JP3755216B2 - Shape measuring apparatus and method - Google Patents

Shape measuring apparatus and method Download PDF

Info

Publication number
JP3755216B2
JP3755216B2 JP31509096A JP31509096A JP3755216B2 JP 3755216 B2 JP3755216 B2 JP 3755216B2 JP 31509096 A JP31509096 A JP 31509096A JP 31509096 A JP31509096 A JP 31509096A JP 3755216 B2 JP3755216 B2 JP 3755216B2
Authority
JP
Japan
Prior art keywords
signal
time
transmission
reception
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31509096A
Other languages
Japanese (ja)
Other versions
JPH10153417A (en
Inventor
清英 関本
英郎 太田
Original Assignee
石川島播磨重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 石川島播磨重工業株式会社 filed Critical 石川島播磨重工業株式会社
Priority to JP31509096A priority Critical patent/JP3755216B2/en
Publication of JPH10153417A publication Critical patent/JPH10153417A/en
Application granted granted Critical
Publication of JP3755216B2 publication Critical patent/JP3755216B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Levels Of Liquids Or Fluent Solid Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Measurement Of Optical Distance (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、対象物形状を遠隔から非接触で計測する形状計測装置及び方法に関する。
【0002】
【従来の技術】
遠隔から3次元対象物の形状及び距離を認識するために、例えば、「3次元形状及び距離認識方式」(特開平5−18720号)等が提案されている。この方式は、水平及び垂直方向に指向方向が可変に設けられたテレビカメラで、3次元形状を有する対象物を所定の位置から撮像し、撮像された映像信号を画像処理装置で画像処理して、対象物の所定位置からみた2次元的な外形及び重心位置の座標値を演算装置で設定し、この座標値に基づいて所定位置から対象物の部分に測距装置から測距用光線を照射して、その反射光に基づいて演算装置乃至中央処理装置が対象物の所定位置からみた3次元形状及び所定位置からの距離を認識するものである。
【0003】
また、同様な装置として、レーザレーダ装置が知られている。この装置は、図6に模式的に示すように、レーザ装置1、テレスコープ2、光検出装置3、データ処理装置4、等から構成され、レーザ装置1により対象物(例えば散乱体6)にレーザ光5を放射(発信)し、対象物によるミー散乱光7をテレスコープ2で受信し、光検出装置3及びデータ処理装置4により、散乱体6までの距離、その密度、厚さ、速度等を検出するようになっている。なおこの図で3aは偏光ビームスプリッタ、4a,4b,4cはそれぞれアンプ、レコーダ、コンピュータである。
【0004】
【発明が解決しようとする課題】
上述した従来の計測計測手段を応用して、比較的短距離に位置する対象物の形状を計測することが要望されている。例えば、船艙内にバラ積みした石炭,鉄鋼石等の積層高さ(表面位置)をレーザ光を用いて計測することにより、従来の目視判断に比較して、対象物(例えば石炭・鉄鉱石)の積層状態を非接触で正確に計測することができる。
【0005】
しかし、対象物の位置が10〜50m程度と、比較的短距離に位置する場合には、▲1▼測定対象物までの間に粉塵や水蒸気などが存在すると、光が測定対象まで到達しなかったり、粉塵・水蒸気を測定対象物と判断してしまうことがあった。すなわち、測距装置の窓、粉塵等からの反射光と、対象物(石炭・鉄鉱石)からの反射光との識別が困難であり、大きな計測誤差が生じることがある問題点があった。また、▲2▼しきい値を用いて送信信号と受信信号を検出する従来の信号検出方法では、受信信号の出力レベルが減衰等で低下していると、使用している発振器の数パルス以上に相当する誤差が生じることがあり、例えば100MHzでは、1パルスが1nsec程度に相当するため1nsecに相当する距離(約15cm)の数倍の誤差が生じる問題点があった。
【0006】
本発明はかかる問題点を解決するために創案されたものである。すなわち、本発明の目的は、粉塵や水蒸気などの影響がなく、測距装置の窓、粉塵等からの反射光と、対象物(石炭・鉄鉱石)からの反射光とを確実に識別できる形状計測装置を提供することにある。また、本発明の別の目的は、受信信号の出力レベルが減衰等で低下する場合でも、使用する発振器の単一パルスに匹敵する高精度で対象物までの距離を測距できる形状計測装置及び方法を提供することにある。
【0007】
【課題を解決するための手段】
本発明によれば、パルスレーザ光を対象物に向けて送信しかつ対象物からの反射レーザ光を受信するセンシング装置と、送信信号及び受信信号から対象物までの距離を演算する信号処理装置とを備え、信号処理装置は、パルスレーザ光の送信トリガ信号出力及び送信信号と複数の受信信号が入力されレーザ光の往復時間を出力する時間計測カウンターを有し、時間計測カウンターは、送信信号を検出して時間計測を開始し、対象物に応じた所定の時間のみゲートを開いてその間の受信信号の検出時間と信号最大値を記憶し、この受信信号が1つである場合はその受信信号の検出時間と信号最大値から、その受信信号が複数ある場合にはその内最も遅い受信信号の検出時間と信号最大値から、送信信号の中心位置から受信信号の中心位置までの時間を算出するようになっている、ことを特徴とする形状計測装置が提供される。
【0008】
また、本発明によれば、パルスレーザ光の送信信号を検出して時間計測を開始し、対象物に応じた所定の時間のみゲートを開いてその間の受信信号の検出時間と信号最大値を記憶し、この受信信号が1つである場合はその受信信号の検出時間と信号最大値から、その受信信号が複数ある場合にはその内最も遅い受信信号の検出時間と信号最大値から、送信信号の中心位置から受信信号の中心位置までの時間を算出する、ことを特徴とする形状計測方法が提供される。
【0009】
本発明の好ましい実施形態によれば、所定のしきい値電圧により、送信信号と受信信号を検出し、受信信号を放物線等で近似して、往復時間を算出する。
【0010】
上記本発明の装置及び方法によれば、時間計測カウンターにより、対象物に応じた所定の時間のみゲートを開いてその間の受信信号の検出時間と信号最大値を記憶し、この受信信号が1つである場合はその受信信号の検出時間と信号最大値から、その受信信号が複数ある場合にはその内最も遅い受信信号からレーザ光の往復時間、すなわち出射レーザパルスが物体で反射し、帰還するまでの時間を算出するので、計測対象物より前方に位置する測距装置の窓、粉塵等からの反射光の影響を受けずに計測でき、これにより粉塵・水蒸気中に埋もれた低反射率物体までの距離計測が可能となる。
【0011】
また、本発明の装置及び方法によれば、受信信号の検出時間と信号最大値から、送信信号の中心位置から受信信号の中心位置までの時間を算出するので、受信信号の波形が予測でき(例えば放物線)、かつしきい値電圧を一定に保持すれば、しきい値電圧を越えピークに達するまでの時間差を正確に補正でき、これにより受信信号の出力レベルが減衰等で低下する場合でも、使用する発振器の単一パルスに匹敵する高精度に対象物までの距離を測距できる。
【0012】
【発明の実施の形態】
以下、本発明の好ましい実施形態を図面を参照して説明する。なお、各図において共通する部分には同一の符号を付して使用する。
図1は、本発明による形状計測装置の全体構成図である。この図は、船艙8内にバラ積みした石炭,鉄鋼石等の対象物の積層高さ(表面位置)をパルスレーザ光5を用いて計測するようになっている。本発明の形状計測装置は、パルスレーザ光5を対象物9に向けて送信しかつ対象物9からの反射レーザ光を受信するセンシング装置10と、送信信号及び受信信号から対象物9までの距離を演算する信号処理装置20と、を備えている。
【0013】
図2は、本発明による形状計測装置のブロック図である。この図に示すように、センシング装置10は、投光光学系11、受光光学系12a,12b、ミラー13a,13b、スキャナモータ14a,14b、分離ミラー15等からなり、投光光学系11から分離ミラー15、ミラー13a,13b、及び透明窓16を介して船艙8内の対象物9(石炭,鉄鋼石等)に向けてパルスレーザ光5を出射(投光)するようになっている。ミラー13a,13bはそれぞれスキャナモータ14a,14bで駆動され、パルスレーザ光5の向きをX軸及びY軸まわりに制御するようになっている。この構成により、パルスレーザ光5を船艙8内の対象物9の表面に沿ってX軸方向及びY軸方向に走査することにより、対象物9の全表面にパルスレーザ光5を出射(投光)することができる。
【0014】
また、対象物9で反射されたパルスレーザ光5は、透明窓16、ミラー13a,13b、及び分離ミラー15を介して受光光学系12a,12bに入射する。従って、レーザ光の送信信号から受信信号までのタイムラグ(時間差)を検出することにより、センシング装置10からの船艙8内の対象物9の位置、すなわち対象物9の形状を3次元的に計測することができる。
【0015】
図2において信号処理装置20は、レーザ発信器21、時間計測カウンター22、ドライバ23a,23b、フォトディテクタ24a,24b、等からなる。また、レーザ発信器21と投光光学系11、フォトディテクタ24a,24bと受光光学系12a,12bは、それぞれ光ファイバーケーブル25を介して接続され、ドライバ23a,23bは、スキャナモータ14a,14bと電気ケーブル26を介して接続されている。
【0016】
また、コンピュータ27とCRT28が、信号処理装置20に隣接して設置され、コンピュータ27の出力端子がケーブル29aを介してドライバ23a,23b及びレーザ発信器21に接続され、時間計測カウンター22の出力ケーブル29bがコンピュータ27に接続されている。
更に、図2において、フォトディテクタ24a,24bの受信信号と送信信号が、時間計測カウンター22に入力され、レーザ発信器21の送信トリガ信号が時間計測カウンター22から出力されるようになっている。
【0017】
上述した構成により、コンピュータ27の出力指令により、レーザ発信器21から光ファイバーケーブル25を介して投光光学系にパルスレーザ光を発信することができ、同時にドライバ23a,23bによりスキャナモータ14a,14bを制御することができる。また、受光光学系12a,12bで受信したレーザ光を光ファイバーケーブル25を介してしてフォトディテクタ24a,24bで受信し、その信号を時間計測カウンター22で処理することができる。
【0018】
図3は、本発明による各信号の模式図である。この図において、aは送信トリガ信号、bは送信同期信号(送信信号)、cは受信信号である。送信トリガ信号aは、幅約1μsec(約1000nsec)の矩形波であり、送信信号bは、幅約10〜15nsecの放物線状の波、受信信号cは送信信号bが減衰反射した幅約10〜15nsecの放物線状の波である。送信トリガ信号aは、コンピュータ27の出力指令により、対象物9までの位置に応じた一定間隔(例えば約500μsec毎に発信される。送信信号bは、送信トリガ信号aと同時又はこれよりわずかに遅れて時間計測カウンター22に入力される。
【0019】
時間計測カウンター22は、送信信号bを検出してクロックカウンタdにより時間計測を開始し、かつ対象物9に応じた所定の時間のみゲートeを開いてその間の受信信号cの検出時間tと信号最大値vを記憶する。ゲートeを開く時間は、対象物9までの位置に応じて設定し、例えば船艙8内の対象物の積層高さ(表面位置)を計測するような場合には、積層高さの最少値(例えば10m)から最大値(例えば50m)に対応して時間設定する。このゲートeの設定により、窓からの反射のように、対象物の位置と極端に異なる受信信号cを除去することができる。
【0020】
更に、この時間計測カウンター22は、複数の受信信号cを受信した場合に、最も遅い受信信号cの検出時間tと信号最大値vを判別し、この最も遅い受信信号cから、レーザ光の往復時間Δtを出力するようになっている。これにより、計測対象物9より前方に位置する測距装置の窓、粉塵等からの反射光の影響を受けずに計測でき、これにより粉塵・水蒸気中に埋もれた低反射率物体までの距離計測が可能となる。
【0021】
図4は、更に時間計測カウンター22の機能を説明する原理図である。この図において、(A)(B)は従来の例、(C)は本発明の例を示している。(A)に示すように、従来は、送信信号aと受信信号bをそれぞれ所定のしきい値電圧v0 ,v0 ′で検出し、その間の時間間隔Δtをレーザ光の往復時間としてる。しかし、この方法では、(B)に示すように、受信信号bの出力レベルが減衰により変化すると、同一のしきい値電圧v0 ′を用いてもδtの誤差時間が生じてしまう。この誤差時間δtは、受信信号cが幅約10〜15nsecの放物線状の波であることから、約3〜5nsecにも達し、約45cm〜75cm程度にもなることがある。
【0022】
本発明の形状計測方法では、(C)に示すように、送信信号aと受信信号bをそれぞれ所定のしきい値電圧v0 ,v0 ′で検出すると同時にそれぞれの最大出力v1,v1 ′を検出し、それぞれをを放物線で近似して、往復時間Δtを算出するようになっている。この方法により、しきい値電圧v0 ,v0 ′を一定に保持すれば、しきい値電圧v0 ,v0 ′を越えピークに達するまでの時間差を正確に補正でき、これにより受信信号の出力レベルが減衰等で低下する場合でも、使用する発振器の単一パルスに匹敵する高精度で対象物までの距離を測距することができる。
【0023】
【実施例】
図5は、本発明による形状計測方法の適用例である。この図において、(A)は石炭積み荷形状を斜めから計測した実験例、(B)はこれを平面図に変換した実験例である。この図に示すように、本発明の形状計測装置及び方法によれば、通常の発振器の周波数(例えば100MHz)を用いた場合でも、1パルスの分解能(1nsec=約15cm)よりも高い精度で対象物9の位置、すなわち対象物9の形状を3次元的に計測することができる。
【0024】
なお、本発明は上述した実施形態及び実施例に限定されず、本発明の要旨を逸脱しない範囲で種々変更できることは勿論である。
【0025】
【発明の効果】
上述したように、本発明の形状計測装置及び方法は、粉塵や水蒸気などの影響がなく、測距装置の窓、粉塵等からの反射光と、対象物(石炭・鉄鉱石)からの反射光とを確実に識別でき、かつ受信信号の出力レベルが減衰等で低下する場合でも、使用する発振器の単一パルスに匹敵する高精度で対象物までの距離を測距できる、等の優れた効果を有する。
【図面の簡単な説明】
【図1】本発明による形状計測装置の全体構成図である。
【図2】本発明による形状計測装置のブロック図である。
【図3】本発明による送信・受信信号の模式図である。
【図4】時間計測カウンターの機能を説明する原理図である。
【図5】本発明による形状計測方法の適用例である。
【図6】従来のレーザレーダ装置の模式図である。
【符号の説明】
1 レーザ装置
2 テレスコープ
3 光検出装置
4 データ処理装置
5 レーザ光
6 散乱体
7 ミー散乱光
8 船艙
9 対象物
10 センシング装置
11 投光光学系
12a,12b 受光光学系
13a,13b ミラー
14a,14b スキャナモータ
15 分離ミラー
16 透明窓
20 信号処理装置
21 レーザ発信器
22 時間計測カウンター
23a,23b ドライバ
24a,24b フォトディテクタ
25 光ファイバーケーブル
26 電気ケーブル
27 コンピュータ
28 CRT
29a,29b ケーブル
a 送信トリガ信号
b 送信同期信号(送信信号)
c 受信信号
d クロックカウンタ
e ゲート
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a shape measuring apparatus and method for measuring an object shape from a remote location without contact.
[0002]
[Prior art]
In order to recognize the shape and distance of a three-dimensional object from a remote location, for example, a “three-dimensional shape and distance recognition method” (Japanese Patent Laid-Open No. 5-18720) has been proposed. This method is a television camera in which a directivity direction is variably provided in a horizontal direction and a vertical direction, an object having a three-dimensional shape is imaged from a predetermined position, and the captured video signal is image-processed by an image processing apparatus. The coordinate value of the two-dimensional outer shape and the center of gravity position as viewed from the predetermined position of the object is set by the arithmetic unit, and the distance measuring device irradiates the target part from the predetermined position based on the coordinate value. Then, based on the reflected light, the arithmetic unit or the central processing unit recognizes the three-dimensional shape of the object viewed from the predetermined position and the distance from the predetermined position.
[0003]
As a similar device, a laser radar device is known. As schematically shown in FIG. 6, this apparatus includes a laser device 1, a telescope 2, a light detection device 3, a data processing device 4, and the like. The laser device 1 applies an object (for example, a scatterer 6). The laser beam 5 is emitted (transmitted), the Mie scattered light 7 from the object is received by the telescope 2, and the distance to the scatterer 6, its density, thickness, and speed are detected by the light detection device 3 and the data processing device 4. Etc. are to be detected. In this figure, 3a is a polarization beam splitter, 4a, 4b and 4c are an amplifier, a recorder and a computer, respectively.
[0004]
[Problems to be solved by the invention]
There is a demand for measuring the shape of an object located at a relatively short distance by applying the above-described conventional measurement and measurement means. For example, by measuring the stacking height (surface position) of coal, iron ore, etc. stacked in a shipboard using a laser beam, the object (for example, coal or iron ore) is compared with conventional visual judgment. Can be accurately measured in a non-contact manner.
[0005]
However, when the object is located at a relatively short distance of about 10 to 50 m, (1) if dust or water vapor exists between the objects to be measured, the light does not reach the object to be measured. In some cases, dust and water vapor are judged as objects to be measured. That is, there is a problem in that it is difficult to distinguish between reflected light from a window of a distance measuring device, dust and the like and reflected light from an object (coal / iron ore), which may cause a large measurement error. (2) In the conventional signal detection method for detecting a transmission signal and a reception signal using a threshold value, when the output level of the reception signal is reduced due to attenuation or the like, the number of pulses of the oscillator being used is more than For example, at 100 MHz, since one pulse corresponds to about 1 nsec, there is a problem that an error several times the distance (about 15 cm) corresponding to 1 nsec occurs.
[0006]
The present invention has been made to solve such problems. That is, the object of the present invention is a shape that is not affected by dust or water vapor, and can reliably discriminate between reflected light from a distance measuring device window, dust, and the like, and reflected light from an object (coal / iron ore). It is to provide a measuring device. Another object of the present invention is to provide a shape measuring device capable of measuring the distance to an object with high accuracy comparable to a single pulse of an oscillator to be used, even when the output level of a received signal decreases due to attenuation or the like. It is to provide a method.
[0007]
[Means for Solving the Problems]
According to the present invention, a sensing device that transmits pulsed laser light toward an object and receives reflected laser light from the object, and a signal processing device that calculates a distance from the transmission signal and the received signal to the object. The signal processing device includes a pulse laser beam transmission trigger signal output and a time measurement counter that outputs a round trip time of the laser beam when a transmission signal and a plurality of reception signals are input. Detects and starts time measurement, opens the gate only for a predetermined time according to the object, stores the detection time and maximum signal value of the received signal during that time, and if this received signal is one, the received signal detection from the time the signal maximum value, of if the received signal is more from the detection time and the signal maximum of the slowest received signal of which, to the central position of the received signal from the central position of the transmission signal During and calculates the is provided a shape measurement device, characterized in that.
[0008]
In addition, according to the present invention, a pulse laser beam transmission signal is detected and time measurement is started, the gate is opened only for a predetermined time according to the object, and the reception signal detection time and signal maximum value during that time are stored. If there is only one reception signal, the transmission signal is detected from the detection time and maximum signal value of the reception signal. If there are a plurality of reception signals, the transmission signal is calculated from the detection time and maximum signal value of the latest reception signal. A shape measuring method is provided which calculates a time from the center position of the received signal to the center position of the received signal.
[0009]
According to a preferred embodiment of the present invention, a round trip time is calculated by detecting a transmission signal and a reception signal with a predetermined threshold voltage and approximating the reception signal with a parabola or the like.
[0010]
According to the apparatus and method of the present invention, the time measurement counter opens the gate only for a predetermined time according to the object, stores the detection time of the received signal and the maximum signal value during that time, and one received signal is stored. If there are multiple received signals, the round trip time of the laser beam, that is, the outgoing laser pulse is reflected by the object and returned from the latest received signal. It is possible to measure without being affected by the reflected light from the window of the distance measuring device located in front of the object to be measured, dust, etc., so that the low reflectance object buried in the dust / water vapor Distance measurement up to is possible.
[0011]
Further, according to the apparatus and method of the present invention, the time from the center position of the transmission signal to the center position of the reception signal is calculated from the detection time of the reception signal and the signal maximum value, so that the waveform of the reception signal can be predicted ( For example, if the threshold voltage is kept constant, the time difference until it reaches the peak exceeding the threshold voltage can be accurately corrected, and even when the output level of the received signal decreases due to attenuation or the like, The distance to the object can be measured with high accuracy comparable to the single pulse of the oscillator used.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected and used for the common part in each figure.
FIG. 1 is an overall configuration diagram of a shape measuring apparatus according to the present invention. In this figure, the stacking height (surface position) of objects such as coal and steel stone piled in the ship 8 is measured using the pulse laser beam 5. The shape measuring device of the present invention includes a sensing device 10 that transmits pulsed laser light 5 toward an object 9 and receives reflected laser light from the object 9, and a distance from the transmission signal and the received signal to the object 9. And a signal processing device 20 for calculating
[0013]
FIG. 2 is a block diagram of a shape measuring apparatus according to the present invention. As shown in the figure, the sensing device 10 includes a light projecting optical system 11, light receiving optical systems 12a and 12b, mirrors 13a and 13b, scanner motors 14a and 14b, a separation mirror 15, and the like. The pulse laser beam 5 is emitted (projected) toward the object 9 (coal, steel stone, etc.) in the boat 8 through the mirror 15, the mirrors 13a and 13b, and the transparent window 16. The mirrors 13a and 13b are driven by scanner motors 14a and 14b, respectively, to control the direction of the pulse laser beam 5 about the X axis and the Y axis. With this configuration, the pulsed laser beam 5 is emitted to the entire surface of the object 9 by projecting the pulsed laser beam 5 along the surface of the object 9 in the boat 8 in the X-axis direction and the Y-axis direction (projection). )can do.
[0014]
Further, the pulsed laser light 5 reflected by the object 9 enters the light receiving optical systems 12a and 12b through the transparent window 16, the mirrors 13a and 13b, and the separation mirror 15. Therefore, by detecting the time lag (time difference) from the transmission signal of the laser beam to the reception signal, the position of the object 9 in the boat 8 from the sensing device 10, that is, the shape of the object 9 is measured three-dimensionally. be able to.
[0015]
In FIG. 2, the signal processing device 20 includes a laser transmitter 21, a time measurement counter 22, drivers 23a and 23b, photodetectors 24a and 24b, and the like. Further, the laser transmitter 21, the light projecting optical system 11, the photodetectors 24a and 24b, and the light receiving optical systems 12a and 12b are connected via optical fiber cables 25, respectively, and the drivers 23a and 23b are connected to the scanner motors 14a and 14b and the electric cables. 26 is connected.
[0016]
A computer 27 and a CRT 28 are installed adjacent to the signal processing device 20, and an output terminal of the computer 27 is connected to the drivers 23 a and 23 b and the laser transmitter 21 via a cable 29 a, and an output cable of the time measurement counter 22 29 b is connected to the computer 27.
Further, in FIG. 2, the reception signals and transmission signals of the photodetectors 24 a and 24 b are input to the time measurement counter 22, and the transmission trigger signal of the laser transmitter 21 is output from the time measurement counter 22.
[0017]
With the above-described configuration, a pulse laser beam can be transmitted from the laser transmitter 21 to the light projecting optical system via the optical fiber cable 25 in accordance with an output command from the computer 27. At the same time, the scanner motors 14a and 14b are driven by the drivers 23a and 23b. Can be controlled. Further, the laser light received by the light receiving optical systems 12a and 12b can be received by the photodetectors 24a and 24b via the optical fiber cable 25, and the signal can be processed by the time measurement counter 22.
[0018]
FIG. 3 is a schematic diagram of each signal according to the present invention. In this figure, a is a transmission trigger signal, b is a transmission synchronization signal (transmission signal), and c is a reception signal. The transmission trigger signal a is a rectangular wave having a width of about 1 μsec (about 1000 nsec), the transmission signal b is a parabolic wave having a width of about 10 to 15 nsec, and the reception signal c is a width of about 10 to 10 in which the transmission signal b is attenuated and reflected. It is a parabolic wave of 15 nsec. The transmission trigger signal a is transmitted at a constant interval (for example, approximately every 500 μsec) according to the position up to the object 9 according to the output command of the computer 27. The transmission signal b is simultaneously with the transmission trigger signal a or slightly less than this. It is input to the time measurement counter 22 with a delay.
[0019]
The time measurement counter 22 detects the transmission signal b, starts the time measurement by the clock counter d, opens the gate e only for a predetermined time corresponding to the object 9, and detects the detection time t and the signal of the reception signal c during that time. The maximum value v is stored. The opening time of the gate e is set in accordance with the position up to the object 9. For example, when measuring the stacking height (surface position) of the object in the ship 8, the minimum value of the stacking height ( For example, the time is set corresponding to a maximum value (for example, 50 m) from 10 m). By setting the gate e, it is possible to remove a reception signal c that is extremely different from the position of the object, such as reflection from a window.
[0020]
Further, when receiving a plurality of reception signals c, the time measurement counter 22 determines the detection time t and the signal maximum value v of the latest reception signal c, and the laser beam reciprocates from the latest reception signal c. The time Δt is output. As a result, measurement can be performed without being affected by the reflected light from the window of the distance measuring device located in front of the measurement object 9, dust, etc., thereby measuring the distance to the low reflectance object buried in the dust / water vapor. Is possible.
[0021]
FIG. 4 is a principle diagram for explaining the function of the time measurement counter 22. In this figure, (A) and (B) show conventional examples, and (C) shows an example of the present invention. As shown in FIG. 2A, conventionally, the transmission signal a and the reception signal b are detected by predetermined threshold voltages v0 and v0 ', respectively, and the time interval Δt therebetween is used as the round trip time of the laser beam. However, in this method, as shown in (B), if the output level of the received signal b changes due to attenuation, an error time of δt occurs even if the same threshold voltage v0 ′ is used. Since the received signal c is a parabolic wave having a width of about 10 to 15 nsec, the error time δt reaches about 3 to 5 nsec and may be about 45 cm to 75 cm.
[0022]
In the shape measuring method of the present invention, as shown in (C), the transmission signal a and the reception signal b are detected with predetermined threshold voltages v0 and v0 ', respectively, and at the same time, the respective maximum outputs v1 and v1' are detected. Each is approximated by a parabola, and the round trip time Δt is calculated. If the threshold voltages v0 and v0 'are kept constant by this method, the time difference until the peak is reached after exceeding the threshold voltages v0 and v0' can be accurately corrected, thereby reducing the output level of the received signal. Even when the frequency drops due to, for example, the distance to the object can be measured with high accuracy comparable to a single pulse of the oscillator used.
[0023]
【Example】
FIG. 5 shows an application example of the shape measuring method according to the present invention. In this figure, (A) is an experimental example in which the coal load shape is measured from an oblique direction, and (B) is an experimental example in which this is converted into a plan view. As shown in this figure, according to the shape measuring apparatus and method of the present invention, even when a normal oscillator frequency (for example, 100 MHz) is used, the object is measured with higher accuracy than the resolution of one pulse (1 nsec = about 15 cm). The position of the object 9, that is, the shape of the object 9 can be measured three-dimensionally.
[0024]
It should be noted that the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the scope of the present invention.
[0025]
【The invention's effect】
As described above, the shape measuring device and method of the present invention are not affected by dust or water vapor, and reflected light from a window of a distance measuring device, dust or the like, and reflected light from an object (coal or iron ore). And even if the output level of the received signal drops due to attenuation, etc., it has excellent effects such as being able to measure the distance to the target with high accuracy comparable to the single pulse of the oscillator used Have
[Brief description of the drawings]
FIG. 1 is an overall configuration diagram of a shape measuring apparatus according to the present invention.
FIG. 2 is a block diagram of a shape measuring apparatus according to the present invention.
FIG. 3 is a schematic diagram of transmission / reception signals according to the present invention.
FIG. 4 is a principle diagram illustrating the function of a time measurement counter.
FIG. 5 is an application example of a shape measuring method according to the present invention.
FIG. 6 is a schematic diagram of a conventional laser radar device.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Laser apparatus 2 Telescope 3 Light detection apparatus 4 Data processing apparatus 5 Laser light 6 Scattering body 7 Mie scattered light 8 Ship 9 Object 10 Sensing apparatus 11 Light projection optical system 12a, 12b Light reception optical system 13a, 13b Mirror 14a, 14b Scanner motor 15 Separating mirror 16 Transparent window 20 Signal processing device 21 Laser transmitter 22 Time counter 23a, 23b Driver 24a, 24b Photo detector 25 Optical fiber cable 26 Electric cable 27 Computer 28 CRT
29a, 29b Cable a Transmission trigger signal b Transmission synchronization signal (transmission signal)
c Received signal d Clock counter e Gate

Claims (3)

パルスレーザ光を対象物に向けて送信しかつ対象物からの反射レーザ光を受信するセンシング装置と、送信信号及び受信信号から対象物までの距離を演算する信号処理装置とを備え、信号処理装置は、パルスレーザ光の送信トリガ信号出力及び送信信号と複数の受信信号が入力されレーザ光の往復時間を出力する時間計測カウンターを有し、時間計測カウンターは、送信信号を検出して時間計測を開始し、対象物に応じた所定の時間のみゲートを開いてその間の受信信号の検出時間と信号最大値を記憶し、この受信信号が1つである場合はその受信信号の検出時間と信号最大値から、その受信信号が複数ある場合にはその内最も遅い受信信号の検出時間と信号最大値から、送信信号の中心位置から受信信号の中心位置までの時間を算出するようになっている、ことを特徴とする形状計測装置。A signal processing apparatus comprising: a sensing device that transmits a pulsed laser beam toward an object and that receives a reflected laser beam from the object; and a signal processing device that calculates a distance from the transmission signal and the reception signal to the object. Has a pulse laser beam transmission trigger signal output and a time measurement counter that outputs the round trip time of the laser beam when a transmission signal and a plurality of reception signals are input. The time measurement counter detects the transmission signal and measures the time. Start, open the gate only for a predetermined time according to the object, store the detection time of the received signal and the maximum signal value during that time, and if this reception signal is one, the detection time of the received signal and the maximum signal the value, if the received signal is more calculated from the detection time and the signal maximum of the slowest received signal of which, the time from the central position of the transmission signal to the central position of the received signal And it has the shape measuring apparatus, characterized in that turned. パルスレーザ光の送信信号を検出して時間計測を開始し、対象物に応じた所定の時間のみゲートを開いてその間の受信信号の検出時間と信号最大値を記憶し、この受信信号が1つである場合はその受信信号の検出時間と信号最大値から、その受信信号が複数ある場合にはその内最も遅い受信信号の検出時間と信号最大値から、送信信号の中心位置から受信信号の中心位置までの時間を算出する、ことを特徴とする形状計測方法。Time measurement is started by detecting the transmission signal of the pulse laser beam, the gate is opened only for a predetermined time according to the object, and the detection time of the reception signal and the signal maximum value during that time are stored, and one reception signal is stored. Is the detection time of the received signal and the maximum signal value, and when there are multiple received signals, the detection time and the maximum signal value of the latest received signal is the center of the received signal from the center position of the transmission signal. A shape measuring method characterized by calculating time to a position. 所定のしきい値電圧により、送信信号と受信信号を検出し、受信信号を放物線で近似して、往復時間を算出する、ことを特徴とする請求項2に記載の形状計測方法。  The shape measuring method according to claim 2, wherein a round trip time is calculated by detecting a transmission signal and a reception signal with a predetermined threshold voltage, approximating the reception signal with a parabola.
JP31509096A 1996-11-26 1996-11-26 Shape measuring apparatus and method Expired - Lifetime JP3755216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31509096A JP3755216B2 (en) 1996-11-26 1996-11-26 Shape measuring apparatus and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31509096A JP3755216B2 (en) 1996-11-26 1996-11-26 Shape measuring apparatus and method

Publications (2)

Publication Number Publication Date
JPH10153417A JPH10153417A (en) 1998-06-09
JP3755216B2 true JP3755216B2 (en) 2006-03-15

Family

ID=18061296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31509096A Expired - Lifetime JP3755216B2 (en) 1996-11-26 1996-11-26 Shape measuring apparatus and method

Country Status (1)

Country Link
JP (1) JP3755216B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005055311A (en) * 2003-08-05 2005-03-03 Yaskawa Electric Corp Calibration method of scanner
JP4660418B2 (en) * 2006-04-24 2011-03-30 新日本製鐵株式会社 Converter refractory profile measurement method
JP5090129B2 (en) * 2007-10-31 2012-12-05 新日本製鐵株式会社 Profile measurement method for bare metal adhering to converter furnace port
WO2018003227A1 (en) * 2016-06-27 2018-01-04 ソニー株式会社 Distance measuring device and distance measuring method
JP6933045B2 (en) 2017-08-18 2021-09-08 株式会社リコー Object detection device, sensing device, mobile device and object detection method
JP2019144106A (en) * 2018-02-21 2019-08-29 株式会社デンソーウェーブ Device and method for detecting distance
WO2020022206A1 (en) * 2018-07-27 2020-01-30 株式会社小糸製作所 Distance measurement device

Also Published As

Publication number Publication date
JPH10153417A (en) 1998-06-09

Similar Documents

Publication Publication Date Title
US7602477B2 (en) Radar device
US7667598B2 (en) Method and apparatus for detecting presence and range of a target object using a common detector
US7002669B2 (en) Device for distance measurement
US5633705A (en) Obstacle detecting system for a motor vehicle
US4872051A (en) Collision avoidance alarm system
KR100508277B1 (en) Method and device for recording three-dimensional distance-measuring images
US7450251B2 (en) Fanned laser beam metrology system
US4926050A (en) Scanning laser based system and method for measurement of distance to a target
JP6661708B2 (en) Ship berthing support equipment
EP0422415B1 (en) Imaging lidar method and apparatus
KR19990081876A (en) Distance and positioning devices
JP3755216B2 (en) Shape measuring apparatus and method
JP3186876B2 (en) Surface profile measuring device
US6452665B1 (en) Object detecting system
JP2000009841A (en) Object detecting apparatus
JPH0659033A (en) Precedent vehicle detector
KR101896477B1 (en) Method and Apparatus for Scanning LiDAR
JPH06109842A (en) Distance detection apparatus
US11573308B2 (en) Method of operating a distance-measuring monitoring sensor and distance measuring monitoring sensor
JPH06148329A (en) Vehicular gap detection apparatus
JP2000121732A (en) Underwater object detection identification
KR100266404B1 (en) Apparatus and method for detecting car
JP3568274B2 (en) Mobile device distance measuring device
JP3120590B2 (en) Automotive radar control device
GB2329780A (en) Distance measuring device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050105

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051212

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090106

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100106

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110106

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120106

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130106

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140106

Year of fee payment: 8

EXPY Cancellation because of completion of term