JP3755770B2 - Load drive device and portable device - Google Patents

Load drive device and portable device Download PDF

Info

Publication number
JP3755770B2
JP3755770B2 JP2003192784A JP2003192784A JP3755770B2 JP 3755770 B2 JP3755770 B2 JP 3755770B2 JP 2003192784 A JP2003192784 A JP 2003192784A JP 2003192784 A JP2003192784 A JP 2003192784A JP 3755770 B2 JP3755770 B2 JP 3755770B2
Authority
JP
Japan
Prior art keywords
voltage
load
circuit
constant current
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2003192784A
Other languages
Japanese (ja)
Other versions
JP2005033853A (en
Inventor
禎一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP2003192784A priority Critical patent/JP3755770B2/en
Priority to DE200460008840 priority patent/DE602004008840T2/en
Priority to EP20040014726 priority patent/EP1499165B1/en
Priority to TW099113230A priority patent/TWI340530B/en
Priority to TW093118447A priority patent/TWI346442B/en
Priority to US10/879,315 priority patent/US7235954B2/en
Priority to CN2010101454408A priority patent/CN101789692B/en
Priority to CN2004100621747A priority patent/CN1578095B/en
Priority to KR1020040052190A priority patent/KR20050006042A/en
Publication of JP2005033853A publication Critical patent/JP2005033853A/en
Application granted granted Critical
Publication of JP3755770B2 publication Critical patent/JP3755770B2/en
Priority to US11/750,894 priority patent/US7541785B2/en
Priority to US12/428,338 priority patent/US7944189B2/en
Priority to US12/731,006 priority patent/US8519680B2/en
Priority to US13/080,498 priority patent/US8242756B2/en
Priority to US13/952,333 priority patent/US8836295B2/en
Priority to US14/454,528 priority patent/US9526138B2/en
Priority to US15/002,275 priority patent/US9526139B2/en
Priority to US15/348,257 priority patent/US9960677B2/en
Priority to US15/924,701 priority patent/US10103625B2/en
Priority to US16/127,571 priority patent/US10396659B2/en
Priority to US16/508,423 priority patent/US10734896B2/en
Priority to US16/909,714 priority patent/US11487310B2/en
Priority to US17/958,840 priority patent/US20230023130A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • Y02B20/347

Landscapes

  • Dc-Dc Converters (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、直流−直流変換型の電源回路を用いて、電源電圧から変換された出力電圧により負荷を駆動する負荷駆動装置及びそれを用いた携帯機器に関する。
【0002】
【従来の技術】
従来から、電源電圧と異なる電圧を発生する直流−直流変換型の電源回路を用いてLEDなどの負荷を駆動する負荷駆動装置が多く用いられている。この負荷駆動装置は、それを駆動するための電源回路から所定の出力電圧、出力電流を発生させるために、入力電圧または負荷に印加される負荷電圧や負荷に流れる負荷電流を検出して、電源回路の制御回路に帰還させる(特許文献1参照)。
【0003】
この従来の駆動装置では、制御電圧は入力電圧や負荷電圧を高抵抗で分圧して検出される。また、負荷電流は負荷に直列に接続された抵抗器の電圧降下によって検出される。この制御電圧や負荷電流を基準値と比較して電源回路からの出力電圧や出力電流を所定値に制御している。
【0004】
【特許文献1】
特開2001−313423号公報
【0005】
【発明が解決しようとする課題】
携帯電話などの携帯型電子機器(携帯機器)においては、負荷を駆動するための負荷電流を、その負荷が設けられる電子機器側の使用上の要請によって、ある範囲内で増加させたり或いは減少させたりする場合がある。例えば、負荷が、発光素子(発光ダイオード等)である場合に、その発光量を任意の値に調整する場合などが考えられる。
【0006】
このような場合に、負荷と直列に負荷電流検出用抵抗が挿入されていると、負荷電流の増加に応じて、電流検出用抵抗による損失が増加する。したがって、電源回路や負荷を含む電子機器の全体としての効率が、大電流時(即ち、重負荷時)に低下してしまう問題があった。
【0007】
そこで、本発明は、電源電圧を変換して負荷に供給する、直流−直流変換型電源回路等の出力回路を用いて、負荷を駆動する負荷電流を所定範囲に変化させるとともに、負荷電流の増加に伴う損失の増大を避けて効率よく負荷を駆動することができる負荷駆動装置、及びそれを用いた携帯機器を提供することを目的とする。
【0008】
【課題を解決するための手段】
請求項1の負荷駆動装置は、電源電圧を変換して所定の出力電圧として複数の負荷に供給する出力回路と、
前記複数の負荷にそれぞれ直列に接続されてそれぞれ調整可能な定電流を流す複数の定電流源とを備え、
前記出力回路は、前記複数の負荷と前記複数の定電流源との各接続点の電圧のうちの最も低い電圧が一定電圧になるように前記所定の出力電圧を制御することを特徴とする。
【0009】
請求項2の負荷駆動装置は、請求項1記載の負荷駆動装置において、前記複数の定電流源の各々は、電流可変型の定電流回路と、この定電流回路と直列に接続されたカレントミラー用入力側トランジスタと、このカレントミラー用入力側トランジスタと同じ制御入力が与えられるカレントミラー用出力側トランジスタとを含んでカレントミラー回路が構成されており、前記カレントミラー用出力側トランジスタに前記調整可能な定電流が流されることを特徴とする。
【0010】
請求項3の負荷駆動装置は、請求項2記載の負荷駆動装置において、前記複数の負荷の各々は、少なくとも1つの発光ダイオードを含む発光ダイオード群であることを特徴とする。
【0011】
請求項4の負荷駆動装置は、請求項2記載の負荷駆動装置において、前記一定電圧は、前記カレントミラー用出力側トランジスタの飽和電圧より高い電圧であることを特徴とする。
【0012】
請求項5の負荷駆動装置は、請求項1乃至4のいずれかに記載の負荷駆動装置において、前記出力回路は、コイルと、このコイルへの通電をスイッチングするスイッチと、前記コイルと前記スイッチとの接続点と出力端子との間に設けられた整流素子とを有するスイッチング電源回路であることを特徴とする。
【0013】
請求項6の負荷駆動装置は、請求項5記載の負荷駆動装置において、前記スイッチング電源回路は、さらに、前記整流素子の出力電圧点側に接続された平滑回路と、前記複数の負荷と前記複数の定電流源との接続点の電圧の中の最も低い電圧が基準電圧に等しくなるように前記スイッチのオンオフスイッチングを行う制御回路と、を有することを特徴とする。
【0015】
請求項の負荷駆動装置は、請求項1乃至6のいずれかに記載の負荷駆動装置を用いていることを特徴とする携帯機器。
【0016】
【発明の実施の形態】
以下、本発明の負荷駆動装置の実施の形態について、図を参照して説明する。図1は、本発明の第1の実施の形態に係る負荷駆動装置の構成を示す図である。
【0017】
図1において、出力回路であるスイッチング電源回路100は、入力される電源電圧Vccを昇圧して、昇圧された出力電圧Vo1を出力する昇圧型の電源回路である。
【0018】
電源電圧Vccとグランド間にコイルL1とN型MOSトランジスタであるスイッチQ1が直列に接続される。その直列接続点Aから、整流用ダイオードD1と平滑用コンデンサC1とにより、直列接続点Aの電圧が整流し平滑されて、出力電圧Vo1として出力される。なお、電圧は、特に断らない場合には、グランドに対する電位である。
【0019】
出力電圧Vo1点(P1)とグランドとの間に、外部負荷10と定電流源I1とが直列に接続される。外部負荷10は、動作させるべき点が流れる電流で決まる負荷であり、外部負荷10には定電流源I1で設定された所定の駆動電流Ioが流れる。そして、定電流源I1の一端P2に生じる電圧が検出電圧Vdetとなる。
【0020】
制御回路Contは、検出電圧Vdetと基準電圧源B1からの基準電圧Vrefとが入力され、検出電圧Vdetが基準電圧Vrefに等しくなるように、スイッチQ1をスイッチング制御するためのスイッチング信号を発生する。ここでは、基準電圧Vrefと検出電圧Vdetとの差を増幅して出力するエラーアンプEampと、このエラーアンプEampの出力に基づいてPWM信号を形成してスイッチング信号として出力するパルス幅変調制御回路Pwmを含んで構成されている。
【0021】
外部負荷10は、端子P1と端子P2との間に接続される。本発明は、負荷駆動装置の外部負荷をも含めて、携帯機器などの電子機器として構成することができる。この場合には、端子P1、P2は省略されることもある。
【0022】
外部負荷10としては、発光ダイオードLED1〜LED3が用いられる。この発光ダイオードLEDは、例えば白色発光ダイオードであり、LCD(液晶表示パネル)やキーのバックライト用等に用いられる。したがって、図1では3個の直列の例を示しているが、異なった数の直列接続、並列接続、或いは直並列接続など、その必要とされる発光エリアや発光量などに応じて、その組み合わせは種々の形態がある。
【0023】
この発光ダイオードLEDの電流ー電圧特性が図2に示されている。この特性は、白色発光ダイオードLEDの電流If−電圧Vf特性の例である。この図2は、横軸が対数表示の電流Ifであり、縦軸が電圧Vfである。この発光ダイオードLEDは、電流Ifが20mA(図中A点)〜1.5mA(図中B点)の範囲で発光する。この電流Ifを変化させることにより、その電流Ifの大きさに応じて発光ダイオードLEDからの発光量が変化する。
【0024】
電流Ifを20mAで使用すると、同図中のA点で示されるように、順方向電圧Vfが電圧3.4Vで動作する。しかし、各々の発光ダイオードLEDの特性は一律でなく、同じ電流20mAでもその順方向電圧Vfは、例えば3.4V〜4.0V程度の範囲でばらつく。このように、一般に白色発光ダイオードLEDは順方向電圧Vfが他色の発光ダイオードLEDよりも高く、これを3個直列に接続して使用するには、出力電圧Vo1は12.0V以上必要になる。
【0025】
図3は、定電流源I1の回路構成の例を示す図である。この図3において、電源電圧Vccとグランド間に定電流回路I11とN型MOSトランジスタ(以下、N型トランジスタ)Q2とが直列に接続されている。このN型トランジスタQ2のドレインとゲートが直接接続されている。また、駆動電流Ioを流すためにN型トランジスタQ2よりも駆動能力の高いN型トランジスタQ3が設けられている。入力側トランジスタであるN型トランジスタQ2のゲートが、出力側トランジスタであるN型トランジスタQ3のゲートに接続されて、カレントミラー回路を構成している。
【0026】
この図3で、定電流回路I11の電流を調整することにより、N型トランジスタQ3を流れる駆動電流Ioの大きさを所望の値に設定する。
【0027】
再び、図1に戻って説明する。定電流源I1は、それに使用しているトランジスタ(図3のN型トランジスタQ3)の飽和電圧(約0.3V)以上の電圧があれば定電流動作できる。その飽和電圧(約0.3V)を越える部分の電圧は、定電流源I1の内部での不要な損失分(即ち、損失は、電圧×電流)になる。定電流源I1の降下電圧Vdetが基準電圧Vrefになるように、電源回路100の出力電圧Vo1が制御される。したがって、基準電圧Vrefは、定電流源I1に使用しているトランジスタの飽和電圧(約0.3V)に若干の余裕分の電圧を見込んだ値に設定される。
【0028】
このように構成された負荷駆動装置の動作を、駆動電流Ioと出力電圧Vo1との特性を示す図4をも参照して説明する。まず、負荷10である発光ダイオードに流す駆動電流Ioが定電流回路I11に設定される。スイッチング電源回路100は、検出電圧Vdetが基準電圧Vrefに等しくなるように、スイッチQ1のオンオフスイッチング制御が開始される。これにより、出力電圧Vo1が徐々に上昇する。
【0029】
その結果、検出電圧Vdetと基準電圧Vrefとが等しくなり、駆動電流Ioが負荷10である発光ダイオードLED1〜LED3に流れる。これにより、発光ダイオードは、所定の発光量で発光する。
【0030】
このとき、発光ダイオードLED1〜LED3の順方向電圧Vfの特性がばらついていたとしても、出力電圧Vo1がそのばらつきに応じて所定値からばらつくだけであり、発光ダイオードLED1〜LED3からの発光の制御には格別の影響はない。定電流源I11の降下電圧、即ち検出電圧Vdetは一定である。したがって、出力電圧Vo1は、一定の検出電圧Vdetに、その時点での駆動電流Ioに応じた発光ダイオードLED1〜LED3の降下電圧Vled(=3×Vf)を加えた大きさになる。
【0031】
次に、発光ダイオードLED1〜LED3からの発光量を変更する場合には、駆動電流Ioの大きさを変更する。例えば、駆動電流Ioを大きくすると、それに応じて発光ダイオードLED1〜LED3からの発光量が多くなる。これとともに、発光ダイオードLED1〜LED3の降下電圧Vledも、図2の特性に依って大きくなる。なお、図4の出力電圧Vo1の傾きは、図2のIf−Vf特性に従う。
【0032】
したがって、駆動電流Ioの増加に応じて発光ダイオードLED1〜LED3の降下電圧Vledが大きくなるから、出力電圧Vo1は図4のような特性で大きくなる。しかし、検出電圧Vdetは一定の値を維持するから、発光量を大きくするために駆動電流を大きくしても、定電流源I1での損失は増加しない。したがって、負荷駆動装置の効率は高く維持される。
【0033】
図5は、本発明の第2の実施の形態に係る負荷駆動装置の構成を示す図である。図5においては、負荷10に加えて、他の負荷20を付加しており、また、負荷が増えたことに伴って、負荷20に対応して定電流源I20を設けている。なお、付加する他の負荷は2以上でも良い。
【0034】
図5では、負荷10に直列に定電流源I10が設けられ、その直列回路に駆動電流Io1が流れる。定電流源I10の降下電圧が第1検出電圧Vdet1になる。同様に、負荷20に直列に定電流源I20が設けられ、その直列回路に駆動電流Io2が流れる。定電流源I20の降下電圧が第2検出電圧Vdet2になる。P11、P12、P21、P22は、負荷接続用の端子である。
【0035】
また、制御回路ContのエラーアンプEampは、2つの非反転入力端子(+)と1つの反転入力端子(−)を持っている。2つの非反転入力端子(+)には、第1検出電圧Vdet1及び第2検出電圧Vdet2がそれぞれ入力され、反転入力端子(−)には基準電圧Vrefが入力される。このエラーアンプEampでは、2つの非反転入力端子(+)に入力される第1検出電圧Vdet1と第2検出電圧Vdet2のうちの低い方の電圧が選択されて、基準電圧Vrefと比較される。その他の構成は、図1の第1の実施の形態におけるものと同様である。
【0036】
この図5の負荷駆動回路では、複数の負荷10、20の駆動電流Io1、Io2を個別に調整することができる。そして、定電流源I10、I20の降下電圧Vdet1、Vdet2のうちの低い方の電圧が自動的に選択されて、電源回路100のスイッチング制御が行われる。
【0037】
複数の負荷10、20の駆動電流Io1、Io2を流す定電流源I10、I20の定電流動作は、確保される。したがって、複数負荷に対しても、第1の実施の形態におけると同様の効果を得ることができる。
【0038】
【発明の効果】
本発明によれば、出力電圧を出力回路(直流ー直流変換型電源回路)を用いて電源電圧から変換して得るとともに、流れる電流で動作点が決まる負荷、例、発光ダイオード群に直列に電流値が調整できる定電流源を接続するから、負荷側で要求される電流を、安定して負荷に流すことができる。
【0039】
また、定電流源の降下電圧が、その定電流源が安定して動作できる電圧値に設定された基準電圧に等しくなるように、直流ー直流変換型電源回路の出力電圧が制御される。したがって、負荷である発光ダイオード群に特性のばらつきがあっても予定の発光量のために必要な電流が流れるように、直流ー直流変換型電源回路の出力電圧は、自動調整される。
【0040】
また、定電流源の降下電圧は、設定した電流値が維持できるように基準電圧に自動的に制御されるから、負荷である発光ダイオード群に流れる電流が大きくなった場合でも、抵抗での電圧検出におけるような、損失の増加はない。したがって、負荷電流の増加に伴う損失が実質的に増加しないから、広い負荷電流の範囲において高効率で負荷を駆動することができる。
【0041】
また、直流ー直流変換型電源回路は、コイルへの通電をスイッチングして電源電圧を出力電圧に変換するスイッチング電源回路であるから、変換効率が良く、また、必要な高電圧を出力することができる。
【0042】
また、負荷である発光ダイオード群毎に、対応して可変電流型定電流源が設けられ、かつ、それらの定電流源の降下電圧の低い方の電圧にしたがって直流ー直流変換型電源回路が制御されるから、負荷である発光ダイオード群のそれぞれに所定の定電流を安定して流すことができる。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態に係る負荷駆動装置の構成を示す図
【図2】発光ダイオードLEDの電流ー電圧特性を示す図
【図3】定電流源I1の回路構成の例を示す図
【図4】駆動電流Ioと出力電圧Vo1との特性を示す図
【図5】本発明の第2の実施の形態に係る負荷駆動装置の構成を示す図
【符号の説明】
100 電源回路
10、20 負荷
LED1〜LED3 発光ダイオード
L1 コイル
C1 平滑用コンデンサ
D1 ダイオード
Q1 スイッチ
Cont 制御回路
B1 基準電圧源
I1、I10、I20 定電流源
I11 定電流回路
Q2、Q3 N型MOSトランジスタ
Vcc 入力電源電圧
Vo1 出力電圧
Io、Io1、Io2 駆動電流
Vled、Vled1、Vled2 発光ダイオード降下電圧
Vdet、Vdet1、Vdet2 検出電圧
Vref 基準電圧
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a load driving device that drives a load with an output voltage converted from a power supply voltage using a DC-DC conversion type power supply circuit, and a portable device using the load driving device.
[0002]
[Prior art]
Conventionally, a load driving device that drives a load such as an LED by using a DC-DC conversion type power supply circuit that generates a voltage different from the power supply voltage has been widely used. In order to generate a predetermined output voltage and output current from a power supply circuit for driving the load driving device, the load driving device detects the input voltage or the load voltage applied to the load or the load current flowing through the load, It returns to the control circuit of a circuit (refer patent document 1).
[0003]
In this conventional driving device, the control voltage is detected by dividing the input voltage or the load voltage with a high resistance. The load current is detected by a voltage drop across a resistor connected in series with the load. The control voltage and load current are compared with a reference value to control the output voltage and output current from the power supply circuit to predetermined values.
[0004]
[Patent Document 1]
Japanese Patent Laid-Open No. 2001-313423
[Problems to be solved by the invention]
In a portable electronic device (mobile device) such as a mobile phone, the load current for driving the load is increased or decreased within a certain range depending on the usage on the electronic device side where the load is provided. Sometimes. For example, when the load is a light emitting element (such as a light emitting diode), the light emission amount may be adjusted to an arbitrary value.
[0006]
In such a case, if a load current detection resistor is inserted in series with the load, the loss due to the current detection resistor increases as the load current increases. Therefore, there has been a problem that the efficiency of the electronic apparatus as a whole including the power supply circuit and the load is reduced when the current is large (that is, when the load is heavy).
[0007]
Therefore, the present invention uses an output circuit such as a DC-DC conversion type power supply circuit that converts the power supply voltage and supplies it to the load, and changes the load current for driving the load to a predetermined range and increases the load current. It is an object of the present invention to provide a load driving device capable of efficiently driving a load while avoiding an increase in loss accompanying the above, and a portable device using the load driving device.
[0008]
[Means for Solving the Problems]
The load driving device according to claim 1, wherein the output circuit converts the power supply voltage and supplies the plurality of loads as a predetermined output voltage;
A plurality of constant current sources that are connected in series to the plurality of loads, respectively , and that allow each adjustable constant current to flow;
The output circuit controls the predetermined output voltage so that a lowest voltage among voltages at connection points between the plurality of loads and the plurality of constant current sources becomes a constant voltage.
[0009]
Current load driving apparatus according to claim 2, in the load driving device according to claim 1, wherein each of said plurality of constant current sources, which are connected to a constant current circuit of the current variable, to the constant current circuit in series A current mirror circuit is configured to include a mirror input-side transistor and a current mirror output-side transistor to which the same control input as the current mirror input-side transistor is applied, and the current mirror output-side transistor includes the adjustment It is characterized in that a possible constant current is passed.
[0010]
Load driving apparatus according to claim 3, in the load driving device according to claim 2, wherein each of the plurality of loads, characterized in that it is a light emitting diode group including at least one light emitting diode.
[0011]
According to a fourth aspect of the present invention, there is provided the load driving device according to the second aspect, wherein the constant voltage is higher than a saturation voltage of the output transistor for the current mirror.
[0012]
The load driving apparatus according to claim 5, in the load driving device according to any one of claims 1 to 4, wherein the output circuit includes a coil, a switch for switching the current supply to the coil, and the said coil switch A switching power supply circuit having a rectifying element provided between the connection point of the output and the output terminal.
[0013]
Load driving apparatus according to claim 6, in the load driving device according to claim 5, wherein the switching power supply circuit further comprises a connection to a smoothing circuit to the output voltage point side of the rectifier element, and the plurality of loads characterized by and a control circuit for performing on-off switching of the switch to the lowest voltage is equal to the reference voltage in the voltage of the connection point between the plurality of constant current sources.
[0015]
Load driving apparatus according to claim 7, the portable device being characterized in that by using the load driving device according to any one of claims 1 to 6.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of a load driving device of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating a configuration of a load driving device according to a first embodiment of the present invention.
[0017]
In FIG. 1, a switching power supply circuit 100 as an output circuit is a boost type power supply circuit that boosts an input power supply voltage Vcc and outputs a boosted output voltage Vo1.
[0018]
A coil L1 and a switch Q1, which is an N-type MOS transistor, are connected in series between the power supply voltage Vcc and the ground. From the series connection point A, the voltage at the series connection point A is rectified and smoothed by the rectifying diode D1 and the smoothing capacitor C1, and output as the output voltage Vo1. Note that the voltage is a potential with respect to the ground unless otherwise specified.
[0019]
The external load 10 and the constant current source I1 are connected in series between the output voltage Vo1 point (P1) and the ground. The external load 10 is a load determined by a current flowing through a point to be operated, and a predetermined drive current Io set by the constant current source I1 flows through the external load 10. The voltage generated at one end P2 of the constant current source I1 becomes the detection voltage Vdet.
[0020]
The control circuit Cont receives the detection voltage Vdet and the reference voltage Vref from the reference voltage source B1, and generates a switching signal for switching the switch Q1 so that the detection voltage Vdet becomes equal to the reference voltage Vref. Here, an error amplifier Eamp that amplifies and outputs the difference between the reference voltage Vref and the detection voltage Vdet, and a pulse width modulation control circuit Pwm that forms a PWM signal based on the output of the error amplifier Eamp and outputs it as a switching signal. It is comprised including.
[0021]
The external load 10 is connected between the terminal P1 and the terminal P2. The present invention can be configured as an electronic device such as a portable device including an external load of a load driving device. In this case, the terminals P1 and P2 may be omitted.
[0022]
As the external load 10, light emitting diodes LED1 to LED3 are used. The light-emitting diode LED is, for example, a white light-emitting diode, and is used for LCD (liquid crystal display panel) and key backlight. Therefore, FIG. 1 shows an example of three series, but different combinations such as series connection, parallel connection, or series-parallel connection, depending on the required light emitting area and light emission amount, etc. There are various forms.
[0023]
The current-voltage characteristics of the light emitting diode LED are shown in FIG. This characteristic is an example of the current If-voltage Vf characteristic of the white light emitting diode LED. In FIG. 2, the horizontal axis represents the logarithmic display current If, and the vertical axis represents the voltage Vf. The light emitting diode LED emits light in a current If range of 20 mA (point A in the figure) to 1.5 mA (point B in the figure). By changing the current If, the amount of light emitted from the light emitting diode LED changes according to the magnitude of the current If.
[0024]
When the current If is used at 20 mA, the forward voltage Vf operates at a voltage of 3.4 V, as indicated by point A in FIG. However, the characteristics of each light emitting diode LED are not uniform, and the forward voltage Vf varies within a range of, for example, about 3.4 V to 4.0 V even with the same current of 20 mA. Thus, in general, the white light emitting diode LED has a higher forward voltage Vf than the light emitting diode LEDs of other colors, and the output voltage Vo1 is required to be 12.0 V or more in order to use three of them in series. .
[0025]
FIG. 3 is a diagram illustrating an example of a circuit configuration of the constant current source I1. In FIG. 3, a constant current circuit I11 and an N-type MOS transistor (hereinafter referred to as an N-type transistor) Q2 are connected in series between a power supply voltage Vcc and the ground. The drain and gate of this N-type transistor Q2 are directly connected. In addition, an N-type transistor Q3 having a driving capability higher than that of the N-type transistor Q2 is provided to allow the drive current Io to flow. The gate of the N-type transistor Q2, which is an input side transistor, is connected to the gate of the N-type transistor Q3, which is an output side transistor, to form a current mirror circuit.
[0026]
In FIG. 3, the magnitude of the drive current Io flowing through the N-type transistor Q3 is set to a desired value by adjusting the current of the constant current circuit I11.
[0027]
Again, returning to FIG. The constant current source I1 can operate at a constant current if there is a voltage equal to or higher than the saturation voltage (about 0.3 V) of the transistor (N-type transistor Q3 in FIG. 3) used therein. The voltage in the portion exceeding the saturation voltage (about 0.3 V) becomes an unnecessary loss in the constant current source I1 (that is, the loss is voltage × current). The output voltage Vo1 of the power supply circuit 100 is controlled so that the voltage drop Vdet of the constant current source I1 becomes the reference voltage Vref. Accordingly, the reference voltage Vref is set to a value that allows a slight margin of voltage to the saturation voltage (about 0.3 V) of the transistor used for the constant current source I1.
[0028]
The operation of the thus configured load driving device will be described with reference to FIG. 4 showing the characteristics of the driving current Io and the output voltage Vo1. First, the drive current Io that flows through the light emitting diode that is the load 10 is set in the constant current circuit I11. In the switching power supply circuit 100, the on / off switching control of the switch Q1 is started so that the detection voltage Vdet becomes equal to the reference voltage Vref. As a result, the output voltage Vo1 gradually increases.
[0029]
As a result, the detection voltage Vdet and the reference voltage Vref become equal, and the drive current Io flows through the light emitting diodes LED1 to LED3 that are the load 10. Thereby, the light emitting diode emits light with a predetermined light emission amount.
[0030]
In this case, even if the characteristic of the forward Direction voltage Vf of the light emitting diode LED1~LED3 was varied, the output voltage Vo1 is only varies from a predetermined value in accordance with the variation of light emission from the light-emitting diode LED1~LED3 There is no particular effect on control. The voltage drop of the constant current source I11, that is, the detection voltage Vdet is constant. Therefore, the output voltage Vo1 has a magnitude obtained by adding the drop voltage Vled (= 3 × Vf) of the light emitting diodes LED1 to LED3 corresponding to the driving current Io at that time to the constant detection voltage Vdet.
[0031]
Next, when the light emission amount from the light emitting diodes LED1 to LED3 is changed, the magnitude of the drive current Io is changed. For example, when the drive current Io is increased, the amount of light emitted from the light emitting diodes LED1 to LED3 increases accordingly. Along with this, the drop voltage Vled of the light emitting diodes LED1 to LED3 also increases depending on the characteristics of FIG. The slope of the output voltage Vo1 in FIG. 4 follows the If-Vf characteristic in FIG.
[0032]
Accordingly, the drop voltage Vled of the light emitting diodes LED1 to LED3 increases as the drive current Io increases, and the output voltage Vo1 increases with the characteristics shown in FIG. However, since the detection voltage Vdet maintains a constant value, the loss in the constant current source I1 does not increase even if the drive current is increased to increase the amount of light emission. Therefore, the efficiency of the load driving device is maintained high.
[0033]
FIG. 5 is a diagram showing a configuration of a load driving device according to the second embodiment of the present invention. In FIG. 5, another load 20 is added in addition to the load 10, and a constant current source I20 is provided corresponding to the load 20 as the load increases. The other load to be added may be two or more.
[0034]
In FIG. 5, a constant current source I10 is provided in series with a load 10, and a drive current Io1 flows through the series circuit. The voltage drop of the constant current source I10 becomes the first detection voltage Vdet1. Similarly, a constant current source I20 is provided in series with the load 20, and a drive current Io2 flows through the series circuit. The voltage drop of the constant current source I20 becomes the second detection voltage Vdet2. P11, P12, P21, and P22 are terminals for load connection.
[0035]
The error amplifier Eamp of the control circuit Cont has two non-inverting input terminals (+) and one inverting input terminal (−). The first detection voltage Vdet1 and the second detection voltage Vdet2 are input to the two non-inverting input terminals (+), respectively, and the reference voltage Vref is input to the inverting input terminal (−). In the error amplifier Eamp, the lower one of the first detection voltage Vdet1 and the second detection voltage Vdet2 input to the two non-inverting input terminals (+) is selected and compared with the reference voltage Vref. Other configurations are the same as those in the first embodiment of FIG.
[0036]
In the load drive circuit of FIG. 5, the drive currents Io1 and Io2 of the plurality of loads 10 and 20 can be individually adjusted. Then, the lower one of the drop voltages Vdet1 and Vdet2 of the constant current sources I10 and I20 is automatically selected, and the switching control of the power supply circuit 100 is performed.
[0037]
The constant current operation of the constant current sources I10 and I20 for flowing the drive currents Io1 and Io2 of the plurality of loads 10 and 20 is ensured. Therefore, the same effect as in the first embodiment can be obtained for a plurality of loads.
[0038]
【The invention's effect】
According to the present invention, an output voltage is obtained by converting an output voltage from a power supply voltage using an output circuit (DC-DC conversion type power supply circuit), and an operating point is determined by a flowing current. Since a constant current source whose value can be adjusted is connected, the current required on the load side can be stably supplied to the load.
[0039]
Further, the output voltage of the DC-DC conversion type power supply circuit is controlled so that the voltage drop of the constant current source becomes equal to a reference voltage set to a voltage value at which the constant current source can stably operate. Accordingly, the output voltage of the DC-DC conversion type power supply circuit is automatically adjusted so that a current necessary for a predetermined light emission amount flows even if there is a variation in characteristics among the light emitting diode groups as the load.
[0040]
In addition, since the voltage drop of the constant current source is automatically controlled to the reference voltage so that the set current value can be maintained, even if the current flowing through the light emitting diode group that is the load becomes large, the voltage across the resistor There is no increase in loss as in detection. Therefore, the loss accompanying the increase in load current does not substantially increase, so that the load can be driven with high efficiency in a wide load current range.
[0041]
In addition, since the DC-DC conversion type power supply circuit is a switching power supply circuit that switches the energization to the coil and converts the power supply voltage to the output voltage, the conversion efficiency is good and the necessary high voltage can be output. it can.
[0042]
Also, a variable current type constant current source is provided for each light emitting diode group that is a load, and the DC-DC conversion type power supply circuit is controlled according to the lower voltage drop of those constant current sources. Therefore, a predetermined constant current can be stably supplied to each of the light emitting diode groups that are loads.
[Brief description of the drawings]
FIG. 1 is a diagram showing a configuration of a load driving device according to a first embodiment of the present invention. FIG. 2 is a diagram showing current-voltage characteristics of a light emitting diode LED. FIG. 3 is a circuit configuration of a constant current source I1. FIG. 4 is a diagram showing characteristics of drive current Io and output voltage Vo1. FIG. 5 is a diagram showing a configuration of a load driving device according to a second embodiment of the present invention.
100 Power supply circuit 10, 20 Load LED1 to LED3 Light emitting diode L1 Coil C1 Smoothing capacitor D1 Diode Q1 Switch Cont Control circuit B1 Reference voltage source I1, I10, I20 Constant current source I11 Constant current circuit Q2, Q3 N-type MOS transistor Vcc Input Power supply voltage Vo1 Output voltage Io, Io1, Io2 Drive current Vled, Vled1, Vled2 Light emitting diode drop voltage Vdet, Vdet1, Vdet2 Detection voltage Vref Reference voltage

Claims (7)

電源電圧を変換して所定の出力電圧として複数の負荷に供給する出力回路と、
前記複数の負荷にそれぞれ直列に接続されてそれぞれ調整可能な定電流を流す複数の定電流源とを備え、
前記出力回路は、前記複数の負荷と前記複数の定電流源との各接続点の電圧のうちの最も低い電圧が一定電圧になるように前記所定の出力電圧を制御することを特徴とする、負荷駆動装置。
An output circuit that converts a power supply voltage and supplies it to a plurality of loads as a predetermined output voltage;
A plurality of constant current sources that are connected in series to the plurality of loads, respectively , and that allow each adjustable constant current to flow;
The output circuit controls the predetermined output voltage so that the lowest voltage among the voltages at the connection points of the plurality of loads and the plurality of constant current sources becomes a constant voltage. Load drive device.
前記複数の定電流源の各々は、電流可変型の定電流回路と、この定電流回路と直列に接続されたカレントミラー用入力側トランジスタと、このカレントミラー用入力側トランジスタと同じ制御入力が与えられるカレントミラー用出力側トランジスタとを含んでカレントミラー回路が構成されており、前記カレントミラー用出力側トランジスタに前記調整可能な定電流が流されることを特徴とする、請求項1記載の負荷駆動装置。 Each of the plurality of constant current sources is provided with a current variable type constant current circuit, a current mirror input side transistor connected in series with the constant current circuit, and the same control input as the current mirror input side transistor. 2. The load according to claim 1, wherein a current mirror circuit is configured to include a current mirror output-side transistor, and the adjustable constant current is supplied to the current mirror output-side transistor. Drive device. 前記複数の負荷の各々は、少なくとも1つの発光ダイオードを含む発光ダイオード群であることを特徴とする、請求項2記載の負荷駆動装置。 Each of the plurality of loads, characterized in that it is a light emitting diode group including at least one light emitting diode, the load driving device according to claim 2. 前記一定電圧は、前記カレントミラー用出力側トランジスタの飽和電圧より高い電圧であることを特徴とする、請求項2記載の負荷駆動装置。The load driving device according to claim 2 , wherein the constant voltage is higher than a saturation voltage of the output transistor for the current mirror. 前記出力回路は、コイルと、このコイルへの通電をスイッチングするスイッチと、前記コイルと前記スイッチとの接続点と出力端子との間に設けられた整流素子とを有するスイッチング電源回路であることを特徴とする、請求項1乃至4のいずれかに記載の負荷駆動装置。The output circuit is a switching power supply circuit having a coil, a switch for switching energization to the coil, and a rectifying element provided between a connection point of the coil and the switch and an output terminal. The load driving device according to any one of claims 1 to 4 , wherein the load driving device is characterized. 前記スイッチング電源回路は、さらに、前記整流素子の出力電圧点側に接続された平滑回路と、前記複数の負荷と前記複数の定電流源との接続点の電圧の中の最も低い電圧が基準電圧に等しくなるように前記スイッチのオンオフスイッチングを行う制御回路と、を有することを特徴とする、請求項5記載の負荷駆動装置。The switching power supply circuit further includes a smoothing circuit connected to the output voltage point side of the rectifier element, the lowest voltage is the reference in the voltage of the connection point of the plurality of constant current source and the plurality of loads 6. The load driving device according to claim 5, further comprising a control circuit that performs on / off switching of the switch so as to be equal to a voltage. 請求項1乃至6のいずれかに記載の負荷駆動装置を用いていることを特徴とする携帯機器。Portable device characterized in that it uses a load drive device according to any one of claims 1 to 6.
JP2003192784A 2003-07-07 2003-07-07 Load drive device and portable device Expired - Lifetime JP3755770B2 (en)

Priority Applications (22)

Application Number Priority Date Filing Date Title
JP2003192784A JP3755770B2 (en) 2003-07-07 2003-07-07 Load drive device and portable device
DE200460008840 DE602004008840T2 (en) 2003-07-07 2004-06-23 A load driving device and portable device using such load driving device
EP20040014726 EP1499165B1 (en) 2003-07-07 2004-06-23 Load driving device and portable apparatus utilizing such driving device
TW099113230A TWI340530B (en) 2003-07-07 2004-06-25 Load driving device and liguid crystal display using such load driving device
TW093118447A TWI346442B (en) 2003-07-07 2004-06-25 Load driving device and liguid crystal display using such load driving device
US10/879,315 US7235954B2 (en) 2003-07-07 2004-06-29 Load driving device and portable apparatus utilizing such driving device
CN2010101454408A CN101789692B (en) 2003-07-07 2004-07-02 Load driving device and liquid crystal apparatus
CN2004100621747A CN1578095B (en) 2003-07-07 2004-07-02 Load driving device and portable apparatus utilizing such driving device
KR1020040052190A KR20050006042A (en) 2003-07-07 2004-07-06 Load driving device and portable equipment
US11/750,894 US7541785B2 (en) 2003-07-07 2007-05-18 Load driving device and portable apparatus utilizing such driving device
US12/428,338 US7944189B2 (en) 2003-07-07 2009-04-22 Load driving device and portable apparatus utilizing such driving device
US12/731,006 US8519680B2 (en) 2003-07-07 2010-03-24 Load driving device, and lighting apparatus and liquid crystal display device using the same
US13/080,498 US8242756B2 (en) 2003-07-07 2011-04-05 Load driving device and portable apparatus utilizing such driving device
US13/952,333 US8836295B2 (en) 2003-07-07 2013-07-26 Load driving device, and lighting apparatus and liquid crystal display device using the same
US14/454,528 US9526138B2 (en) 2003-07-07 2014-08-07 Load driving device, and lighting apparatus and liquid crystal display device using the same
US15/002,275 US9526139B2 (en) 2003-07-07 2016-01-20 Load driving device, and lighting apparatus and liquid crystal display device using the same
US15/348,257 US9960677B2 (en) 2003-07-07 2016-11-10 Load driving device, and lighting apparatus and liquid crystal display device using the same
US15/924,701 US10103625B2 (en) 2003-07-07 2018-03-19 Load driving device, and lighting apparatus and liquid crystal display device using the same
US16/127,571 US10396659B2 (en) 2003-07-07 2018-09-11 Load driving device, and lighting apparatus and liquid crystal display device using the same
US16/508,423 US10734896B2 (en) 2003-07-07 2019-07-11 Load driving device, and lighting apparatus and liquid crystal display device using the same
US16/909,714 US11487310B2 (en) 2003-07-07 2020-06-23 Load driving device, and lighting apparatus and liquid crystal display device using the same
US17/958,840 US20230023130A1 (en) 2003-07-07 2022-10-03 Load driving device, and lighting apparatus and liquid crystal display device using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003192784A JP3755770B2 (en) 2003-07-07 2003-07-07 Load drive device and portable device

Publications (2)

Publication Number Publication Date
JP2005033853A JP2005033853A (en) 2005-02-03
JP3755770B2 true JP3755770B2 (en) 2006-03-15

Family

ID=34204472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003192784A Expired - Lifetime JP3755770B2 (en) 2003-07-07 2003-07-07 Load drive device and portable device

Country Status (1)

Country Link
JP (1) JP3755770B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067464A (en) * 2006-09-06 2008-03-21 Rohm Co Ltd Semiconductor integrated circuit, load driving system, and electronic equipment
US8169161B2 (en) 2007-11-16 2012-05-01 Allegro Microsystems, Inc. Electronic circuits for driving series connected light emitting diode strings
US8274238B2 (en) 2007-01-04 2012-09-25 Allegro Microsystems, Inc. Electronic circuit for driving a diode load
US8692482B2 (en) 2010-12-13 2014-04-08 Allegro Microsystems, Llc Circuitry to control a switching regulator
US8957607B2 (en) 2012-08-22 2015-02-17 Allergo Microsystems, LLC DC-DC converter using hysteretic control and associated methods
US8994279B2 (en) 2013-01-29 2015-03-31 Allegro Microsystems, Llc Method and apparatus to control a DC-DC converter
US9144126B2 (en) 2012-08-22 2015-09-22 Allegro Microsystems, Llc LED driver having priority queue to track dominant LED channel
US9155156B2 (en) 2011-07-06 2015-10-06 Allegro Microsystems, Llc Electronic circuits and techniques for improving a short duty cycle behavior of a DC-DC converter driving a load
US9265104B2 (en) 2011-07-06 2016-02-16 Allegro Microsystems, Llc Electronic circuits and techniques for maintaining a consistent power delivered to a load
US10152926B2 (en) 2010-02-26 2018-12-11 Rohm Co., Ltd. Driving circuit for light emitting element, light emitting device using same, and display apparatus

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4675124B2 (en) 2005-03-10 2011-04-20 ローム株式会社 Switching regulator
DE202005021665U1 (en) 2005-06-20 2009-04-02 Austriamicrosystems Ag Current source arrangement
KR100917623B1 (en) 2006-02-13 2009-09-17 삼성전자주식회사 LED Driving Apparatus
JP5046564B2 (en) * 2006-06-07 2012-10-10 ローム株式会社 Power supply device and electronic device using the same
JP4926618B2 (en) * 2006-09-04 2012-05-09 ローム株式会社 Power supply device and electronic apparatus equipped with the same
JP2008159909A (en) * 2006-12-25 2008-07-10 Sumitomo Electric Ind Ltd Semiconductor laser drive circuit
JP2009032497A (en) * 2007-07-26 2009-02-12 Denso Corp Backlight control device
JP2010063332A (en) 2008-09-08 2010-03-18 Panasonic Corp Load driving device
TWI398189B (en) * 2008-12-23 2013-06-01 Novatek Microelectronics Corp Driving circuit and method for driving current-drive elements
DE102010006865B4 (en) 2010-02-04 2018-10-11 Austriamicrosystems Ag Power source, power source arrangement and their use
JP2011244677A (en) * 2010-04-23 2011-12-01 Rohm Co Ltd Control circuit for switching power supply, and switching power supply, light-emitting device and electronic apparatus with the same
US9497805B2 (en) 2010-06-18 2016-11-15 Konica Minolta Holdings, Inc. Organic EL element driving device and organic EL lighting apparatus
JP4922439B2 (en) 2010-07-01 2012-04-25 シャープ株式会社 LED control device, liquid crystal display device
JP2011029194A (en) * 2010-09-09 2011-02-10 Panasonic Electric Works Co Ltd Lighting system
KR101206342B1 (en) 2011-03-25 2012-11-29 (주)칩앤라이트 Driving Apparatus for Light Emitting Diode
JP5979973B2 (en) * 2012-05-18 2016-08-31 キヤノン株式会社 LIGHT EMITTING CONTROL DEVICE, ITS CONTROL METHOD, AND CONTROL PROGRAM
JP5930845B2 (en) * 2012-05-29 2016-06-08 キヤノン株式会社 Light emission control device and control method thereof
JP6034657B2 (en) * 2012-10-26 2016-11-30 ローム株式会社 LIGHT EMITTING DEVICE CONTROL CIRCUIT, LIGHT EMITTING DEVICE USING THE SAME, AND ELECTRONIC DEVICE
TW201434344A (en) * 2013-02-19 2014-09-01 Princeton Technology Corp LED driving device
US8884548B2 (en) 2013-02-28 2014-11-11 Asahi Kasei Microdevices Corporation Power factor correction converter with current regulated output
WO2018143282A1 (en) 2017-01-31 2018-08-09 ローム株式会社 Led drive circuit, led drive device, and led drive system
WO2020195478A1 (en) 2019-03-27 2020-10-01 ローム株式会社 Light-emitting element drive device
JP7265419B2 (en) 2019-06-05 2023-04-26 ローム株式会社 Light-emitting element driving device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008067464A (en) * 2006-09-06 2008-03-21 Rohm Co Ltd Semiconductor integrated circuit, load driving system, and electronic equipment
US8274238B2 (en) 2007-01-04 2012-09-25 Allegro Microsystems, Inc. Electronic circuit for driving a diode load
US8169161B2 (en) 2007-11-16 2012-05-01 Allegro Microsystems, Inc. Electronic circuits for driving series connected light emitting diode strings
US8653756B2 (en) 2007-11-16 2014-02-18 Allegro Microsystems, Llc Electronic circuits for driving series connected light emitting diode strings
US9007000B2 (en) 2007-11-16 2015-04-14 Allegro Microsystems, Llc Electronic circuits for driving series connected light emitting diode strings
US9320094B2 (en) 2007-11-16 2016-04-19 Allegro Microsystems, Llc Electronic circuits for driving series connected light emitting diode strings
US10152926B2 (en) 2010-02-26 2018-12-11 Rohm Co., Ltd. Driving circuit for light emitting element, light emitting device using same, and display apparatus
US8692482B2 (en) 2010-12-13 2014-04-08 Allegro Microsystems, Llc Circuitry to control a switching regulator
US9337727B2 (en) 2010-12-13 2016-05-10 Allegro Microsystems, Llc Circuitry to control a switching regulator
US9155156B2 (en) 2011-07-06 2015-10-06 Allegro Microsystems, Llc Electronic circuits and techniques for improving a short duty cycle behavior of a DC-DC converter driving a load
US9265104B2 (en) 2011-07-06 2016-02-16 Allegro Microsystems, Llc Electronic circuits and techniques for maintaining a consistent power delivered to a load
US9144126B2 (en) 2012-08-22 2015-09-22 Allegro Microsystems, Llc LED driver having priority queue to track dominant LED channel
US8957607B2 (en) 2012-08-22 2015-02-17 Allergo Microsystems, LLC DC-DC converter using hysteretic control and associated methods
US8994279B2 (en) 2013-01-29 2015-03-31 Allegro Microsystems, Llc Method and apparatus to control a DC-DC converter

Also Published As

Publication number Publication date
JP2005033853A (en) 2005-02-03

Similar Documents

Publication Publication Date Title
JP3755770B2 (en) Load drive device and portable device
US8242756B2 (en) Load driving device and portable apparatus utilizing such driving device
JP4950631B2 (en) Method and apparatus for supplying power to a light emitting diode array
US10103625B2 (en) Load driving device, and lighting apparatus and liquid crystal display device using the same
US7705543B2 (en) Supply device of circuit branches with LED diodes
US7265681B2 (en) Light emitted diode driving apparatus
KR100867551B1 (en) Led array driving apparatus
US8198830B2 (en) Perceptually linear LED brightness control
US7928670B2 (en) LED driver with multiple feedback loops
KR101483662B1 (en) Light emitting element control system and lighting system comprising same
JP4588994B2 (en) Lighting device
US20050243041A1 (en) Light emitting diode driver circuit
US7646153B2 (en) Switching regulator
US8963436B2 (en) Light emitting element driving device
JP3739768B2 (en) Load drive device and portable device
JP2012253876A (en) Load driving device
CN112369124B (en) Light source driving device and method thereof
JP4881275B2 (en) LED lighting drive device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051215

R150 Certificate of patent or registration of utility model

Ref document number: 3755770

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term