JP3755840B2 - Electrode for polymer electrolyte fuel cell - Google Patents

Electrode for polymer electrolyte fuel cell Download PDF

Info

Publication number
JP3755840B2
JP3755840B2 JP08210696A JP8210696A JP3755840B2 JP 3755840 B2 JP3755840 B2 JP 3755840B2 JP 08210696 A JP08210696 A JP 08210696A JP 8210696 A JP8210696 A JP 8210696A JP 3755840 B2 JP3755840 B2 JP 3755840B2
Authority
JP
Japan
Prior art keywords
catalyst
ion exchange
gas
fuel cell
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08210696A
Other languages
Japanese (ja)
Other versions
JPH09245802A (en
Inventor
多田  智之
庸仁 戸島
悦子 只野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Stonehart Associates Inc
Original Assignee
Stonehart Associates Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Stonehart Associates Inc filed Critical Stonehart Associates Inc
Priority to JP08210696A priority Critical patent/JP3755840B2/en
Publication of JPH09245802A publication Critical patent/JPH09245802A/en
Application granted granted Critical
Publication of JP3755840B2 publication Critical patent/JP3755840B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【発明の属する技術分野】
本発明は、高分子固体電解質型燃料電池用電極に関し、より詳細には触媒層とガス拡散層から成る燃料電池用電極における前記触媒層の性能を向上させた前記燃料電池用電極に関する。
【0002】
【従来技術及び問題点】
燃料電池は、水素や各種化石燃料を用いる高効率、無公害発電装置であることから、エネルギー問題、全地球的公害問題に対処できる、“ポスト原子力”の発電装置として、社会的に大きな期待が寄せられている。火力代替発電用、ビルディングや工場単位のオンサイト発電用、あるいは宇宙用など、用途に応じた各種燃料電池が開発されている。近年、炭酸ガスを中心とする温室効果や、NOx、SOx等による酸性雨が地球の将来を脅かす深刻な公害として認識されてきた。これら公害ガスの主要な排出源の一つが自動車等の内燃機関であることから、燃料電池を車載用内燃機関に代えて作動するモータ電源として利用する気運が急速に高まりつつある。この場合、多くの付帯設備と同様、電池は可能な限り小型であることが望ましく、そのためには電池本体の出力密度、出力電流密度が高いことが必須である。この条件を満たす有力な燃料電池の候補として、イオン交換膜を用いた高分子固体電解質型燃料電池(以下PEMFCという)が注目されている。
【0003】
ここでPEMFCの本体の基本構造と作用、問題点について説明する。図1に示す如く、PEM1の両側に4A、4Cで示されるアノード及びカソードがホットプレスにより接合されることにより電池の基本が構成される。このアノード及びカソードは2A又は2Cで示される多孔質触媒層と3A又は3Cで示されるカーボンペーパーなどガス拡散層からなる。電極反応は2A及び2C部の触媒表面で起こる。アノード反応ガス(H2 )は反応ガス供給孔5Aから3Aを通して供給され、カソード反応ガス(O2 )は反応ガス供給孔5Cから3Cを通して供給される。
2A中では、アノード反応:H2 →2H+ +2e- が、2C中ではカソード反応: 1/2O2 +2H+ +2e- →H2 Oの反応が起こり、電池全体ではこれらの反応のトータルとしてH2 + 1/2O2 →H2 O+Q(反応熱)が起こる。この過程で起電力が得られ、この電気エネルギーにより外部負荷8を電子が流れる際に電気的仕事がなされる。
【0004】
燃料電池の反応は前記触媒上で起こり、どのようにして前記触媒を有効利用するか、換言すると触媒層の性能ひいては燃料電池の性能を向上させるかが、前記燃料電池により得られるエネルギー量を左右する最大の要因である。しかしながら従来の燃料電池では種々の理由により触媒層の性能を最大にすることができず、高価な触媒特に白金族金属触媒を有効利用できていないという欠点がある。
本発明者らはこの燃料電池の性能を最大にすることができない理由を熟慮した結果、その理由の1つが触媒層が均一であるためであることを見出した。従来から高分子固体電解質型燃料電池用電極の触媒層は、触媒とイオン交換樹脂、又は触媒とイオン交換樹脂と撥水性樹脂を、有機溶媒と水との混合液に縣濁した縣濁液を、電極基板上に一度に塗布し、乾燥し、焼成を行なって製造されている。この方法では一度に塗布を行なうため、触媒層の厚み方向で、触媒層の混成原料を変えることができず、触媒層の厚み方向でそれぞれに応じた最適な触媒層を得ることができない。触媒層の主要な機能はアノード及びカソードで生ずるプロトン及び電子を導伝して燃料電池反応を促進する点にある。一方触媒層は反応ガスを供給し、生成ガスを排出するという機能も有し、同じ触媒層でも反応サイトから離れるほど反応を促進しプロトンを導伝する機能よりもガス流通を円滑にする機能の方が重視されるようになる。しかし従来の触媒層は前述の通り均一でありそのガス流通の円滑性を与える触媒担体の緻密性も均一である。
【0005】
このガス流通を円滑にする機能つまりガス透過性とプロトン(電子)導伝性とは二律背反的関係にあり、一方を高めると他方が低くなり、従来技術では両者を高めることは不可能である。従来の燃料電池は、前述した通り製造した電極(アノード及びカソード)2枚でイオン交換膜を挟み、これらをホットプレスで結着して製造されている。この方法では球形に近い形状の触媒担体がほぼ隙間なく充填されしかもホットプレスにより互いに強固に密着して密度が高くなりガス流通路が十分に形成されず、ガス透過性が大きく損なわれている。
燃料電池反応は燃料ガスが反応サイトに供給されなければ生じないため、触媒活性がいかに高くても燃料ガスが反応サイトに供給されなければ反応は生じない。従ってガス透過性は触媒活性より重要であるという見方も可能であり、ガス透過性の向上に対する考慮が殆どない従来の燃料電池はその触媒活性が十分に生かされていないとも言える。
更に触媒層のうちイオン交換膜に近接する箇所ほど燃料電池反応への寄与が大きく触媒の利用率が高く逆にガス拡散層に近接するほど触媒の利用率は低下するが、従来の触媒層が均一な燃料電池ではこの触媒利用率をより以上に向上させて最適値で燃料電池を運転するという考え方は存在しない。
【0006】
【発明が解決しようとする課題】
そこで本発明は、触媒層の厚み方向にその機能、つまり触媒担体の比表面積を変化させることにより燃料電池の触媒層のガス透過性とプロトン導伝性という相反した関係にある両機能をそれぞれ向上させた燃料電池を提供することを目的とする。
【0007】
【課題を解決するための手段】
上記の課題を解決するための本発明は、触媒が担持された触媒担体とイオン交換樹脂、又は触媒が担持された触媒担体とイオン交換樹脂と撥水性樹脂による触媒層が、イオン交換膜とガス拡散層間に形成された高分子固体電解質型燃料電池用電極において、前記触媒層の性能を該触媒層の厚さ方向に異ならせたことを特徴とする高分子固体電解質型燃料電池用電極である。前記性能としては、触媒担体の比表面積がある。なお該性能は触媒層のイオン交換膜側からガス拡散層側に均一勾配で変化する必要はなく、触媒層のイオン交換膜側の性能が全体としてガス拡散層側の性能と異なっていれば良い。
【0008】
以下本発明を詳細に説明する。
前述した通り燃料電池では、ガス拡散層側から燃料ガスを供給し該燃料ガスがガス拡散層を透過し更に触媒層を透過してイオン交換膜表面に達して反応が進行する。この反応はアノードでは水素ガスの酸化によるプロトン発生であり、カソードでは酸素ガスの還元による電子の発生である。アノード(カソード)で発生するプロトン(電子)は触媒層からガス拡散層を経て導線によりカソード(アノード)に接続された負荷を通ることにより初めて外部にエネルギーとして取り出される。従って触媒層の機能の1つであるプロトン(電子)導伝性から見ると、該機能を有するイオン交換樹脂が担持された触媒担体は緻密であることが望ましい。しかし触媒層の他の機能であるガス透過性の観点からは前記触媒担体は多孔質であることが望ましい。
【0009】
つまり触媒担体の緻密性に関して言えば、触媒層全体に亘って触媒担体の緻密性が均一であることは前述のガス透過性とプロトン(電子)導伝性の両者をともに向上させる観点からは望ましいことではない。
従って本発明では、触媒担体の緻密性を触媒層の厚み方向に異ならせることにより、通常は二律背反的関係にある触媒層の主要性能であるガス透過性とプロトン(電子)導伝性をそれぞれ向上させることを可能にしている。
つまり本発明では、燃料電池のイオン交換膜とガス拡散層間に配置された触媒層のイオン交換膜側に緻密な触媒担体をガス拡散層側に多孔質の触媒担体を配置し、前記緻密な触媒担体の触媒活性に優れた性能を反応サイトであるイオン交換膜近傍において十分に発揮させ、一方ガス拡散層側に多孔質の触媒担体を配置することにより、特に触媒層のガス拡散層側で要求されるガス透過性を向上させるようにしている。更に本発明では多孔質触媒担体を使用するため、該触媒担体がホットプレス等によっても完全に潰されることがなくガス流通路が確保され、過度のガス透過性の低下がない。好ましい触媒担体の緻密性例えば一次粒子径はイオン交換膜側が100 〜300 Å、ガス拡散層側が300 Å〜1μmである。
【0010】
図2は、この触媒層の厚み方向で触媒担体の緻密性を異ならせた燃料電池の電極を示すものである。図の電極は、上側から順にイオン交換膜11、触媒層12及びガス拡散層13の順に積層され、触媒層12のうちイオン交換膜11側は緻密な触媒担体14により、又ガス拡散層13側は多孔質の触媒担体15により構成されている。この電極にはガス拡散層13の下方から水素や酸素の燃料ガスが供給され、イオン交換膜11からは生成するプロトン(電子)及び生成ガスが取り出される。
ガス拡散層13側から供給される燃料ガスは該ガス拡散層13側の触媒担体15が多孔質であるためその間を容易に通過して両触媒担体14、15の界面まで達する。この界面からイオン交換膜11側の触媒担体14は緻密であるためガス透過能は低下するが、透過すべき距離が半分になっているため、全体としてはガス透過能が改善される。
【0011】
一方イオン交換膜11近傍の反応サイトで生成するプロトン(電子)は導伝性を有するカーボン等の触媒担体を介して外部の導線に取り出されるが、触媒層12のイオン交換膜11側の触媒担体14が緻密でありつまり導伝体濃度が高いため、容易に前記両触媒担体14、15の界面まで達する。この界面からガス拡散層13側の触媒担体15は多孔質であるため導伝性は低下するが、導伝されるべき距離が半分になっているため、全体としては導伝性が改善される。更に前記反応サイトで生成するガスも前記触媒層12を通して取り出されるが、この場合にもガス拡散層13側の多孔質触媒担体15のため、全体のガス透過性が向上する。
このような触媒層の厚み方向で異ならせる性質は触媒担体の多孔度に限定される訳ではなく、その他に触媒担体の比表面積、イオン交換樹脂量及び触媒濃度等の性質を触媒層の厚み方向で異ならせても良い。
【0012】
触媒担体の比表面積の触媒活性やガス透過性に対する影響は画一的には決定できないが、触媒担体の粒径が一定の場合に比表面積を増加させると、換言すると担体の細孔を増加させると、ガス流通路が増加してガス透過性が向上しかつ担体の連続性が損なわれるためプロトン(電子)導伝性は低下する。逆に触媒担体の粒径が一定の場合に比表面積を減少させると、換言すると担体の細孔を減少させるとガス流通路が減少してガス透過性が低下しかつ担体のプロトン(電子)導伝性が増加する。従ってイオン交換膜側の触媒担体の比表面積を小さくしガス拡散層側の触媒担体の比表面積を大きくすることにより、ガス透過性を高く維持しかつ反応活性も高い燃料電池を提供できる。好ましい触媒担体の比表面積はガス拡散層側が250 〜2000m2/gであり、イオン交換樹脂側が50〜400 m2/gである。
次に触媒担体や撥水性樹脂(例えばポリテトラフルオロエチレンやフッ素化ポリエチレン−ポリプロピレン)とともに触媒層を構成するイオン交換樹脂は、プロトン(電子)の導伝性向上に寄与し、逆にガス透過性を低下させる。従って前記イオン交換樹脂濃度はイオン交換膜側で高くし、ガス拡散層側で低くすることにより、プロトン(電子)導伝性及びガス透過性の両者を高く維持できる。好ましいイオン交換樹脂濃度はガス拡散層側が20〜50重量%、イオン交換樹脂側が40〜70重量%である。
【0013】
図3は、この触媒層の厚み方向でイオン交換膜量を異ならせた燃料電池の電極を示すものである。図の電極は、上側から順にイオン交換膜21、触媒層22及びガス拡散層23の順に積層され、触媒層22のうちイオン交換膜21側は担持されるイオン交換樹脂量が多い触媒担体24により、又ガス拡散層23側は担持されるイオン交換樹脂量が少ない触媒担体25により構成されている。この電極でも図2と同様にガス供給及びガス排出が行なわれ、ガス拡散層23側から供給される燃料ガスは該ガス拡散層23側の触媒担体25のイオン交換樹脂量が少ないため担体間を容易に通過して両触媒担体24、25の界面まで達する。この界面からイオン交換膜21側の触媒担体24はイオン交換樹脂量が多いためガス透過能は低下するが、透過すべき距離が半分になっているため、全体としてはガス透過能が改善される。
又図2の場合と同様に、イオン交換膜21近傍の反応サイトで生成するプロトン(電子)及び生成ガスの取り出しも全体として改善される。
【0014】
前述の触媒濃度を異ならせる場合も図3と同じように、イオン交換膜に近い側の触媒担体の触媒担持量を増加させ、ガス拡散層に近い側の触媒担体の触媒担持量を減少させて燃料電池用電極を構成する。好ましい触媒特に貴金属触媒の触媒担体に対する濃度はイオン交換膜側が30〜60重量%、ガス拡散層側が10〜40重量%である。
この場合にはガス透過性に関する改善は生じないが、反応サイトに近い触媒濃度が高いため触媒利用率が向上し、全体的な触媒活性が増加する。
前述した厚み方向に性能を異ならせた触媒層は、例えばガス拡散層表面に、異なる混合比率(組成)又は原料を用いた縣濁液を複数回望ましくは2〜10回塗布を繰り返すことにより、又は別個に調製した性能の異なる複数の触媒層前駆体を接合することにより得られる。一回の塗布で形成される薄膜の厚さは特に限定されないが5〜20μmであることが好ましく、熱処理を行なう場合には、130 〜180 ℃で10〜30kg/cm2の圧でホットプレスすれば良い。
【0015】
【実施例】
本発明の高分子固体電解質型燃料電池用電極の実施例を参考例及び比較例とともに説明するが、これらは本発明を限定するものではない。
参考例1】
白金を1mg/cm2担持した(カーボン担体に対して30重量%)比表面積300 m2/gのカーボン担体を準備した。このカーボン担体3種を、それぞれ該カーボン担体に対する重量比が58.5%、50%及び38.5%であるイオン交換樹脂(ナフィオン、デュポン社の商品名)5%溶液の濃縮液20gと蒸留水6gとともに遊星ボールミルにて50分間混合してペーストを得た。イオン交換樹脂濃度が38.5%であるペーストを、30重量%の撥水性樹脂ポリテトラフルオロエチレンで撥水化処理したカーボンペーパーから成るガス拡散層へ塗布し、60℃で10分間乾燥し、更に130℃、20kg/cm2で1分間焼成し、次にイオン交換樹脂濃度が50%であるペーストを同一条件で前記したペーパー上へ塗布しかつ焼成し、更にイオン交換樹脂濃度が58.5%であるペーストを同一条件で前記ペースト上へ塗布しかつ焼成して前記ガス拡散層上へ触媒層を形成して電極とした(電極面積πcm2)。
【0016】
参考例2】
カーボン担体として粒径0.03μm、表面積1300m2/gのものを使用した。イオン交換樹脂のカーボン担体に対する重量比を50%とし、白金担持量が50重量%である実施例1と同じペーストを次いで白金担持量が40重量%である参考例1と同じペーストをガス拡散層へ塗布し、それぞれ60℃10分間乾燥し、更に130 ℃、20kg/cm2で1分間焼成して触媒濃度が触媒層の厚み方向に異なる電極を製造した(電極面積πcm2)。
【0017】
【比較例1】
触媒層を、イオン交換樹脂の重量比がカーボン担体に対して50%である均一な触媒層としたこと以外は参考例1と同一条件でガス拡散層上へ触媒層を形成して電極とした。
【0018】
上記のように製造された参考例1及び2の電極と比較例1の電極各2枚でイオン交換膜(デュポン社製ナフィオン112 )を挟み、それぞれセル温度80℃、350ml/分で水素ガスを250 ml/分で酸素ガスを供給しながら、電圧と電流密度の関係を測定したところ、図4のグラフに示すような結果を得た。
このグラフから、参考例1及び参考例2の電極は高電流密度領域で比較例1の電流よりも高電圧を得ることができ、特に参考例2(イオン交換樹脂濃度を異ならせた電極)の電極の方が参考例1(触媒濃度を異ならせた電極)よりも良好な効果が生じたことが判る。
【0019】
【実施例
ガス拡散層側の担体として白金を40重量%担持した(白金量は0.5 mg/cm2)比表面積が約1300m2/gのカーボン担体を、又イオン交換膜側の担体として白金を40重量%担持した(白金量は0.5 mg/cm2)比表面積が約300 m2/gのカーボン担体をそれぞれ使用して、参考例1と同様にして電極を製造した(電極面積πcm2)。
【0020】
【比較例2】
触媒層を、イオン交換樹脂の重量比がカーボン担体に対して50%であり、白金を30重量%担持した(白金量は1mg/cm2)比表面積が約300 m2/gのカーボン担体を使用して構成し、均一な触媒層を有する電極を製造した(電極面積πcm2)。
【0021】
上記のように製造された実施例と比較例2の電極各2枚でイオン交換膜(デュポン社製ナフィオン112 )を挟み、それぞれセル温度80℃、350 ml/分で水素ガスを250 ml/分で酸素ガスを供給しながら、電圧と電流密度の関係を測定したところ、図5のグラフに示すような結果を得た。このグラフから、実施例の電極は高電流密度領域で比較例2の電流よりも高電圧を得ることができたことが判る。
【0022】
【実施例
ガス拡散層側の担体として、粒径0.03μm、表面積1300m2/gのものを使用し、イオン交換膜側の担体として、粒径0.015μm、表面積1500m2/gのものを使用し、白金を40重量%担持して(白金量は1mg/cm2)電極面積がπcm2 である電極を製造した。
この電極を使用して、上述の参考例1と同一条件で電圧と電流密度の関係を測定したところ、図6のグラフに示すような結果を得た。このグラフから、高電流密度領域でも比較的高電圧でエネルギーを取り出せたことが判る。
【0023】
【発明の効果】
本発明は、触媒が担持された触媒担体とイオン交換樹脂、又は触媒が担持された触媒担体とイオン交換樹脂と撥水性樹脂とを含む触媒層が、イオン交換膜とガス拡散層間に形成された高分子固体電解質型燃料電池用電極において、触媒層のイオン交換膜側に比表面積の小さい触媒担体を使用し、ガス拡散層側に比表面積の大きな触媒担体を使用して、触媒担体の比表面積を該触媒層の厚さ方向に異ならせたことを特徴とする高分子固体電解質型燃料電池用電極である(請求項1)。
燃料電池の触媒層はガス透過性とプロトン(電子)導伝性という相反した性能を要求されるが、従来の燃料電池では比較的緻密な触媒担体やイオン交換樹脂をホットプレス等で結着して製造されている。この製法では球形に近い形状の触媒担体がほぼ隙間なく充填されしかもホットプレスにより互いに強固に密着して密度が高くなりガス流通路は殆ど形成されず、ガス透過性が大きく損なわれている。
【0024】
つまり従来の燃料電池では、燃料電池の触媒層の主たる機能であるガス透過性とプロトン等の導伝性のうち、ガス透過性を犠牲にしてプロトン等の導伝性を向上させることを意図している。しかしながら燃料ガスが反応サイトに供給され生成ガスが取り出されない限り反応は進行しない。従って従来の燃料電池では反応が十分速く進行せず、燃料電池の特性であるエネルギー生成が不十分となっている。
この欠点を解消するために前記ホットプレスによる結着を弱くするとプロトン等の導伝性が損なわれ、ガスの供給及び排出は円滑に行なわれても、プロトン等の移動によるエネルギー生成が損なわれる。
【0026】
前述の本発明では、触媒担体の比表面積を該触媒層の厚さ方向に異ならせることにより、触媒層のイオン交換膜側とガス拡散層側でその主として達成される性能を相違させることにより、例えば前述のガス透過性及びプロトン等の導伝性に優れた燃料電池用電極を提供できる。
触媒担体の粒径が一定の場合に比表面積を増加させると、換言すると担体の細孔を増加させると、ガス流通路が増加してガス透過性が向上しかつ担体の連続性が損なわれるためプロトン等の導伝性は低下する。逆に触媒担体の粒径が一定の場合に比表面積を減少させると、換言すると担体の細孔を減少させるとガス流通路が減少してガス透過性が低下しかつ担体のプロトン等の導伝性が増加する。従って触媒層のイオン交換膜側の触媒担体の比表面積を小さくしガス拡散層側の触媒担体の比表面積を大きくすることにより、ガス透過性を高く維持しかつ反応活性も高い燃料電池を提供できる。
【図面の簡単な説明】
【図1】 従来のイオン交換膜を使用した燃料電池の基本構造を示す概略図。
【図2】 本発明の高分子固体電解質型燃料電池用電極の一実施例を示す断面図。
【図3】 本発明の高分子固体電解質型燃料電池用電極の他の実施例を示す断面図。
【図4】 参考例1、2及び比較例1における電流密度と電圧の関係を示すグラフ。
【図5】 実施例及び比較例2における電流密度と電圧の関係を示すグラフ。
【図6】 実施例における電流密度と電圧の関係を示すグラフ。
【符号の説明】
11、21、・・・イオン交換膜
12、22・・・触媒層
13、23・・・ガス拡散層
14、24・・・イオン交換膜側触媒担体
15、25・・・ガス拡散層側触媒担体
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polymer electrolyte fuel cell electrode, and more particularly to the fuel cell electrode in which the performance of the catalyst layer in a fuel cell electrode comprising a catalyst layer and a gas diffusion layer is improved.
[0002]
[Prior art and problems]
Since fuel cells are high-efficiency, pollution-free power generation devices that use hydrogen and various fossil fuels, there is great social expectations as a “post-nuclear power generation device” that can deal with energy and global pollution problems. It is sent. Various fuel cells have been developed for various uses, such as thermal power generation, on-site power generation for buildings and factories, and space. In recent years, the greenhouse effect centered on carbon dioxide and acid rain caused by NOx, SOx, etc. have been recognized as serious pollution that threatens the future of the earth. Since one of the main emission sources of these pollutant gases is an internal combustion engine such as an automobile, there is a rapid increase in the use of a fuel cell as a motor power source that operates in place of an in-vehicle internal combustion engine. In this case, as in many incidental facilities, it is desirable that the battery be as small as possible. To that end, it is essential that the output density and output current density of the battery body be high. A solid polymer electrolyte fuel cell (hereinafter referred to as PEMFC) using an ion exchange membrane has attracted attention as a promising candidate fuel cell that satisfies this condition.
[0003]
Here, the basic structure, operation, and problems of the PEMFC main body will be described. As shown in FIG. 1, the base of the battery is configured by joining the anode and the cathode indicated by 4A and 4C to both sides of the PEM 1 by hot pressing. The anode and cathode are composed of a porous catalyst layer indicated by 2A or 2C and a gas diffusion layer such as carbon paper indicated by 3A or 3C. The electrode reaction takes place on the catalyst surface in parts 2A and 2C. The anode reaction gas (H 2 ) is supplied through the reaction gas supply holes 5A through 3A, and the cathode reaction gas (O 2 ) is supplied through the reaction gas supply holes 5C through 3C.
The in 2A, anode reaction: H 2 → 2H + + 2e - is the cathode reaction in 2C: 1 / 2O 2 + 2H + + 2e - → H 2 O reactions occur, H 2 as a total of these reactions in the whole cell + 1 / 2O 2 → H 2 O + Q (heat of reaction) occurs. An electromotive force is obtained in this process, and electrical work is performed when electrons flow through the external load 8 by this electric energy.
[0004]
The reaction of the fuel cell occurs on the catalyst, and how to effectively use the catalyst, in other words, whether to improve the performance of the catalyst layer and hence the performance of the fuel cell, affects the amount of energy obtained by the fuel cell. Is the biggest factor. However, conventional fuel cells have the disadvantage that the performance of the catalyst layer cannot be maximized for various reasons, and expensive catalysts, particularly platinum group metal catalysts, cannot be effectively utilized.
As a result of considering the reason why the performance of the fuel cell cannot be maximized, the present inventors have found that one reason is that the catalyst layer is uniform. Conventionally, a catalyst layer of an electrode for a solid polymer electrolyte fuel cell has a suspension in which a catalyst and an ion exchange resin, or a catalyst, an ion exchange resin, and a water-repellent resin are suspended in a mixture of an organic solvent and water. It is manufactured by coating on an electrode substrate at a time, drying and firing. In this method, since the coating is performed at once, the mixed raw material of the catalyst layer cannot be changed in the thickness direction of the catalyst layer, and an optimum catalyst layer corresponding to each in the thickness direction of the catalyst layer cannot be obtained. The main function of the catalyst layer is to conduct protons and electrons generated at the anode and cathode to promote the fuel cell reaction. On the other hand, the catalyst layer also has the function of supplying the reaction gas and discharging the generated gas, and the function of facilitating the gas flow rather than the function of promoting the reaction and conducting protons as the distance from the reaction site increases even in the same catalyst layer. Will become more important. However, the conventional catalyst layer is uniform as described above, and the denseness of the catalyst carrier that gives smoothness of the gas flow is also uniform.
[0005]
The function of facilitating the gas flow, that is, gas permeability and proton (electron) conductivity are in a trade-off relationship. When one is increased, the other is decreased, and it is impossible to increase both by the conventional technique. A conventional fuel cell is manufactured by sandwiching an ion exchange membrane between two electrodes (anode and cathode) manufactured as described above, and binding them with a hot press. In this method, catalyst carriers having a shape close to a sphere are filled almost without gaps, and are firmly adhered to each other by hot pressing to increase the density, and a gas flow passage is not sufficiently formed, so that gas permeability is greatly impaired.
Since the fuel cell reaction does not occur unless the fuel gas is supplied to the reaction site, no reaction occurs unless the fuel gas is supplied to the reaction site, no matter how high the catalyst activity is. Therefore, it can be considered that the gas permeability is more important than the catalyst activity, and it can be said that the catalyst activity is not fully utilized in the conventional fuel cell which hardly considers the improvement of the gas permeability.
Further, the portion closer to the ion exchange membrane in the catalyst layer has a greater contribution to the fuel cell reaction, and the utilization rate of the catalyst is higher. Conversely, the closer to the gas diffusion layer, the lower the utilization rate of the catalyst. In the case of a uniform fuel cell, there is no idea of operating the fuel cell at an optimum value by further improving the catalyst utilization rate.
[0006]
[Problems to be solved by the invention]
The present invention has a feature in the thickness direction of the catalyst layer, both functions are in a relationship that is reciprocal of gas permeability and proton conductive heat transfer of the catalyst layer of the fuel cell by changing the specific surface area wife Risawa medium carrier It aims at providing the fuel cell which improved each.
[0007]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a catalyst carrier and an ion exchange resin on which a catalyst is supported, or a catalyst layer on which a catalyst is supported, an ion exchange resin and a water repellent resin, an ion exchange membrane and a gas. A solid polymer electrolyte fuel cell electrode formed between diffusion layers, wherein the performance of the catalyst layer is varied in the thickness direction of the catalyst layer. . As the performance, there is a specific surface area of the catalyst carrier. The performance need not change with a uniform gradient from the ion exchange membrane side of the catalyst layer to the gas diffusion layer side, as long as the performance of the catalyst layer on the ion exchange membrane side as a whole is different from the performance of the gas diffusion layer side. .
[0008]
The present invention will be described in detail below.
As described above, in the fuel cell, the fuel gas is supplied from the gas diffusion layer side, the fuel gas passes through the gas diffusion layer, further passes through the catalyst layer, reaches the ion exchange membrane surface, and the reaction proceeds. This reaction is generation of protons by oxidation of hydrogen gas at the anode, and generation of electrons by reduction of oxygen gas at the cathode. Protons (electrons) generated at the anode (cathode) are extracted as energy from the catalyst layer through the gas diffusion layer and through a load connected to the cathode (anode) by a conductive wire. Therefore, when viewed from proton (electron) conductivity, which is one of the functions of the catalyst layer, it is desirable that the catalyst carrier on which the ion exchange resin having the function is supported is dense. However, from the viewpoint of gas permeability, which is another function of the catalyst layer, the catalyst carrier is preferably porous.
[0009]
In other words, in terms of the denseness of the catalyst carrier, it is desirable from the viewpoint of improving both the gas permeability and proton (electron) conductivity that the catalyst carrier is dense throughout the catalyst layer. Not that.
Therefore, in the present invention, the gas permeability and proton (electron) conductivity, which are the main performances of the catalyst layer which is usually in a trade-off relationship, are improved by making the denseness of the catalyst carrier different in the thickness direction of the catalyst layer. It is possible to make it.
That is, in the present invention, a dense catalyst carrier is disposed on the ion exchange membrane side of the catalyst layer disposed between the ion exchange membrane and the gas diffusion layer of the fuel cell, and a porous catalyst carrier is disposed on the gas diffusion layer side. The catalyst has excellent catalytic activity in the vicinity of the ion exchange membrane, which is the reaction site. On the other hand, a porous catalyst carrier is placed on the gas diffusion layer side, which is especially required on the gas diffusion layer side of the catalyst layer. Gas permeability is improved. Furthermore, since a porous catalyst carrier is used in the present invention, the catalyst carrier is not completely crushed even by hot pressing or the like, a gas flow path is secured, and excessive gas permeability is not lowered. The denseness of the catalyst support, for example, the primary particle size is 100 to 300 mm on the ion exchange membrane side and 300 to 1 μm on the gas diffusion layer side.
[0010]
FIG. 2 shows an electrode of a fuel cell in which the density of the catalyst carrier is varied in the thickness direction of the catalyst layer. The electrode shown in the figure is laminated in order of the ion exchange membrane 11, the catalyst layer 12 and the gas diffusion layer 13 from the top. The ion exchange membrane 11 side of the catalyst layer 12 is formed by the dense catalyst carrier 14 and the gas diffusion layer 13 side. Is constituted by a porous catalyst carrier 15. A hydrogen or oxygen fuel gas is supplied to the electrode from the lower side of the gas diffusion layer 13, and protons (electrons) to be generated and a generated gas are taken out from the ion exchange membrane 11.
The fuel gas supplied from the gas diffusion layer 13 side easily passes through the catalyst carrier 15 on the gas diffusion layer 13 side and reaches the interface between the catalyst carriers 14 and 15. Since the catalyst carrier 14 on the side of the ion exchange membrane 11 from this interface is dense, the gas permeability is lowered, but since the distance to be permeated is halved, the gas permeability is improved as a whole.
[0011]
On the other hand, protons (electrons) generated at the reaction site in the vicinity of the ion exchange membrane 11 are taken out to an external conductor via a conductive catalyst carrier such as carbon, but the catalyst carrier on the ion exchange membrane 11 side of the catalyst layer 12 Since 14 is dense, that is, the concentration of the conductor is high, it easily reaches the interface between the catalyst supports 14 and 15. Since the catalyst carrier 15 on the gas diffusion layer 13 side from this interface is porous, the conductivity is reduced, but since the distance to be conducted is halved, the conductivity is improved as a whole. . Further, the gas generated at the reaction site is also taken out through the catalyst layer 12, but in this case as well, the entire gas permeability is improved due to the porous catalyst carrier 15 on the gas diffusion layer 13 side.
Such properties that vary in the thickness direction of the catalyst layer are not limited to the porosity of the catalyst carrier, and other properties such as the specific surface area of the catalyst carrier, the amount of ion-exchange resin, and the catalyst concentration can be determined in the thickness direction of the catalyst layer. It may be different.
[0012]
Although the influence of the specific surface area of the catalyst carrier on the catalyst activity and gas permeability cannot be determined uniformly, if the specific surface area is increased when the particle size of the catalyst carrier is constant, in other words, the pores of the carrier are increased. Then, the gas flow passage is increased, the gas permeability is improved, and the continuity of the carrier is impaired, so that the proton (electron) conductivity is lowered. Conversely, if the specific surface area is reduced when the particle size of the catalyst carrier is constant, in other words, if the pores of the carrier are reduced, the gas flow path is reduced and the gas permeability is lowered and the proton (electron) conduction of the carrier is reduced. Increases conductivity. Therefore, by reducing the specific surface area of the catalyst support on the ion exchange membrane side and increasing the specific surface area of the catalyst support on the gas diffusion layer side, it is possible to provide a fuel cell that maintains high gas permeability and high reaction activity. The specific surface area of the preferred catalyst support is a gas diffusion layer side 250 ~2000m 2 / g, the ion-exchange resin side is 50~400 m 2 / g.
Next, the ion exchange resin that forms the catalyst layer together with the catalyst carrier and water-repellent resin (for example, polytetrafluoroethylene or fluorinated polyethylene-polypropylene) contributes to the improvement of proton (electron) conductivity, and conversely, gas permeability. Reduce. Therefore, by increasing the ion exchange resin concentration on the ion exchange membrane side and lowering the gas diffusion layer side, both proton (electron) conductivity and gas permeability can be maintained high. The preferred ion exchange resin concentration is 20 to 50% by weight on the gas diffusion layer side and 40 to 70% by weight on the ion exchange resin side.
[0013]
FIG. 3 shows an electrode of a fuel cell in which the amount of ion exchange membrane is varied in the thickness direction of the catalyst layer. The electrode in the figure is laminated in the order of the ion exchange membrane 21, the catalyst layer 22 and the gas diffusion layer 23 from the top, and the ion exchange membrane 21 side of the catalyst layer 22 is supported by a catalyst carrier 24 having a large amount of ion exchange resin supported. Further, the gas diffusion layer 23 side is constituted by a catalyst carrier 25 with a small amount of ion exchange resin to be supported. Also in this electrode, gas supply and gas discharge are performed in the same manner as in FIG. 2, and the fuel gas supplied from the gas diffusion layer 23 side has a small amount of ion exchange resin in the catalyst carrier 25 on the gas diffusion layer 23 side. Easily passes and reaches the interface between the catalyst supports 24 and 25. From this interface, the catalyst carrier 24 on the ion exchange membrane 21 side has a large amount of ion exchange resin, so the gas permeability is lowered, but the distance to be permeated is halved, so the gas permeability is improved as a whole. .
Similarly to the case of FIG. 2, the extraction of protons (electrons) generated at the reaction site near the ion exchange membrane 21 and the generated gas is improved as a whole.
[0014]
Also in the case where the above-mentioned catalyst concentration is varied, as in FIG. 3, the amount of catalyst supported on the catalyst carrier near the ion exchange membrane is increased and the amount of catalyst supported on the catalyst carrier near the gas diffusion layer is decreased. A fuel cell electrode is formed. The concentration of a preferred catalyst, particularly a noble metal catalyst, is 30 to 60% by weight on the ion exchange membrane side and 10 to 40% by weight on the gas diffusion layer side.
In this case, the gas permeability is not improved, but the catalyst utilization rate is improved because the catalyst concentration close to the reaction site is high, and the overall catalyst activity is increased.
The catalyst layer having different performance in the thickness direction described above, for example, by repeatedly applying a suspension using different mixing ratios (compositions) or raw materials several times, preferably 2 to 10 times, on the surface of the gas diffusion layer, Alternatively, it can be obtained by joining a plurality of catalyst layer precursors having different performances which are separately prepared. The thickness of the thin film formed by one application is not particularly limited, but is preferably 5 to 20 μm. When heat treatment is performed, hot pressing is performed at 130 to 180 ° C. and a pressure of 10 to 30 kg / cm 2. It ’s fine.
[0015]
【Example】
Examples of the polymer solid electrolyte fuel cell electrode of the present invention will be described together with reference examples and comparative examples, but these do not limit the present invention.
[ Reference Example 1]
A carbon support having a specific surface area of 300 m 2 / g carrying 1 mg / cm 2 of platinum (30% by weight with respect to the carbon support) was prepared. These three carbon carriers were mixed with 20 g of a concentrated solution of ion exchange resin (Nafion, a product name of DuPont) having a weight ratio of 58.5%, 50% and 38.5% with respect to the carbon carrier, and 6 g of distilled water and planets. The paste was obtained by mixing with a ball mill for 50 minutes. The paste with an ion exchange resin concentration of 38.5% was applied to a gas diffusion layer made of carbon paper that had been subjected to a water repellent treatment with 30% by weight of a water-repellent resin polytetrafluoroethylene, dried at 60 ° C. for 10 minutes, and further 130 Baked for 1 minute at 20 kg / cm 2 at 20 ° C., and then applied and fired a paste with an ion exchange resin concentration of 50% on the above-mentioned paper under the same conditions, and a paste with an ion exchange resin concentration of 58.5% Was applied onto the paste under the same conditions and baked to form a catalyst layer on the gas diffusion layer to obtain an electrode (electrode area πcm 2 ).
[0016]
[ Reference Example 2]
A carbon support having a particle size of 0.03 μm and a surface area of 1300 m 2 / g was used. The weight ratio of ion exchange resin to carbon carrier is 50%, the same paste as in Example 1 with a platinum loading of 50% by weight, and then the same paste as in Reference Example 1 with a platinum loading of 40% by weight is a gas diffusion layer. Then, each electrode was dried at 60 ° C. for 10 minutes, and further calcined at 130 ° C. and 20 kg / cm 2 for 1 minute to produce electrodes having different catalyst concentrations in the thickness direction of the catalyst layer (electrode area πcm 2 ).
[0017]
[Comparative Example 1]
The catalyst layer was formed into an electrode by forming a catalyst layer on the gas diffusion layer under the same conditions as in Reference Example 1, except that the weight ratio of the ion exchange resin was 50% with respect to the carbon support. .
[0018]
An ion exchange membrane (DuPont Nafion 112) is sandwiched between each of the electrodes of Reference Examples 1 and 2 and Comparative Example 1 manufactured as described above, and hydrogen gas is supplied at a cell temperature of 80 ° C. and 350 ml / min, respectively. When the relationship between voltage and current density was measured while supplying oxygen gas at 250 ml / min, the results shown in the graph of FIG. 4 were obtained.
From this graph, the electrodes of Reference Example 1 and Reference Example 2 can obtain a higher voltage than the current of Comparative Example 1 in the high current density region, and in particular, Reference Example 2 (electrodes with different ion exchange resin concentrations). It can be seen that the electrode produced a better effect than Reference Example 1 (electrode having a different catalyst concentration).
[0019]
[Example 1 ]
A carbon carrier carrying 40% by weight of platinum as the carrier on the gas diffusion layer side (platinum amount is 0.5 mg / cm 2 ) and a specific surface area of about 1300 m 2 / g, and 40% by weight of platinum as the carrier on the ion exchange membrane side It was supported (amount of platinum is 0.5 mg / cm 2) by using each of the carbon support having a specific surface area of about 300 m 2 / g, was prepared an electrode in the same manner as in reference example 1 (electrode area πcm 2).
[0020]
[Comparative Example 2]
The catalyst layer is a carbon carrier having a weight ratio of ion exchange resin of 50% with respect to the carbon carrier and 30% by weight of platinum (platinum amount is 1 mg / cm 2 ) and a specific surface area of about 300 m 2 / g. An electrode having a uniform catalyst layer was prepared (electrode area πcm 2 ).
[0021]
An ion exchange membrane (DuPont Nafion 112) was sandwiched between each of the electrodes of Example 1 and Comparative Example 2 produced as described above, and hydrogen gas was 250 ml / min at a cell temperature of 80 ° C. and 350 ml / min, respectively. When the relationship between voltage and current density was measured while supplying oxygen gas in minutes, results as shown in the graph of FIG. 5 were obtained. From this graph, it can be seen that the electrode of Example 1 was able to obtain a higher voltage than the current of Comparative Example 2 in the high current density region.
[0022]
[Example 2 ]
The carrier on the gas diffusion layer side has a particle size of 0.03 μm and a surface area of 1300 m 2 / g, and the carrier on the ion exchange membrane side has a particle size of 0.015 μm and a surface area of 1500 m 2 / g. An electrode having an electrode area of πcm 2 supported by 40% by weight (platinum amount: 1 mg / cm 2 ) was produced.
When this electrode was used and the relationship between voltage and current density was measured under the same conditions as in Reference Example 1, the results shown in the graph of FIG. 6 were obtained. From this graph, it can be seen that energy could be extracted at a relatively high voltage even in a high current density region.
[0023]
【The invention's effect】
In the present invention, a catalyst support and an ion exchange resin on which a catalyst is supported, or a catalyst layer including a catalyst support on which a catalyst is supported, an ion exchange resin and a water-repellent resin are formed between an ion exchange membrane and a gas diffusion layer. In a polymer electrolyte fuel cell electrode, a catalyst support having a small specific surface area is used on the ion exchange membrane side of the catalyst layer, and a catalyst support having a large specific surface area is used on the gas diffusion layer side. Is an electrode for a solid polymer electrolyte fuel cell, wherein the catalyst layer is made different in the thickness direction of the catalyst layer.
Fuel cell catalyst layers are required to have the opposite properties of gas permeability and proton (electron) conductivity, but in conventional fuel cells, a relatively dense catalyst carrier or ion exchange resin is bound by hot pressing or the like. Manufactured. In this manufacturing method, catalyst carriers having a shape close to a sphere are filled with almost no gaps, and they are firmly adhered to each other by hot pressing to increase the density, so that almost no gas flow passage is formed, and the gas permeability is greatly impaired.
[0024]
In other words, the conventional fuel cell is intended to improve the conductivity of protons and the like at the expense of gas permeability among the gas permeability and the conductivity such as protons, which are the main functions of the catalyst layer of the fuel cell. ing. However, the reaction does not proceed unless the fuel gas is supplied to the reaction site and the product gas is taken out. Therefore, in the conventional fuel cell, the reaction does not proceed sufficiently fast, and energy generation, which is a characteristic of the fuel cell, is insufficient.
If the binding by the hot press is weakened to eliminate this drawback, the conductivity of protons and the like is impaired, and even if the gas is smoothly supplied and discharged, energy generation due to the movement of protons and the like is impaired.
[0026]
In the above-mentioned present invention, by making the specific surface area of the catalyst carrier different in the thickness direction of the catalyst layer, the performance achieved mainly on the ion exchange membrane side and the gas diffusion layer side of the catalyst layer is made different, For example, it is possible to provide a fuel cell electrode having excellent gas permeability and proton conductivity as described above.
If the specific surface area is increased when the particle size of the catalyst carrier is constant, in other words, if the pores of the carrier are increased, the gas flow passage is increased, the gas permeability is improved, and the continuity of the carrier is impaired. The conductivity of protons and the like decreases. Conversely, if the specific surface area is reduced when the particle size of the catalyst support is constant, in other words, if the pores of the support are reduced, the gas flow path is reduced and the gas permeability is lowered and the protons of the support are conducted. Sex increases. Therefore, by reducing the specific surface area of the catalyst carrier on the ion exchange membrane side of the catalyst layer and increasing the specific surface area of the catalyst carrier on the gas diffusion layer side, it is possible to provide a fuel cell that maintains high gas permeability and high reaction activity. .
[Brief description of the drawings]
FIG. 1 is a schematic view showing a basic structure of a fuel cell using a conventional ion exchange membrane.
FIG. 2 is a cross-sectional view showing an embodiment of an electrode for a solid polymer electrolyte fuel cell of the present invention.
FIG. 3 is a cross-sectional view showing another embodiment of the electrode for a solid polymer electrolyte fuel cell of the present invention.
4 is a graph showing the relationship between current density and voltage in Reference Examples 1 and 2 and Comparative Example 1. FIG.
FIG. 5 is a graph showing the relationship between current density and voltage in Example 1 and Comparative Example 2.
6 is a graph showing the relationship between current density and voltage in Example 2. FIG.
[Explanation of symbols]
11, 21, ... ion exchange membrane
12, 22 ... Catalyst layer
13, 23 ... Gas diffusion layer
14, 24 ... Ion exchange membrane side catalyst carrier
15, 25 ... Gas diffusion layer side catalyst carrier

Claims (1)

触媒が担持された触媒担体とイオン交換樹脂、又は触媒が担持された触媒担体とイオン交換樹脂と撥水性樹脂とを含む触媒層が、イオン交換膜とガス拡散層間に形成された高分子固体電解質型燃料電池用電極において、触媒層のイオン交換膜側に比表面積の小さい触媒担体を使用し、ガス拡散層側に比表面積の大きな触媒担体を使用して、触媒担体の比表面積を該触媒層の厚さ方向に異ならせたことを特徴とする高分子固体電解質型燃料電池用電極。 A solid polymer electrolyte in which a catalyst support and an ion exchange resin on which a catalyst is supported, or a catalyst layer comprising a catalyst support on which a catalyst is supported, an ion exchange resin and a water repellent resin are formed between an ion exchange membrane and a gas diffusion layer In the type fuel cell electrode, a catalyst carrier having a small specific surface area is used on the ion exchange membrane side of the catalyst layer, and a catalyst carrier having a large specific surface area is used on the gas diffusion layer side. solid polymer electrolyte fuel cell electrodes, characterized in that made different in the thickness direction.
JP08210696A 1996-03-11 1996-03-11 Electrode for polymer electrolyte fuel cell Expired - Fee Related JP3755840B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08210696A JP3755840B2 (en) 1996-03-11 1996-03-11 Electrode for polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08210696A JP3755840B2 (en) 1996-03-11 1996-03-11 Electrode for polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JPH09245802A JPH09245802A (en) 1997-09-19
JP3755840B2 true JP3755840B2 (en) 2006-03-15

Family

ID=13765164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08210696A Expired - Fee Related JP3755840B2 (en) 1996-03-11 1996-03-11 Electrode for polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP3755840B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09265992A (en) * 1996-03-29 1997-10-07 Mazda Motor Corp Electrode structure for fuel cell
US6818339B1 (en) 1999-08-27 2004-11-16 Matsushita Electric Industrial Co., Ltd. Polymer electrolyte type fuel cell
CN1311578C (en) * 1999-09-21 2007-04-18 松下电器产业株式会社 Polymer electrolytic fuel cell and method for producing the same
JP3594533B2 (en) * 2000-05-30 2004-12-02 三洋電機株式会社 Fuel cell
JP4923319B2 (en) * 2000-07-25 2012-04-25 トヨタ自動車株式会社 Fuel cell
KR20030040557A (en) 2000-10-27 2003-05-22 이 아이 듀폰 디 네모아 앤드 캄파니 Production of catalyst coated membranes
JP5002874B2 (en) * 2001-01-25 2012-08-15 トヨタ自動車株式会社 Method for forming electrode catalyst layer of fuel cell
JP4015438B2 (en) * 2002-02-20 2007-11-28 三菱重工業株式会社 Manufacturing method of fuel cell electrode
JP3621078B2 (en) * 2002-06-20 2005-02-16 田中貴金属工業株式会社 Fuel electrode of solid polymer electrolyte fuel cell
JP2004192950A (en) * 2002-12-11 2004-07-08 Mitsubishi Electric Corp Solid polymer fuel cell and its manufacturing method
KR100528020B1 (en) 2003-03-31 2005-11-15 세이코 엡슨 가부시키가이샤 Method for forming functional porous layer, method for manufacturing fuel cell, electronic device, and automobile
JP4493954B2 (en) * 2003-09-01 2010-06-30 パナソニック株式会社 Polymer electrolyte membrane-electrode assembly and polymer electrolyte fuel cell using the same
JP4826057B2 (en) * 2003-12-11 2011-11-30 トヨタ自動車株式会社 Fuel cell
FR2863777B1 (en) * 2003-12-16 2006-02-17 Commissariat Energie Atomique ALKALINE FUEL CELL INSENSITIVE TO CARBONATION.
JP4760027B2 (en) * 2004-01-30 2011-08-31 富士電機株式会社 Method for producing membrane / electrode assembly of solid polymer electrolyte fuel cell
JP4482352B2 (en) * 2004-03-11 2010-06-16 本田技研工業株式会社 Polymer electrolyte fuel cell
JP4996822B2 (en) * 2004-11-10 2012-08-08 本田技研工業株式会社 Manufacturing method of electrode layer for fuel cell
JP5204382B2 (en) * 2006-05-11 2013-06-05 パナソニック株式会社 Cathode catalyst layer, membrane catalyst assembly, cathode gas diffusion electrode, membrane electrode assembly and polymer electrolyte fuel cell using the same
CN101578730A (en) 2006-11-09 2009-11-11 住友化学株式会社 Membrane-electrode assembly
JP5031340B2 (en) * 2006-11-30 2012-09-19 Jsr株式会社 Membrane-electrode assembly
JP2009021234A (en) 2007-06-15 2009-01-29 Sumitomo Chemical Co Ltd Membrane/electrode conjugant, its manufacturing method, and solid high polymer fuel cell
DE112010002746B4 (en) 2009-06-29 2021-06-24 Kabushiki Kaisha Equos Research Reaction layer for fuel cells
JP2022078614A (en) * 2020-11-13 2022-05-25 エムテックスマート株式会社 Fuel cell manufacturing method or fuel cell

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4804592A (en) * 1987-10-16 1989-02-14 The United States Of America As Represented By The United States Department Of Energy Composite electrode for use in electrochemical cells
JP3245929B2 (en) * 1992-03-09 2002-01-15 株式会社日立製作所 Fuel cell and its application device
JPH0817440A (en) * 1994-07-04 1996-01-19 Tanaka Kikinzoku Kogyo Kk Electrode for polymer electrolyte-type electrochemical cell
JP3555196B2 (en) * 1994-09-19 2004-08-18 トヨタ自動車株式会社 Fuel cell and method of manufacturing the same
CA2233575A1 (en) * 1995-10-06 1997-04-10 The Dow Chemical Company Flow field structures for membrane electrode assemblies of fuel cells
JPH09180730A (en) * 1995-12-27 1997-07-11 Tokyo Gas Co Ltd Electrode for solid high molecular fuel cell and manufacture thereof

Also Published As

Publication number Publication date
JPH09245802A (en) 1997-09-19

Similar Documents

Publication Publication Date Title
JP3755840B2 (en) Electrode for polymer electrolyte fuel cell
JP3211997B2 (en) Method for producing electrode for solid polymer fuel cell
JPH09245801A (en) Electrode for polymer solid electrolyte fuel cell and manufacture thereof
JP2007250274A (en) Electrode catalyst for fuel cell with enhanced noble metal utilization efficiency, its manufacturing method, and solid polymer fuel cell equipped with this
JP4207120B2 (en) Catalytic electrode and electrochemical device
JPH0817440A (en) Electrode for polymer electrolyte-type electrochemical cell
KR100548118B1 (en) Electrode for fuel cell and fuel cell
JP3577402B2 (en) Polymer electrolyte fuel cell
JP2006120506A (en) Solid polymer fuel cell
JP5126812B2 (en) Direct oxidation fuel cell
JP3354550B2 (en) Polymer electrolyte fuel cell and polymer electrolyte fuel cell stack
Zhang et al. Dual-bonded catalyst layer structure cathode for PEMFC
JP5384515B2 (en) Fuel cell electrode having two kinds of hydrophilicity, method for producing the same, membrane electrode assembly including the same, and fuel cell
KR100969476B1 (en) Membrane-electrode assembly of fuel cell and fuel cell
RU2662227C2 (en) High-active multi-layered thin-filmed ceramic structure of active part of elements of solid oxide devices
JP4892811B2 (en) Electrocatalyst
JP2007123196A (en) Solid-polymer fuel cell, catalyst layer thereof, and manufacturing method thereof
JP7359077B2 (en) Laminate for fuel cells
JP2002216778A (en) Fuel cell electrode and its producing method and solid polymer electrolyte fuel cell
JP3363985B2 (en) Substrate tube for internal reforming of solid oxide fuel cell
JP4529345B2 (en) Method for producing polymer electrolyte fuel cell
KR101098676B1 (en) Method of preparing the electrode for fuel cell and Membrane electrode assembly and Fuel cell comprising the electrode made by the same
CN117117274B (en) Formic acid fuel cell and preparation method thereof
JPH0896813A (en) Electrode for high-molecular solid electrolytic type electrochemistry cell
KR102590293B1 (en) Membrane electrode assembly, fuel cell comprising the same and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040216

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20040517

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20040527

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051219

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees