JP3743232B2 - White smoke emission suppression device for internal combustion engine - Google Patents

White smoke emission suppression device for internal combustion engine Download PDF

Info

Publication number
JP3743232B2
JP3743232B2 JP34504999A JP34504999A JP3743232B2 JP 3743232 B2 JP3743232 B2 JP 3743232B2 JP 34504999 A JP34504999 A JP 34504999A JP 34504999 A JP34504999 A JP 34504999A JP 3743232 B2 JP3743232 B2 JP 3743232B2
Authority
JP
Japan
Prior art keywords
temperature
combustion chamber
intake air
exhaust gas
white smoke
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP34504999A
Other languages
Japanese (ja)
Other versions
JP2001159361A (en
Inventor
正浩 長江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP34504999A priority Critical patent/JP3743232B2/en
Publication of JP2001159361A publication Critical patent/JP2001159361A/en
Application granted granted Critical
Publication of JP3743232B2 publication Critical patent/JP3743232B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/14Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system
    • F02M26/15Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories in relation to the exhaust system in relation to engine exhaust purifying apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は内燃機関の白煙排出抑制装置に関する。
【0002】
【従来の技術】
内燃機関、特にディーゼルエンジンにおいて窒素酸化物(NOx)の発生を抑制するために排気ガスを燃焼室に再循環する技術が用いられている。さらにこの燃焼室に再循環せしめられる排気ガスの量をできるだけ多くするために排気ガスを冷却して燃焼室に再循環させている。ところがこのように冷却せしめられた排気ガスを燃焼室に再循環すると燃焼室内の温度が比較的低くなる。このため場合によっては燃焼室での燃料の燃焼が不良となり、白煙が発生してしまう。
【0003】
そこで特開平11−117815号公報では燃焼室に再循環せしめられる排気ガスの温度を機関の運転状態に応じて制御するようにしている。具体的には排気ガスを冷却するためのクーラをバイパスさせて排気ガスを燃焼室に再循環させ、燃焼室内の温度を比較的高く維持し、白煙の発生を抑制している。
【0004】
【発明が解決しようとする課題】
ところが上記公報の方法によっても多少の白煙は発生する。たとえ白煙が発生しないとしてもアイドル運転の状態が比較的長く続いた場合には機関本体の温度が非常に低くなるので単に排気ガスにクーラをバイパスさせて排気ガスを燃焼室に再循環させるだけでは燃焼室内の温度を比較的高く維持できず、白煙が発生してしまう。もちろん上記公報では排気ガスをヒータにより加熱できるようになっているが、これではヒータを設置したことにより製造コストが増大してしまう。
【0005】
このように上記公報の方法では大気への白煙の排出を完全に抑制することはできず、たとえできたとしてもそれは機関運転状態が或る条件を満たす必要があり、仮にこの機関運転状態が或る条件を満たさない場合に大気への白煙の排出を完全に抑制しようとすれば追加の手段が必要となるので製造コストが増大してしまう。そこで本発明の目的は広い範囲の機関運転状態において大気への白煙の排出を抑制することにある。
【0006】
【課題を解決するための手段】
上記課題を解決するために一番目の発明によれば、機関本体から排出された排気ガスを燃焼室に再循環するための排気循環通路と、該排気循環通路内を流れる排気ガスを冷却するための冷却手段とを具備し、燃焼室内に噴射すべき燃料の大部分を噴射するための主噴射を実行する前に残りの少量の燃料を噴射するための予備的な噴射を実行するようにした内燃機関において、排気通路に酸化触媒を配置し、燃焼室内の温度が予め定められた燃焼室内温度以下であって且つ吸入空気の温度が予め定められた吸入空気温度以上である時には、少なくとも、前記排気循環通路を介して燃焼室に再循環せしめられる排気ガスを前記冷却手段をバイパスさせて燃焼室に再循環し、燃焼室内の温度が前記予め定められた燃焼室内温度以下であって且つ吸入空気の温度が前記予め定められた吸入空気温度以下である時には、少なくとも、予備的な噴射を実行する時期と主噴射を実行する時期との間の時間を短くする
【0007】
二番目の発明によれば一番目の発明おいて、燃焼室内の温度が前記予め定められた燃焼室内温度以下であって且つ吸入空気の温度が前記予め定められた吸入空気温度温度より低い予め定められた温度以下である時には、少なくとも、吸気弁の開弁時期を遅らせる
三番目の発明によれば、機関本体から排出された排気ガスを燃焼室に再循環するための排気循環通路と、該排気循環通路内を流れる排気ガスを冷却するための冷却手段とを具備する内燃機関において、排気通路に酸化触媒を配置し、燃焼室内の温度が予め定められた燃焼室内温度以下であって且つ吸入空気の温度が予め定められた吸入空気温度以上である時には、少なくとも、前記排気循環通路を介して燃焼室に再循環せしめられる排気ガスを前記冷却手段をバイパスさせて燃焼室に再循環し、燃焼室内の温度が前記予め定められた燃焼室内温度以下であって且つ吸入空気の温度が前記予め定められた吸入空気温度以下である時には、少なくとも、吸気弁の開弁時期を遅らせる
【0008】
【発明の実施の形態】
以下、図面を参照して本発明を詳細に説明する。初めに本発明の白煙排出抑制装置が適用される内燃機関を説明する。
図1に示した内燃機関は4ストローク圧縮着火式の内燃機関、すなわちディーゼルエンジンである。図1を参照すると1は機関本体、2はシリンダブロック、3はシリンダヘッド、4はピストン、5は燃焼室、6は電気制御式燃料噴射弁、7は吸気弁、8は吸気ポート、9は排気弁、10は排気ポートをそれぞれ示す。吸気ポート8は対応する吸気枝管11を介してサージタンク12に連結される。サージタンク12は吸気ダクト13およびインタークーラ14を介して過給機、例えば排気ターボチャージャ15のコンプレッサ16の出口部に連結される。コンプレッサ16の入口部は吸気管17を介してエアクリーナ18に連結される。吸気管17内にはステップモータ19により駆動されるスロットル弁20が配置される。またスロットル弁20上流の吸気管17には吸入空気の質量流量を検出するための質量流量検出器21が配置される。
【0009】
一方、排気ポート10は排気マニホルド22を介して排気ターボチャージャ15の排気タービン23の入口部に連結される。排気タービン23の出口部は排気管24を介して酸化機能を有する触媒25を内蔵した触媒コンバータ26に連結される。本実施例での触媒は三元触媒である。排気マニホルド22内には空燃比センサ27が配置される。また触媒コンバータ26の下流の排気管24には排気ガスの温度を検出するための温度センサ28が配置される。
【0010】
触媒コンバータ26の出口部に連結された排気管24とスロットル弁20下流の吸気管17とは排気ガス再循環(以下、EGR)通路29を介して互いに連結される。またEGR通路29内にはEGR通路29内を流れるEGRガスを冷却するための冷却手段としてインタークーラ32が配置される。本実施例では機関冷却水がインタークーラ32内に導かれ、機関冷却水によりEGRガスが冷却される。またEGR通路29には吸気管17に再循環せしめられる排気ガスの量を制御するためのEGR制御弁30が配置される。さらにEGR通路29にはインタークーラ32をバイパスするバイパス通路31が接続される。このバイパス通路31によれば排気ガスはインタークーラ32を介さずに吸気管17に再循環せしめられる。さらにバイパス通路31にはバイパスさせる排気ガスの量を制御するためのバイパス制御弁37が配置される。
【0011】
燃料噴射弁6は燃料供給管33を介して燃料リザーバ、すなわちいわゆるコモンレール34に連結される。コモンレール34内へは電気制御式の吐出量可変な燃料ポンプ35から燃料が供給される。コモンレール34内に供給された燃料は各燃料供給管33を介して燃料噴射弁6に供給される。コモンレール34にはコモンレール34内の燃料圧を検出するための燃料圧センサ36が取り付けられ、この燃料圧センサ36の出力信号に基づいてコモンレール34内の燃料圧が目標燃料圧となるように燃料ポンプ35の吐出量が制御される。
【0012】
電子制御ユニット40はデジタルコンピュータからなり、双方向性バス41により互いに接続されたROM(リードオンリメモリ)42、RAM(ランダムアクセスメモリ)43、CPU(マイクロプロセッサ)44、入力ポート45および出力ポート46を具備する。質量流量検出器21の出力信号は対応するAD変換器47を介して入力ポート45に入力され、空燃比センサ27、温度センサ28および燃料圧センサ36の出力信号もそれぞれ対応するAD変換器47を介して入力ポート45に入力される。アクセルペダル50にはアクセルペダル50の踏込量Lに比例した出力電圧を発生する負荷センサ51が接続される。この負荷センサ51の出力電圧は対応するAD変換器47を介して入力ポート45に入力される。また入力ポート45にはクランクシャフトが例えば30°回転する毎に出力パルスを発生するクランク角センサ52が接続される。出力ポート46は対応する駆動回路48を介して燃料噴射弁6、スロットル弁制御用ステップモータ19、EGR制御弁30、燃料ポンプ35およびバイパス制御弁37に接続される。
【0013】
次に本実施例の白煙排出抑制装置について説明する。本発明の主な目的は白煙が大気に排出されることを抑制することにある。この目的を達成するために採りうる第一の解決策は燃焼室での白煙の発生自体を抑制することであり、第二の解決策は燃焼室で発生した白煙が大気に排出される前にこの白煙を浄化することである。
【0014】
第一の解決策に基づいて白煙の発生自体を抑制するには燃焼室内の温度を比較的高く維持すればよい。なぜならば燃焼室内の温度が比較的低いと白煙が発生し易いからである。そこで本実施例では以下の三つの手段を後述するように機関状態に応じて選択的に採用し、燃焼室内の温度を比較的高く維持する。
一つ目の手段では排気ガスをインタークーラをバイパスさせて燃焼室内に再循環させる。これによれば排気ガスがインタークーラにより冷却されないので比較的高い温度の排気ガスが燃焼室内に再循環せしめられる。このため燃焼室内の温度が比較的高く維持される。
【0015】
二つ目の手段では燃焼室内に噴射すべき燃料の大部分を噴射する燃料噴射(以下、主燃料噴射)を実行する時期と、この主燃料噴射に先立って残りの少量の燃料を予備的に噴射する燃料噴射(以下、予備燃料噴射)を実行する時期との間隔を短くする。これによれば予備燃料噴射により噴射された燃料が着火すると直ぐに主燃料噴射により噴射された燃料が着火することになるので燃焼温度が高くなる。このため燃焼室内の温度が比較的高く維持される。
【0016】
三つ目の手段では吸気弁を開弁する時期を通常の開弁時期より遅くする。これによれば吸気弁は燃焼室内の負圧が比較的大きくなった時に開弁せしめられる。この大きい負圧により吸入空気が急激に燃焼室内に吸入せしめられ、これにより吸入空気の温度が上昇せしめられる。このため燃焼室内の温度が比較的高く維持される。
【0017】
これら三つの手段を後述するように機関状態に応じて選択的に採用して燃焼室での白煙の発生を抑制する。
さらに第二の解決策に基づいて燃焼室で発生した白煙が大気に排出される前にこの白煙を浄化するには排気管に配置された触媒を利用すればよい。
このように本実施例では触媒の利用を前提として上記三つの手段を機関状態に応じて選択的に採用することにより全体として大気への白煙の排出を抑制する。次に上記三つの手段のいずれをいかなる条件で採用するかについて説明する。
【0018】
上記三つの手段のいずれを採用するかを決定する際には各手段にメリットとデメリットがあることを考慮に入れなくてはならない。第一の排気ガスをインタークーラをバイパスさせて燃焼室内に再循環させる手段には吸入空気の温度が比較的高い時には燃焼室での白煙の発生を抑制でき(図2の実線BY参照)、そして燃費を悪化させることもない(図3(C)の実線BY参照)というメリットがある。しかしながら吸入空気の温度が比較的低くなると燃焼室での白煙の発生を抑制する効果が低下してしまう(図2の実線BY参照)というデメリットがある。また第二の予備燃料噴射と主燃料噴射とを実行する間隔を短くする手段には第一の手段が功を奏する温度より吸入空気の温度が低くても燃焼室での白煙の発生を抑制でき(図2の実線PI)、燃費を悪化させることもない(図3(B)の実線PI)というメリットはあるが、やはり吸入空気の温度が比較的低くなると燃焼室での白煙の発生を抑制する効果が低下してしまう(図2の実線PI)というデメリットがある。さらに第三の吸気弁の開弁時期を遅らせる手段は第二の手段が功を奏する温度より吸入空気の温度が低くても燃焼室での白煙の発生を抑制できる(図2の実線OT)というメリットがあるが、ピストンのポンピングロスが大きくなるので燃費が悪化する(図3(A)の実線OT参照)というデメリットがある。
【0019】
このように各手段を検討すると吸入空気の温度が比較的高い時には燃費の悪化の少ない第一の手段または第二の手段を採用し、吸入空気の温度が比較的低くなった時に第三の手段を採用することが好ましいことが結論づけられる。
では第一の手段と第二の手段とはいずれをどのような条件の下で採用すべきかを説明する。上述したように本実施例では触媒を利用して白煙が大気に放出される前にこの白煙を浄化できる。ところで触媒は大気に排出すべきでない他の物質、例えば一酸化炭素や窒素酸化物を浄化することもでき、しかもこれら物質を浄化することが好ましい。そしてこのように白煙やその他の物質を浄化するには触媒の温度をその活性温度以上に維持する必要がある。触媒の温度をその活性温度以上に維持する一つの手段としては少量の未燃炭化水素を触媒に供給することがある。なぜならば触媒に供給された未燃炭化水素は触媒での燃焼により浄化されるがこのとき燃焼熱が発生するからである。こうしてみると白煙やその他の物質を良好に浄化するためには燃焼室で少量の白煙、すなわち未燃炭化水素が発生する第一の手段を優先的に採用することが好ましい。
【0020】
以上から本実施例では吸入空気の温度が比較的高い時には第一の手段を採用し、吸入空気の温度が低くなった時には第二の手段を採用し、吸入空気の温度がさらに低くなった時には第三の手段を採用する。こうして広い範囲の機関運転状態に亘って大気への白煙の排出が抑制されると共に大気に排出すべきでない物質が大気に排出されることを抑制できる。
【0021】
次に本実施例の白煙排出防止装置の具体的な制御を図4を参照して説明する。なお図4において(A)は吸入空気の温度、(B)はEGR制御弁の開閉弁状態、(C)はバイパス制御弁の開閉弁状態、(D)は予備燃料噴射と主燃料噴射との間の間隔(以下、噴射間隔)、(E)は吸気弁の開弁時期、(F)は燃焼室で発生する白煙の量をそれぞれ示す。なお吸入空気の温度は温度センサ28の出力から推定する。
【0022】
吸入空気の温度が予め定められた第一の温度T1以上である時にはEGR制御弁30が閉弁せしめられ、バイパス制御弁37が開弁せしめられる。このとき噴射間隔は通常の間隔とされ、吸気弁7の開弁時期も通常の時期とされている。これにより燃焼室5で発生する白煙の量は比較的少なく維持されている。この少量の白煙は燃焼室5の下流に配置された触媒25に流入し、燃焼することにより浄化されると共に触媒25の温度をその活性温度以上に維持する働きをする。これによれば白煙が大気に排出されることが良好に抑制されると共に大気に排出されるべきではないその他の物質を触媒25により浄化できる。
【0023】
吸入空気の温度が徐々に低くなると燃焼室5で発生する白煙の量が徐々に増大する。本実施例では吸入空気の温度が第一の温度T1以下となるとEGR制御弁30が閉弁された状態で吸入空気の温度が低くなればなるほどバイパス制御弁37の開弁度合いが徐々に小さくされると共に噴射間隔が短くされる。吸気弁7の開弁時期は通常に時期に維持されている。これにより燃焼室5で発生する白煙の量がほぼ零となる。なお吸入空気の温度が第一の温度T1以下となった時に吸入空気の温度が低くなればなるほどEGR制御弁30の開弁度合いを大きくしてもよい。
【0024】
さらに吸入空気の温度が低くなると燃焼室5で発生する白煙が再び徐々に増大する。本実施例では吸入空気の温度が第一の温度T1より低い予め定められた第二の温度T2以下となるとEGR制御弁30が閉弁された状態でバイパス制御弁37の開弁度合いが現在の開弁度合いに維持されると共に噴射間隔も現在の間隔に維持される。そして吸気弁7の開弁時期が遅らせられる。これにより燃焼室5で発生する白煙の量がほぼ零となる。
【0025】
なお上記実施例では吸入空気の温度に基づいてバイパス制御弁37を開弁するか否かを判定しているが吸入空気の温度は内燃機関の運転状態に大きく依存することから図5に示したように機関回転数Neと出力トルクTとの関係に基づいてバイパス制御弁37を開弁するか否かを判定してもよい。なお図5において領域Xはバイパス制御弁37を開弁すべき領域であり、領域Yはバイパス制御弁37を閉弁し、EGR制御弁30を開弁すべき領域であり、領域Zはバイパス制御弁37およびEGR制御弁30を閉弁すべき領域である。また図5のマップを採用する場合、領域Xと領域Yとの間の境界を吸入空気の温度に応じて変更するようにしてもよい。具体的には吸入空気の温度が高いほど領域Xの範囲が広くなるように境界が変更せしめられる。
【0026】
【発明の効果】
一番目〜三番目の発明によれば吸入空気の温度が第一の温度以上である時には排気ガスを冷却せずに燃焼室内に導入されるので燃焼室内の温度が比較的高く維持される。このため燃焼室で発生する白煙の量は極めて少量である。この少量の白煙は触媒に流入し、触媒により浄化される。このため大気への白煙の放出が良好に抑制される。また触媒に流入した白煙、すなわち未燃炭化水素により触媒の温度がその活性温度以上に維持されるので触媒の浄化作用が高く維持される。
【0027】
一方、吸入空気の温度が第一の温度以下となった時には排気ガスを冷却せずに燃焼室内に導入しても燃焼室で発生する白煙の量は増大してしまう。しかしながらこのとき一番目および二番目の発明によれば予備燃料噴射と主燃料噴射との間の間隔が短くされる。このため燃焼室内の温度が比較的高く維持されるので燃焼室で発生する白煙の量は極めて微量となる。したがって大気への白煙の放出が抑制される。また三番目の発明によれば吸気弁の開弁時期が遅くせしめられるので燃焼室で発生する白煙の量は極めて微量となる。したがって大気への白煙の放出が抑制される。
【図面の簡単な説明】
【図1】本発明の白煙排出抑制装置を適用した内燃機関の全体図である。
【図2】吸入空気の温度と燃焼室で発生する白煙の量との関係を示した図である。
【図3】(A)吸気弁の開弁時期を遅らせる処理をした場合における吸入空気の温度と燃費との関係を示し、(B)は予備燃料噴射と主燃料噴射との間の間隔を短くした処理をした場合における吸入空気の温度と燃費との関係を示し、(C)は排気ガスをインタークーラをバイパスさせる処理をした場合における吸入空気の温度と燃費との関係を示した図である。
【図4】吸入空気の温度とEGR制御弁、バイパス制御弁、予備燃料噴射と主燃料噴射との間の間隔、および吸気弁の開弁時期の制御との関係を示した図である。
【図5】機関回転数と出力トルクとの関係に基づいくEGR制御弁およびバイパス制御弁の制御を示した図である。
【符号の説明】
1…機関本体
5…燃焼室
6…燃料噴射弁
7…吸気弁
17…吸気管
25…触媒
28…温度センサ
29…EGR通路
30…EGR制御弁
31…バイパス通路
37…バイパス制御弁
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a white smoke emission suppressing device for an internal combustion engine.
[0002]
[Prior art]
In an internal combustion engine, particularly a diesel engine, a technique for recirculating exhaust gas to a combustion chamber is used to suppress generation of nitrogen oxides (NOx). Further, in order to maximize the amount of exhaust gas recirculated into the combustion chamber, the exhaust gas is cooled and recirculated to the combustion chamber. However, when the exhaust gas thus cooled is recirculated to the combustion chamber, the temperature in the combustion chamber becomes relatively low. For this reason, in some cases, the combustion of fuel in the combustion chamber becomes poor and white smoke is generated.
[0003]
Therefore, in Japanese Patent Application Laid-Open No. 11-117815, the temperature of exhaust gas recirculated into the combustion chamber is controlled in accordance with the operating state of the engine. Specifically, a cooler for cooling the exhaust gas is bypassed and the exhaust gas is recirculated to the combustion chamber to maintain a relatively high temperature in the combustion chamber and suppress the generation of white smoke.
[0004]
[Problems to be solved by the invention]
However, some white smoke is also generated by the method described in the above publication. Even if white smoke does not occur, the engine body temperature will be very low if the idle operation continues for a relatively long time, so simply bypass the cooler to the exhaust gas and recirculate the exhaust gas to the combustion chamber Then, the temperature in the combustion chamber cannot be maintained relatively high, and white smoke is generated. Of course, in the above publication, the exhaust gas can be heated by the heater, but this increases the manufacturing cost due to the installation of the heater.
[0005]
As described above, the method disclosed in the above publication cannot completely suppress the emission of white smoke to the atmosphere. Even if it can, it is necessary that the engine operating condition satisfies a certain condition. If an attempt is made to completely suppress the emission of white smoke to the atmosphere when certain conditions are not met, additional means are required, increasing the manufacturing cost. An object of the present invention is to suppress the emission of white smoke to the atmosphere in a wide range of engine operating conditions.
[0006]
[Means for Solving the Problems]
In order to solve the above problems, according to the first invention, an exhaust gas circulation path for recirculating exhaust gas discharged from the engine body to the combustion chamber, and an exhaust gas flowing through the exhaust gas circulation path are cooled. And a preliminary injection for injecting the remaining small amount of fuel before executing the main injection for injecting most of the fuel to be injected into the combustion chamber. In the internal combustion engine, when an oxidation catalyst is disposed in the exhaust passage, the temperature in the combustion chamber is equal to or lower than a predetermined temperature in the combustion chamber, and the temperature of the intake air is equal to or higher than the predetermined intake air temperature, at least The exhaust gas recirculated to the combustion chamber via the exhaust circulation passage is recirculated to the combustion chamber by bypassing the cooling means, and the temperature in the combustion chamber is equal to or lower than the predetermined temperature in the combustion chamber and is sucked in. When the temperature of the gas is the is the predetermined intake air temperature below, at least, to reduce the time between the time to perform the timing and main injection to perform preliminary ejection.
[0007]
According to the second invention, in the first invention, the temperature in the combustion chamber is equal to or lower than the predetermined temperature in the combustion chamber, and the temperature of the intake air is lower than the predetermined intake air temperature. When the temperature is lower than the predetermined temperature, at least the opening timing of the intake valve is delayed .
According to the third aspect of the invention, the exhaust circulation passage for recirculating the exhaust gas discharged from the engine body to the combustion chamber and the cooling means for cooling the exhaust gas flowing in the exhaust circulation passage are provided. In the internal combustion engine, when an oxidation catalyst is disposed in the exhaust passage, the temperature in the combustion chamber is equal to or lower than a predetermined temperature in the combustion chamber, and the temperature of the intake air is equal to or higher than the predetermined intake air temperature, at least Exhaust gas recirculated to the combustion chamber through the exhaust circulation passage is recirculated to the combustion chamber by bypassing the cooling means, and the temperature in the combustion chamber is equal to or lower than the predetermined temperature in the combustion chamber and the intake air When the temperature is equal to or lower than the predetermined intake air temperature, at least the opening timing of the intake valve is delayed .
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings. First, an internal combustion engine to which the white smoke emission suppressing device of the present invention is applied will be described.
The internal combustion engine shown in FIG. 1 is a four-stroke compression ignition type internal combustion engine, that is, a diesel engine. Referring to FIG. 1, 1 is an engine body, 2 is a cylinder block, 3 is a cylinder head, 4 is a piston, 5 is a combustion chamber, 6 is an electrically controlled fuel injection valve, 7 is an intake valve, 8 is an intake port, and 9 is Exhaust valves and 10 indicate exhaust ports, respectively. The intake port 8 is connected to the surge tank 12 via a corresponding intake branch pipe 11. The surge tank 12 is connected to an outlet portion of a compressor 16 of a supercharger, for example, an exhaust turbocharger 15 via an intake duct 13 and an intercooler 14. An inlet portion of the compressor 16 is connected to an air cleaner 18 via an intake pipe 17. A throttle valve 20 driven by a step motor 19 is disposed in the intake pipe 17. A mass flow rate detector 21 for detecting the mass flow rate of intake air is disposed in the intake pipe 17 upstream of the throttle valve 20.
[0009]
On the other hand, the exhaust port 10 is connected to an inlet portion of an exhaust turbine 23 of the exhaust turbocharger 15 via an exhaust manifold 22. The outlet of the exhaust turbine 23 is connected via an exhaust pipe 24 to a catalytic converter 26 containing a catalyst 25 having an oxidation function. The catalyst in this example is a three-way catalyst. An air-fuel ratio sensor 27 is disposed in the exhaust manifold 22. A temperature sensor 28 for detecting the temperature of the exhaust gas is disposed in the exhaust pipe 24 downstream of the catalytic converter 26.
[0010]
The exhaust pipe 24 connected to the outlet of the catalytic converter 26 and the intake pipe 17 downstream of the throttle valve 20 are connected to each other via an exhaust gas recirculation (hereinafter referred to as EGR) passage 29. In the EGR passage 29, an intercooler 32 is disposed as a cooling means for cooling the EGR gas flowing in the EGR passage 29. In this embodiment, the engine cooling water is guided into the intercooler 32, and the EGR gas is cooled by the engine cooling water. The EGR passage 29 is provided with an EGR control valve 30 for controlling the amount of exhaust gas recirculated through the intake pipe 17. Further, a bypass passage 31 that bypasses the intercooler 32 is connected to the EGR passage 29. According to the bypass passage 31, the exhaust gas is recirculated to the intake pipe 17 without passing through the intercooler 32. Further, a bypass control valve 37 for controlling the amount of exhaust gas to be bypassed is disposed in the bypass passage 31.
[0011]
The fuel injection valve 6 is connected to a fuel reservoir, that is, a so-called common rail 34 via a fuel supply pipe 33. Fuel is supplied into the common rail 34 from an electrically controlled fuel pump 35 with variable discharge amount. The fuel supplied into the common rail 34 is supplied to the fuel injection valve 6 through each fuel supply pipe 33. A fuel pressure sensor 36 for detecting the fuel pressure in the common rail 34 is attached to the common rail 34, and a fuel pump is used so that the fuel pressure in the common rail 34 becomes a target fuel pressure based on an output signal of the fuel pressure sensor 36. The discharge amount of 35 is controlled.
[0012]
The electronic control unit 40 is composed of a digital computer, and is connected to each other by a bidirectional bus 41. A ROM (read only memory) 42, a RAM (random access memory) 43, a CPU (microprocessor) 44, an input port 45 and an output port 46 are connected. It comprises. The output signal of the mass flow detector 21 is input to the input port 45 via the corresponding AD converter 47, and the output signals of the air-fuel ratio sensor 27, the temperature sensor 28, and the fuel pressure sensor 36 are also supplied to the corresponding AD converter 47. To the input port 45. Connected to the accelerator pedal 50 is a load sensor 51 that generates an output voltage proportional to the depression amount L of the accelerator pedal 50. The output voltage of the load sensor 51 is input to the input port 45 via the corresponding AD converter 47. The input port 45 is connected to a crank angle sensor 52 that generates an output pulse every time the crankshaft rotates, for example, 30 °. The output port 46 is connected to the fuel injection valve 6, the throttle valve control step motor 19, the EGR control valve 30, the fuel pump 35, and the bypass control valve 37 through corresponding drive circuits 48.
[0013]
Next, the white smoke emission suppressing device of this embodiment will be described. The main object of the present invention is to prevent white smoke from being discharged into the atmosphere. The first solution that can be taken to achieve this purpose is to suppress the generation of white smoke in the combustion chamber itself, and the second solution is to release the white smoke generated in the combustion chamber to the atmosphere. It is to purify this white smoke before.
[0014]
In order to suppress the generation of white smoke itself based on the first solution, the temperature in the combustion chamber may be kept relatively high. This is because white smoke tends to be generated when the temperature in the combustion chamber is relatively low. Therefore, in this embodiment, the following three means are selectively adopted according to the engine state as will be described later, and the temperature in the combustion chamber is kept relatively high.
In the first means, the exhaust gas is recirculated into the combustion chamber by bypassing the intercooler. According to this, since the exhaust gas is not cooled by the intercooler, the exhaust gas having a relatively high temperature is recirculated into the combustion chamber. For this reason, the temperature in the combustion chamber is kept relatively high.
[0015]
In the second method, a fuel injection for injecting most of the fuel to be injected into the combustion chamber (hereinafter referred to as main fuel injection) is performed, and a small amount of remaining fuel is preliminarily used prior to the main fuel injection. The interval between the time of performing fuel injection to be injected (hereinafter referred to as preliminary fuel injection) is shortened. According to this, as soon as the fuel injected by the preliminary fuel injection is ignited, the fuel injected by the main fuel injection is ignited, so that the combustion temperature becomes high. For this reason, the temperature in the combustion chamber is kept relatively high.
[0016]
In the third means, the timing for opening the intake valve is made later than the normal valve opening timing. According to this, the intake valve is opened when the negative pressure in the combustion chamber becomes relatively large. This large negative pressure causes the intake air to be aspirated rapidly into the combustion chamber, thereby increasing the temperature of the intake air. For this reason, the temperature in the combustion chamber is kept relatively high.
[0017]
As will be described later, these three means are selectively adopted according to the engine state to suppress the generation of white smoke in the combustion chamber.
Furthermore, a catalyst disposed in the exhaust pipe may be used to purify the white smoke generated in the combustion chamber based on the second solution before the white smoke is discharged to the atmosphere.
As described above, in the present embodiment, the use of the catalyst is premised on that the above three means are selectively employed according to the engine state, thereby suppressing the emission of white smoke to the atmosphere as a whole. Next, it will be described under which conditions any of the above three means is adopted.
[0018]
When deciding which of the above three means to adopt, it must be taken into account that each means has advantages and disadvantages. The means for recirculating the first exhaust gas into the combustion chamber by bypassing the intercooler can suppress the generation of white smoke in the combustion chamber when the temperature of the intake air is relatively high (see the solid line BY in FIG. 2). And there is a merit that fuel consumption is not deteriorated (see solid line BY in FIG. 3C). However, there is a demerit that when the temperature of the intake air is relatively low, the effect of suppressing the generation of white smoke in the combustion chamber is reduced (see the solid line BY in FIG. 2). Also, the means for shortening the interval between execution of the second preliminary fuel injection and the main fuel injection suppresses the generation of white smoke in the combustion chamber even if the intake air temperature is lower than the temperature at which the first means works. 2 (solid line PI in FIG. 2) and there is a merit that the fuel consumption is not deteriorated (solid line PI in FIG. 3B). However, when the temperature of the intake air is relatively low, white smoke is generated in the combustion chamber. There is a demerit that the effect of suppressing the decrease (solid line PI in FIG. 2). Further, the means for delaying the opening timing of the third intake valve can suppress the generation of white smoke in the combustion chamber even if the temperature of the intake air is lower than the temperature at which the second means is effective (solid line OT in FIG. 2). However, since the pumping loss of the piston is increased, the fuel consumption is deteriorated (see the solid line OT in FIG. 3A).
[0019]
Thus, when each means is examined, the first means or the second means with less deterioration in fuel consumption is adopted when the intake air temperature is relatively high, and the third means is adopted when the intake air temperature becomes relatively low. It is concluded that it is preferable to adopt
Now, which conditions should be adopted for the first means and the second means will be described. As described above, in this embodiment, the white smoke can be purified by using the catalyst before the white smoke is released to the atmosphere. By the way, the catalyst can purify other substances that should not be discharged into the atmosphere, such as carbon monoxide and nitrogen oxides, and it is preferable to purify these substances. And in order to purify white smoke and other substances in this way, it is necessary to keep the temperature of the catalyst above its activation temperature. One means of maintaining the temperature of the catalyst above its activation temperature is to supply a small amount of unburned hydrocarbons to the catalyst. This is because unburned hydrocarbons supplied to the catalyst are purified by combustion in the catalyst, but at this time, combustion heat is generated. In view of this, it is preferable to preferentially employ the first means for generating a small amount of white smoke, that is, unburned hydrocarbons, in the combustion chamber in order to purify white smoke and other substances well.
[0020]
From the above, in this embodiment, the first means is adopted when the intake air temperature is relatively high, the second means is adopted when the intake air temperature is low, and the intake air temperature is further reduced. Adopt a third measure. In this way, it is possible to suppress the emission of white smoke to the atmosphere over a wide range of engine operating conditions and to suppress the release of substances that should not be discharged to the atmosphere.
[0021]
Next, specific control of the white smoke emission preventing device of this embodiment will be described with reference to FIG. In FIG. 4, (A) is the temperature of the intake air, (B) is the open / close state of the EGR control valve, (C) is the open / close state of the bypass control valve, and (D) is the preliminary fuel injection and the main fuel injection. Interval (hereinafter referred to as injection interval), (E) indicates the opening timing of the intake valve, and (F) indicates the amount of white smoke generated in the combustion chamber. The temperature of the intake air is estimated from the output of the temperature sensor 28.
[0022]
When the temperature of the intake air is equal to or higher than a predetermined first temperature T1, the EGR control valve 30 is closed and the bypass control valve 37 is opened. At this time, the injection interval is a normal interval, and the opening timing of the intake valve 7 is also a normal timing. Thereby, the amount of white smoke generated in the combustion chamber 5 is kept relatively small. This small amount of white smoke flows into the catalyst 25 disposed downstream of the combustion chamber 5 and is purified by burning, and also serves to maintain the temperature of the catalyst 25 at or above its activation temperature. According to this, it is possible to satisfactorily suppress white smoke from being discharged into the atmosphere and to purify other substances that should not be discharged into the atmosphere by the catalyst 25.
[0023]
As the temperature of the intake air gradually decreases, the amount of white smoke generated in the combustion chamber 5 gradually increases. In this embodiment, when the temperature of the intake air becomes equal to or lower than the first temperature T1, the degree of opening of the bypass control valve 37 is gradually reduced as the temperature of the intake air becomes lower with the EGR control valve 30 closed. And the injection interval is shortened. The opening timing of the intake valve 7 is normally maintained at the timing. As a result, the amount of white smoke generated in the combustion chamber 5 becomes substantially zero. Note that the degree of opening of the EGR control valve 30 may be increased as the temperature of the intake air becomes lower when the temperature of the intake air becomes equal to or lower than the first temperature T1.
[0024]
Further, when the temperature of the intake air is lowered, white smoke generated in the combustion chamber 5 gradually increases again. In this embodiment, when the temperature of the intake air becomes equal to or lower than a predetermined second temperature T2 lower than the first temperature T1, the degree of opening of the bypass control valve 37 is the current level while the EGR control valve 30 is closed. While maintaining the valve opening degree, the injection interval is also maintained at the current interval. Then, the opening timing of the intake valve 7 is delayed. As a result, the amount of white smoke generated in the combustion chamber 5 becomes substantially zero.
[0025]
In the above embodiment, it is determined whether or not the bypass control valve 37 is opened based on the temperature of the intake air. However, since the temperature of the intake air greatly depends on the operating state of the internal combustion engine, it is shown in FIG. Thus, it may be determined whether or not the bypass control valve 37 is opened based on the relationship between the engine speed Ne and the output torque T. In FIG. 5, a region X is a region where the bypass control valve 37 should be opened, a region Y is a region where the bypass control valve 37 is closed and the EGR control valve 30 is opened, and a region Z is a bypass control. This is a region where the valve 37 and the EGR control valve 30 should be closed. When the map of FIG. 5 is adopted, the boundary between the region X and the region Y may be changed according to the temperature of the intake air. Specifically, the boundary is changed so that the range of the region X becomes wider as the temperature of the intake air is higher.
[0026]
【The invention's effect】
According to the first to third aspects of the invention, when the temperature of the intake air is equal to or higher than the first temperature, the exhaust gas is introduced into the combustion chamber without being cooled, so that the temperature in the combustion chamber is kept relatively high. For this reason, the amount of white smoke generated in the combustion chamber is extremely small. This small amount of white smoke flows into the catalyst and is purified by the catalyst. For this reason, the release of white smoke to the atmosphere is well suppressed. Further, since the temperature of the catalyst is maintained at the activation temperature or higher by the white smoke flowing into the catalyst, that is, the unburned hydrocarbon, the purification effect of the catalyst is maintained high.
[0027]
On the other hand, when the temperature of the intake air becomes equal to or lower than the first temperature, the amount of white smoke generated in the combustion chamber increases even if the exhaust gas is introduced into the combustion chamber without cooling. However, at this time, according to the first and second inventions, the interval between the preliminary fuel injection and the main fuel injection is shortened. For this reason, since the temperature in the combustion chamber is kept relatively high, the amount of white smoke generated in the combustion chamber is extremely small. Therefore, the emission of white smoke to the atmosphere is suppressed. According to the third aspect of the invention, since the opening timing of the intake valve is delayed, the amount of white smoke generated in the combustion chamber is extremely small. Therefore, the emission of white smoke to the atmosphere is suppressed.
[Brief description of the drawings]
FIG. 1 is an overall view of an internal combustion engine to which a white smoke emission suppressing device of the present invention is applied.
FIG. 2 is a diagram showing the relationship between the temperature of intake air and the amount of white smoke generated in a combustion chamber.
FIG. 3A shows the relationship between the intake air temperature and fuel consumption when processing for delaying the opening timing of the intake valve is performed, and FIG. 3B shows a shorter interval between the preliminary fuel injection and the main fuel injection. (C) is a diagram showing the relationship between the temperature of intake air and the fuel consumption when the exhaust gas is processed to bypass the intercooler. .
FIG. 4 is a diagram showing the relationship between intake air temperature, EGR control valve, bypass control valve, interval between preliminary fuel injection and main fuel injection, and control of intake valve opening timing.
FIG. 5 is a diagram showing control of an EGR control valve and a bypass control valve based on the relationship between the engine speed and the output torque.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Engine body 5 ... Combustion chamber 6 ... Fuel injection valve 7 ... Intake valve 17 ... Intake pipe 25 ... Catalyst 28 ... Temperature sensor 29 ... EGR passage 30 ... EGR control valve 31 ... Bypass passage 37 ... Bypass control valve

Claims (3)

機関本体から排出された排気ガスを燃焼室に再循環するための排気循環通路と、該排気循環通路内を流れる排気ガスを冷却するための冷却手段とを具備し、燃焼室内に噴射すべき燃料の大部分を噴射するための主噴射を実行する前に残りの少量の燃料を噴射するための予備的な噴射を実行するようにした内燃機関において、排気通路に酸化触媒を配置し、燃焼室内の温度が予め定められた燃焼室内温度以下であって且つ吸入空気の温度が予め定められた吸入空気温度以上である時には、少なくとも、前記排気循環通路を介して燃焼室に再循環せしめられる排気ガスを前記冷却手段をバイパスさせて燃焼室に再循環し、燃焼室内の温度が前記予め定められた燃焼室内温度以下であって且つ吸入空気の温度が前記予め定められた吸入空気温度以下である時には、少なくとも、予備的な噴射を実行する時期と主噴射を実行する時期との間の時間を短くするようにした内燃機関の白煙排出抑制装置。Fuel to be injected into the combustion chamber, comprising an exhaust circulation passage for recirculating exhaust gas discharged from the engine body to the combustion chamber, and cooling means for cooling the exhaust gas flowing in the exhaust circulation passage of the internal combustion engine so as to perform a preliminary injection for injecting the remaining small amount of fuel before running main injection for injecting the most, an oxidation catalyst disposed in an exhaust passage, a combustion chamber Exhaust gas that is recirculated to the combustion chamber through at least the exhaust circulation passage when the temperature of the combustion chamber is equal to or lower than the predetermined combustion chamber temperature and the intake air temperature is equal to or higher than the predetermined intake air temperature. Bypassing the cooling means and recirculating to the combustion chamber, the temperature in the combustion chamber is equal to or lower than the predetermined temperature in the combustion chamber, and the temperature of the intake air is equal to or lower than the predetermined intake air temperature When there are at least, white smoke emissions system for an internal combustion engine so as to shorten the time between the time to perform the timing and main injection to perform preliminary ejection. 燃焼室内の温度が前記予め定められた燃焼室内温度以下であって且つ吸入空気の温度が前記予め定められた吸入空気温度温度より低い予め定められた温度以下である時には、少なくとも、吸気弁の開弁時期を遅らせるようにした請求項1に記載の内燃機関の白煙排出抑制装置。 When the temperature in the combustion chamber is equal to or lower than the predetermined temperature in the combustion chamber and the temperature of the intake air is equal to or lower than a predetermined temperature lower than the predetermined intake air temperature, at least the intake valve is opened. The white smoke emission suppression device for an internal combustion engine according to claim 1, wherein the valve timing is delayed . 機関本体から排出された排気ガスを燃焼室に再循環するための排気循環通路と、該排気循環通路内を流れる排気ガスを冷却するための冷却手段とを具備する内燃機関において、排気通路に酸化触媒を配置し、燃焼室内の温度が予め定められた燃焼室内温度以下であって且つ吸入空気の温度が予め定められた吸入空気温度以上である時には、少なくとも、前記排気循環通路を介して燃焼室に再循環せしめられる排気ガスを前記冷却手段をバイパスさせて燃焼室に再循環し、燃焼室内の温度が前記予め定められた燃焼室内温度以下であって且つ吸入空気の温度が前記予め定められた吸入空気温度以下である時には、少なくとも、吸気弁の開弁時期を遅らせるようにした内燃機関の白煙排出抑制装置。An internal combustion engine comprising an exhaust gas circulation path for recirculating exhaust gas discharged from an engine body to a combustion chamber and a cooling means for cooling the exhaust gas flowing in the exhaust gas circulation path. When the catalyst is disposed and the temperature in the combustion chamber is equal to or lower than the predetermined temperature in the combustion chamber and the temperature of the intake air is equal to or higher than the predetermined intake air temperature, at least the combustion chamber is set via the exhaust circulation passage. The exhaust gas recirculated to the combustion chamber is recirculated to the combustion chamber by bypassing the cooling means, the temperature in the combustion chamber is equal to or lower than the predetermined temperature in the combustion chamber, and the temperature of the intake air is determined in advance. An apparatus for suppressing white smoke emission of an internal combustion engine that delays the opening timing of the intake valve at least when the temperature is lower than the intake air temperature .
JP34504999A 1999-12-03 1999-12-03 White smoke emission suppression device for internal combustion engine Expired - Fee Related JP3743232B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34504999A JP3743232B2 (en) 1999-12-03 1999-12-03 White smoke emission suppression device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34504999A JP3743232B2 (en) 1999-12-03 1999-12-03 White smoke emission suppression device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2001159361A JP2001159361A (en) 2001-06-12
JP3743232B2 true JP3743232B2 (en) 2006-02-08

Family

ID=18373951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34504999A Expired - Fee Related JP3743232B2 (en) 1999-12-03 1999-12-03 White smoke emission suppression device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP3743232B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1467082B1 (en) * 2002-01-16 2016-03-30 Mitsubishi Denki Kabushiki Kaisha Exhaust gas recirculating device
KR20080005370A (en) * 2005-05-11 2008-01-11 보그워너 인코포레이티드 Engine air management system
JP2008128028A (en) * 2006-11-17 2008-06-05 Toyota Motor Corp Exhaust gas recirculation system for internal combustion engine
JP4878305B2 (en) * 2007-02-08 2012-02-15 ヤンマー株式会社 EGR device for engine
WO2011005560A2 (en) * 2009-07-07 2011-01-13 Borgwarner Inc. Engine breathing system, components and method thereof

Also Published As

Publication number Publication date
JP2001159361A (en) 2001-06-12

Similar Documents

Publication Publication Date Title
US9188050B2 (en) Engine cooling system
JP3997477B2 (en) Control device for internal combustion engine
US7182075B2 (en) EGR system
JP5187123B2 (en) Control device for internal combustion engine
US20140007851A1 (en) Method of controlling an after-treatment system warm-up
JP2008303763A (en) Exhaust emission control device for internal combustion engine
JP2014034959A (en) Exhaust gas recirculation device of engine with supercharger
US20180266344A1 (en) Internal combustion engine
JP2005264821A (en) Exhaust reflux system of internal combustion engine
JP3743232B2 (en) White smoke emission suppression device for internal combustion engine
JP2008063976A (en) Exhaust gas recirculating device of engine
JP2007332876A (en) Control device of diesel engine
JP6406301B2 (en) Engine control device
JP2004124744A (en) Turbocharged engine
JP6252067B2 (en) EGR device and exhaust gas recirculation method
CN112105804B (en) Temperature control method for exhaust gas purification device of internal combustion engine, and control device for internal combustion engine
JP2008038622A (en) Exhaust emission control device and method of internal combustion engine
JP4500765B2 (en) Exhaust gas purification device for internal combustion engine
JP4775196B2 (en) Engine supercharger
JP2008038825A (en) Internal combustion engine control device
JP7226406B2 (en) Control device for internal combustion engine
JP2010116895A (en) Control device of internal combustion engine
JPH11287126A (en) Supercharging pressure control method of engine with supercharger and device therefor
JP2010031750A (en) Control device for internal combustion engine
JP2010133327A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041014

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051107

R150 Certificate of patent or registration of utility model

Ref document number: 3743232

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111125

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121125

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131125

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees