因する応力を緩和するという縦孔5の役割に鑑みると、縦孔5は負極10の厚さ方向に貫通している必要はなく、負極10の表面において開孔し且つ少なくとも活物質層2にまで達していればよい。   In the negative electrode 10 of the present embodiment, the vertical hole 5 penetrates in the thickness direction of the negative electrode 10. However, in view of the role of the vertical hole 5 to sufficiently supply the electrolyte solution into the active material layer and relieve the stress caused by the volume change of the active material particles 2 a, the vertical hole 5 has a thickness of the negative electrode 10. There is no need to penetrate in the direction, as long as it is open at the surface of the negative electrode 10 and reaches at least the active material layer 2.

図1に示すように負極10は、各集電層3a,3bはそれらの表面である第1の面1a及び第2の面1bにおいて開孔し且つ活物質層2と通ずる多数の微細空隙6(微細空隙6は、活物質層2に形成された空隙とは異なるものであることに留意すべきである)を有していることが好ましい。微細空隙6は各集電層3a,3bの厚さ方向へ延びるように該集電層3a,3b中に存在している。微細空隙6は電解液の流通が可能なものである。微細空隙6は、先に説明した縦孔5よりも微細な構造を有するものである。微細空隙6の役割は、活物質層内に電解液を十分に供給するという縦孔5の役割を補助するものである。従って、本発明において微細空隙6は必須の構造ではない。   As shown in FIG. 1, in the negative electrode 10, the current collecting layers 3 a and 3 b are opened on the first surface 1 a and the second surface 1 b, which are the surfaces of the current collecting layers 3 a and 3 b. (It should be noted that the fine voids 6 are different from the voids formed in the active material layer 2). The fine gap 6 exists in the current collecting layers 3a and 3b so as to extend in the thickness direction of the current collecting layers 3a and 3b. The fine gap 6 is capable of flowing an electrolytic solution. The fine gap 6 has a finer structure than the vertical hole 5 described above. The role of the fine voids 6 assists the role of the vertical holes 5 to sufficiently supply the electrolytic solution into the active material layer. Therefore, the fine gap 6 is not an essential structure in the present invention.

微細空隙6は、集電層3a,3bを断面観察した場合にその幅が約0.1μmから約10μm程度の微細なものである。微細であるものの、微細空隙6は電解液の浸透が可能な程度の幅を有している。尤も非水電解液は水系の電解液に比べて表面張力が小さいことから、微細空隙6の幅が小さくても十分に浸透が可能である。微細空隙6は、好ましくは集電層3a,3bを電解めっきで形成する際に同時に形成される。   The fine gap 6 has a width of about 0.1 μm to about 10 μm when the current collecting layers 3a and 3b are observed in cross section. Although it is fine, the fine gap 6 has a width that allows the electrolyte solution to penetrate. However, since the nonaqueous electrolytic solution has a smaller surface tension than the aqueous electrolytic solution, it can sufficiently penetrate even if the width of the fine gap 6 is small. The fine gap 6 is preferably formed at the same time when the current collecting layers 3a and 3b are formed by electrolytic plating.

第1の面1a及び第2の面1bを電子顕微鏡観察により平面視したとき、少なくとも一方の面における微細空隙6の平均開孔面積は、0.1〜50μm2であり、好ましくは0.1〜20μm2、更に好ましくは0.5〜10μm2程度である。この範囲の開孔面積とすることで、電解液の十分な浸透を確保しつつ、活物質の脱落を効果的に防止することができる。また充放電の初期段階から充放電容量を高めることができる。 When the 1st surface 1a and the 2nd surface 1b are planarly viewed by electron microscope observation, the average opening area of the fine space | gap 6 in at least one surface is 0.1-50 micrometers 2 , Preferably it is 0.1. ~20Myuemu 2, more preferably from about 2 0.5 to 10 [mu] m. By setting the opening area within this range, it is possible to effectively prevent the active material from falling off while ensuring sufficient permeation of the electrolytic solution. Further, the charge / discharge capacity can be increased from the initial stage of charge / discharge.

第1の面1a及び第2の面1bのうち、平均開孔面積が前記の範囲を満たす面を電子顕微鏡観察により平面視したときに、観察視野の面積に対する微細空隙6の開孔面積の総和の割合(この割合を開孔率という)は、好ましくは0.1〜20%であり、更に好ましくは0.5〜10%である。この理由は微細空隙6の開孔面積を前記の範囲内とすることと同様の理由である。更に同様の理由により、第1の面1a及び第2の面1bのうち、平均開孔面積が前記の範囲を満たす面を電子顕微鏡観察により平面視したときに、どのような観察視野をとっても、100μm×100μmの正方形の視野範囲内に1個〜2万個、特に10個〜1千個、とりわけ30個〜500個の微細空隙6が存在していることが好ましい(この値を分布率という)。   Of the first surface 1a and the second surface 1b, when the surface where the average hole area satisfies the above range is viewed in plan by electron microscope observation, the sum of the hole area of the fine gap 6 with respect to the area of the observation field The ratio (this ratio is referred to as the opening ratio) is preferably 0.1 to 20%, more preferably 0.5 to 10%. This reason is the same reason as setting the aperture area of the fine gap 6 within the above range. Furthermore, for the same reason, when the surface of the first surface 1a and the second surface 1b that satisfies the above range of the average aperture area is viewed in plan by electron microscope observation, any observation field of view is taken. It is preferable that 1 to 20,000, particularly 10 to 1,000, especially 30 to 500 fine voids 6 exist in a 100 μm × 100 μm square field of view (this value is referred to as distribution rate). ).

次に本実施形態の負極10の好ましい製造方法を、図2を参照しながら説明する。本製造方法では、電解めっきによって集電層3bを形成し、次いでその上に活物質層2を形成し、更にその上に電解めっきによって集電層3aを形成し、最後に縦孔5を形成するという工程が行われる。先ず図2(a)に示すようにキャリア箔11を用意する。キャリア箔11は、負極10を製造するための支持体として用いられるものである。また製造された負極10をその使用の前まで、或いは電池組立加工の最中に支持しておき、負極10の取り扱い性を向上させるために用いられるものである。これらの観点から、キャリア箔11は、負極10の製造工程において及び製造後の搬送工程や電池組立工程等においてヨレ等が生じないような強度を有していることが好ましい。従ってキャリア箔11は、その厚みが10〜50μm程度であることが好ましい。先に述べた通り、キャリア箔11の重要な役割は負極10を製造するための支持体である。従って集電層3bの強度が十分である場合は必ずしもキャリア箔を用いて負極10を製造することを要しない。   Next, the preferable manufacturing method of the negative electrode 10 of this embodiment is demonstrated, referring FIG. In this manufacturing method, the current collecting layer 3b is formed by electrolytic plating, the active material layer 2 is then formed thereon, the current collecting layer 3a is further formed thereon by electrolytic plating, and finally the vertical holes 5 are formed. The process of doing is performed. First, a carrier foil 11 is prepared as shown in FIG. The carrier foil 11 is used as a support for manufacturing the negative electrode 10. Further, the manufactured negative electrode 10 is supported before use or during battery assembly processing, and is used for improving the handleability of the negative electrode 10. From these viewpoints, it is preferable that the carrier foil 11 has such strength that no twist or the like is generated in the manufacturing process of the negative electrode 10 and in the transporting process and the battery assembling process after the manufacturing. Therefore, the carrier foil 11 preferably has a thickness of about 10 to 50 μm. As described above, an important role of the carrier foil 11 is a support for manufacturing the negative electrode 10. Therefore, when the strength of the current collecting layer 3b is sufficient, it is not always necessary to manufacture the negative electrode 10 using the carrier foil.

キャリア箔11としては導電性を有するものを用いることが好ましい。この場合、導電性を有していれば、キャリア箔11は金属製でなくてもよい。しかし金属製のキャリア箔11を用いることで、負極10の製造後にキャリア箔11を溶解・製箔してリサイクルできるという利点がある。金属製のキャリア箔11を用いる場合、Cu、Ni、Co、Fe、Cr、Sn、Zn、In、Ag、Au、Al及びTiのうちの少なくとも1種類の金属を含んでキャリア箔11が構成されていることが好ましい。   It is preferable to use a conductive foil as the carrier foil 11. In this case, the carrier foil 11 may not be made of metal as long as it has conductivity. However, the use of the metal carrier foil 11 has an advantage that the carrier foil 11 can be melted and manufactured after the negative electrode 10 is manufactured and recycled. When the metal carrier foil 11 is used, the carrier foil 11 is configured to include at least one metal of Cu, Ni, Co, Fe, Cr, Sn, Zn, In, Ag, Au, Al, and Ti. It is preferable.

キャリア箔11としては、例えば圧延箔や電解箔などの各種方法によって製造された箔を特に制限なく用いることができる。キャリア箔11上に形成される集電層3b中の微細空隙の孔径や存在密度をコントロールする観点から、キャリア箔11の表面は、或る程度凹凸形状になっていることが好ましい。圧延箔は、その製造方法に起因して各面が平滑になっている。これに対して電解箔は一面が粗面であり、他面が平滑面になっている。粗面は、電解箔を製造する際の析出面である。そこで、電解箔からなるキャリア箔11における粗面上に集電層3bを形成すれば、別途キャリア箔に粗化処理をする手間が省けるので簡便である。粗面を用いる利点については後述する。かかる粗面上に集電層3bを形成する場合、その表面粗さRa(JIS B 0601)は0.05〜5μm、特に0.2〜0.8μmであることが、所望の径及び存在密度を有する微細空隙を容易に形成し得る点から好ましい。   As the carrier foil 11, for example, a foil manufactured by various methods such as a rolled foil and an electrolytic foil can be used without particular limitation. From the viewpoint of controlling the pore size and density of fine voids in the current collecting layer 3b formed on the carrier foil 11, the surface of the carrier foil 11 is preferably somewhat uneven. Each surface of the rolled foil is smooth due to its manufacturing method. On the other hand, one surface of the electrolytic foil is a rough surface, and the other surface is a smooth surface. A rough surface is a precipitation surface at the time of manufacturing electrolytic foil. Therefore, if the current collecting layer 3b is formed on the rough surface of the carrier foil 11 made of electrolytic foil, it is convenient because it is possible to save the trouble of performing a roughening treatment on the carrier foil separately. The advantage of using a rough surface will be described later. When the current collecting layer 3b is formed on such a rough surface, the surface roughness Ra (JIS B 0601) is 0.05 to 5 μm, particularly 0.2 to 0.8 μm. It is preferable from the point which can form the fine space | gap which has this.

次にキャリア箔11の一面に剥離剤を施して剥離処理を行う。剥離剤はキャリア箔11における粗面に施すことが好ましい。剥離剤は、後述する剥離工程において、キャリア箔11から負極10を首尾良く剥離するために用いられる。剥離剤としては有機化合物を用いることが好ましく、特に窒素含有化合物又は硫黄含有化合物を用いることが好ましい。窒素含有化合物としては、例えばベンゾトリアゾール(BTA)、カルボキシベンゾトリアゾール(CBTA)、トリルトリアゾール(TTA)、N',N'−ビス(ベンゾトリアゾリルメチル)ユリア(BTD−U)及び3−アミノ−1H−1,2,4−トリアゾール(ATA)などのトリアゾール系化合物が好ましく用いられる。硫黄含有化合物としては、メルカプトベンゾチアゾール(MBT)、チオシアヌル酸(TCA)及び2−ベンズイミダゾールチオール(BIT)などが挙げられる。これらの有機化合物はアルコール、水、酸性溶媒、アルカリ性溶媒などに溶解して用いられる。例えばCBTAを用いた場合、その濃度は2〜5g/1とするのが好ましい。剥離性は、剥離剤の濃度や塗布量によって制御できる。一方、有機化合物による剥離層に代えて、クロム、鉛、クロメート処理などによる無機系剥離層を形成させることも有効である。剥離剤を施す工程は、あくまでも、後述する剥離工程(図2(g))において、キャリア箔11から負極10を首尾良く剥離するために行われるものである。従って、この工程を省いても集電層3bに微細空隙を形成することができる。   Next, a release agent is applied to one surface of the carrier foil 11 to perform a release treatment. The release agent is preferably applied to the rough surface of the carrier foil 11. The stripping agent is used for successfully stripping the negative electrode 10 from the carrier foil 11 in the stripping step described later. As the release agent, it is preferable to use an organic compound, and it is particularly preferable to use a nitrogen-containing compound or a sulfur-containing compound. Examples of nitrogen-containing compounds include benzotriazole (BTA), carboxybenzotriazole (CBTA), tolyltriazole (TTA), N ′, N′-bis (benzotriazolylmethyl) urea (BTD-U), and 3-amino. Triazole compounds such as -1H-1,2,4-triazole (ATA) are preferably used. Examples of the sulfur-containing compound include mercaptobenzothiazole (MBT), thiocyanuric acid (TCA), 2-benzimidazolethiol (BIT), and the like. These organic compounds are used by being dissolved in alcohol, water, acidic solvent, alkaline solvent or the like. For example, when CBTA is used, the concentration is preferably 2 to 5 g / 1. The peelability can be controlled by the concentration of the release agent and the coating amount. On the other hand, it is also effective to form an inorganic release layer by chromium, lead, chromate treatment or the like instead of the release layer made of an organic compound. The step of applying the release agent is only performed in order to successfully peel off the negative electrode 10 from the carrier foil 11 in the later-described peeling step (FIG. 2G). Therefore, even if this step is omitted, fine voids can be formed in the current collecting layer 3b.

次に図2(b)に示すように、剥離剤(図示せず)を施した上に、導電性ポリマーを含む塗工液を塗工し乾燥させて塗膜12を形成する。塗工液はキャリア箔11の粗面に塗工されるので、該粗面における凹部に溜まりやすくなる。この状態で溶媒が揮発すると、塗膜12の厚みは不均一になる。つまり粗面の凹部に対応する塗膜の厚みは大きく、凸部に対応する塗膜の厚みは小さくなる。本製造方法においては、塗膜12の厚みの不均一性を利用して、集電層3bに多数の微細空隙を形成する。   Next, as shown in FIG. 2 (b), after applying a release agent (not shown), a coating liquid containing a conductive polymer is applied and dried to form a coating film 12. Since the coating liquid is applied to the rough surface of the carrier foil 11, it tends to accumulate in the recesses on the rough surface. When the solvent volatilizes in this state, the thickness of the coating film 12 becomes non-uniform. That is, the thickness of the coating film corresponding to the concave portion of the rough surface is large, and the thickness of the coating film corresponding to the convex portion is small. In this manufacturing method, a large number of fine voids are formed in the current collecting layer 3b by utilizing the thickness non-uniformity of the coating film 12.

導電性ポリマーとしては、その種類に特に制限はなく、従来公知のものを用いることができる。例えばポリフッ化ビニリデン(PVDF)、ポリエチレンオキシド(PEO)、ポリアクリルニトリル(PAN)及びポリメチルメタクリレート(PMMA)等が挙げられる。特に、リチウムイオン伝導性ポリマーを用いることが好ましい。また、導電性ポリマーはフッ素含有の導電性ポリマーであることが好ましい。フッ素含有ポリマーは、熱的及び化学的安定性が高く、機械的強度に優れているからである。これらのことを考慮すると、リチウムイオン伝導性を有するフッ素含有ポリマーであるポリフッ化ビニリデンを用いることが特に好ましい。   There is no restriction | limiting in particular as a conductive polymer, A conventionally well-known thing can be used. Examples thereof include polyvinylidene fluoride (PVDF), polyethylene oxide (PEO), polyacrylonitrile (PAN), and polymethyl methacrylate (PMMA). In particular, it is preferable to use a lithium ion conductive polymer. The conductive polymer is preferably a fluorine-containing conductive polymer. This is because the fluorine-containing polymer has high thermal and chemical stability and excellent mechanical strength. Considering these, it is particularly preferable to use polyvinylidene fluoride, which is a fluorine-containing polymer having lithium ion conductivity.

導電性ポリマーを含む塗工液は、導電性ポリマーが揮発性の有機溶媒に溶解してなるものである。有機溶媒としては、導電性ポリマーとして例えばポリフッ化ビニリデンを用いる場合には、N−メチルピロリドンなどを用いることができる。   The coating liquid containing a conductive polymer is obtained by dissolving a conductive polymer in a volatile organic solvent. As the organic solvent, for example, when polyvinylidene fluoride is used as the conductive polymer, N-methylpyrrolidone or the like can be used.

本製造方法において、キャリア箔11上に多数の微細空隙を有する集電層3bが形成されるメカニズムは次のように考えられる。塗膜12が形成されたキャリア箔11は電解めっき処理に付されて、図2(c)に示すように塗膜12上に集電層3bが形成される。この状態を図2(c)の要部拡大図である図3に示す。塗膜12を構成する導電性ポリマーは、金属ほどではないが電子伝導性を有する。従って塗膜12はその厚みに応じて電子伝導性が異なる。その結果、導電性ポリマーを含む塗膜12の上に電解めっきによって金属を析出させると、電子伝導性に応じて電析速度に差が生じ、その電析速度の差によって集電層3bに微細空隙6が形成される。つまり、電析速度の小さい部分、換言すれば塗膜12の厚い部分が微細空隙6になりやすい。なお、先に述べた通り、集電層に微細空隙を形成することは、本発明において必須ではないので、集電層に微細空隙を形成しない場合には、導電性ポリマーを含む塗工液の塗工工程は不要である。   In this manufacturing method, the mechanism by which the current collecting layer 3b having a large number of fine voids is formed on the carrier foil 11 is considered as follows. The carrier foil 11 on which the coating film 12 is formed is subjected to an electrolytic plating process to form a current collecting layer 3b on the coating film 12 as shown in FIG. This state is shown in FIG. 3 which is an enlarged view of the main part of FIG. The conductive polymer constituting the coating film 12 has electronic conductivity, although not as much as metal. Accordingly, the coating film 12 has different electron conductivity depending on its thickness. As a result, when a metal is deposited on the coating film 12 containing a conductive polymer by electrolytic plating, a difference occurs in the deposition rate according to the electron conductivity, and the current collection layer 3b is finely divided by the difference in the deposition rate. A void 6 is formed. That is, a portion where the electrodeposition rate is low, in other words, a portion where the coating film 12 is thick is likely to become the fine void 6. As described above, it is not essential in the present invention to form fine voids in the current collecting layer. Therefore, in the case where fine voids are not formed in the current collecting layer, the coating liquid containing a conductive polymer is used. A coating process is unnecessary.

キャリア箔11の粗面の表面粗さRaによって微細空隙6の孔径や存在密度をコントロールできることは先に述べた通りであるが、これに加えて塗工液に含まれる導電性ポリマーの濃度によっても微細空隙6の孔径や存在密度をコントロールできる。例えば導電性ポリマーの濃度が薄い場合には孔径は小さくなる傾向にあり、存在密度も小さくなる傾向にある。逆に、導電性ポリマーの濃度が濃い場合には孔径は大きくなる傾向にある。この観点から、塗工液における導電性ポリマーの濃度は0.05〜5重量%、特に1〜3重量%であることが好ましい。   As described above, the pore diameter and density of the fine voids 6 can be controlled by the surface roughness Ra of the rough surface of the carrier foil 11. In addition to this, the concentration of the conductive polymer contained in the coating liquid can also be controlled. It is possible to control the pore size and density of the fine voids 6. For example, when the concentration of the conductive polymer is low, the pore diameter tends to be small and the existence density tends to be small. Conversely, when the concentration of the conductive polymer is high, the pore diameter tends to increase. From this viewpoint, the concentration of the conductive polymer in the coating solution is preferably 0.05 to 5% by weight, particularly 1 to 3% by weight.

集電層3bを形成するためのめっき浴やめっき条件は、集電層3bの構成材料に応じて適切に選択される。集電層3bを例えば銅から構成する場合には、めっき浴として以下の組成を有する硫酸銅浴やピロリン酸銅浴を用いることができる。これらのめっき浴を用いる場合の浴温は40〜70℃程度であり、電流密度は0.5〜50A/dm2程度であることが好ましい。
・CuSO4・5H2O 150〜350g/l
・H2SO4 50〜250g/l
尚、有機剤により構成される剥離剤層や導電性ポリマー層は塗工の他、浸漬によっても形成させることが可能である。
The plating bath and plating conditions for forming the current collecting layer 3b are appropriately selected according to the constituent material of the current collecting layer 3b. When the current collecting layer 3b is made of, for example, copper, a copper sulfate bath or a copper pyrophosphate bath having the following composition can be used as a plating bath. When these plating baths are used, the bath temperature is preferably about 40 to 70 ° C., and the current density is preferably about 0.5 to 50 A / dm 2 .
・ CuSO 4 .5H 2 O 150-350 g / l
・ H 2 SO 4 50-250 g / l
The release agent layer and the conductive polymer layer composed of an organic agent can be formed by dipping in addition to coating.

次に図2(d)に示すように集電層3b上に、活物質の粒子を含む導電性スラリーを塗布して活物質層2を形成する。スラリーは、活物質の粒子の他に、導電性炭素材料の粒子、結着剤及び希釈溶媒などを含んでいる。これらの成分のうち、活物質の粒子及び導電性炭素材料の粒子については先に説明した通りである。結着剤としてはポリフッ化ビニリデン(PVDF)、ポリエチレン(PE)、エチレンプロピレンジエンモノマー(EPDM)、スチレンブタジエンゴム(SBR)などが用いられる。希釈溶媒としてはN−メチルピロリドン、シクロヘキサンなどが用いられる。スラリー中における活物質の粒子の量は14〜40重量%程度とすることが好ましい。導電性炭素材料の粒子の量は0.4〜4重量%程度とすることが好ましい。結着剤の量は0.4〜4重量%程度とすることが好ましい。これらに希釈溶媒を加えてスラリーとする。   Next, as shown in FIG. 2D, an active material layer 2 is formed on the current collecting layer 3b by applying a conductive slurry containing particles of the active material. In addition to the active material particles, the slurry contains conductive carbon material particles, a binder, a diluting solvent, and the like. Among these components, the particles of the active material and the particles of the conductive carbon material are as described above. As the binder, polyvinylidene fluoride (PVDF), polyethylene (PE), ethylene propylene diene monomer (EPDM), styrene butadiene rubber (SBR) or the like is used. As a diluting solvent, N-methylpyrrolidone, cyclohexane or the like is used. The amount of the active material particles in the slurry is preferably about 14 to 40% by weight. The amount of the conductive carbon material particles is preferably about 0.4 to 4% by weight. The amount of the binder is preferably about 0.4 to 4% by weight. A dilution solvent is added to these to form a slurry.

スラリーの塗膜を乾燥させて活物質層2を形成する。形成された活物質層2は、粒子間に多数の微小空間を有する。活物質層2が形成されたキャリア箔11を、リチウム化合物の形成能の低い金属材料を含むめっき浴中に浸漬して電解めっきを行う。めっき浴への浸漬によって、めっき液が活物質層2内の前記微小空間に浸入して、活物質層2と集電層3bとの界面にまで達する。その状態下に電解めっきが行われる(以下、このめっきを浸透めっきともいう)。その結果、(a)活物質層2の内部、及び(b)活物質層2の内面側(即ち集電層3bと対向している面側)において、リチウム化合物の形成能の低い金属材料が析出して、該材料が活物質層2の厚み方向全域に亘って浸透する。   The active material layer 2 is formed by drying the slurry coating. The formed active material layer 2 has a large number of minute spaces between particles. The carrier foil 11 on which the active material layer 2 is formed is immersed in a plating bath containing a metal material having a low lithium compound forming ability to perform electrolytic plating. By immersing in the plating bath, the plating solution enters the minute space in the active material layer 2 and reaches the interface between the active material layer 2 and the current collecting layer 3b. Under this condition, electrolytic plating is performed (hereinafter, this plating is also referred to as penetration plating). As a result, a metal material having a low ability to form a lithium compound is formed on the inside of (a) the active material layer 2 and (b) the inner surface side of the active material layer 2 (that is, the surface side facing the current collecting layer 3b). The material is deposited and permeates throughout the thickness direction of the active material layer 2.

浸透めっきの条件は、リチウム化合物の形成能の低い金属材料を活物質層2中に析出させるために重要である。例えばリチウム化合物の形成能の低い金属材料として銅を用いる場合、硫酸銅系溶液を用いるときには、銅の濃度を30〜100g/l、硫酸の濃度を50〜200g/l、塩素の濃度を30ppm以下とし、液温を30〜80℃、電流密度を1〜100A/dm2とすればよい。ピロ燐酸銅系溶液を用いる場合には、銅の濃度2〜50g/l、ピロ燐酸カリウムの濃度100〜700g/lとし、液温を30〜60℃、pHを8〜12、電流密度を1〜10A/dm2とすればよい。これらの電解条件を適宜調節することで、リチウム化合物の形成能の低い金属材料が活物質層2の厚み方向全域に亘って析出する。特に重要な条件は電解時の電流密度である。電流密度が高すぎると、活物質層2の内部での析出が起こらず、活物質層2の表面でのみ析出が起こってしまう。 The conditions of the osmotic plating are important in order to deposit a metal material having a low lithium compound forming ability in the active material layer 2. For example, when copper is used as a metal material having a low lithium compound forming ability, when using a copper sulfate solution, the concentration of copper is 30 to 100 g / l, the concentration of sulfuric acid is 50 to 200 g / l, and the concentration of chlorine is 30 ppm or less. The liquid temperature may be 30 to 80 ° C. and the current density may be 1 to 100 A / dm 2 . When using a copper pyrophosphate solution, the concentration of copper is 2 to 50 g / l, the concentration of potassium pyrophosphate is 100 to 700 g / l, the liquid temperature is 30 to 60 ° C., the pH is 8 to 12, and the current density is 1. ~10A / dm 2 and it may be set. By appropriately adjusting these electrolytic conditions, a metal material having a low lithium compound forming ability is deposited over the entire thickness direction of the active material layer 2. A particularly important condition is the current density during electrolysis. If the current density is too high, precipitation inside the active material layer 2 does not occur, and precipitation occurs only on the surface of the active material layer 2.

次に、活物質層2の上に集電層3aを形成する。ところで、活物質層2は、活物質の粒子2a等を含むものであるから、その表面は粗面となっている。従って、集電層3aを形成するために、電解箔からなるキャリア箔11の粗面上に集電層3bを形成した手段と同様の手段を採用すれば、集電層3aにも多数の微細空隙6を形成させることも可能である。即ち、活物質層2の表面に導電性ポリマーを含む塗工液を塗工し乾燥させて塗膜を形成する。次いで、集電層3bを形成したときの条件と同様の条件を用い、図2(e)に示すように、該塗膜の上に電解めっきによって集電層3aを形成する。なお、先に述べた通り、集電層に微細空隙を形成することは、本発明において必須ではないので、集電層に微細空隙を形成しない場合には、導電性ポリマーを含む塗工液の塗工工程は不要である。   Next, the current collecting layer 3 a is formed on the active material layer 2. Incidentally, since the active material layer 2 includes the active material particles 2a and the like, the surface thereof is rough. Therefore, if the same means as the means for forming the current collecting layer 3b on the rough surface of the carrier foil 11 made of electrolytic foil is employed to form the current collecting layer 3a, the current collecting layer 3a also has a large number of fine elements. It is also possible to form the gap 6. That is, a coating liquid containing a conductive polymer is applied to the surface of the active material layer 2 and dried to form a coating film. Next, using the same conditions as those for forming the current collecting layer 3b, as shown in FIG. 2E, the current collecting layer 3a is formed on the coating film by electrolytic plating. As described above, it is not essential in the present invention to form fine voids in the current collecting layer. Therefore, in the case where fine voids are not formed in the current collecting layer, the coating liquid containing a conductive polymer is used. A coating process is unnecessary.

次に、図2(f)に示すように、所定の孔あけ加工によって両集電層3a,3b及び活物質層2を貫通する縦孔5を形成する。縦孔5の形成方法に特に制限はない。例えばレーザー加工によって縦孔5を形成することができる。或いは針やポンチによって機械的に穿孔を行うこともできる。両者を比較すると、レーザー加工を用いる方が、サイクル特性及び充放電効率が良好な負極を得やすい。この理由は、レーザ加工の場合、加工によって溶解・再凝固した金属材料が縦孔5の壁面に存在する活物質粒子の表面を覆うので、活物質が直接露出することが防止され、それによって活物質が縦孔5の壁面から脱落することが防止されるからである。なお、縦孔5の他の形成手段として、サンドブラスト加工を用いたり、フォトレジスト技術を利用して縦孔5を形成することもできる。縦孔5は、実質的に等間隔に存在するように形成されることが好ましい。そうすることによって、電極全体が均一に反応を起こすことが可能となるからである。   Next, as shown in FIG. 2 (f), the vertical holes 5 penetrating both the current collecting layers 3a and 3b and the active material layer 2 are formed by a predetermined drilling process. There is no restriction | limiting in particular in the formation method of the vertical hole 5. FIG. For example, the vertical holes 5 can be formed by laser processing. Alternatively, drilling can be performed mechanically with a needle or punch. When both are compared, it is easier to obtain a negative electrode with good cycle characteristics and charge / discharge efficiency when laser processing is used. This is because, in the case of laser processing, the metal material dissolved and re-solidified by processing covers the surface of the active material particles present on the wall surface of the vertical hole 5, thereby preventing the active material from being directly exposed, thereby This is because the substance is prevented from falling off the wall surface of the vertical hole 5. In addition, as another forming means of the vertical hole 5, it is also possible to form the vertical hole 5 by using sandblasting or using a photoresist technique. The vertical holes 5 are preferably formed so as to exist at substantially equal intervals. This is because the entire electrode can react uniformly.

最後に、図2(g)に示すようにキャリア箔11を集電層3bから剥離分離する。これによって負極10が得られる。なお、図2(g)においては導電性ポリマーの塗膜12が集電層3b側に残るように描かれているが、該塗膜12はその厚さや導電性ポリマーの種類によってキャリア箔11側に残る場合もあれば、集電層3b側に残る場合もある。或いはこれら双方に残る場合もある。なお、先に述べた通り、負極10をその使用の前まではキャリア箔11から剥離せず、キャリア箔11に支持させておいてもよい。   Finally, as shown in FIG. 2G, the carrier foil 11 is peeled and separated from the current collecting layer 3b. Thereby, the negative electrode 10 is obtained. In FIG. 2 (g), the conductive polymer coating 12 is drawn so as to remain on the current collecting layer 3b side. However, the coating film 12 is on the carrier foil 11 side depending on the thickness and type of the conductive polymer. Or may remain on the current collecting layer 3b side. Or it may remain in both of them. As described above, the negative electrode 10 may be supported on the carrier foil 11 without being peeled off from the carrier foil 11 before use.

このようにして得られた本実施形態の負極は、公知の正極、セパレータ、非水系電解液と共に用いられて非水電解液二次電池となされる。正極は、正極活物質並びに必要により導電剤及び結着剤を適当な溶媒に懸濁し、正極合剤を作製し、これを集電体に塗布、乾燥した後、ロール圧延、プレスし、さらに裁断、打ち抜きすることにより得られる。正極活物質としては、リチウムニッケル複合酸化物、リチウムマンガン複合酸化物、リチウムコバルト複合酸化物等の従来公知の正極活物質が用いられる。セパレーターとしては、合成樹脂製不織布、ポリエチレン又はポリプロピレン多孔質フイルム等が好ましく用いられる。非水電解液は、リチウム二次電池の場合、支持電解質であるリチウム塩を有機溶媒に溶解した溶液からなる。リチウム塩としては、例えば、LiC1O4、LiA1Cl4、LiPF6、LiAsF6、LiSbF6、LiSCN、LiC1、LiBr、LiI、LiCF3SO3、LiC49SO3等が例示される。 The negative electrode of the present embodiment thus obtained is used with a known positive electrode, separator, and non-aqueous electrolyte solution to form a non-aqueous electrolyte secondary battery. The positive electrode is prepared by suspending a positive electrode active material and, if necessary, a conductive agent and a binder in an appropriate solvent to prepare a positive electrode mixture, applying this to a current collector, drying it, then rolling and pressing, and further cutting. It is obtained by punching. As the positive electrode active material, conventionally known positive electrode active materials such as lithium nickel composite oxide, lithium manganese composite oxide, and lithium cobalt composite oxide are used. As the separator, a synthetic resin nonwoven fabric, polyethylene, polypropylene porous film, or the like is preferably used. In the case of a lithium secondary battery, the nonaqueous electrolytic solution is a solution in which a lithium salt that is a supporting electrolyte is dissolved in an organic solvent. The lithium salt, for example, LiC1O 4, LiA1Cl 4, LiPF 6, LiAsF 6, LiSbF 6, LiSCN, LiC1, LiBr, LiI, etc. LiCF 3 SO 3, LiC 4 F 9 SO 3 are exemplified.

次に、本発明の負極の第2の実施形態を、図4を参照しながら説明する。第2の実施形態に関し特に説明しない点については、第1の実施形態に関して詳述した説明が適宜適用される。また、図4において、図1〜図3と同じ部材に同じ符号を付してある。   Next, a second embodiment of the negative electrode of the present invention will be described with reference to FIG. For points that are not particularly described with respect to the second embodiment, the description detailed with respect to the first embodiment is applied as appropriate. In FIG. 4, the same members as those in FIGS.

本実施形態の負極10は、その基本構成部材として、二つの負極前駆体20及び金属リチウム層7を有している。金属リチウム層7は、負極前駆体20の間に挟持されている。   The negative electrode 10 of the present embodiment has two negative electrode precursors 20 and a metal lithium layer 7 as its basic constituent members. The metallic lithium layer 7 is sandwiched between the negative electrode precursors 20.

負極前駆体20は、集電層3と、該集電層3の一面に配された活物質層2とを備えている。図4に示すように、金属リチウム層7は、各負極前駆体20における活物質層2どうしが対向し且つ集電層3が外方を向くように両負極前駆体20間に挟持されている。   The negative electrode precursor 20 includes a current collecting layer 3 and an active material layer 2 disposed on one surface of the current collecting layer 3. As shown in FIG. 4, the metal lithium layer 7 is sandwiched between the negative electrode precursors 20 so that the active material layers 2 of the negative electrode precursors 20 face each other and the current collecting layer 3 faces outward. .

二つの活物質層2間に介在配置された金属リチウム層7は、非水電解液の存在下に、活物質(負極活物質)との間に局部電池を構成する。これによって金属リチウムが、金属リチウム層7の近傍に位置する活物質と化学的に反応してリチウム化物を形成する。或いはリチウムの濃度勾配に起因してリチウムが活物質と反応してリチウム化物を形成する。このように、金属リチウム層7はリチウムの供給源として作用する。その結果、充放電サイクル或いは長期保存時における電解液との反応などによってリチウムが消費されても、リチウム化物からリチウムが供給されるので、リチウム枯渇の問題が解消される。それによって負極10の長寿命化が図られる。金属リチウム層7は、負極10の表面に露出しておらず、負極10の内部に位置しており、またリチウムは活物質中と反応してリチウム化物を形成するので、内部短絡や発火の原因となるリチウムのデンドライトが生成するおそれも少ない。リチウムが反応した後の金属リチウム層7にはリチウムと活物質とが反応して体積膨張したリチウム化合物が存在する。   The metallic lithium layer 7 interposed between the two active material layers 2 constitutes a local battery with the active material (negative electrode active material) in the presence of the non-aqueous electrolyte. Thereby, metallic lithium chemically reacts with an active material located in the vicinity of the metallic lithium layer 7 to form a lithiated product. Alternatively, lithium reacts with the active material due to a lithium concentration gradient to form a lithiated product. Thus, the metal lithium layer 7 acts as a lithium supply source. As a result, even if lithium is consumed due to a reaction with the electrolyte during charge / discharge cycles or long-term storage, the lithium depletion problem is solved because lithium is supplied from the lithiated product. Thereby, the lifetime of the negative electrode 10 is extended. The metallic lithium layer 7 is not exposed on the surface of the negative electrode 10 and is located inside the negative electrode 10, and lithium reacts with the active material to form a lithiated product, causing internal short circuit and ignition There is little risk of formation of lithium dendrites. In the metallic lithium layer 7 after the reaction of lithium, there is a lithium compound that has undergone volume expansion due to a reaction between lithium and the active material.

特筆すべきは、負極10を電池に組み込んで充電を行わずとも、金属リチウムと活物質との反応が起こることである。この現象は本発明者らが初めて見いだしたものである。電池の組み込み前に金属リチウムと活物質との反応が起こることで、活物質は、電池の組み込み前に既に体積が増加した状態になっている。従って、その後に負極10を電池に組み込み充放電を行っても、充放電に起因する負極10の膨張率は極めて小さい。その結果、本実施形態の負極10は、充放電による活物質の体積変化に起因する変形が極めて起こりづらいという非常に有利な効果を奏する。   It should be noted that the reaction between the lithium metal and the active material occurs without charging the negative electrode 10 in the battery. This phenomenon was first discovered by the present inventors. The reaction between metallic lithium and the active material occurs before the battery is installed, so that the active material has already increased in volume before the battery is installed. Therefore, even if the negative electrode 10 is subsequently incorporated into the battery and charged and discharged, the expansion rate of the negative electrode 10 resulting from charging and discharging is extremely small. As a result, the negative electrode 10 of the present embodiment has a very advantageous effect that deformation due to the volume change of the active material due to charge / discharge is extremely difficult to occur.

金属リチウムの量は、活物質の飽和可逆容量に対して0.1〜70%、特に5〜30%であることが、容量回復特性が良好になることから好ましい。   The amount of metallic lithium is preferably 0.1 to 70%, particularly 5 to 30%, based on the saturation reversible capacity of the active material, because the capacity recovery characteristics are improved.

次に図4に示す負極10の好ましい製造方法を、図5を参照しながら説明する。なお本製造方法に関し特に説明しない点については、図2及び図3に示す製造方法に関する説明が適宜適用される。先ず、負極前駆体20を製造する。負極前駆体20の製造には、図5(a)に示すようにキャリア箔11を用意する。次に、必要に応じ、キャリア箔11の一面上に、剥離剤を施して剥離処理を行う。その上に、図5(b)に示すように、導電性ポリマーを含む塗工液を塗工し乾燥させて塗膜12を形成する。次に図5(c)に示すように、塗膜12を施した上に、集電層3の構成材料を電解めっきによって電析させて集電層3を形成する。集電層3上には、図5(d)に示すように、活物質の粒子を含む導電性スラリーを塗布して活物質層2を形成する。スラリーの塗膜が乾燥して活物質層2が形成された後、該活物質層2が形成されたキャリア箔11を、リチウム化合物の形成能の低い金属材料を含むめっき浴中に浸漬して浸透めっきを行う。   Next, a preferred method for producing the negative electrode 10 shown in FIG. 4 will be described with reference to FIG. In addition, about the point which is not demonstrated especially regarding this manufacturing method, the description regarding the manufacturing method shown in FIG.2 and FIG.3 is applied suitably. First, the negative electrode precursor 20 is manufactured. For the production of the negative electrode precursor 20, a carrier foil 11 is prepared as shown in FIG. Next, if necessary, a release agent is applied on one surface of the carrier foil 11 to perform a release treatment. Further, as shown in FIG. 5B, a coating liquid 12 containing a conductive polymer is applied and dried to form a coating film 12. Next, as shown in FIG. 5C, the current collecting layer 3 is formed by depositing the coating film 12 and electrodepositing the constituent material of the current collecting layer 3 by electrolytic plating. On the current collecting layer 3, as shown in FIG. 5D, an active material layer 2 is formed by applying a conductive slurry containing active material particles. After the coating film of the slurry is dried and the active material layer 2 is formed, the carrier foil 11 on which the active material layer 2 is formed is immersed in a plating bath containing a metal material having a low lithium compound forming ability. Perform osmotic plating.

このようにしてキャリア箔11上に集電層3と活物質層2とをこの順で備えた負極前駆体20を形成する。これを一対用い、図5(e)に示すように、各負極前駆体20における活物質層2どうしが対向するように、金属リチウム箔30を両負極前駆体20間に挟み込む。それによって金属リチウム箔30と両負極前駆体20とを貼り合わせにより一体化させる。この場合、金属リチウム箔30と両負極前駆体20とを単に重ね合わせて圧着させるだけの操作でこれら三者を貼り合わせることができる。貼り合わせを強固にしたい場合には、導電性ペースト等の導電性接着材料を用いてこれら三者を貼り合わせてもよい。或いは、一対の負極前駆体20を張り合わせる前に予めキャリア箔を分離除去しても良い。   Thus, the negative electrode precursor 20 provided with the current collecting layer 3 and the active material layer 2 in this order on the carrier foil 11 is formed. Using this pair, as shown in FIG. 5 (e), the metal lithium foil 30 is sandwiched between the negative electrode precursors 20 so that the active material layers 2 in each negative electrode precursor 20 face each other. Thereby, the metallic lithium foil 30 and the two negative electrode precursors 20 are integrated by bonding. In this case, these three members can be bonded together by an operation in which the metallic lithium foil 30 and the negative electrode precursors 20 are simply overlapped and pressed. In order to strengthen the bonding, these three members may be bonded using a conductive adhesive material such as a conductive paste. Alternatively, the carrier foil may be separated and removed in advance before the pair of negative electrode precursors 20 are bonded together.

次に、図5(f)に示すように、一方のキャリア箔11を集電層3から剥離させ、集電層3を露出させる。一方の集電層3が露出したら、図5(g)に示すように、所定の孔あけ加工によって両集電層3,3、両活物質層2,2及び金属リチウム箔30を貫通する縦孔5を形成する。最後に、図5(h)に示すように、もう一方のキャリア箔11をもう一方の集電層3から剥離分離する。これによって目的とする負極10が得られる。   Next, as shown in FIG. 5 (f), one carrier foil 11 is peeled from the current collecting layer 3 to expose the current collecting layer 3. When one of the current collecting layers 3 is exposed, as shown in FIG. 5G, a vertical drilling that penetrates both the current collecting layers 3 and 3, both the active material layers 2 and 2, and the metal lithium foil 30 by a predetermined drilling process. Hole 5 is formed. Finally, as shown in FIG. 5 (h), the other carrier foil 11 is peeled off from the other current collecting layer 3. Thereby, the intended negative electrode 10 is obtained.

次に、本発明の負極の第3〜第5の実施形態について図6〜図9を参照しながら説明する。第3〜第5の実施形態に関し特に説明しない点については、第1及び第2の実施形態に関して詳述した説明が適宜適用される。また、図6〜図9において、図1〜図5と同じ部材に同じ符号を付してある。   Next, third to fifth embodiments of the negative electrode of the present invention will be described with reference to FIGS. Regarding points that are not particularly described with respect to the third to fifth embodiments, the description in detail regarding the first and second embodiments is applied as appropriate. Moreover, in FIGS. 6-9, the same code | symbol is attached | subjected to the same member as FIGS. 1-5.

図6に示す第3の実施形態の負極10においては、一対の集電層3a,3b間に、一層の活物質層2及び一層の金属リチウム層7が介在配置されている。そして、負極10をその厚み方向に貫通する縦孔5が多数形成されている。活物質層2とそれに隣接する集電層3aは、第2の実施形態の負極における負極前駆体20に相当するものである。活物質層2に隣接する集電層3aには必要に応じて微細空隙(図示せず)が形成される。一方、金属リチウム層7に隣接する集電層3bには微細空隙が形成されていない。   In the negative electrode 10 of the third embodiment shown in FIG. 6, one active material layer 2 and one metal lithium layer 7 are interposed between the pair of current collecting layers 3a and 3b. And many vertical holes 5 which penetrate the negative electrode 10 in the thickness direction are formed. The active material layer 2 and the current collecting layer 3a adjacent thereto correspond to the negative electrode precursor 20 in the negative electrode of the second embodiment. A fine gap (not shown) is formed in the current collecting layer 3a adjacent to the active material layer 2 as necessary. On the other hand, no fine voids are formed in the current collecting layer 3b adjacent to the metal lithium layer 7.

図7に示す第4の実施形態の負極10は、活物質層2とそれに隣接する集電層3からなる負極前駆体20を一対備えている。また各面に金属リチウム層7が配された導電性箔8も備えている。各面に金属リチウム層7が配された導電性箔8は、各負極前駆体20における活物質層2どうしが対向し且つ集電層3が外方を向くように両負極前駆体20間に挟持されている。集電層3には必要に応じて微細空隙(図示せず)が形成される。更に、負極10をその厚み方向に貫通する縦孔5が多数形成されている。   A negative electrode 10 according to the fourth embodiment shown in FIG. 7 includes a pair of negative electrode precursors 20 including an active material layer 2 and a current collecting layer 3 adjacent thereto. Moreover, the electroconductive foil 8 with which the metal lithium layer 7 was distribute | arranged on each surface is also provided. The conductive foil 8 in which the metal lithium layer 7 is arranged on each surface is formed between the negative electrode precursors 20 so that the active material layers 2 of the negative electrode precursors 20 face each other and the current collecting layer 3 faces outward. It is pinched. A fine gap (not shown) is formed in the current collecting layer 3 as necessary. Furthermore, a number of vertical holes 5 that penetrate the negative electrode 10 in the thickness direction are formed.

図7に示す実施形態の負極10は、図6に示す実施形態の負極に比較して、導電性箔8を備えている分だけ強度が高いものである。このことは、ジェリー・ロール・タイプの電池を作製する場合に有利である。この観点から、導電性箔8はその厚さが好ましくは5〜20μmである。導電性箔8は一般に金属箔から構成される。導電性箔8を構成する材料としては、リチウム化合物の形成能の低い金属材料が挙げられる。そのような材料としては、集電層3や、浸透めっきに用いられる金属材料4として先に説明した材料と同様のものを用いることができる。また、強度を高める観点から、ステンレス箔や高強度圧延合金箔を用いることも有効である。   The negative electrode 10 of the embodiment shown in FIG. 7 is higher in strength than the negative electrode of the embodiment shown in FIG. This is advantageous when a battery of the jelly roll type is manufactured. From this viewpoint, the thickness of the conductive foil 8 is preferably 5 to 20 μm. The conductive foil 8 is generally composed of a metal foil. Examples of the material constituting the conductive foil 8 include a metal material having a low lithium compound forming ability. As such a material, the material similar to the material demonstrated previously as the current collection layer 3 or the metal material 4 used for osmotic plating can be used. From the viewpoint of increasing the strength, it is also effective to use a stainless steel foil or a high strength rolled alloy foil.

図7に示す実施形態の負極10の好ましい製造方法は次の通りである。先ず、図8(a)に示すように、導電性箔8を用意し、その各面に金属リチウム層7を形成する。金属リチウム層7は公知の薄膜形成手段、例えば真空蒸着法等によって形成することができる。これとは別に、図2に示す第1の実施形態の負極の製造方法に従い、活物質層2とそれに隣接する集電層3からなる負極前駆体20を予め製造しておき、図8(b)に示すように、金属リチウム層7が形成された導電性箔8を、一対の負極前駆体20によって挟み込む。負極前駆体20はキャリア箔11によって支持されている。挟み込みに際しては、各負極前駆体20における活物質層2どうしが対向し、集電層3が外方を向くようにする。次いで図8(c)に示すように、一方のキャリア箔11を集電層3から剥離させ、集電層3を露出させる。一方の集電層3が露出したら、図8(d)に示すように、所定の孔あけ加工によって両集電層3,3、両活物質層2,2、両金属リチウム層7,7及び導電性箔8を貫通する縦孔5を形成する。最後に、図8(e)に示すように、もう一方のキャリア箔11をもう一方の集電層3から剥離分離する。これによって目的とする負極10が得られる。   A preferred method for manufacturing the negative electrode 10 of the embodiment shown in FIG. 7 is as follows. First, as shown to Fig.8 (a), the electroconductive foil 8 is prepared and the metal lithium layer 7 is formed in each surface. The metallic lithium layer 7 can be formed by a known thin film forming means, for example, a vacuum evaporation method. Separately, according to the negative electrode manufacturing method of the first embodiment shown in FIG. 2, a negative electrode precursor 20 composed of the active material layer 2 and the current collecting layer 3 adjacent thereto is manufactured in advance, and FIG. ), The conductive foil 8 on which the metal lithium layer 7 is formed is sandwiched between a pair of negative electrode precursors 20. The negative electrode precursor 20 is supported by the carrier foil 11. When sandwiching, the active material layers 2 in the negative electrode precursors 20 face each other, and the current collecting layer 3 faces outward. Next, as shown in FIG. 8C, one carrier foil 11 is peeled from the current collecting layer 3 to expose the current collecting layer 3. When one of the current collecting layers 3 is exposed, as shown in FIG. 8D, both current collecting layers 3 and 3, both active material layers 2 and 2, both metal lithium layers 7 and 7 and A vertical hole 5 penetrating the conductive foil 8 is formed. Finally, as shown in FIG. 8 (e), the other carrier foil 11 is peeled and separated from the other current collecting layer 3. Thereby, the intended negative electrode 10 is obtained.

図9に示す実施形態の負極10は、これまでに説明した実施形態の負極と異なり、集電体9を有している。負極10は、集電体9上に活物質層2を有している。本実施形態の負極10は集電体9を有しているので、活物質層2上に集電層を設ける必要はない。活物質層2は、活物質の粒子2aを含み、粒子2a間に、リチウム化合物の形成能の低い金属材料4が浸透している。負極10においては、活物質層2の表面において開孔し、且つ活物質層2の厚み方向に延びる多数の縦孔5を多数有している。   The negative electrode 10 of the embodiment shown in FIG. 9 has a current collector 9 unlike the negative electrodes of the embodiments described so far. The negative electrode 10 has the active material layer 2 on the current collector 9. Since the negative electrode 10 of the present embodiment includes the current collector 9, it is not necessary to provide a current collector layer on the active material layer 2. The active material layer 2 includes particles 2a of the active material, and the metal material 4 having a low lithium compound forming ability penetrates between the particles 2a. The negative electrode 10 has a large number of vertical holes 5 that are open in the surface of the active material layer 2 and extend in the thickness direction of the active material layer 2.

集電体9は、非水電解液二次電池用負極の集電体として従来用いられているものと同様のものを用いることができる。集電体は、リチウム化合物の形成能の低い金属材料4から構成されていることが好ましい。そのような金属材料の例は既に述べた通りである。特に、銅、ニッケル、ステンレス等からなることが好ましい。集電体9の厚みは本実施形態において臨界的ではないが、負極10の強度維持と、エネルギー密度向上とのバランスを考慮すると、10〜30μmであることが好ましい。   The current collector 9 may be the same as that conventionally used as a current collector for a negative electrode for a nonaqueous electrolyte secondary battery. The current collector is preferably composed of a metal material 4 having a low ability to form a lithium compound. Examples of such metallic materials are as already described. In particular, it is preferably made of copper, nickel, stainless steel or the like. The thickness of the current collector 9 is not critical in the present embodiment, but is preferably 10 to 30 μm in consideration of the balance between maintaining the strength of the negative electrode 10 and improving the energy density.

本実施形態の負極10は、第1の実施形態の負極の製造方法と類似の方法で製造できる。先ず、集電体9の一面に活物質の粒子2aを含むスラリーを塗工して塗膜を形成する。塗膜が形成された集電体9を、リチウム化合物の形成能の低い金属材料を含むめっき浴中に浸漬して電解めっきを行う。これによって活物質層2が形成される。最後に、活物質層2に対して孔あけ加工を施すことで、活物質層2の厚み方向に延びる多数の縦孔5を該活物質層2に形成する。   The negative electrode 10 of this embodiment can be manufactured by a method similar to the method for manufacturing the negative electrode of the first embodiment. First, a slurry containing the active material particles 2 a is applied to one surface of the current collector 9 to form a coating film. The current collector 9 on which the coating film is formed is immersed in a plating bath containing a metal material having a low ability to form a lithium compound to perform electrolytic plating. Thereby, the active material layer 2 is formed. Finally, a number of vertical holes 5 extending in the thickness direction of the active material layer 2 are formed in the active material layer 2 by drilling the active material layer 2.

なお、本実施形態の負極10においては集電体9の片面にのみ活物質層2が形成されているが、これに代えて集電体9の両面に活物質層2を形成し、各活物質層2に縦孔5を形成してもよい。また、縦孔5は集電体9を貫通していてもよい。   In the negative electrode 10 of the present embodiment, the active material layer 2 is formed only on one side of the current collector 9, but instead, the active material layer 2 is formed on both sides of the current collector 9, and each active material layer 2 is formed. Vertical holes 5 may be formed in the material layer 2. Further, the vertical hole 5 may pass through the current collector 9.

以上、本発明をその好ましい実施形態に基づき説明したが、本発明は前記実施形態に制限されず種々の変更が可能である。例えば、図9に示す実施形態の負極においては、集電体としてエキスパンドメタルを用いてもよい。   As mentioned above, although this invention was demonstrated based on the preferable embodiment, this invention is not restrict | limited to the said embodiment, A various change is possible. For example, in the negative electrode of the embodiment shown in FIG. 9, expanded metal may be used as the current collector.

また、従来の電極に用いられてきた集電体と呼ばれる集電用の厚膜導電体の各面に、負極前駆体20を重ね合わせ、これらを厚さ方向に貫通する縦孔を形成して負極を構成してもよい。   In addition, the negative electrode precursor 20 is superimposed on each surface of a current collector thick film conductor called a current collector that has been used for conventional electrodes, and a vertical hole is formed through these in the thickness direction. You may comprise a negative electrode.

また、図4及び図6に示す実施形態の負極においては、金属リチウム層7に縦孔5を形成しなくてもよい。同様に、図7に示す実施形態の負極においては、金属リチウム層7及び導電性箔8に縦孔5を形成しなくてもよい。   Moreover, in the negative electrode of the embodiment shown in FIGS. 4 and 6, the vertical hole 5 may not be formed in the metal lithium layer 7. Similarly, in the negative electrode of the embodiment shown in FIG. 7, the vertical holes 5 do not have to be formed in the metal lithium layer 7 and the conductive foil 8.

また、前記の各実施形態の負極は、これを単独で用いることも可能であり、或いは該負極を負極前駆体として用い、該負極前駆体を複数枚積層して使用することも可能である。後者の場合、隣り合う負極前駆体間に、芯材となる導電性箔(例えば金属箔)を介在配置することも可能である。   In addition, the negative electrode of each of the above embodiments can be used alone, or the negative electrode can be used as a negative electrode precursor, and a plurality of the negative electrode precursors can be stacked. In the latter case, it is also possible to interpose a conductive foil (for example, a metal foil) serving as a core material between adjacent negative electrode precursors.

また前記の各実施形態においては集電層3(3a,3b)は単層構造であったが、これに代えて、材料の異なる2種以上の層からなる多層構造にしても良い。例えば集電層3(3a,3b)をニッケルからなる内層と銅からなる外層の2層構造とすることで、活物質の体積変化に起因する負極の著しい変形を一層効果的に防止することができる。   In each of the above-described embodiments, the current collecting layer 3 (3a, 3b) has a single layer structure. However, instead of this, a multi-layer structure including two or more layers of different materials may be used. For example, when the current collecting layer 3 (3a, 3b) has a two-layer structure of an inner layer made of nickel and an outer layer made of copper, significant deformation of the negative electrode due to the volume change of the active material can be more effectively prevented. it can.

また集電層3(3a,3b)の材料と、活物質層2中に浸透しているリチウム化合物の形成能の低い金属材料とが異なる場合には、活物質層2中に浸透しているリチウム化合物の形成能の低い金属材料は、活物質層2と集電層3(3a,3b)との境界部まで存在していてもよい。或いは、リチウム化合物の形成能の低い金属材料は、当該境界部を越えて集電層3(3a,3b)の一部を構成していてもよい。逆に、集電層3(3a,3b)の構成材料が、当該境界部を越えて活物質層2内に存在していてもよい。   Further, when the material of the current collecting layer 3 (3a, 3b) and the metal material having a low ability to form a lithium compound penetrating into the active material layer 2 are different, the material penetrates into the active material layer 2 The metal material having a low lithium compound forming ability may exist up to the boundary between the active material layer 2 and the current collecting layer 3 (3a, 3b). Or the metal material with low formation ability of a lithium compound may comprise a part of current collection layer 3 (3a, 3b) beyond the said boundary part. On the contrary, the constituent material of the current collection layer 3 (3a, 3b) may exist in the active material layer 2 beyond the said boundary part.

以下、実施例により本発明を更に詳細に説明する。しかしながら本発明の範囲はかかる実施例に制限されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the scope of the present invention is not limited to such examples.

〔実施例1〕
図2に示す方法に従い図1に示す負極を製造した。先ず、電解によって得られた銅製のキャリア箔(厚さ35μm)を室温で30秒間酸洗浄した。引き続き室温で30秒間純水洗浄した。次いで、40℃に保った状態の3.5g/lのCBTA溶液中に、キャリア箔を30秒間浸漬した。これにより剥離処理を行った。剥離処理後、溶液から引き上げて15秒間純水洗浄した。
[Example 1]
The negative electrode shown in FIG. 1 was manufactured according to the method shown in FIG. First, a copper carrier foil (thickness: 35 μm) obtained by electrolysis was acid-washed at room temperature for 30 seconds. Subsequently, it was washed with pure water at room temperature for 30 seconds. Subsequently, the carrier foil was immersed in a 3.5 g / l CBTA solution maintained at 40 ° C. for 30 seconds. In this way, peeling treatment was performed. After the peeling treatment, the substrate was pulled up from the solution and washed with pure water for 15 seconds.

キャリア箔の粗面(表面粗さRa=0.5μm)に、ポリフッ化ビニリデンをN−メチルピロリドンに溶解した濃度2.5重量%の塗工液を塗布した。溶媒が揮発して塗膜が形成された後、H2SO4/CuSO4系のめっき浴にキャリア箔を浸漬させて電解めっきを行った。これによって銅からなる集電層を塗膜上に形成した。めっき浴の組成は、CuSO4が250g/l、H2SO4が70g/lであった。電流密度は5A/dm2とした。集電層は9μmの厚さに形成した。めっき浴から引き上げた後、30秒間純水洗浄して大気中で乾燥させた。 A coating solution having a concentration of 2.5% by weight in which polyvinylidene fluoride was dissolved in N-methylpyrrolidone was applied to the rough surface of the carrier foil (surface roughness Ra = 0.5 μm). After the solvent was volatilized and a coating film was formed, electrolytic plating was performed by immersing the carrier foil in an H 2 SO 4 / CuSO 4 plating bath. Thus, a current collecting layer made of copper was formed on the coating film. The composition of the plating bath was 250 g / l for CuSO 4 and 70 g / l for H 2 SO 4 . The current density was 5 A / dm 2 . The current collecting layer was formed to a thickness of 9 μm. After lifting from the plating bath, it was washed with pure water for 30 seconds and dried in the air.

次に、集電層上に負極活物質の粒子を含むスラリーを膜厚20μmになるように塗布し活物質層を形成した。活物質粒子はSiからなり、平均粒径はD50=2μmであった。スラリーの組成は、活物質:アセチレンブラック:スチレンブタジエンゴム=98:2:1.7であった。 Next, a slurry containing negative electrode active material particles was applied on the current collecting layer to a thickness of 20 μm to form an active material layer. The active material particles were made of Si, and the average particle size was D 50 = 2 μm. The composition of the slurry was active material: acetylene black: styrene butadiene rubber = 98: 2: 1.7.

活物質層が形成された後に、キャリア箔を、以下の浴組成を有するワット浴に浸漬させ、電解により、活物質層に対してニッケルの浸透めっきを行った。電流密度は5A/dm2、浴温は50℃、pHは5であった。陽極にはニッケル電極を用いた。電源は直流電源を用いた。この浸透めっきは、めっき面から一部の活物質粒子が露出する程度に行った。めっき浴から引き上げた後、30秒間純水洗浄して大気中で乾燥させた。
・NiSO4・6H2O 250g/l
・NiCl2・6H2O 45g/l
・H3BO3 30g/l
After the active material layer was formed, the carrier foil was immersed in a Watt bath having the following bath composition, and nickel was infiltrated into the active material layer by electrolysis. The current density was 5 A / dm 2 , the bath temperature was 50 ° C., and the pH was 5. A nickel electrode was used as the anode. A DC power source was used as the power source. This infiltration plating was performed to such an extent that some active material particles were exposed from the plating surface. After lifting from the plating bath, it was washed with pure water for 30 seconds and dried in the air.
・ NiSO 4・ 6H 2 O 250g / l
・ NiCl 2・ 6H 2 O 45g / l
・ H 3 BO 3 30g / l

次に、Cu系のめっき浴にキャリア箔を浸漬させて電解めっきを行った。めっき浴の組成は、H3PO4が200g/l、Cu3(PO42・3H2Oが200g/lであった。また、めっきの条件は、電流密度5A/dm2、浴温度40℃であった。これによって銅からなる集電層を活物質層上に形成した。この集電層は8μmの厚さに形成した。めっき浴から引き上げた後、30秒間純水洗浄して大気中で乾燥させた。 Next, electrolytic plating was performed by immersing the carrier foil in a Cu-based plating bath. The composition of the plating bath was 200 g / l for H 3 PO 4 and 200 g / l for Cu 3 (PO 4 ) 2 .3H 2 O. The plating conditions were a current density of 5 A / dm 2 and a bath temperature of 40 ° C. Thus, a current collecting layer made of copper was formed on the active material layer. This current collecting layer was formed to a thickness of 8 μm. After lifting from the plating bath, it was washed with pure water for 30 seconds and dried in the air.

次に、活物質層上に形成された集電層に向けてYAGレーザを照射し、縦孔を規則的に形成した。縦孔は、両集電層及びそれらの間に位置する活物質層を貫通するように形成した。縦孔の直径は25μm、ピッチは100μm(10000孔/cm2)とした。 Next, the YAG laser was irradiated toward the current collecting layer formed on the active material layer, and vertical holes were regularly formed. The vertical hole was formed so as to penetrate both the current collecting layers and the active material layer located between them. The diameter of the vertical holes was 25 μm, and the pitch was 100 μm (10000 holes / cm 2 ).

最後に、キャリア箔とそれに接する集電層とを剥離して、一対の集電層間に活物質層が挟持されてなる非水電解液二次電池用負極を得た。得られた負極の使用前及び1サイクル後の外観を図10に示す。また得られた負極の表面及び縦断面の走査型電子顕微鏡写真を図11に示す。走査型電子顕微鏡による観察の結果、キャリア箔から剥離した側の集電層には、100μm×100μmの正方形の範囲内に平均して30個の微細孔が存在していることを確認した。   Finally, the carrier foil and the current collecting layer in contact with the carrier foil were peeled off to obtain a negative electrode for a non-aqueous electrolyte secondary battery in which an active material layer was sandwiched between a pair of current collecting layers. The external appearance of the obtained negative electrode before use and after one cycle is shown in FIG. Moreover, the scanning electron micrograph of the surface of the obtained negative electrode and a longitudinal cross section is shown in FIG. As a result of observation with a scanning electron microscope, it was confirmed that the current collecting layer on the side peeled from the carrier foil had, on average, 30 fine holes in a 100 μm × 100 μm square range.

〔実施例2〕
図5に示す方法に従い図4に示す負極を製造した。先ず、キャリア箔の粗面(表面粗さRa=0.5μm)に、ポリフッ化ビニリデンをN−メチルピロリドンに溶解した濃度2.5重量%の塗工液を塗布した。溶媒が揮発して塗膜が形成された後、H2SO4/CuSO4系のめっき浴にキャリア箔を浸漬させて電解めっきを行った。これによって銅からなる集電層を塗膜上に形成した。めっき浴の組成は、CuSO4が250g/l、H2SO4が70g/lであった。電流密度は5A/dm2とした。集電層は5μmの厚さに形成した。めっき浴から引き上げた後、30秒間純水洗浄して大気中で乾燥させた。
[Example 2]
The negative electrode shown in FIG. 4 was manufactured according to the method shown in FIG. First, a coating solution having a concentration of 2.5% by weight in which polyvinylidene fluoride was dissolved in N-methylpyrrolidone was applied to the rough surface of the carrier foil (surface roughness Ra = 0.5 μm). After the solvent was volatilized and a coating film was formed, electrolytic plating was performed by immersing the carrier foil in an H 2 SO 4 / CuSO 4 plating bath. Thus, a current collecting layer made of copper was formed on the coating film. The composition of the plating bath was 250 g / l for CuSO 4 and 70 g / l for H 2 SO 4 . The current density was 5 A / dm 2 . The current collecting layer was formed to a thickness of 5 μm. After lifting from the plating bath, it was washed with pure water for 30 seconds and dried in the air.

次に、集電層上に負極活物質の粒子を含むスラリーを膜厚15μmになるように塗布し活物質層を形成した。活物質粒子はSiからなり、平均粒径はD50=2μmであった。スラリーの組成は、活物質:アセチレンブラック:スチレンブタジエンゴム=98:2:1.7であった。 Next, a slurry containing negative electrode active material particles was applied on the current collecting layer to a thickness of 15 μm to form an active material layer. The active material particles were made of Si, and the average particle size was D 50 = 2 μm. The composition of the slurry was active material: acetylene black: styrene butadiene rubber = 98: 2: 1.7.

活物質層が形成されたにキャリア箔を、以下の浴組成を有するワット浴に浸漬させ、電解により、活物質層に対してニッケルの浸透めっきを行った。電流密度は5A/dm2、浴温は50℃、pHは5であった。陽極にはニッケル電極を用いた。電源は直流電源を用いた。めっき浴から引き上げた後、30秒間純水洗浄して大気中で乾燥させた。このようにしてキャリア箔に支持された負極前駆体を得た。
・NiSO4・6H2O 250g/l
・NiCl2・6H2O 45g/l
・H3BO3 30g/l
After the active material layer was formed, the carrier foil was immersed in a Watt bath having the following bath composition, and nickel was infiltrated into the active material layer by electrolysis. The current density was 5 A / dm 2 , the bath temperature was 50 ° C., and the pH was 5. A nickel electrode was used as the anode. A DC power source was used as the power source. After lifting from the plating bath, it was washed with pure water for 30 seconds and dried in the air. Thus, a negative electrode precursor supported on the carrier foil was obtained.
・ NiSO 4・ 6H 2 O 250g / l
・ NiCl 2・ 6H 2 O 45g / l
・ H 3 BO 3 30g / l

負極前駆体とは別に用意しておいた厚さ25μmの金属リチウム箔を、一対の負極前駆体で挟み込んだ。挟み込みは、各負極前駆体における活物質層どうしが対向するように行った。これによって各負極前駆体と金属リチウムとを貼り合わせて一体化させた。   A metal lithium foil having a thickness of 25 μm prepared separately from the negative electrode precursor was sandwiched between a pair of negative electrode precursors. The sandwiching was performed so that the active material layers in each negative electrode precursor face each other. Thus, each negative electrode precursor and metallic lithium were bonded and integrated.

次に、一方のキャリア箔を集電層から剥離させて集電層を露出させた。露出した集電層に向けてYAGレーザを照射し、各負極前駆体及び金属リチウム箔を貫通する縦孔を規則的に形成した。縦孔の直径は25μm、ピッチは100μm(10000孔/cm2)とした。最後に、もう一方のキャリア箔と集電層とを剥離して目的とする負極を得た。負極における金属リチウムの量は、活物質の飽和可逆容量に対して30%であった。 Next, one carrier foil was peeled from the current collecting layer to expose the current collecting layer. The exposed current collecting layer was irradiated with a YAG laser to regularly form vertical holes penetrating each negative electrode precursor and the metal lithium foil. The diameter of the vertical holes was 25 μm, and the pitch was 100 μm (10000 holes / cm 2 ). Finally, the other carrier foil and the current collecting layer were peeled off to obtain a target negative electrode. The amount of metallic lithium in the negative electrode was 30% with respect to the saturation reversible capacity of the active material.

〔実施例3〕
図6に示す負極を製造した。先ず、実施例2と同様の操作によって、キャリア箔に支持された負極前駆体を得た。次に、負極前駆体とは別に、厚さ5μmの銅箔(集電層)の一面に、真空蒸着法によって厚さ10μmの金属リチウム層を形成した。この銅箔と、先に製造しておいた負極前駆体とを貼り合わせて一体化させた。貼り合わせは、銅箔における金属リチウム層と、負極前駆体における活物質層とが当接するように行った。
Example 3
The negative electrode shown in FIG. 6 was manufactured. First, a negative electrode precursor supported by a carrier foil was obtained by the same operation as in Example 2. Next, apart from the negative electrode precursor, a metal lithium layer having a thickness of 10 μm was formed on one surface of a copper foil (current collecting layer) having a thickness of 5 μm by a vacuum deposition method. This copper foil and the negative electrode precursor manufactured previously were bonded together and integrated. The bonding was performed so that the metal lithium layer in the copper foil and the active material layer in the negative electrode precursor were in contact with each other.

次に、銅箔に向けてYAGレーザを照射し、銅箔、金属リチウム層及び負極前駆体を貫通する縦孔を規則的に形成した。縦孔の直径は25μm、ピッチは100μm(10000孔/cm2)とした。最後に、キャリア箔と集電層とを剥離して目的とする負極を得た。負極における金属リチウムの量は、活物質の飽和可逆容量に対して25%であった。 Next, the YAG laser was irradiated toward the copper foil, and vertical holes penetrating the copper foil, the metal lithium layer, and the negative electrode precursor were regularly formed. The diameter of the vertical holes was 25 μm, and the pitch was 100 μm (10000 holes / cm 2 ). Finally, the carrier foil and the current collecting layer were peeled off to obtain a target negative electrode. The amount of metallic lithium in the negative electrode was 25% with respect to the saturation reversible capacity of the active material.

〔実施例4〕
図8に示す方法に従い図7に示す負極を製造した。先ず、実施例2と同様の操作によって、キャリア箔に支持された負極前駆体を得た。負極前駆体とは別に、厚さ10μmの銅箔の各面に、真空蒸着法によって厚さ10μmの金属リチウム層を形成した。次いで、この銅箔を、先に製造しておいた一対の負極前駆体で挟み込んだ。挟み込みは、各負極前駆体における活物質層どうしが対向し、集電層が外方を向くように行った。これによって、金属リチウム層を各面に有する銅箔と、各負極前駆体とを貼り合わせて一体化させた。
Example 4
The negative electrode shown in FIG. 7 was manufactured according to the method shown in FIG. First, a negative electrode precursor supported by a carrier foil was obtained by the same operation as in Example 2. Separately from the negative electrode precursor, a metal lithium layer having a thickness of 10 μm was formed on each surface of a copper foil having a thickness of 10 μm by a vacuum deposition method. Next, this copper foil was sandwiched between a pair of negative electrode precursors previously produced. The sandwiching was performed such that the active material layers in each negative electrode precursor face each other and the current collecting layer faced outward. As a result, the copper foil having the metal lithium layer on each surface and the respective negative electrode precursors were bonded and integrated.

次に、一方のキャリア箔を集電層から剥離させて集電層を露出させた。露出した集電層に向けてYAGレーザを照射し、各負極前駆体及び金属リチウム層を各面に有する銅箔を貫通する縦孔を規則的に形成した。縦孔の直径は25μm、ピッチは100μm(10000孔/cm2)とした。最後に、もう一方のキャリア箔と集電層とを剥離して目的とする負極を得た。負極における金属リチウムの量は、活物質の飽和可逆容量に対して25%であった。 Next, one carrier foil was peeled from the current collecting layer to expose the current collecting layer. The exposed current collecting layer was irradiated with a YAG laser, and vertical holes penetrating the copper foil having each negative electrode precursor and a metal lithium layer on each surface were regularly formed. The diameter of the vertical holes was 25 μm, and the pitch was 100 μm (10000 holes / cm 2 ). Finally, the other carrier foil and the current collecting layer were peeled off to obtain a target negative electrode. The amount of metallic lithium in the negative electrode was 25% with respect to the saturation reversible capacity of the active material.

〔実施例5〕
実施例4と同様の操作で、一対の負極前駆体を得た。これら負極前駆体における活物質層が露出している面に向けてYAGレーザを照射し、該負極前駆体を貫通する縦孔を規則的に形成した。縦孔の直径は25μm、ピッチは100μm(10000孔/cm2)とした。
Example 5
In the same manner as in Example 4, a pair of negative electrode precursors was obtained. The negative electrode precursor was irradiated with a YAG laser toward the surface where the active material layer was exposed, and vertical holes penetrating the negative electrode precursor were regularly formed. The diameter of the vertical holes was 25 μm, and the pitch was 100 μm (10000 holes / cm 2 ).

次いで、実施例4と同様の操作で得られた、両面に金属リチウム層を有する銅箔を、縦孔が形成された一対の負極前駆体で挟み込んだ。挟み込みは、各負極前駆体における活物質層どうしが対向し、集電層が外方を向くように行った。これによって、金属リチウム層を各面に有する銅箔と、各負極前駆体とを重ね合わせて一体化させた。最後に、キャリア箔と集電層とを剥離して目的とする負極を得た。負極における金属リチウムの量は、活物質の飽和可逆容量に対して27%であった。   Next, a copper foil having a metal lithium layer on both sides obtained by the same operation as in Example 4 was sandwiched between a pair of negative electrode precursors in which vertical holes were formed. The sandwiching was performed such that the active material layers in each negative electrode precursor face each other and the current collecting layer faced outward. Thereby, the copper foil having the metal lithium layer on each surface and the respective negative electrode precursors were superposed and integrated. Finally, the carrier foil and the current collecting layer were peeled off to obtain a target negative electrode. The amount of metallic lithium in the negative electrode was 27% with respect to the saturation reversible capacity of the active material.

〔実施例6〕
実施例5において、縦孔の直径を15μm、ピッチを100μm(10000孔/cm2)とする以外は実施例5と同様にして負極を得た。
Example 6
In Example 5, a negative electrode was obtained in the same manner as in Example 5 except that the diameter of the vertical holes was 15 μm and the pitch was 100 μm (10000 holes / cm 2 ).

〔実施例7〕
実施例5において、縦孔の直径を25μm、ピッチを200μm(2500孔/cm2)とする以外は実施例5と同様にして負極を得た。
Example 7
In Example 5, a negative electrode was obtained in the same manner as in Example 5 except that the diameter of the vertical holes was 25 μm and the pitch was 200 μm (2500 holes / cm 2 ).

〔実施例8〕
実施例5において、縦孔の直径を50μm、ピッチを100μm(10000孔/cm2)とする以外は実施例5と同様にして負極を得た。
Example 8
A negative electrode was obtained in the same manner as in Example 5 except that the diameter of the vertical holes was 50 μm and the pitch was 100 μm (10000 holes / cm 2 ).

〔実施例9〕
実施例5において、縦孔の直径を50μm、ピッチを200μm(2500孔/cm2)とする以外は実施例5と同様にして負極を得た。
Example 9
In Example 5, a negative electrode was obtained in the same manner as in Example 5 except that the diameter of the vertical holes was 50 μm and the pitch was 200 μm (2500 holes / cm 2 ).

〔実施例10〕
実施例5において、縦孔の直径を100μm、ピッチを300μm(1111孔/cm2)とする以外は実施例5と同様にして負極を得た。
Example 10
In Example 5, a negative electrode was obtained in the same manner as in Example 5 except that the diameter of the vertical holes was 100 μm and the pitch was 300 μm (1111 holes / cm 2 ).

〔実施例11〕
実施例5において、縦孔の直径を250μm、ピッチを1000μm(100孔/cm2)とする以外は実施例5と同様にして負極を得た。
Example 11
In Example 5, a negative electrode was obtained in the same manner as in Example 5 except that the diameter of the vertical holes was 250 μm and the pitch was 1000 μm (100 holes / cm 2 ).

〔実施例12〕
実施例5において、負極前駆体の作製時に、以下の組成を有するピロリン酸銅浴を用い、以下の条件で活物質層に対して浸透めっきを行った以外は実施例5と同様にして負極を得た。
<ピロリン酸銅浴の組成>
・K427 450g/l
・Cu227・3H2O 105g/l
・KNO3 15g/l
<浸透めっきの条件>
・電流密度:3A/dm2
・浴温度:55℃
・pH:8.2
・陽極:DSE電極
Example 12
In Example 5, the negative electrode precursor was prepared in the same manner as in Example 5 except that a copper pyrophosphate bath having the following composition was used and osmotic plating was performed on the active material layer under the following conditions. Obtained.
<Composition of copper pyrophosphate bath>
・ K 4 P 2 O 7 450 g / l
・ Cu 2 P 2 O 7・ 3H 2 O 105g / l
・ KNO 3 15g / l
<Penetration plating conditions>
・ Current density: 3 A / dm 2
・ Bath temperature: 55 ℃
-PH: 8.2
・ Anode: DSE electrode

〔実施例13〕
実施例10において、縦孔の形成方法として、YAGレーザに代えてポンチによる機械的穿孔を用いた以外は実施例5と同様にして負極を得た。
Example 13
In Example 10, a negative electrode was obtained in the same manner as in Example 5 except that mechanical punching by a punch was used instead of the YAG laser as a method for forming the vertical hole.

〔実施例14〕
実施例10において、縦孔の形成方法として、YAGレーザに代えてサンドブラスト法を用いて穿孔を行った以外は実施例5と同様にして負極を得た。
Example 14
In Example 10, a negative electrode was obtained in the same manner as in Example 5 except that the hole was formed by using a sandblast method instead of the YAG laser as a method for forming the vertical hole.

〔実施例15〕
図9に示す負極を製造した。厚さ18μmの電解銅箔の片面に、負極活物質の粒子を含むスラリーを膜厚20μmになるように塗布し活物質層を形成した。活物質粒子はSiからなり、平均粒径はD50=2μmであった。スラリーの組成は、活物質:アセチレンブラック:スチレンブタジエンゴム=98:2:1.7であった。次いで、活物質層に対してニッケルの浸透めっきを行った。浸透めっきの条件は実施例1と同様とした。このようにして得られた活物質層に向けてYAGレーザを照射し、縦孔を規則的に形成した。縦孔の直径は25μm、ピッチは100μm(10000孔/cm2)とした。
Example 15
A negative electrode shown in FIG. 9 was produced. A slurry containing negative electrode active material particles was applied to one surface of an 18 μm thick electrolytic copper foil to a thickness of 20 μm to form an active material layer. The active material particles were made of Si, and the average particle size was D 50 = 2 μm. The composition of the slurry was active material: acetylene black: styrene butadiene rubber = 98: 2: 1.7. Next, nickel plating was performed on the active material layer. The conditions for the infiltration plating were the same as in Example 1. The active material layer thus obtained was irradiated with a YAG laser to form vertical holes regularly. The diameter of the vertical holes was 25 μm, and the pitch was 100 μm (10000 holes / cm 2 ).

〔比較例1〕
電解によって得られた銅箔(厚さ35μm)の各面に、実施例1で用いたスラリーと同様のスラリーを、膜厚15μmになるように塗布して活物質層を形成し、非水電解液二次電池用負極を得た。
[Comparative Example 1]
A slurry similar to the slurry used in Example 1 was applied to each surface of a copper foil (thickness 35 μm) obtained by electrolysis so as to have a film thickness of 15 μm to form an active material layer. A negative electrode for a liquid secondary battery was obtained.

〔性能評価〕
実施例及び比較例にて得られた負極を用い、以下の方法で非水電解液二次電池を作製した。この電池の1サイクル後の放電容量、1サイクル後の不可逆容量、100サイクル後の容量維持率、100サイクル後の充放電効率、及び負極厚み変化率を以下の方法で測定、算出した。これらの結果を以下の表1に示す。
[Performance evaluation]
Using the negative electrodes obtained in Examples and Comparative Examples, non-aqueous electrolyte secondary batteries were produced by the following method. The discharge capacity after 1 cycle of this battery, the irreversible capacity after 1 cycle, the capacity maintenance rate after 100 cycles, the charge / discharge efficiency after 100 cycles, and the negative electrode thickness change rate were measured and calculated by the following methods. These results are shown in Table 1 below.

〔非水電解液二次電池の作製〕
実施例及び比較例で得られた負極を作用極とし、対極(正極)としてLiCoO2を用い、両極を、セパレーターを介して対向させた。非水電解液としてLiPF6/エチレンカーボネートとジメチルカーボネートの混合液(1:1容量比)を用いて通常の方法によって非水電解液二次電池を作製した。電池は、正極と負極との容量比が1:1及び1:2の二種類を作製した。正極と負極との容量比が1:1の電池を、1サイクル後の放電容量及び1サイクル後の不可逆容量の測定に用いた。正極と負極との容量比が1:2の電池を、100サイクル後の容量維持率、100サイクル後の充放電効率及び負極厚み変化率の測定に用いた。
[Production of non-aqueous electrolyte secondary battery]
The negative electrodes obtained in Examples and Comparative Examples were used as working electrodes, LiCoO 2 was used as a counter electrode (positive electrode), and both electrodes were opposed via a separator. A non-aqueous electrolyte secondary battery was produced by a conventional method using a mixed solution (1: 1 volume ratio) of LiPF 6 / ethylene carbonate and dimethyl carbonate as the non-aqueous electrolyte. Two types of batteries having a capacity ratio of the positive electrode to the negative electrode of 1: 1 and 1: 2 were prepared. A battery having a capacity ratio of 1: 1 between the positive electrode and the negative electrode was used to measure the discharge capacity after one cycle and the irreversible capacity after one cycle. A battery having a capacity ratio of 1: 2 between the positive electrode and the negative electrode was used to measure the capacity retention rate after 100 cycles, the charge / discharge efficiency after 100 cycles, and the rate of change in thickness of the negative electrode.

〔1サイクル後の放電容量〕
単位重量当たり及び単位容積当たりの放電容量を測定した。単位重量当たりの放電容量は、活物質(Si)の重量を基準とした。単位容積当たりの放電容量は、負極の体積を基準とした。但し、充電時の負極の膨張は考慮しなかった。
[Discharge capacity after one cycle]
The discharge capacity per unit weight and per unit volume was measured. The discharge capacity per unit weight was based on the weight of the active material (Si). The discharge capacity per unit volume was based on the volume of the negative electrode. However, the expansion of the negative electrode during charging was not considered.

〔1サイクル後の不可逆容量〕
不可逆容量(%)=(1−初回放電容量/初回充電容量)×100
即ち、充電したが放電できず、活物質に残存した容量を示す。
[Irreversible capacity after one cycle]
Irreversible capacity (%) = (1−initial discharge capacity / initial charge capacity) × 100
That is, it indicates the capacity remaining in the active material after being charged but not discharged.

〔100サイクル後の容量維持率〕
100サイクル後の放電容量を測定し、その値を最大負極放電容量で除し、100を乗じて算出した。
[Capacity maintenance rate after 100 cycles]
The discharge capacity after 100 cycles was measured, and the value was divided by the maximum negative electrode discharge capacity and multiplied by 100.

〔100サイクル後の充放電効率〕
100サイクル後の充放電効率(%)=100サイクル後の放電容量/100サイクル後の充電容量×100
[Charge / discharge efficiency after 100 cycles]
Charge / discharge efficiency after 100 cycles (%) = discharge capacity after 100 cycles / charge capacity after 100 cycles × 100

〔負極厚み変化率〕
宝泉株式会社製HS変位セルを用いて、1サイクルにおける充電に伴う負極の厚み変化を測定した。この変位セルでは、負極+セパレーター+正極LiCoO2の、全体の厚み変化が測定される。しかし、正極は充放電によってほとんど膨張せず、負極の厚み変化の寄与率が大きいので、測定している厚み変化は実質的に負極の厚み変化とみなせる。負極厚み変化率は次式から算出する。
負極厚み変化率(%)=[(1サイクル充電状態での厚み)−(充電前の厚み)/充電前の厚み]×100
[Negative electrode thickness change rate]
Using an HS displacement cell manufactured by Hosen Co., Ltd., the thickness change of the negative electrode accompanying charging in one cycle was measured. In this displacement cell, the total thickness change of negative electrode + separator + positive electrode LiCoO 2 is measured. However, since the positive electrode hardly expands due to charge and discharge and the contribution ratio of the change in thickness of the negative electrode is large, the thickness change being measured can be regarded substantially as the change in thickness of the negative electrode. The negative electrode thickness change rate is calculated from the following equation.
Negative electrode thickness change rate (%) = [(Thickness in one cycle charge state) − (Thickness before charging) / Thickness before charging] × 100

表1に示す結果から明らかなように、各実施例の負極を用いた電池は、放電容量が高く、また不可逆容量が小さいことが判る。更に、容量維持率及び充放電効率が高いことが判る。更に、負極の厚み変化率が小さいことが判る。   As is clear from the results shown in Table 1, it can be seen that the battery using the negative electrode of each example has a high discharge capacity and a small irreversible capacity. Furthermore, it turns out that a capacity | capacitance maintenance factor and charging / discharging efficiency are high. Furthermore, it turns out that the thickness change rate of a negative electrode is small.

本発明の負極の第1の実施形態の断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of 1st Embodiment of the negative electrode of this invention. 図1に示す負極の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the negative electrode shown in FIG. 集電層及び微細空隙が形成される状態を示す模式図である。It is a schematic diagram which shows the state in which a current collection layer and a fine space | gap are formed. 本発明の負極の第2の実施形態の断面構造を示す模式図である。It is a schematic diagram which shows the cross-sectional structure of 2nd Embodiment of the negative electrode of this invention. 図4に示す負極の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the negative electrode shown in FIG. 本発明の負極の第3の実施形態の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of 3rd Embodiment of the negative electrode of this invention. 本発明の負極の第4の実施形態の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of 4th Embodiment of the negative electrode of this invention. 図7に示す負極の製造方法の一例を示す工程図である。It is process drawing which shows an example of the manufacturing method of the negative electrode shown in FIG. 本発明の負極の第5の実施形態の断面構造を示す模式図である。It is a schematic diagram which shows the cross-section of 5th Embodiment of the negative electrode of this invention. 実施例1で得られた負極の使用前及び1サイクル後の外観を示す写真である。2 is a photograph showing the appearance of the negative electrode obtained in Example 1 before use and after one cycle. 実施例1で得られた負極の表面及び縦断面を拡大して示す走査型電子顕微鏡写真である。2 is an enlarged scanning electron micrograph showing the surface and vertical cross section of the negative electrode obtained in Example 1. FIG.

符号の説明Explanation of symbols

1a,1b 表面
2 活物質層
3,3a,3b 集電層
4 リチウム化合物の形成能の低い金属材料
5 縦孔
6 微細空隙
7 金属リチウム層
8 導電性箔
10 負極
20 負極前駆体
30 金属リチウム箔
DESCRIPTION OF SYMBOLS 1a, 1b Surface 2 Active material layer 3, 3a, 3b Current collection layer 4 Metal material with low lithium compound formation ability 5 Vertical hole 6 Fine void 7 Metal lithium layer 8 Conductive foil 10 Negative electrode 20 Negative electrode precursor 30 Metal lithium foil

Claims (16)

活物質の粒子を含む活物質層を備えた非水電解液二次電池用負極において、
前記活物質層には、電解めっきによって析出したリチウム化合物の形成能の低い金属材料が粒子間に浸透しており、また
前記負極の少なくとも一方の面において開孔し且つ前記活物質層の厚み方向に延びる縦孔を多数有することを特徴とする非水電解液二次電池用負極。
In the negative electrode for a non-aqueous electrolyte secondary battery provided with an active material layer containing active material particles,
In the active material layer, a metal material having a low ability to form a lithium compound deposited by electrolytic plating penetrates between the particles, and the active material layer is open in at least one surface of the negative electrode and has a thickness direction of the active material layer. A negative electrode for a non-aqueous electrolyte secondary battery, characterized in that it has a number of vertical holes extending in the vertical direction.
電解液と接する集電層を更に備え、該集電層よりも内側に前記活物質層が配されており、
前記縦孔が、前記集電層及び前記活物質層の厚み方向に延びている請求項1記載の非水電解液二次電池用負極。
It further comprises a current collecting layer in contact with the electrolytic solution, and the active material layer is disposed inside the current collecting layer,
The negative electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the vertical hole extends in a thickness direction of the current collecting layer and the active material layer.
一対の前記集電層と、該集電層間に介在配置された前記活物質層とを備えている請求項2記載の非水電解液二次電池用負極。   The negative electrode for a non-aqueous electrolyte secondary battery according to claim 2, comprising a pair of the current collecting layers and the active material layer interposed between the current collecting layers. 一対の前記集電層の少なくとも一方の厚みが0.3〜10μmである請求項3記載の非水電解液二次電池用負極。   The negative electrode for a non-aqueous electrolyte secondary battery according to claim 3, wherein the thickness of at least one of the pair of current collecting layers is 0.3 to 10 μm. 一対の前記集電層の厚みがそれぞれ0.3〜10μmである請求項4記載の非水電解液二次電池用負極。   The negative electrode for a nonaqueous electrolyte secondary battery according to claim 4, wherein each of the pair of current collecting layers has a thickness of 0.3 to 10 μm. 一対の前記集電層と、該集電層間に介在配置された前記活物質層及び金属リチウム層とを更に備えている請求項3記載の非水電解液二次電池用負極。   The negative electrode for a non-aqueous electrolyte secondary battery according to claim 3, further comprising a pair of the current collecting layers, and the active material layer and the metal lithium layer interposed between the current collecting layers. 一対の前記活物質層を備え、該活物質層間に前記金属リチウム層が介在配置されている請求項6記載の非水電解液二次電池用負極。   The negative electrode for a non-aqueous electrolyte secondary battery according to claim 6, comprising a pair of the active material layers, wherein the metal lithium layer is interposed between the active material layers. 一対の前記金属リチウム層を備え、該金属リチウム層間に導電性箔が介在配置されている請求項7記載の非水電解液二次電池用負極。   The negative electrode for a nonaqueous electrolyte secondary battery according to claim 7, comprising a pair of the metal lithium layers, and a conductive foil interposed between the metal lithium layers. 負極の表面において開孔している前記縦孔の開孔率が0.3〜30%である請求項1ないし8の何れかに記載の非水電解液二次電池用負極。   The negative electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 8, wherein a hole area ratio of the vertical holes opened on the surface of the negative electrode is 0.3 to 30%. 負極の表面において開孔している前記縦孔の開孔径が5〜500μmである請求項1ないし9の何れかに記載の非水電解液二次電池用負極。   The negative electrode for a non-aqueous electrolyte secondary battery according to any one of claims 1 to 9, wherein an opening diameter of the vertical hole formed on the surface of the negative electrode is 5 to 500 µm. 前記縦孔が負極の厚み方向に貫通している請求項1ないし10の何れかに記載の非水電解液二次電池用負極。   The negative electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the vertical hole penetrates in the thickness direction of the negative electrode. 縦孔がレーザー加工により形成されている請求項1ないし11の何れかに記載の非水電解液二次電池用負極。   The negative electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the vertical hole is formed by laser processing. 縦孔が機械的な穿孔により形成されている請求項1ないし11の何れかに記載の非水電解液二次電池用負極。   The negative electrode for a nonaqueous electrolyte secondary battery according to claim 1, wherein the vertical hole is formed by mechanical perforation. 請求項1記載の負極を負極前駆体として用い、該負極前駆体が複数枚積層されてなることを特徴とする非水電解液二次電池用負極。   A negative electrode for a non-aqueous electrolyte secondary battery, wherein the negative electrode according to claim 1 is used as a negative electrode precursor, and a plurality of the negative electrode precursors are laminated. 隣り合う前記負極前駆体間に導電性箔が介在配置されている請求項14記載の非水電解液二次電池用負極。   The negative electrode for a nonaqueous electrolyte secondary battery according to claim 14, wherein a conductive foil is interposed between the negative electrode precursors adjacent to each other. 請求項1ないし15の何れかに記載の負極を備えていることを特徴とする非水電解液二次電池。
A non-aqueous electrolyte secondary battery comprising the negative electrode according to claim 1.
JP2005047827A 2004-09-09 2005-02-23 Anode for non-aqueous electrolyte secondary battery Expired - Fee Related JP3764470B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2005047827A JP3764470B1 (en) 2004-09-09 2005-02-23 Anode for non-aqueous electrolyte secondary battery
PCT/JP2005/012062 WO2006027886A1 (en) 2004-09-09 2005-06-30 Negative electrode for nonaqueous electrolyte secondary battery
US11/174,645 US7838154B2 (en) 2004-09-09 2005-07-06 Negative electrode for nonaqueous secondary battery
TW094123271A TWI310994B (en) 2004-09-09 2005-07-08 Negative electrode for nonaqueous secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004262943 2004-09-09
JP2005047827A JP3764470B1 (en) 2004-09-09 2005-02-23 Anode for non-aqueous electrolyte secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2005348870A Division JP2006134891A (en) 2004-09-09 2005-12-02 Negative electrode for nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP3764470B1 true JP3764470B1 (en) 2006-04-05
JP2006108066A JP2006108066A (en) 2006-04-20

Family

ID=36036180

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005047827A Expired - Fee Related JP3764470B1 (en) 2004-09-09 2005-02-23 Anode for non-aqueous electrolyte secondary battery

Country Status (3)

Country Link
JP (1) JP3764470B1 (en)
TW (1) TWI310994B (en)
WO (1) WO2006027886A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134891A (en) * 2004-09-09 2006-05-25 Mitsui Mining & Smelting Co Ltd Negative electrode for nonaqueous electrolyte secondary battery

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5245425B2 (en) * 2007-06-05 2013-07-24 ソニー株式会社 Negative electrode and secondary battery
JP2010015974A (en) * 2008-03-28 2010-01-21 Fuji Heavy Ind Ltd Manufacturing method of electrode, power storage device, and intermediate laminated material
CN102576855B (en) 2009-08-24 2015-11-25 赛昂能源有限公司 For the stripping system of electrochemical cell
US10862105B2 (en) 2013-03-15 2020-12-08 Sion Power Corporation Protected electrode structures
CN105051944B (en) 2013-03-15 2019-04-02 锡安能量公司 Protected electrode structure and method
KR101636908B1 (en) * 2014-05-30 2016-07-06 삼성전자주식회사 Stretchable thermoelectric material and thermoelectric device including the same
DE102016217390A1 (en) * 2016-09-13 2018-03-15 Robert Bosch Gmbh Electrode with local differences in porosity, method for producing such an electrode and their use
JP6770713B2 (en) * 2016-10-12 2020-10-21 株式会社Gsユアサ Power storage element
KR20220126536A (en) * 2021-03-09 2022-09-16 삼성전자주식회사 Electrode structure, secondary battery including the same, method of fabricating the electrode structure
KR20230017655A (en) * 2021-07-28 2023-02-06 삼성에스디아이 주식회사 Electrode, Lithium battery containing electrode and Preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11233116A (en) * 1998-02-16 1999-08-27 Canon Inc Electrode structural body for lithium secondary battery, its manufacture and lithium secondary battery
JP2002083594A (en) * 1999-10-22 2002-03-22 Sanyo Electric Co Ltd Electrode for lithium battery, lithium battery using it and lithium secondary battery
JP2001126717A (en) * 1999-10-28 2001-05-11 Japan Storage Battery Co Ltd Negative electrode for nonaqueous electrolytic secondary cell
CN1306633C (en) * 2000-04-26 2007-03-21 三洋电机株式会社 Lithium secondary battery-use electrode and lithium secondary battery
JP3565272B2 (en) * 2001-11-30 2004-09-15 日本製箔株式会社 Negative electrode material for Li secondary battery, negative electrode using the same
JP2005197217A (en) * 2003-12-10 2005-07-21 Mitsui Mining & Smelting Co Ltd Anode for non-aqueous electrolytic solution secondary battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006134891A (en) * 2004-09-09 2006-05-25 Mitsui Mining & Smelting Co Ltd Negative electrode for nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2006108066A (en) 2006-04-20
TW200614576A (en) 2006-05-01
WO2006027886A1 (en) 2006-03-16
TWI310994B (en) 2009-06-11

Similar Documents

Publication Publication Date Title
JP3764470B1 (en) Anode for non-aqueous electrolyte secondary battery
JP3799049B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and method for producing the same
US7838154B2 (en) Negative electrode for nonaqueous secondary battery
JP4024254B2 (en) Non-aqueous electrolyte secondary battery
US7682739B2 (en) Negative electrode for nonaqueous secondary battery and process of producing the same
JP4616584B2 (en) Anode for non-aqueous electrolyte secondary battery
JP2008277156A (en) Negative electrode for nonaqueous electrolyte secondary battery
JP4764232B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3987851B2 (en) Secondary battery negative electrode and secondary battery including the same
CN100514716C (en) Negative electrode for nonaqueous secondary battery
JP2005197217A (en) Anode for non-aqueous electrolytic solution secondary battery
JP4746328B2 (en) Anode for non-aqueous electrolyte secondary battery
WO2005055345A1 (en) Secondary battery-use electrode and production method therefor and secondary battery
JP3906342B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and method for producing the same
JP4763995B2 (en) Nonaqueous electrolyte secondary battery electrode
JP2006228512A (en) Anode for nonaqueous electrolyte secondary battery
JP2006134891A (en) Negative electrode for nonaqueous electrolyte secondary battery
JP4298578B2 (en) Porous metal foil with carrier foil and method for producing the same
JP3742828B2 (en) Anode for non-aqueous electrolyte secondary battery
JP2006147316A (en) Anode for nonaqueous electrolyte secondary battery
JP4516359B2 (en) Anode for non-aqueous electrolyte secondary battery
JP2006012646A (en) Negative electrode for nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060119

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090127

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100127

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110127

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120127

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130127

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140127

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees