JP3739927B2 - Tactile sensor and tactile detection system - Google Patents

Tactile sensor and tactile detection system Download PDF

Info

Publication number
JP3739927B2
JP3739927B2 JP05158798A JP5158798A JP3739927B2 JP 3739927 B2 JP3739927 B2 JP 3739927B2 JP 05158798 A JP05158798 A JP 05158798A JP 5158798 A JP5158798 A JP 5158798A JP 3739927 B2 JP3739927 B2 JP 3739927B2
Authority
JP
Japan
Prior art keywords
sensor
artificial skin
tactile
frequency
sensor element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05158798A
Other languages
Japanese (ja)
Other versions
JPH11245190A (en
Inventor
裕之 篠田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP05158798A priority Critical patent/JP3739927B2/en
Publication of JPH11245190A publication Critical patent/JPH11245190A/en
Application granted granted Critical
Publication of JP3739927B2 publication Critical patent/JP3739927B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Manipulator (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ロボットのハンドなどに装着できる柔かな人工皮膚のような触覚センサと、そのような触覚センサを用いた触感検知システムに関する。
【0002】
人間生活により身近に入り込むロボットを実現するために自由曲面を有するロボット表面全体を、触覚を有する軟らかい人工皮膚で覆いたいという要求がある。本発明は、そのための有効な1手段を提供する。
【0003】
【従来の技術】
従来のロボットにおける触覚機能は、個別部品として作られた圧力センサを必要な部位に任意個数取り付けることにより実現されており、触覚機能が分布している人工皮膚のような概念のものはこれまでに存在しなかった。
【0004】
【発明が解決しようとする課題】
柔かな人工皮膚の表面に触覚機能を高密度で分布させるには、個別のセンサを皮膚表面に多数配置するとともに各センサに対する電源配線及び信号配線の接続を行わなければならず、センサの高密度実装は困難であった。
【0005】
【課題を解決するための手段】
本発明の触覚センサは、機械的変形や温度を感知するチップ状のセンサ素子の複数個をシリコンゴムのような弾力性のある人工皮膚部材中に分散して埋設するとともにそれら複数個のセンサ素子チップに対して非接触で電磁的に電力を供給する共通の電源手段と、それら複数個のセンサ素子チップがそれぞれ弾性体の変形や温度を感知して電気信号に変換したセンサ信号を、外部に非接触電磁的に伝達する共通の信号伝達手段とを設けた構成にして、人工皮膚部材に加わる機械的な変形や温度を感知するようにしたものである。
【0006】
図1は、本発明の原理的構成を示したものである。図1の(a)は本発明による触覚分布人工皮膚の全体図、図1の(b)はセンサ素子チップの概要図である。
【0007】
図1(a)において、
1は人工皮膚部材であり、たとえばシリコンゴムのような弾性材料をシート状に成型したものである。
【0008】
2はセンサ素子チップであり、人工皮膚部材1中に多数埋設されて、人工皮膚部材1の表面に他の物体が接触したときに人工皮膚部材中に生じる機械的変形や温度変化の程度に応じて周波数が変化する高周波信号を送信する。各センサ素子チップが送信する高周波信号の周波数変化範囲は、互いに重ならないようにずらされる。
【0009】
3は信号受信コイルであり、人工皮膚部材1の裏面全体を囲むようにループアンテナ状に設けられ、各センサ素子チップ2が送信した高周波の検出信号を受信する。
【0010】
4は電力送信コイルであり、信号受信コイル3と同様に、人工皮膚部材1の裏面全体を囲むようにループアンテナ状に設けられ、各センサ素子チップ2に対する電力駆動源となる高周波電磁界を発生する。
【0011】
図1(b)において、
5はセンサ回路チップであり、トランジスタ、ダイオード、抵抗、コンデンサなどの要素からなるLC発振回路が組み込まれている。LC発振回路の発振周波数は、センサ素子チップごとに固有の変化範囲をもつ。
【0012】
6は信号送信コイルであり、センサ回路チップ5のLC発振回路を構成する発振コイルとしての機能と、発振した信号を送信するループアンテナとしての機能とを持つ。
【0013】
7は電力受給コイルであり、電力送信コイル4により発生される高周波電磁界により高周波電圧が誘起されて、センサ回路チップ5の電力供給源となる。
【0014】
図1(b)に示されるセンサ素子チップ2は、IC技術を用いて微小なサイズに作ることができかつ外部の電源配線や信号配線は不要なので、図1(a)に示される人工皮膚部材1の厚さを薄くしても、多数の微小なセンサ素子チップ2を高密度に埋設することができ、精細な触覚分布をもつ人工皮膚を実現することが可能となる。
【0015】
センサ素子チップ2にLC発振回路を用いる場合の利点は、LC発振回路自体が人工皮膚部材1の機械的変形や温度変化によるコイルの変形と誘電率の変化などの影響を受けて発振周波数を変化させるため、専用の歪みセンサや温度センサを別個に設ける必要がないことである。
【0016】
【発明の実施の形態】
図2(a)は、センサ素子チップにコルピッツ型のLC発振回路を用いた場合の実施例を示す。LC発振回路には他にハートレー型、トランス結合型などがあるが、コイルの構造はコルピッツ型がもっとも単純であり、小型化には都合がよい。
【0017】
図2(a)において、6は発振用コイルを兼用する信号送信コイルL1 、7は電力受給コイルL2 、8はトランジスタTr 、9は発振用コンデンサC1 、10は発振用コンデンサC2 、11はソース抵抗Rs 、12は整流用ダイオードD、13は平滑用コンデンサC3 である。
【0018】
コイルL2 には、図1(b)の電力送信コイル4から誘導される高周波電圧が発生する。この高周波電圧は、ダイオードDにより整流され、コンデンサC3 で平滑されて、発振回路に電源として供給される。
【0019】
図2(b)は、図2(a)における発振回路部分の等価回路を示す。よく知られているように、この回路のループ利得AHは次式で与えられる。
【0020】
【数1】

Figure 0003739927
【0021】
なお、gm は相互コンダクタンス、rdはドレイン抵抗である。ここで、gm が10[mS]、L1 が10-5[H]、C1 ,C2 が10-9[F]、Rs が102 [Ω]程度の大きさのとき、rdが104 [Ω]以上あれば、発振条件は次のように近似することができる。
○周波数条件
【0022】
【数2】
Figure 0003739927
【0023】
○電力条件
【0024】
【数3】
Figure 0003739927
【0025】
電力条件により、gm は大きいほど発振しやすくなる。
【0026】
センサ素子チップの大きさは1立方センチメートルよりも小さいことが望ましく、たとえば微小サイズのL1 として、実際に直径1mm、10巻のコイルを作成したところ、7.2MHzで発振させることができた。これにより、コイルを含むセンサ素子チップ全体の大きさを1mm程度のサイズのチップに微小化することが可能であり、このような微小なチップを多数シリコンゴムに混入して任意の形状に成型することができる。図3は、その製作過程を示したものである。
【0027】
図3において、(a)は発振周波数の異なる多数のセンサ素子チップを液状のシリコンゴムに混入する段階、(b)はセンサ素子チップが均一に分散するよう攪拌する段階、(c)はシリコンゴムを型に注入して成型する段階であり、表面を触覚分布人工皮膚で覆った任意の形状のプローブを得ることができる。(d)はプローブの人工皮膚に分散配置されている個々のセンサ素子チップを認識するための学習段階であり、プローブ表面の各位置に順次接触するとともに接触圧の大きさを変化させ、そのとき検出される発振周波数の変化を対応づけて学習する。
【0028】
図4は、本発明による触覚分布人工皮膚を用いた触感検知システムの1実施例を示したものである。
【0029】
図4において、1は人工皮膚部材、2−1〜2−nはセンサ素子チップ、3は信号受信コイル、4は電力送信コイル、14は高周波信号源、15は周波数アナライザ、16は処理装置、17はニューロネットワーク、18は学習処理部である。
【0030】
高周波信号源14は電力送信コイル4を駆動し、人工皮膚部材1中に埋設されている全てのセンサ素子チップ2−1〜2−nに対して動作に必要な電力を供給する。動作状態にある各センサ素子チップ2−1〜2−nは、それぞれ異なる固有の周波数f1 ,f2 ,・・・,fn で発振する。各センサ素子チップ2−1〜2−nがそれぞれ周波数f1 ,f2 ,・・・,fn で発振した信号s1 ,s2 ,・・・,sn は、信号受信コイル3に受信され、周波数アナライザ15に入力される。
【0031】
周波数アナライザ15は、一定の周波数帯域を繰り返し走査して、入力信号の周波数値と振幅値を検出する。人工皮膚部材1に接触している物体が何もない基準状態では、周波数f1 ,f2 ,・・・,fn のn個の信号s1 ,s2 ,・・・,sn が検出される。
【0032】
処理装置16は、周波数アナライザ15が検出した各信号s1 ,s2 ,・・・,sn の値を取り込み、学習処理あるいは触感検知処理を行う。図示の例ではニューロネットワークを用いて触感検知処理を行っているが、テーブルを用いる一般の処理方法を採用してもよい。
【0033】
学習処理を行う場合は、学習処理部18が起動される。次に適当な物体を人工皮膚部材1の表面に接触させ、そのときの接触位置および接触圧と周波数アナライザ15から出力される信号s1 ,s2 ,・・・,sn とを用いて、ニューロネットワーク17を条件づける。
【0034】
人工皮膚部材1の表面に物体が接触している状態では、信号s1 ,s2 ,・・・,sn の周波数はf1 ±Δf1 ,f2 ±Δf2 ,・・・,fn ±Δfn のように変化しており、その変化量は、接触位置と接触圧に依存している。種々の接触位置、接触圧についてニューロネットワーク17を学習させた後でニューロネットワーク17による認識処理を行うことにより、接触物体についての任意の接触位置と接触圧を検知することができる。なお接触圧を変化させる代わりに物体の温度を変化させて学習すれば、温度の検知を行うことが可能となる。
【0035】
【発明の効果】
本発明により、多数のセンサ素子チップを分散埋設した人工皮膚を、個々のセンサ素子チップに対する配線を行う必要なしに簡単に実現することができ、より自然な形の触感を得ることができる。
【図面の簡単な説明】
【図1】 本発明の原理的構成の説明図である。
【図2】 コルピッツ型LC発振回路を用いたセンサ素子チップの1実施例の説明図である。
【図3】 触覚分布人工皮膚の製作過程の説明図である。
【図4】 触感検知システムの1実施例の説明図である。
【符号の説明】
1:人工皮膚部材
2:センサ素子チップ
3:信号受信コイル
4:電力送信コイル
14:高周波信号源
15:周波数アナライザ
16:処理装置[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a tactile sensor such as soft artificial skin that can be attached to a hand of a robot, and a tactile sensation detection system using such a tactile sensor.
[0002]
In order to realize a robot that gets closer to human life, there is a demand for covering the entire robot surface having a free-form surface with soft artificial skin having a tactile sensation. The present invention provides an effective means for that purpose.
[0003]
[Prior art]
The tactile function of conventional robots has been realized by attaching an arbitrary number of pressure sensors made as individual parts to the required site. Concepts such as artificial skin where tactile functions are distributed have been developed so far. Did not exist.
[0004]
[Problems to be solved by the invention]
In order to distribute the tactile function with high density on the surface of soft artificial skin, it is necessary to arrange a large number of individual sensors on the skin surface and to connect power supply wiring and signal wiring to each sensor. Implementation was difficult.
[0005]
[Means for Solving the Problems]
Tactile sensor of the present invention is to buried distributed a plurality of chip-shaped sensor element for sensing the mechanical deformation and the temperature in the artificial skin member in a resilient, such as silicone rubber, a plurality of the sensors Common power supply means for electromagnetically supplying power to the element chip in a non-contact manner, and sensor signals converted into electric signals by sensing the deformation and temperature of the elastic body by each of the plurality of sensor element chips , A common signal transmission means for electromagnetically transmitting without contact is provided outside so as to sense mechanical deformation and temperature applied to the artificial skin member.
[0006]
FIG. 1 shows the basic configuration of the present invention. 1A is an overall view of a tactile distribution artificial skin according to the present invention, and FIG. 1B is a schematic view of a sensor element chip .
[0007]
In FIG. 1 (a),
Reference numeral 1 denotes an artificial skin member, which is formed by molding an elastic material such as silicon rubber into a sheet shape.
[0008]
Reference numeral 2 denotes a sensor element chip which is embedded in the artificial skin member 1 according to the degree of mechanical deformation or temperature change that occurs in the artificial skin member when another object comes into contact with the surface of the artificial skin member 1. Transmit a high-frequency signal whose frequency changes. The frequency change ranges of the high-frequency signals transmitted by the sensor element chips are shifted so as not to overlap each other.
[0009]
A signal receiving coil 3 is provided in a loop antenna shape so as to surround the entire back surface of the artificial skin member 1, and receives a high-frequency detection signal transmitted by each sensor element chip 2.
[0010]
A power transmission coil 4 is provided in a loop antenna shape so as to surround the entire back surface of the artificial skin member 1 and generates a high-frequency electromagnetic field serving as a power drive source for each sensor element chip 2, similarly to the signal reception coil 3. To do.
[0011]
In FIG. 1B,
Reference numeral 5 denotes a sensor circuit chip in which an LC oscillation circuit including elements such as a transistor, a diode, a resistor, and a capacitor is incorporated. The oscillation frequency of the LC oscillation circuit has a unique variation range for each sensor element chip .
[0012]
A signal transmission coil 6 has a function as an oscillation coil constituting the LC oscillation circuit of the sensor circuit chip 5 and a function as a loop antenna for transmitting the oscillated signal.
[0013]
Reference numeral 7 denotes a power receiving coil. A high frequency voltage is induced by a high frequency electromagnetic field generated by the power transmitting coil 4, and becomes a power supply source of the sensor circuit chip 5.
[0014]
The sensor element chip 2 shown in FIG. 1 (b) can be made into a very small size using IC technology and does not require external power supply wiring or signal wiring. Therefore, the artificial skin member shown in FIG. 1 (a) Even if the thickness of 1 is reduced, a large number of minute sensor element chips 2 can be embedded at a high density, and an artificial skin having a fine tactile distribution can be realized.
[0015]
The advantage of using an LC oscillation circuit for the sensor element chip 2 is that the LC oscillation circuit itself changes its oscillation frequency under the influence of mechanical deformation of the artificial skin member 1 and deformation of the coil and change in dielectric constant due to temperature change. Therefore, it is not necessary to provide a dedicated strain sensor or temperature sensor separately.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 2A shows an embodiment in which a Colpitts-type LC oscillation circuit is used for the sensor element chip . There are other LC oscillator circuits such as Hartley type and transformer coupling type, but the Colpitts type is the simplest coil structure, which is convenient for miniaturization.
[0017]
In FIG. 2A, 6 is a signal transmission coil L 1 that also serves as an oscillation coil, 7 is a power receiving coil L 2 , 8 is a transistor Tr , 9 is an oscillation capacitor C 1 , and 10 is an oscillation capacitor C 2. , 11 is a source resistance R s , 12 is a rectifying diode D, and 13 is a smoothing capacitor C 3 .
[0018]
The coil L 2, a high frequency voltage is generated which is derived from the power transmission coil 4 in FIG. 1 (b). The high frequency voltage is rectified by the diode D, is smoothed by the capacitor C 3, it is supplied as a power supply to the oscillation circuit.
[0019]
FIG. 2B shows an equivalent circuit of the oscillation circuit portion in FIG. As is well known, the loop gain AH of this circuit is given by:
[0020]
[Expression 1]
Figure 0003739927
[0021]
Incidentally, g m is the transconductance, rd is the drain resistance. Here, when g m is 10 [mS], L 1 is 10 −5 [H], C 1 and C 2 are 10 −9 [F], and R s is about 10 2 [Ω], rd Is 10 4 [Ω] or more, the oscillation condition can be approximated as follows.
○ Frequency condition [0022]
[Expression 2]
Figure 0003739927
[0023]
○ Power condition [0024]
[Equation 3]
Figure 0003739927
[0025]
Depending on the power condition, the larger g m is, the easier it is to oscillate.
[0026]
The size of the sensor element chip is desirably smaller than 1 cubic centimeter. For example, when a coil having a diameter of 1 mm and 10 turns was actually made as a small size L 1 , it could be oscillated at 7.2 MHz. As a result, it is possible to reduce the size of the entire sensor element chip including the coil to a chip having a size of about 1 mm. A large number of such small chips are mixed in silicon rubber and molded into an arbitrary shape. be able to. FIG. 3 shows the manufacturing process.
[0027]
3, (a) is a step of mixing a large number of sensor element chips having different oscillation frequencies into liquid silicon rubber, (b) is a step of stirring so that the sensor element chips are uniformly dispersed, and (c) is a silicon rubber. Is injected into a mold and molded, and a probe having an arbitrary shape whose surface is covered with tactile distribution artificial skin can be obtained. (D) is a learning stage for recognizing individual sensor element chips dispersedly arranged on the artificial skin of the probe, and sequentially contacts each position on the probe surface and changes the magnitude of the contact pressure. It learns by associating changes in the detected oscillation frequency.
[0028]
FIG. 4 shows one embodiment of the tactile sensation detection system using the tactile distribution artificial skin according to the present invention.
[0029]
In FIG. 4, 1 is an artificial skin member, 2-1 to 2-n are sensor element chips , 3 is a signal receiving coil, 4 is a power transmitting coil, 14 is a high frequency signal source, 15 is a frequency analyzer, 16 is a processing device, Reference numeral 17 denotes a neuronetwork, and 18 denotes a learning processing unit.
[0030]
The high-frequency signal source 14 drives the power transmission coil 4 to supply power necessary for the operation to all the sensor element chips 2-1 to 2-n embedded in the artificial skin member 1. Each sensor element chip 2-1 to 2-n in the operating state, different natural frequencies f 1, f 2 respectively, ..., oscillates at f n. Each respective sensor element chips 2-1 to 2-n frequency f 1, f 2, · · ·, signals s 1, s 2 oscillated at f n, · · ·, s n is received by the signal receiving coil 3 And input to the frequency analyzer 15.
[0031]
The frequency analyzer 15 repeatedly scans a certain frequency band to detect the frequency value and amplitude value of the input signal. The reference state is no object in contact with the artificial skin member 1, the frequency f 1, f 2, · · ·, n-number of signals s 1, s 2 of f n, · · ·, s n is detected Is done.
[0032]
Processor 16, the signal s 1 to the frequency analyzer 15 detects, s 2, · · ·, captures the value of s n, performs a learning process or tactile detection process. In the illustrated example, the tactile sensation detection process is performed using a neuro network, but a general processing method using a table may be employed.
[0033]
When the learning process is performed, the learning processing unit 18 is activated. Then suitable objects brought into contact with the surface of the artificial skin member 1, the signal s 1, s 2 output from the contact position and the contact pressure and the frequency analyzer 15 at that time, ..., with the s n, Condition the neuronetwork 17.
[0034]
In a state where the object to the surface of the artificial skin member 1 is in contact, the signal s 1, s 2, · · ·, the frequency of s n is f 1 ± Δf 1, f 2 ± Δf 2, ···, f n It changes like ± Δf n , and the amount of change depends on the contact position and the contact pressure. By learning the neuro network 17 for various contact positions and contact pressures and then performing recognition processing using the neuro network 17, it is possible to detect any contact position and contact pressure for the contact object. If learning is performed by changing the temperature of the object instead of changing the contact pressure, the temperature can be detected.
[0035]
【The invention's effect】
According to the present invention, artificial skin in which a large number of sensor element chips are dispersedly embedded can be easily realized without the need to perform wiring for each sensor element chip, and a more natural tactile sensation can be obtained.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a basic configuration of the present invention.
FIG. 2 is an explanatory diagram of one embodiment of a sensor element chip using a Colpitts LC oscillation circuit.
FIG. 3 is an explanatory diagram of a production process of a tactile distribution artificial skin.
FIG. 4 is an explanatory diagram of one embodiment of a tactile sensation detection system.
[Explanation of symbols]
1: Artificial skin member 2: Sensor element chip 3: Signal receiving coil 4: Power transmitting coil 14: High frequency signal source 15: Frequency analyzer 16: Processing device

Claims (3)

ゴム状弾性材料で任意の形状に成型されている人工皮膚部材と、該人工皮膚部材中に分散して埋設され、それぞれが機械的変形や温度変化を感知する複数個のセンサ素子チップと、上記人工皮膚部材中の複数個のセンサ素子チップに対して外部より電磁的に非接触で電力を供給する共通の電源手段と、上記人工皮膚部材中の複数個のセンサ素子チップからのセンサ信号を外部へ電磁的に非接触で取り出す共通の信号伝達手段とを備えていることを特徴とする触覚センサ。And artificial skin member which is molded in an arbitrary shape of a rubber-like elastic material, is embedded dispersed in the artificial skin member, a plurality of sensor elements chip, each of which senses a mechanical deformation or temperature changes, the Common power supply means for supplying electric power from the outside to the plurality of sensor element chips in the artificial skin member in a non-contact manner , and sensor signals from the plurality of sensor element chips in the artificial skin member A tactile sensor comprising a common signal transmission means for electromagnetically and non-contactly extracting the signal. 請求項1において、上記複数個のセンサ素子チップの各々は、人工皮膚部材に加えられる機械的変形や温度変化に応じて発振周波数を変化させるLC発振器を含み、かつそれぞれのLC発振器の発振周波数の変化範囲が相互に異なるようにずらされていることを特徴とする触覚センサ。2. The sensor element chip according to claim 1, wherein each of the plurality of sensor element chips includes an LC oscillator that changes an oscillation frequency in accordance with a mechanical deformation or a temperature change applied to the artificial skin member, and the oscillation frequency of each LC oscillator is A tactile sensor characterized in that the change ranges are shifted so as to be different from each other . それぞれが外部より高周波電力を受け取るためのループアンテナと異なる周波数で外部へセンサ信号を伝達するための高周波コイルとを備えて、それぞれが機械的変形や温度変化を感知する複数個のセンサ素子チップを人工皮膚部材中に分散して埋設されている触覚センサと、
上記触覚センサに近接して設けられた高周波電力供給用ループアンテナと、
上記高周波電力供給用ループアンテナに接続された高周波信号発生器と、
上記触覚センサに近接して設けられたセンサ信号受信用ループアンテナと、
上記センサ信号受信用ループアンテナに接続されて触覚センサの複数個のセンサ素子チップからそれぞれ出力される異なる周波数のセンサ信号を検出する周波数アナライザと、
を有することを特徴とする触感検知システム。
Each and a high-frequency coil for transmitting the sensor signal to the outside by the loop antenna and different frequencies for receiving the high frequency power from the outside, a plurality of the sensor element chips, each of which senses a mechanical deformation or temperature changes A tactile sensor that is dispersed and embedded in an artificial skin member;
A loop antenna for high-frequency power supply provided in proximity to the tactile sensor;
A high-frequency signal generator connected to the high-frequency power supply loop antenna;
A sensor signal receiving loop antenna provided in proximity to the tactile sensor;
A frequency analyzer connected to the sensor signal receiving loop antenna and detecting sensor signals of different frequencies respectively output from a plurality of sensor element chips of the tactile sensor;
A tactile sensation detection system characterized by comprising:
JP05158798A 1998-03-04 1998-03-04 Tactile sensor and tactile detection system Expired - Fee Related JP3739927B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05158798A JP3739927B2 (en) 1998-03-04 1998-03-04 Tactile sensor and tactile detection system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05158798A JP3739927B2 (en) 1998-03-04 1998-03-04 Tactile sensor and tactile detection system

Publications (2)

Publication Number Publication Date
JPH11245190A JPH11245190A (en) 1999-09-14
JP3739927B2 true JP3739927B2 (en) 2006-01-25

Family

ID=12891069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05158798A Expired - Fee Related JP3739927B2 (en) 1998-03-04 1998-03-04 Tactile sensor and tactile detection system

Country Status (1)

Country Link
JP (1) JP3739927B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9547368B2 (en) 2009-03-18 2017-01-17 Hj Laboratories Licensing, Llc Electronic device with a pressure sensitive multi-touch display
US10496170B2 (en) 2010-02-16 2019-12-03 HJ Laboratories, LLC Vehicle computing system to provide feedback

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3756737B2 (en) * 2000-08-02 2006-03-15 財団法人電気磁気材料研究所 Thin film tactile sensor
JP4570760B2 (en) * 2000-11-01 2010-10-27 三菱マテリアル株式会社 Contact sensor, contact detection device, and robot equipped with the contact detection device
FR2878035B1 (en) * 2004-11-15 2014-10-17 Oreal DEVICE COMPRISING A RECONSTRUCTED SKIN SAMPLE AND A DETECTION SYSTEM.
CN100348387C (en) * 2005-09-02 2007-11-14 杭州电子科技大学 Robot touch sensor
JP2007171047A (en) * 2005-12-22 2007-07-05 Tokyo Electron Ltd Wafer-type temperature sensor, temperature-measuring apparatus using the same, heat treatment apparatus having temperature-measuring function, and temperature-measuring method
US7878075B2 (en) * 2007-05-18 2011-02-01 University Of Southern California Biomimetic tactile sensor for control of grip
JP5478874B2 (en) * 2008-12-02 2014-04-23 株式会社フィルテック Substrate, substrate holding device, analysis device, program, detection system, semiconductor device, display device, and semiconductor manufacturing device
WO2011135886A1 (en) * 2010-04-27 2011-11-03 日本電気株式会社 Radio tag sensor system and method for calibrating same
JPWO2011145464A1 (en) * 2010-05-20 2013-07-22 株式会社根本杏林堂 Injection head and chemical injection system
CN103624803A (en) * 2012-08-23 2014-03-12 上海未来伙伴机器人有限公司 Artificial skin of robot
CN103083007A (en) * 2013-01-29 2013-05-08 中国科学院苏州纳米技术与纳米仿生研究所 Piezoresistive electronic skin and preparation method thereof
JP6070314B2 (en) * 2013-03-18 2017-02-01 富士通株式会社 Contact sensor device and contact information detection method
CN104827491B (en) * 2015-04-30 2016-04-27 广东双虹新材料科技有限公司 The intelligence machine application on human skin of high sensitivity
CN107053254B (en) * 2017-01-24 2019-07-12 重庆大学 Wearable robot skin based on multi-layer airbag
CN107595433B (en) * 2017-08-29 2019-03-08 北京中硕众联智能电子科技有限公司 A kind of artificial intelligence skin and its method for detecting humidity and temperature
CN110712224A (en) * 2019-10-17 2020-01-21 中国科学院长春光学精密机械与物理研究所 Intelligent skin with temperature sensation

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9547368B2 (en) 2009-03-18 2017-01-17 Hj Laboratories Licensing, Llc Electronic device with a pressure sensitive multi-touch display
US9772772B2 (en) 2009-03-18 2017-09-26 Hj Laboratories Licensing, Llc Electronic device with an interactive pressure sensitive multi-touch display
US9778840B2 (en) 2009-03-18 2017-10-03 Hj Laboratories Licensing, Llc Electronic device with an interactive pressure sensitive multi-touch display
US10191652B2 (en) 2009-03-18 2019-01-29 Hj Laboratories Licensing, Llc Electronic device with an interactive pressure sensitive multi-touch display
US10496170B2 (en) 2010-02-16 2019-12-03 HJ Laboratories, LLC Vehicle computing system to provide feedback

Also Published As

Publication number Publication date
JPH11245190A (en) 1999-09-14

Similar Documents

Publication Publication Date Title
JP3739927B2 (en) Tactile sensor and tactile detection system
US7667547B2 (en) Loosely-coupled oscillator
JP4837270B2 (en) RFID sensor system and RFID detection method
CN106031049A (en) Passive wireless sensor
Van Schuylenbergh et al. Self-tuning inductive powering for implantable telemetric monitoring systems
JP2007024892A (en) Wireless position transducer using digital signal system
CN106227393B (en) The operating method of electronic device and the electronic device
CN112996432B (en) Patch type thermometer and system thereof
TW201219008A (en) Bio-impedance measurement apparatus and assembly
CN105796128A (en) Ultrasound diagnostic apparatus
DE68910788D1 (en) Device for the remote exchange of information between a portable object and a station.
Quadir et al. Low-power implanted sensor for orthodontic bond failure diagnosis and detection
Hakozaki et al. Telemetric robot skin
Futai et al. A flexible micromachined planar spiral inductor for use as an artificial tactile mechanoreceptor
JP3913496B2 (en) Tactile detection system
WO1988008184A1 (en) Measuring instrument with transmitter
JP2001134726A (en) Sensor system for sanitary
JP2018072147A (en) Sensor device
Hakozaki et al. Telemetric artificial skin for soft robot
Vital et al. An ultra-high-frequency wirelessly-powered smart bandage for wound monitoring and sensing using frequency modulation
JPH10187330A (en) Device for inputting x-y coordinate values to data processor
Qian et al. Long-Range Detection of a Wirelessly Powered Resistive Transducer
JPS636464A (en) Wireless probe
Hausleitner et al. Cordless batteryless wheel mouse application utilizing radio requestable SAW devices in combination with the giant magneto-impedance effect
JPH08286825A (en) Data input device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051101

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051104

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees