JP3737518B2 - Water-soluble paclitaxel prodrug - Google Patents

Water-soluble paclitaxel prodrug Download PDF

Info

Publication number
JP3737518B2
JP3737518B2 JP53273497A JP53273497A JP3737518B2 JP 3737518 B2 JP3737518 B2 JP 3737518B2 JP 53273497 A JP53273497 A JP 53273497A JP 53273497 A JP53273497 A JP 53273497A JP 3737518 B2 JP3737518 B2 JP 3737518B2
Authority
JP
Japan
Prior art keywords
paclitaxel
pharmaceutical composition
polymer
tumor
dtpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP53273497A
Other languages
Japanese (ja)
Other versions
JP2000507930A (en
Inventor
リー,チュン
ウォーレス,シドニー
ユー,ドング―ファング
ヤング,デーヴィッド・ジェイ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
PG TXL Co LP
Original Assignee
PG TXL Co LP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by PG TXL Co LP filed Critical PG TXL Co LP
Publication of JP2000507930A publication Critical patent/JP2000507930A/en
Application granted granted Critical
Publication of JP3737518B2 publication Critical patent/JP3737518B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/365Lactones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/547Chelates, e.g. Gd-DOTA or Zinc-amino acid chelates; Chelate-forming compounds, e.g. DOTA or ethylenediamine being covalently linked or complexed to the pharmacologically- or therapeutically-active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/645Polycationic or polyanionic oligopeptides, polypeptides or polyamino acids, e.g. polylysine, polyarginine, polyglutamic acid or peptide TAT
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/02Preparations containing radioactive substances for use in therapy or testing in vivo characterised by the carrier, i.e. characterised by the agent or material covalently linked or complexing the radioactive nucleus
    • A61K51/04Organic compounds
    • A61K51/0497Organic compounds conjugates with a carrier being an organic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/16Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • A61P37/02Immunomodulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/08Vasodilators for multiple indications
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2121/00Preparations for use in therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2123/00Preparations for testing in vivo
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/40Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
    • A61L2300/416Anti-neoplastic or anti-proliferative or anti-restenosis or anti-angiogenic agents, e.g. paclitaxel, sirolimus
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings

Abstract

Disclosed are water soluble compositions of paclitaxel and docetaxel formed by conjugating the paclitaxel or docetaxel to a water soluble chelator, polyethylene glycol or polymer such as poly (1-glutamic acid) or poly (1-aspartic acid). Also disclosed are methods of using the compositions for treatment of tumors, autoimmune disorders such as rheumatoid arthritis and for prediction of paclitaxel uptake by tumors and radiolabeled DTPA-paclitaxel tumor imaging. Other embodiments include the coating of implantable stents for prevention of restenosis.

Description

発明の分野
本発明は一般に、癌、自己免疫疾患および再狭窄の処置に使用する薬剤組成物の分野に関する。本発明はまた、抗癌薬、たとえばパクリタキセル(paclitaxel)(タキソール(Taxol))およびドセタキセル(docetaxel)(タキソテレ(taxotere))の製剤の分野、特にパクリタキセルを水溶性部分に結合させることにより、この薬物を水溶性にすることに関する。
発明の背景
太平洋岸産イチイ(タキサス・ブレビフォリア、Taxus brevifolia)の針葉および樹皮から抽出した微小管形成抑制剤(anti-microtubule agent)であるパクリタキセルは、ヒトの癌に顕著な抗腫瘍効果をもつことがI相実験ならびに初期IIおよびIII相試験で示された(Horwitz et al.,1993)。これは主に、進行した卵巣癌および胸部癌において報告された。小細胞性肺癌(small-cell lung cancer)および非小細胞性肺癌、頭頚部癌、ならびに転移性黒色腫において、有意の活性が述べられている。しかし、臨床試験用パクリタキセルを開発する際の主な難点は、それが水に不溶性である点であった。
ドセタキセルは、10−デアセチルバッカチンIII、すなわちタキサス・バッカタ(Taxus baccata)の針葉から抽出し、化学合成した側鎖でエステル化した非細胞毒性前駆物質から、半合成により製造される(Cortes and Pazdur,1995)。胸部癌、肺癌、卵巣癌、ならびに結腸直腸癌および黒色腫を含めた種々の癌細胞系が、ドセタキセルに反応性であることが示された。臨床試験において、ドセタキセルを用いて胸部癌、卵巣癌、頭頚部癌、および悪性黒色腫において完全または部分的な反応が達成された。
パクリタキセルは一般に、クレモフォア(Cremophor)EL(ポリオキシエチル化ヒマシ油)および脱水アルコール(50% v/v)1ml当たり6mgのパクリタキセルを含有する濃縮液として配合され、投与前にさらに希釈されなければならない(Goldspiel,1994)。要求量のパクリタキセルを送達するのに必要なクレモフォアELの量は、クレモフォア中に配合される他のいかなる薬物の場合より著しく高い。血管拡張、呼吸困難および血圧低下を含めた幾つかの毒性が、クレモフォアに起因するとされている。このビヒクルは、実験動物およびヒトに重篤な過敏症を起すことも示された(Weiss et al.,1990)。事実、静脈内ボーラス注射によりマウスに投与できるパクリタキセルの最大量は、クレモフォアビヒクルの急性致死毒性により決定される(Eiseman et al.,1994)。さらに、界面活性剤であるクレモフォアELは、ポリ塩化ビニル製のバッグや静脈投与管からフタル酸ジ(2−エチルヘキシル)(DEHP)などのフタレート系可塑剤を滲出させることが知られている。DEHPは動物に肝毒性を生じ、げっ歯類において発癌性であることが知られている。このパクリタキセル製剤は、経時的に粒状物を生成することも示されており、したがって投与中にろ過する必要がある(Goldspiel,1994)。したがって患者への安全な薬物送達を保証するためには、パクリタキセル溶液の調製および投与に特別な設備が必要であり、これらの設備は必然的に経費を増大させる。
水溶性パクリタキセルを得るためのこれまでの試みには、2′−ヒドロキシル基または7−ヒドロキシルの位置にスクシネートおよびアミノ酸などの可溶化部分を装入することによりパクリタキセルのプロドラッグを調製することが含まれる(Deutsch et al.,1989;Mathew et al.,1992)。しかしこれらのプロドラッグは、開発に十分なほど化学的に安定ではないことが分かった。たとえばDeutschら(1989)はパクリタキセルの2′−スクシネート誘導体を報告しているが、ナトリウム塩の水溶解度はわずか約0.1%であり、トリエタノールアミン塩およびN−メチルグルカミン塩は約1%が溶解しうるにすぎなかった。さらに、アミノ酸エステルは不安定であると報告された。同様な結果をMathewら(1992)が報告した。Greenwaltらは、水溶性の高いタキソール2′および7−ポリエチレングリコールエステルの合成を報告している。(Greenwalt et al.,1994)が、これらの化合物のインビボ抗腫瘍活性に関するデータは全く報告されていない(Greenwalt et al.,1995)。
これらの問題を解決するための他の試みは、パクリタキセルをリポソームおよびナノスフェアの両方にマイクロカプセル封入することを伴うものであった(Bartoni and Boitard,1990)。リポソーム配合物は遊離パクリタキセルと同程度に有効であると報告されたが、2%未満のパクリタキセルを含有するリポソーム配合物のみが物理的に安定であった(Sharma and Staubinger,1994)。残念ながら、ナノスフェア配合物は毒性を示すことが分かった。したがって、有効量のパクリタキセルおよびドセタキセルを、薬物の不溶性に伴う欠点なしに送達しうる水溶性パクリタキセル配合物が、依然として求められている。
パクリタキセルの広範な使用に対する他の障害は、パクリタキセルを生産する供給源が限られており、その結果パクリタキセル療法が高価になることである。たとえば1コースの処置に数千ドルかかる可能性がある。さらに、必ずしもすべての腫瘍がパクリタキセル療法に反応するわけではないという欠点があり、これはパクリタキセルが腫瘍内へ進入しないためであると思われる。したがって、腫瘍、自己免疫疾患、たとえば慢性関節リウマチの処置のための、ならびに血管形成術およびステント挿入(stenting)などの外傷を受ける血管の再狭窄防止のための、血清中半減期の長い水溶性パクリタキセルおよび関連薬物の有効な配合物が早急に求められている。
発明の概要
本発明は、水溶性ポリマー、たとえばポリグルタミン酸もしくはポリアスパラギン酸に、または水溶性の金属キレート剤に結合した、化学療法薬および抗血管形成薬(antiangiogenic drug)、たとえばパクリタキセルまたはドセタキセルを含む組成物の提供により、従来の技術がもつこれらの欠点や他の欠点を克服することを目的とする。これらの組成物は、例示した腫瘍モデルに対し抗腫瘍剤として予想外に有効であることが本明細書において示され、タキサン(taxane)類またはタキソイド(taxoid)類が有効であることが知られているいかなる疾患や状態に対しても、パクリタキセルまたはドセタキセルと少なくとも同程度に有効であると期待される。本発明の組成物は、水溶性タキソイド類を提供してこれらの薬物自体の水不溶性に伴う欠点を克服し、かつ制御放出という利点を備え、このため動物モデルにおいて1回の静脈内投与後に腫瘍が根絶されることが本明細書において示される。
本明細書に記載した方法は、他の療法薬、造影剤および薬物の水溶性ポリマー結合体の製造にも利用できる。これには、エトプシド(etopside)、テニポシド(teniposide)、フルダラビン(fludarabine)、ドキソルビシン、ダウノマイシン、エモジン、5−フルオロウラシル、FUDR、エストラジオール、カンプトテシン(camptothecin)、レチノイン酸、ベラパミル(verapamil)、エポチロン(epothilone)類およびサイクロスポリンが含まれる。特に、遊離ヒドロキシル基をもつ薬剤を、パクリタキセルに関して本明細書に記載したものと同様な化学反応でポリマーに結合させることができるであろう。このような結合は化学技術の当業者が容易になしうるものであり、本発明の範囲に含まれる。それらの薬剤にはエトプシド、テニポシド、カンプトテシンおよびエポチロン類が含まれるが、これらに限定されない。本明細書において用いる、水溶性ポリマーへの結合とは、ポリマーまたはキレート剤への薬物の共有結合を意味する。
また本発明の水溶性結合体は、他の抗腫瘍薬または抗癌薬を含めた他の薬物と組み合わせて投与しうると解釈される。そのような組み合わせは当技術分野で知られている。本発明の水溶性パクリタキセルまたはドセタキセルは、特定の種類の処置においては白金系薬物、抗生物質、たとえばドキソルビシンもしくはダウノルビシン、またはタキソールと併用される他の薬物と組み合わせることができる。
ポリマーへの化学療法薬の結合は、全身毒性を低下させ、治療指数を改善するための魅力的方法である。30kDaより大きな分子量をもつポリマーは、正常な毛細血管および糸球体内皮を通して容易に拡散することはなく、したがって正常な組織を、薬物が仲介する無関係な毒性から免れさせる(Maeda and Matsumura,1989;Reynolds,1995)。他方、悪性腫瘍がしばしば毛細血管内皮障害を伴い、正常組織の血管より高い透過性を示すことは、十分に確認されている(Maeda and Matsumura,1989;Fidler et al.,1987)。したがって、正常な状態では血管内に留まるポリマー−薬物結合体が血管から腫瘍中へ選択的に漏出し、その結果、有効な療法薬を腫瘍に蓄積させることができる。さらに、ポリマー−薬物結合体は持続放出のための薬物溜めとして作用し、腫瘍細胞を長期間薬物暴露させることができる。最後に、水溶性ポリマーは、他の場合には不溶性である成分を可溶化するほか、薬物を安定化するためにも利用できる。現在、多様な合成ポリマーおよび天然ポリマーにつき、それらが腫瘍特異性薬物送達を高める効力が試験されている(Kopecek,1990;Maeda and Matsumura,1989)。しかし、日本のSMANCSおよび英国のHPMA−Doxを含めた数種類につき現在臨床評価が行われているにすぎない(Maeda,1991;Kopecek and Kopeckova,1993)。
本明細書においてタキソイドは、パクリタキセルおよびドセタキセル、ならびにタキセン骨格をもつ他の化学物質を含めた化合物を意味すると解釈され(Cortes and Pazdur,1995)、イチイの木などの天然源もしくは細胞培養物から単離でき、または化学合成した分子であってもよい。好ましいものは一般式C4751NO14の化合物であり、これには[2aR−[2aα,4β,4αβ,6β,9α(αR*,βS*),11α,12α,12aα,12bα]]−β−(ベンゾイルアミノ)−α−ヒドロキシベンゼンプロパン酸6,12b−ビス(アセチルオキシ)−12−(ベンゾイルオキシ)−2a,3,4,4a,5,6,9,10,11,12,12a,12b−ドデカヒドロ−4,11−ジヒドロキシ−4a,8,13,13−テトラメチル−5−オキソ−7,11−メタノ−1H−シクロデカ[3,4]ベンズ[1,2−b]オキシエト−9−イルエステルが含まれる。パクリタキセルおよびドセタキセルはそれぞれ特定のタイプの腫瘍に対し他の薬剤より有効であり、また本発明の実施に際しては、特定のタキソイドに対しより感受性である腫瘍がこの水溶性タキソイド結合体で処置されると解釈される。
パクリタキセルを水溶性の金属キレート剤に結合させる態様においては、組成物はキレートした金属イオンをさらに含むであろう。本発明のキレートした金属イオンは、アルミニウム、ホウ素、カルシウム、クロム、コバルト、銅、ジスプロシウム、エルビウム、ユーロピウム、ガドリニウム、ガリウム、ゲルマニウム、ホルミウム、インジウム、イリジウム、鉄、マグネシウム、マンガン、ニッケル、白金、レニウム、ルビジウム、ルテニウム、サマリウム、ナトリウム、テクネチウム、タリウム、スズ、イットリウムまたは亜鉛のうちいずれかのイオン形であってもよい。特定の好ましい態様においては、キレートした金属イオンは上記に挙げた金属のうちいずれかの放射性核種、すなわち放射性同位体であろう。好ましい放射性核種には67Ga、68Ga、111In、99mTc、99Y、114mIn、および193mPtが含まれるが、これらに限定されない。
本発明を実施する際に用いられる好ましい水溶性キレート剤には以下のものが含まれるが、これらに限定されない:ジエチレントリアミン五酢酸(DTPA)、エチレンジアミン四酢酸(EDTA)、1,4,7,10−テトラアザシクロドデカン−N,N′,N″,N′″−テトラアセテート(DOTA)、テトラアザシクロテトラデカン−N,N′,N″,N′″−四酢酸(TETA)、ヒドロキシエチリデンジホスホネート(HEDP)、ジメルカプトコハク酸(DMSA)、ジエチレントリアミンテトラメチレンホスホン酸(DTTP)、および1−(p−アミノベンジル)−DTPA、1,6−ジアミノヘキサン−N,N′,N″,N′″−四酢酸、DPDP、およびエチレンビス(オキシエチレンニトリロ)−四酢酸。DTPAが最も好ましい。本発明の好ましい態様は、111In−DTPA−パクリタキセルを含む組成物でもありうる。
本発明の特定の態様においては、パクリタキセルまたはドセタキセルを水溶性ポリマーに結合させ、好ましくはポリマーはパクリタキセルまたはドセタキセルの2′もしくは7−ヒドロキシルまたは両方に結合する。したがって前記のように、薬物とパクリタキセルのC2′−ヒドロキシルとの結合のために官能基を用いる場合、有効薬物がポリマー性キャリヤーから確実に放出されるように、分解性結合(この場合はエステル)を用いる。好ましいポリマーには以下のものが含まれるが、これらに限定されない:ポリエチレングリコール、ポリ(l−グルタミン酸)、ポリ(d−グルタミン酸)、ポリ(dl−グルタミン酸)、ポリ(l−アスパラギン酸)、ポリ(d−アスパラギン酸)、ポリ(dl−アスパラギン酸)、ポリエチレングリコール、上記に挙げたポリアミノ酸とポリエチレングリコールのコポリマー、ポリカプロラクトン、ポリグリコール酸およびポリ酢酸、ならびにポリアクリル酸、ポリ(2−ヒドロキシエチル−1−グルタミン)、カルボキシメチルデキストラン、ヒアルロン酸、ヒト血清アルブミン、およびアルギン酸。ポリエチレングリコール、ポリアスパラギン酸類およびポリグルタミン酸類が特に好ましい。本発明のポリグルタミン酸類またはポリアスパラギン酸類は、好ましくは約5,000〜約100,000の分子量をもち、約20,000〜約80,000、さらに約30,000〜約60,000がより好ましい。
本発明の組成物を下記の薬剤学的に許容できるキャリヤー溶液に分散させてもよいと解釈される。そのような溶液は滅菌され、または無菌であり、水、緩衝剤、等張化剤、そのほか、対象動物またはヒトに投与した際にアレルギー反応その他の有害な反応を起さない。当業者に既知の成分を含むことができる。したがって本発明は、高分子量水溶性ポリマーまたはキレート剤に結合したパクリタキセルまたはドセタキセルなどの化学療法薬または抗癌薬を含む薬剤組成物であると記載することもできる。この薬剤組成物は、ポリエチレングリコール、ポリグルタミン酸類、ポリアスパラギン酸類、またはキレート剤、好ましくはDTPAを含有することができる。抗腫瘍薬または薬物として放射性核種を使用でき、また本発明の薬剤組成物は療法に有効な量のキレートした放射性同位体を含有してもよいと解釈される。
特定の態様においては、本発明は腫瘍組織によるパクリタキセルまたはドセタキセルなどの化学療法薬の取込みを測定する方法であると記載することができる。この方法は、キレートした金属イオンを含む、薬物と金属キレート剤の結合体を調製し、腫瘍組織をこの組成物と接触させ、腫瘍組織中のキレートした金属イオン存在を測定することを含みうる。腫瘍組織中にキレートした金属イオンが存在することは、その腫瘍組織が取り込んだことを示す。キレートした金属イオンは放射性核種であってもよく、検出がシンチグラフによるものであってもよい。腫瘍組織は対象動物またはヒトの体内にあってもよく、その場合組成物はその対象に投与される。
本発明は、特定の態様においては対象における癌を処置する方法であると記載することもできる。この方法は、水溶性ポリマーまたはキレート剤に結合させ、かつ薬剤学的に許容できる溶液に分散したパクリタキセルまたはドセタキセルなどの化学療法薬を含む組成物を調製し、この溶液を腫瘍の処置に有効な量で対象に投与することを含む。好ましい組成物は、ポリグルタミン酸類またはポリアスパラギン酸類、より好ましくはポリ(l−グルタミン酸)またはポリ(l−アスパラギン酸)に結合したパクリタキセルまたはドセタキセルを含む。本発明の組成物は、結合していないタキソイドが有効であることが示されているいかなるタイプの癌に対しても有効であると解釈される。これには胸部癌、卵巣癌、悪性黒色腫、肺癌、胃癌、結腸癌、頭頚部癌または白血病が含まれるが、これらに限定されない。
腫瘍の処置方法には、療法に有効な量の薬物またはプロドラッグを投与する前に、腫瘍へのパクリタキセルまたはドセタキセルの取込みをある程度推測することが含まれてもよい。この方法には、パクリタキセル−キレート剤−キレートした金属を対象に投与し、腫瘍中に検出する、前記の造影法がいずれも含まれる。この工程は、薬物が腫瘍に進入しない場合はその腫瘍はDTPA−パクリタキセル療法に反応すると期待されないであろうということを判定する、経費的に有効な方法を提供する。造影法を利用してパクリタキセルに対する反応を推測し、反応しないと思われる患者を確認することができれば、その患者にとって多大な出費と重大な時間を節約できると考えられる。妥当な量の化学療法薬が腫瘍中に蓄積しなければ、その薬剤に対する腫瘍の反応は比較的小さいと予想される。
特定の態様において本発明は、対象の身体画像を得る方法であると記載できる。身体画像は、パクリタキセル−キレート剤結合体にキレートした有効量の放射性金属イオンを対象に投与し、放射性金属のシンチグラフ信号を測定して画像を得ることにより得られる。
特定の広義の態様において本発明は、全身性自己免疫疾患の少なくとも1つの症状を軽減する方法であって、全身性自己免疫疾患を伴う対象に、ポリ−l−グルタミン酸またはポリ−l−アスパラギン酸に結合したパクリタキセルまたはドセタキセルを含む有効量の組成物を投与することを含む方法であると記載することもできる。本発明の開示に関して特に重要なものは、標準的クレモフォア配合物(米国特許第5,583,153号)で投与したときタキソールに反応することが若干の症例で知られている、慢性関節リウマチの処置である。腫瘍の処置と同様に、本発明の水溶性タキソイドの有効性は水溶性部分への結合によって低下することはなく、この水溶性プロドラッグは有効薬物を一定期間にわたって放出する制御放出配合物として作用しうると考えられる。したがって本発明の組成物は、たとえば慢性関節リウマチに対しタキソールと同程度に有効であると期待され、ただし制御放出という利点をもたらすであろう。また本発明のタキソイド組成物は、他の薬物、たとえば血管形成阻害薬(AGM−1470)(Oliver et al.,1994)またはメトトレキセートと併用できると解釈される。
パクリタキセルがバルーン血管形成術後の再狭窄をも阻止するという知見は、本発明の水溶性パクリタキセルおよびドセタキセルが直接的な非経口投与より多様な用途をもつことを示す(国際特許出願公開第WO 9625176号)。たとえば、水溶性パクリタキセルは、植え込み型医療器具、たとえばチューブ、シャント、カテーテル、人工インプラント、ピン、電気的インプラント(たとえばペースメーカー)、特に動脈または静脈ステント(バルーン膨張式ステントを含む)のコーティングとして有用であろう。これらの態様においては、水溶性パクリタキセルを植え込み型医療器具に結合させてもよく、あるいは水溶性パクリタキセルを植え込み型器具の表面に受動的に付着させてもよい。たとえば、ステントをポリマー−薬物溶液に浸漬するか、またはステントにそのような溶液を吹き付けることにより、ステントをポリマー−薬物結合体でコーティングできる。植え込み型器具に適した材料は、生体適合性かつ無毒性でなければならず、ニッケル−チタン合金、鋼などの金属、または生体適合性ポリマー、ヒドロゲル、ポリウレタン、ポリエチレン、エチレン−酢酸ビニルコポリマーなどから選択できる。好ましい態様においては、水溶性パクリタキセル、特にPG−パクリタキセル結合体をバルーン血管形成術後の動脈または静脈に挿入するためのステントにコーティングする。したがって本発明は特定の広義の態様においては、血管外傷を受けた後の動脈再狭窄または動脈閉塞を阻止する方法であって、その必要がある対象に、ポリ−l−グルタミン酸またはポリ−l−アスパラギン酸に結合したパクリタキセルまたはドセタキセルを含む組成物を投与することを含む方法であると記載することができる。本方法の実施に際し、対象はたとえば冠動脈バイパス形成術、血管外科処置、臓器移植、または冠動脈もしくは動脈形成術を受けた患者であり、前記組成物を直接に静脈内投与するか、またはステントにコーティングし、このステントを血管外傷部位に植え込むことができる。
したがって本発明の1態様は、平滑筋細胞の増殖を阻害するのに有効な量の、ポリグルタミン酸類またはポリアスパラギン酸類に結合したパクリタキセルまたはドセタキセルを含む組成物で器具をコーティングした、植え込み型医療器具である。好ましい器具は前記の本発明組成物でコーティングしたステントであり、特に好ましい態様においてステントはバルーン血管形成術後に使用するのに適したものであり、コーティングは再狭窄を阻止するのに有効である。
特定の好ましい態様において本発明は、パクリタキセルの2′もしくは7−ヒドロキシルまたは両方に結合したポリグルタミン酸類を含む組成物、あるいはパクリタキセルの2′もしくは7−ヒドロキシルまたは両方に結合したポリアスパラギン酸類を含む組成物であると記載することができる。本明細書において用いる“ポリグルタミン酸”または“ポリグルタミン酸類”という用語には、ポリ(l−グルタミン酸)、ポリ(d−グルタミン酸)およびポリ(dl−グルタミン酸)が含まれ、“ポリアスパラギン酸”または“ポリアスパラギン酸類”という用語には、ポリ(l−アスパラギン酸)、ポリ(d−アスパラギン酸)およびポリ(dl−アスパラギン酸)が含まれる。
別途定義しない限り、本明細書中で用いる技術用語および科学用語はすべて、本発明の属する技術分野の当業者が一般に理解しているものと同じ意味をもつ。本発明の実施または試験に際し本明細書に記載したものと類似または均等であるいかなる方法および材料をも使用できるが、好ましい方法および材料を以下に記載する。
【図面の簡単な説明】
図1A.パクリタキセル、PEG−パクリタキセルおよびDTPA−パクリタキセルの化学構造。
図1B.PG−パクリタキセルの化学構造とその製造のための反応式。
図2.パクリタキセル、PEG−パクリタキセルおよびDTPA−パクリタキセルがB16黒色腫細胞の増殖に及ぼす影響。
図3.DTPA−パクリタキセルがMCa−4乳房腫瘍に及ぼす抗腫瘍効果。
図4.パクリタキセル、DTPA−パクリタキセルおよびPEG−パクリタキセルで処置した後に腫瘍直径12mmに達する中央時間(日)。
図5.111In−DTPA−パクリタキセルおよび111In−DTPAを静脈注射した後のMCa−4腫瘍保有マウスのガンマ−シンチグラフ。矢印は腫瘍を示す。
図6.PBS(pH7.4)中、37℃で測定したPG−パクリタキセルの加水分解。−□−は可溶性PGに結合して残存するパクリタキセルの%を表し、−△−は放出されたパクリタキセルの%を表し、−○−は生成した代謝産物−1の%を表す。
図7A.PG−パクリタキセルがネズミ胸部腫瘍(13762F)を保有するラットに及ぼす抗腫瘍効果。−□−はPG(0.3g/kg)1回静脈投与に対する反応を表し、−△−はパクリタキセル(40mg/kg)に対する反応を表し、−○−はPG−パクリタキセル(パクリタキセル60mg相当/kg)に対する反応を表す。
図7B.PG−パクリタキセルおよびパクリタキセルがOCa−1腫瘍を保有するマウスに及ぼす抗腫瘍効果。−□−はPG(0.8g/kg)1回静脈投与に対する反応を表し、−△−はパクリタキセル(80mg/kg)に対する反応を表し、−●−はPG−パクリタキセル(パクリタキセル80mg相当/kg)に対する反応を表し、−○−はPG−パクリタキセル(パクリタキセル160mg相当/kg)に対する反応を表す。
図7C.PG−パクリタキセルがMCa−4乳癌腫を保有するマウスに及ぼす抗腫瘍効果。−□−は食塩液1回静脈投与に対する反応を表し、−△−はPG(0.6mg/kg)1回静脈投与に対する反応を表し、−◆−はPG−パクリタキセル(40mg/kg)に対する反応を表し、−◇−はPG−パクリタキセル(パクリタキセル60mg相当/kg)に対する反応を表し、−○−はPG−パクリタキセル(120mg/kg)に対する反応を表す。
図7D.PG−パクリタキセルがマウスの軟組織肉腫(FSa−II)に及ぼす抗腫瘍効果。−□−は食塩液1回静脈投与に対する反応を表し、−◇−はPG(0.8mg/kg)1回静脈投与に対する反応を表し、−○−はパクリタキセル(80mg/kg)に対する反応を表し、−△−はPG−パクリタキセル(パクリタキセル160mg相当/kg)に対する反応を表す。
図7E.PG−パクリタキセルがマウスの同系肝癌腫(HCa−1)に及ぼす抗腫瘍効果。−□−は食塩液1回静脈投与に対する反応を表し、--△--はPG(0.8mg/kg)1回静脈投与に対する反応を表し、−○−はPG−パクリタキセル(80mg/kg)に対する反応を表し、・・△・・はPG−パクリタキセル(パクリタキセル160mg相当/kg)に対する反応を表す。
図8.リン酸緩衝液(pH7.4)中におけるPEG−パクリタキセルからのパクリタキセルの放出プロフィル。パクリタキセル,−X−;PEG−パクリタキセル,−○−。
図9.PEG−パクリタキセルがMCa−4乳房腫瘍に及ぼす抗腫瘍効果。−□−はPEGの食塩溶液(60mg/ml)1回静脈注射に対する反応を表し、−■−はクレモフォア/アルコールビヒクルに対する反応を表し、−○−は40mg/kg(体重)のパクリタキセル1回投与を表し、−●−はパクリタキセル40mg相当/kg(体重)のPEG−パクリタキセルを表す。
本発明は、パクリタキセルおよびドセタキセルの新規な水溶性配合物、ならびに腫瘍細胞に対するインビボでのこれらの配合物の意外な効果を見出したことに基づく。卵巣癌(OCa−I)を保有するマウスに投与したポリ(l−グルタミン酸)結合−パクリタキセル(PG−パクリタキセル)が、PGを含まない同量のパクリタキセルと比較して有意に腫瘍の増殖を遅延させた。パクリタキセル単独、または遊離パクリタキセルとPGの組合わせは、最初は腫瘍の増殖遅延を示したが、10日後には非処置対照群に匹敵する水準にまで腫瘍が再増殖した。さらに、PG−パクリタキセル結合体の最大耐容量(MTD)(パクリタキセル160mg相当/kg)では、腫瘍の増殖は完全に抑制され、腫瘍が収縮し、処置後2カ月間観察したマウスが腫瘍のない状態を維持した(MTD:1回静脈注射後2週間以内に生じた体重減少が15%未満である最大用量と定義)。平行した試験で、ラット乳腺癌(13762F)を伴うラットにおいてPG−パクリタキセルの抗腫瘍活性を調べた。この場合も、パクリタキセル40〜60mg相当/kgのPG−パクリタキセルで完全な腫瘍根絶がみられた。これらの意外な結果は、ポリマー−薬物結合体であるPG−パクリタキセルがマウスとラットの両方において1回静脈注射後に、十分に樹立した充実性腫瘍の根絶に成功したことを証明する。さらに、pH7.4で40日の半減期をもつPG−パクリタキセルは、知られているうちでは最も安定な水溶性パクリタキセル誘導体のひとつである(Deutsch et al.,1989;Mathew et al.,1992;Zhao and Kingston,1991)。
DTPA−パクリタキセルがB16黒色腫細胞系を用いたインビトロ抗腫瘍効力検定でパクリタキセルと同程度に有効であることも、本明細書に示される。DTPA−パクリタキセルは、40mg/kg(体重)量の1回注射で、MCa−4乳房腫瘍に対しパクリタキセルと比較して抗腫瘍効果に有意差を示さなかった。さらに、111インジウム標識DTPA−パクリタキセルは、ガンマシンチグラフィーにより証明されるように、MCa−4腫瘍に蓄積することが示された。これは、本発明のキレート剤結合した抗腫瘍薬が腫瘍造影に有用かつ有効であることを証明する。
パクリタキセルに基づく抗癌療法の効果を改善するために水溶性パクリタキセルが提案され、本発明の新規な化合物および方法は、水溶性かつ制御放出性のパクリタキセルから誘導された組成物を提供することにより、従来の方法および組成物を越える著しい前進をもたらす。このような組成物では、従来のパクリタキセル組成物にみられた副作用をもたらす溶剤が不必要になる。そのほか、放射性標識パクリタキセルは抗腫瘍活性を保持することが示され、これは腫瘍の造影にも有用であろう。さらに本発明によれば、パクリタキセルが特定の腫瘍に取り込まれるか否かを、シンチグラフィー、単光子放射型コンピューター断層撮影法(SPECT)またはポジトロン放射型コンピューター断層撮影法(PET)により測定できる。次いでこの測定を利用して、抗腫瘍療法の効率を判定できる。この情報は、医師がパクリタキセル療法を行う患者を選択する指針を得るのに有用であろう。
パクリタキセルは2方法で水溶性にすることができる:薬物キャリヤーとして作用する水溶性ポリマーにパクリタキセルを結合させる方法、および水溶性キレート剤で誘導体にする方法。後者の方法は、核造影試験および/または放射線療法のために放射性核種(たとえば111In、90Y、166Ho、68Ga、99mTc)で標識する機会をも提供する。パクリタキセル、ポリエチレングリコール−パクリタキセル(PEG−パクリタキセル)、ポリグルタミン酸−パクリタキセル(PG−パクリタキセル)およびジエチレントリアミン五酢酸−パクリタキセル(DTPA−パクリタキセル)の構造を図1に示す。
本発明の特定の態様においては、DTPA−パクリタキセルまたは他のパクリタキセル−キレート剤結合体、たとえばEDTA−パクリタキセル、DTTP−パクリタキセルまたはDOTA−パクリタキセルを、水溶性塩(ナトリウム塩、カリウム塩、テトラブチルアンモニウム塩、カルシウム塩、鉄(III)塩など)の形で製造できる。これらの塩類は、腫瘍処置のための療法薬として有用であろう。第2に、DTPA−パクリタキセルまたは他のパクリタキセル−キレート剤は、診断薬として有用であり、これらを111Inまたは99mTcのような放射性核種で標識すると、核造影法と組み合わせて特定の腫瘍を検知するのに利用できる。パクリタキセル(タキソール)およびドセタキセル(タキソテレ)のほか、他のタキサン誘導体を本発明の組成物および方法に適合させることができ、このような組成物および方法のすべてが請求の範囲に含まれると解釈される。
DTPA−パクリタキセルの毒性試験、薬物動態、および組織内分布は、マウスにおいて1回静脈注射により観察したDTPA−パクリタキセルのLD50(50%致死量)が約110mg/kg(体重)であることを示した。パクリタキセルの溶解度が限られていることによる用量−容量制限があり、かつ静脈内投与にはビヒクル毒性が伴うので、パクリタキセルとの直接比較を行うのは難しい。しかし化学療法の担当者は、本発明の開示を考慮して、臨床試験で対象者に用いるための有効量および最大耐容量を決定するであろう。
本発明の特定の態様においては、ポリマー−パクリタキセル結合体でコーティングしたステントを用いて、再狭窄、すなわちバルーン血管形成術後の動脈閉塞を防止することができる。バルーン膨張式ステントを冠動脈血管形成術に用いた臨床試験での最近の結果は、標準的バルーン血管形成術と比較して、開存性および再狭窄減少において有意の利点を示した(Serruys et al.,1994)。対損傷反応仮説(response-to-injury hypothesis)によれば、細胞増殖に伴って血管内膜新生(neointima formation)が起きる。現在、自然発症性および進行性アテローム性動脈硬化症の両方とも血管病変に至る臨床経過は平滑筋細胞(SMC)増殖であるというのが、一般に支持されている考えである(Phillips-Hughes and Kandarpa,1996)。動脈損傷後のSMC表現型増殖は新生細胞のものと似ているので、抗癌薬が血管内膜新生によるSMC蓄積を阻止するのに有用となる可能性がある。したがって、これらの薬剤を長期間にわたって十分な濃度で放出しうるポリマー結合−抗増殖薬でコーティングしたステントは、過形成した血管内膜および中膜が内腔中へ増殖侵入するのを阻止し、これにより再狭窄を減少させるであろう。
パクリタキセルはマウスモデルでコラーゲン誘発性関節炎を抑制することが示されているので(Oliver et al.,1994)、本発明の配合物は自己免疫疾患および/または炎症性疾患、たとえば慢性関節リウマチの処置にも有用であると考えられる。パクリタキセルがチューブリンに結合すると、安定な微小管ポリマーの方へ平衡が移行し、この薬物はG2有糸分裂後期の細胞をブロックすることにより真核細胞増殖の強力な阻害薬となる。パクリタキセルによる関節炎抑制には幾つかの機構が関与していると思われる。たとえば、パクリタキセルの位相特異性細胞毒性は急速に増殖している炎症細胞に作用するであろう。さらにパクリタキセルは、細胞の有糸分裂、遊走、化学走性、細胞内輸送および好中性H22を産生を阻害する。さらにパクリタキセルは、内皮細胞遊走協調を遮断することにより、抗血管形成活性をもつであろう(Oliver et al.,1994)。したがって本発明のポリマー結合プロドラッグは、慢性関節リウマチの処置に際し遊離パクリタキセルと同程度に有用であると考えられる。本明細書に開示したポリマー結合配合物はまた、薬物の遅延放出または持続放出および溶解度増大という利点をもたらす。本発明の配合物を関節領域に直接に注入し、または植え込むのも、関節炎処置の1態様である。
注射用に適したパクリタキセルまたはドセタキセルの製剤には、無菌の水性液剤または分散液剤、および無菌の液剤または分散液剤を調製するための無菌散剤が含まれる。注射用としてはすべての場合、製剤は無菌かつ液体でなければならない。それは製造および貯蔵の条件下で安定でなければならず、かつ細菌や真菌などの微生物の汚染作用に対し防腐されていなければならない。キャリヤーは溶剤または分散媒であってもよく、たとえば水、エタノール、ポリオール(たとえばグリセリロール、プロピレングリコールおよび液状ポリエチレングリコールなど)、その適切な混合物、および植物油が含まれる。微生物の作用の防止は、種々の抗菌薬および抗真菌薬、たとえばパラベン類、クロロブタノール、フェノール、ソルビン酸、チメロサールなどにより行うことができる。多くの場合、等張化剤、たとえば糖類または塩化ナトリウムを含有することが好ましいであろう。
無菌の注射液は、必要量の有効成分を、前記に挙げた他の種々の成分が含まれた適切な溶剤に含有させ、次いで無菌的にろ過することにより調製される。一般に分液散剤は、滅菌した種々の有効成分を、基本的分散媒および前記に挙げたものから選択される他の必要成分が含まれた無菌のビヒクルに含有させることにより調製される。無菌注射液を調製するための無菌散剤の場合、好ましい調製方法は予め無菌的にろ過したその溶液からの真空乾燥法および凍結乾燥法であり、これにより有効成分および他の目的成分を含む散剤が得られる。
本明細書中で用いる“薬剤学的に許容しうるキャリヤー”には、溶剤、分散媒、コーティング、抗菌薬および抗真菌薬、ならびに等張化剤などがいずれもすべて含まれる。薬剤有効物質に対しこのような媒質および薬剤を用いることは、当技術分野で周知である。ただし慣用される媒質または薬剤が有効成分と不適合である場合、それを療法用組成物中に使用することを考慮する。補助的な有効成分を組成物に含有させてもよい。
“薬剤学的に許容しうる”という句は、動物またはヒトに投与した場合にアレルギー反応またはこれに類する有害な反応を生じない分子形態および組成物をも表す。
たとえば水性液剤中において非経口投与するためには、液剤は必要ならば適切に緩衝化すべきであり、液体希釈剤は十分量の食塩水またはグルコースでまず等張にされる。これらの水性液剤は静脈内および腹腔内投与に特に適している。これに関して使用できる無菌の水性媒質は、本発明の開示を考慮すれば当業者に自明であろう。
以下の実施例は本発明の好ましい態様を示すために提示される。以下の実施例に開示した技術は、本発明の実施に際して良好に機能することを本発明者らが見出した技術であり、したがって本発明の好ましい実施態様をなすとみなしうるのは自明である。ただし本発明の開示を考慮して、提示した具体的態様において多くの変更を行い、なおかつ本発明の精神および範囲から逸脱することなく同様な、または類似の結果を得ることができるのは、当業者には自明であろう。
実施例1
DTPA−パクリタキセル
DTPA−パクリタキセルの合成:
無水ジエチレントリアミン五酢酸(DTPA A)(210mg、0.585mmol)を、パクリタキセル(100mg、0.117mmol)の乾燥DMF(2.2ml)溶液に0℃で添加した。反応混液を4℃で一晩撹拌した。懸濁液を濾過し(0.2μmミリポアフィルター)、未反応の無水DTPAを除去した。濾液を蒸留水に注入し、4℃で20分間撹拌し、沈殿物を回収した。C18シリカゲルプレートを用いた分離用TLCをアセトニトリル/水(1:1)で展開して、粗生成物を精製した。パクリタキセルのRf値は0.34であった。パクリタキセルの上部にあるRf値0.65から0.75のバンドをかき取り、アセトニトリル/水(1:1)混液で溶出し、溶媒を除去して15mgのDTPA−パクリタキセルを生成物として得た(収率10.4%):mp;>226℃分解。UVスペクトル(ナトリウム塩の水溶液)は、パクリタキセルにも特徴的である228nmに最大吸収を示した。マススペクトル;(FAB)m/e 1229(M+H)+、1251(M+Na)、1267(M+K)。1H NM Rスペクトル(DMSO−d6)では、DTPAのNCH2CH2Nの共鳴が複雑な一連のシグナルとしてδ2.71−2.96ppmに、そしてCH2COOHの共鳴が多重線としてδ3.42ppmに、それぞれ観測された。パクリタキセルの4.10ppmにあるC7−Hの共鳴シグナルは5.51ppmにシフトしたが、これは7−位がエステル化されていることを示唆する。残りのスペクトルはパクリタキセルの構造と矛盾しないものであった。
DTPA−パクリタキセルのナトリウム塩は、DTPA−パクリタキセルのエタノール溶液を等量の0.05M NaHCO3に添加し、凍結乾燥をして水溶性の固形粉末(溶解度>20mgパクリタキセル相当量/ml)を生成することによって得られた。
DTPA−パクリタキセルの加水分解に対する安定性:
DTPA−パクリタキセルの加水分解に対する安定性の検討は促進条件下で実施した。すなわち、1mgのDTPA−パクリタキセルを1mlの0.5M NaHCO3水溶液(pH9.3)に溶解し、HPLCで分析した。HPLCの装置は、Waters社150x3.9(内径)mmノバパック(Nova-Pac)カラム(C18 4μmシリカゲルを充填したもの)、Perkin-Elmer社イソクラティックLCポンプ、PE社ネルソン900シリーズインターフェース、Spectra-Physics社UV−Vis検出器、およびデータステーションからなる。溶離液(アセトニトリル/メタノール/0.02M酢酸アンモニウム=4:1:5)を1.0ml/minで流し、UV検出器(228nm)で検出した。DTPA−パクリタキセルおよびパクリタキセルの保持時間は、それぞれ1.38および8.83分であった。ピーク面積を定量し、標準曲線と比較して、DTPA−パクリタキセルおよびパクリタキセルの濃度を測定した。DTPA−パクリタキセルの0.5M NaHCO3水溶液中での半減期は、室温で約16日と推定される。
in vitroにおけるマウスのB16黒色腫細胞の増殖に対するDTPA−パクリタキセルの効果:
細胞は2.5x104細胞/mlの濃度で24穴プレートに播種し、10%の子牛血清を含有する、ダルベッコの修飾型最少必須培養液(Dulbecco modified minimal essential medium)(DEM)およびF12培養液(50:50)中で、5.5%のCO2を含有する97%に加湿した大気中、37℃で24時間培養した。その後培養液を、5x10-9Mから75x10-9Mの濃度域のパクリタキセルもしくはDTPA−パクリタキセルを含有する新鮮な培養液に交換した。40時間後、トリプシン処理により細胞を遊離させ、コールター計数器で計測した。細胞培養液中のDMSO(パクリタキセルを溶解するために使用)、および、0.05Mの炭酸水素ナトリウム溶液(DTPA−パクリタキセルを溶解するために使用)の最終濃度は0.01%より低かった。対照実験で測定したところ、この量の溶媒は、細胞増殖にいかなる影響も及ぼさなかった。
B16黒色腫細胞の増殖に対するDTPA−パクリタキセルの影響を図2に示す。種々の濃度で40時間培養した後、DTPA−パクリタキセルおよびパクリタキセルの細胞障害性を比較した。パクリタキセルおよびDTPA−パクリタキセルのIC50値は、それぞれ15nMおよび7.5nMである。
乳ガン(MCa−4)腫瘍モデルに対する抗腫瘍効果:
メスのC3Hf/Kamマウスの右腿の筋肉中に、乳ガン(MCa−4)を接種した(5x105細胞/マウス)。腫瘍が8mmに達した時点で(約2週間)、体重1kgあたり10、20、および、40mgパクリタキセル相当量のパクリタキセルもしくはDTPA−パクリタキセルを単一投与(single dose)した。対照実験には、生理食塩水、および、無水アルコール/クレモフォア(Chremophor)(50/50)を生理食塩水で希釈した溶液(1:4)を使用した。腫瘍の増殖は、3つの直交する腫瘍の直径を計測することにより、経日的に測定した。腫瘍の大きさが直径12mmに達した時点で、腫瘍の増殖の遅延を算定した。マウスは、腫瘍が約15mmに達した時点で殺した。
腫瘍の増殖曲線を図3に示す。対照実験に比較し、パクリタキセルおよびDTPA−パクリタキセルは共に、40mg/kgの投与量で抗腫瘍効果を示した。さらにデータを分析して、腫瘍が直径12mmに達するのに要する平均日数も測定した。統計学的な解析により、DTPA−パクリタキセルは、40mg/kgの投与量で、生理食塩水で処理した対照に比較して有意に腫瘍の増殖を遅延することが明らかとなった(p<0.01)。腫瘍が直径12mmに達するのに要する平均時間は、パクリタキセルで9.4日であるのに比較し、DTPA−パクリタキセルでは12.1日であった(図4)。
DTPA−パクリタキセルの111In標識:
0.6M酢酸ナトリウム緩衝液(pH5.3)40μl、0.06Mクエン酸ナトリウム緩衝液(pH5.5)40μl、DTPA−パクリタキセルのエタノール溶液(2% W/V)20μl、および、酢酸ナトリウム緩衝液(pH5.5)に溶解した111InCl3溶液(1.0mCi)20μlを、2mlのV−バイアルに逐次添加した。室温で30分間インキュベートした後、移動相として生理食塩水、次いでエタノールを用いたC18セップパック(Sep-Pac)カートリッジに反応混液を通過させ、標識された111In−DTPA−パクリタキセルを精製した。遊離の111In−DTPA(<3%)は生理食塩水によって除去され、111In−DTPA−パクリタキセルはエタノール洗浄によって回収された。エタノールを窒素ガス下で蒸発させ、標識された生成物を生理食塩水に再溶解した。放射化学的収率;84%。
111In−DTPA−パクリタキセルの分析:
HPLCを用いて反応混液を分析し、111In−DTPA−パクリタキセルの純度を分析した。装置はLDCバイナリーポンプ、Waters社100x8.0mm(内径)カラム(ODS 5μmシリカゲルを充填したもの)からなる。カラムは、水およびエタノールのグラジエント混液(15分間で、メタノール0%から85%へのグラジエント)を用いて、流速1ml/minで溶出した。グラジエントの系は、NaI結晶検出器およびSpectra-Physics社UV/Vis検出器で測定した。HPLCの分析により、セップパックカートリッジによる精製で、保持時間が2.7分である111In−DTPAのほとんどが除去されることが明らかとなった。111In−DTPAは、DTPA−パクリタキセル中の痕跡量の汚染物質であるDTPAから誘導されたものと考えられる。111In−DTPA−パクリタキセルのラジオクロマトグラムは、そのUVクロマトグラムと相関関係があり、12.3分のピークが標的化合物であることを示唆した。同様のクロマトグラフィーの条件下で、パクリタキセルの保持時間は17.1分であった。最終調製品の放射化学的な純度は、HPLC分析による測定で、90%であった。
全身のシンチグラフィー:
メスのC3Hf/Kamマウスの右腿の筋肉中に乳ガン(MCa−4)を接種した(5x105細胞)。腫瘍が直径12mmに達した時点で、マウスを2つの群に分離した。I群では、ペントバルビタールナトリウムを腹膜内に注射してマウスに麻酔をかけ、次いで111In−DTPA−パクリタキセル(100−200mCi)を尾部の静脈を介して注入した。中間エネルギーコリメーター(medium energy collimator)を搭載したγ−カメラをマウス(群あたり3匹)の上部に設置した。注射後、5、30、60、120、240分、および、24時間における、一連の5分の捕捉情報(acquisitions)を回収した。II群では、マウスに対照として111In−DTPAを注射した以外は、同様の方法を行った。図5に、111In−DTPAおよび111In−DTPA−パクリタキセルを注射したマウスのガンマ−シンチグラフを示す。111In−DTPAは、血漿から速やかに除去され、腎臓中に最小限しか停留せずに尿中に迅速かつ高度に排泄され、腫瘍、肝臓、腸、および、他の臓器もしくは身体の部位にごくわずかしか停留しないという特徴があった。これと対照的に、111In−DTPA−パクリタキセルはパクリタキセルと類似した薬理学的なプロフィールを示した(Eisemanら,1994)。脳内の放射能はごくわずかであった。肝臓および腎臓は最大の組織:血漿比を有する。放射能で標識したDTPA−パクリタキセルもしくはその代謝物の肝胆汁性の排泄は、薬剤が血液中から除去される主な経路の一つであった。パクリタキセルとは異なり、有意な量の111In−DTPA−パクリタキセルが腎臓を通しても排泄されたが、腎臓はパクリタキセルの除去では小さな役割を果たすに過ぎなかった。腫瘍は111In−DTPA−パクリタキセルを有意に取り込んだ。これらの結果から、111In−DTPA−パクリタキセルによる腫瘍の検出、および、111In−DTPA−パクリタキセルの腫瘍への取り込みの定量が可能であり、さらに、パクリタキセル治療の患者を選択するために111In−DTPA−パクリタキセルを使用してもよいことが明らかになった。
実施例2
ポリグルタミン酸−パクリタキセル
本実施例で、パクリタキセルの、水溶性ポリマー、ポリ1−グルタミン酸(PG)への結合について記載する。薬剤のキャリアーとして使用される水溶性ポリマーの電位は十分に安定している(Kopecek,1990;MaedaおよびMatsumura,1989)。薬剤−ポリマー結合体は、他の不溶性の薬剤を可溶化する能力に加え、薬剤の遊離を制御するために、徐放性デポ(slow-release depot)としての機能も果たす。
PG−パクリタキセルの合成:
PGは、リソソーム酵素による速やかな分解が可能であり、血漿中で安定であり、さらに、薬剤に付着するための官能基を十分に含有するので、パクリタキセルのキャリアーとして選択した。アドリアマイシン(Van Heeswijkら,1985;Hoesら,1985)、シクロホスファミド(Hiranoら,1979)、およびAra-C(Katoら,1984)を含む抗腫瘍剤がPGに結合されてきた。
PGのナトリウム塩(MW 34K、Sigma社、0.35g)を水に溶解した。0.2M HClを用いて水溶液のpHを2に調整した。沈殿物を回収し、蒸留水に透析し、凍結乾燥して0.29gのPGを得た。
PG(75mg、反復単位FW 170、0.44mmol)の乾燥DMF(1.5mL)溶液に、20mgのパクリタキセル(0.023mmol、モル比PG/パクリタキセル=19)、15mgのジシクロヘキシルカルボジイミド(DCC)(0.073mmol)、および痕跡量のジメチルアミノピリジン(DMAP)を添加した。反応は室温で4時間行った。薄層クロマトグラフィー(TLC、シリカ)は、パクリタキセル(Rf=0.55)が完全にポリマー結合体(Rf=0)に転換していることを示した(移動相CHCl3/MeOH=10:1)。反応混液をクロロホルムに注入した。生成した沈殿物を回収し、真空乾燥して65mのポリマー−薬剤結合体を得た。出発物質中のPGに対するパクリタキセルの重量比を変化させることにより、多様な濃度のパクリタキセルのポリマー結合体を合成することが可能である。
PG−パクリタキセル結合体のナトリウム塩は、生成物を0.5M NaHCO3に溶解して得た。PG−パクリタキセルの水溶液を蒸留水に透析し(MWCO 1,000)、低分子量の汚染物および過剰のNaHCO3塩を除去した。透析物を凍結乾燥して白色粉末88.6mgを得た。このポリマー結合体中のパクリタキセル含有量をUV(後述)で測定したところ、21%(W/W)であった。収率(ポリマー結合型のパクリタキセルへの転換率、UV);93%。単に使用するパクリタキセルのPGに対する比率を増加させることによって、より多くのパクリタキセル(35%まで)を含有するPG−パクリタキセルをこの方法で合成することが可能である。
1H−NMR(GE社モデルGN 500分光計、500MHz、D2O中):δ=7.75−7.36ppm(パクリタキセルの芳香族構成部分);δ=6.38ppm(C10−H)、5.97ppm(C13−H)、5.63および4.78ppm(C2’−H)、5.55−5.36ppm(C3’−HおよびC2−H、m)、5.10ppm(C5−H)、4.39ppm(C7−H)、4.10(C20−H)、1.97ppm(OCOCH3)、そして、1.18−1.20ppm(C−CH3)は、パクリタキセルの脂肪族成分にアサインされる。パクリタキセルの他の共鳴シグナルは、PGの共鳴シグナルのために不明確であった。4.27ppm(H−α)、2.21ppm(H−γ)、および2.04ppm(H−β)にあるPGの共鳴シグナルは、純粋なPGのスペクトルと一致する。ポリマーが結合したパクリタキセルのカップリングは、分離が不十分なため十分な精度で測定することができない。水への溶解度は>20mgパクリタキセル/mlであった。
PG−パクリタキセルの性状決定:
紫外線スペクトル(UV)は、Beckman社DU−640分光光度計(Fullerton,CA)で得た。水に溶解したポリマー結合体とメタノールに溶解した遊離の薬剤が同じモル吸光係数を有し、かつ、両者がランベルト−ベールの法則に従うと仮定して、メタノールに溶解した既知の濃度のパクリタキセルで作成した標準曲線に基づき、PGに結合したパクリタキセルの含有量をUVで測定した。(λ=228nm)。UVスペクトルに示されるように、PG−パクリタキセルはパクリタキセルに特徴的な吸収を有し、それは228nmから230nmにλシフトしていた。水に溶解したポリマー結合体(230nm)とメタノールに溶解した遊離の薬剤(228nm)が同じモル吸光を有し、かつ、両者がランベルト−ベールの法則に従うと仮定して、メタノールに溶解した既知の濃度のパクリタキセルを用いて228nmの吸収で作成した標準曲線に基づいて、PG−パクリタキセル中のパクリタキセルの濃度を定量した。
PG−パクリタキセルのゲル侵透クロマトグラフィーの検討:
PG−パクリタキセルの相対分子量はゲル侵透クロマトグラフィー(GPC)により特定した。GPCの装置は、LDCグラジエント装置で凍結した2つのLDCモデルIIIポンプ、PLゲルGPCカラム、および、Waters社990フォトダイオードアーレイ検出器からなる。溶離液(DMF)を1.0ml/minで流し、UV検出器を270nmに設定した。パクリタキセルがPGへ結合することによりPG−パクリタキセルの分子量は増加するが、このことは、GPCによる分析で保持時間がPGの6.4分からPG−パクリタキセル結合体の5.0分に移動することに示される。15−25%のパクリタキセル(W/W)を含有するPG−パクリタキセルの分子量は、45−55kDaの範囲内であると算定される。粗生成物は低分子量の汚染物質(保持時間8.0から10.0分、および11.3分)を含有したが、それらはPG−パクリタキセルをそのナトリウム塩に転換した後、透析することによって、効果的に除去できた。
PG−パクリタキセル結合体の加水分解:
PG−パクリタキセルを、pH6.0、pH7.4、およびpH9.6のリン酸緩衝液(PBS、0.01M)に溶解し、0.4mMのパクリタキセルに相当する濃度とした。溶液を緩やかに撹拌しながら37℃でインキュベートした。選定した時間毎に一定画分(100μl)を除去し、等量のメタノールと混合し、高速液体クロマトグラフィー(HPLC)で分析した。HPLCの装置は、逆相シリカカラム(ノバパック、Waters社、CA)、メタノール−水(2:1、v/v)の移動相(流速1.0ml/min)、およびフォトダイオード検出器からなる。228nmにおけるそれぞれのピークのモル吸光係数がパクリタキセルのものと等しいと仮定し、ピーク面積を、別にパクリタキセルで作成した標準曲線と比較して、それぞれのサンプル中の、PGの結合したパクリタキセル、遊離のパクリタキセル、および他の分解生成物の濃度を定量した。最小二乗法により算定した結合体の半減期は、pH6.0、pH7.4、およびpH9.6でそれぞれ132日、40日、および4日であった。HPLC分析により、PG−パクリタキセルをPBS溶液中でインキュベートすることにより、パクリタキセル、および、パクリタキセルより疎水性の高い物質(代謝物−1)を含む他の物質が生成することが明らかとなった。実際に、100時間インキュベートした後、pH7.4のPBSで回収された代謝物−1(7−エピパクリタキセルの可能性が最も高い)の量は、パクリタキセルの量より多かった(図−6)。
in vitroの検討:
pH7.4のPBS溶液から得た一定画分を、チューブリン重合アッセイで分析した。チューブリン集合反応は、PEM緩衝液(pH6.9)中、チューブリン(牛の脳、Cytoskeleton社、Boulder,CO)濃度1mg/ml(10μM)で、試験サンプル(1.0μMパクリタキセル相当量)および1.0mMのGTPの存在下、32℃で行った。チューブリン重合の後、規定時間外に340nmで溶液の吸光度を測定した。15分後、塩化カルシウム(125mM)を添加し、CaCl2−誘導による微小管の解重合を測定した。PBSに溶解したばかりのPG−パクリタキセルは生産型の微小管(producing microtubules)中で不活性であったが、3日間インキュベートしたPG−パクリタキセルの画分はチューブリン重合を引き起こした。微小管はCaCl2−誘導による解重合に対して安定であった。
細胞増殖に対するPG−パクリタキセルの効果は、テトラゾリウム塩(MTT)アッセイでも試験した(Mosmann,1983)。MCF−7細胞もしくは13762F細胞を2x104細胞/mlの濃度で96穴プレートに播種し、24時間後に種々の濃度のPG−パクリタキセル、パクリタキセル、もしくはPGで処理し、さらに72時間インキュベートした。その後MTT溶液(20μl、5mg/ml)をそれぞれの穴に添加し、4時間インキュベートした。上清を吸引し、生菌によって代謝的に生成されたMTTホルマザンを、マイクロプレート蛍光リーダーを用いて590nmの波長で測定した。3日以上の間、PG−パクリタキセルは、遊離のパクリタキセルと同程度まで、腫瘍細胞の増殖を阻害した。ヒトの胸部腫瘍の細胞系MCF−7で得られたIC50値は、パクリタキセルで0.59μM、PG−パクリタキセルで0.82μMであった(パクリタキセル当量単位で測定)。13762F細胞系に対しては、PG−パクリタキセルの感受性(IC50=1.86μM)は、パクリタキセルのそれ(IC50=6.79μM)に匹敵するものであった。両細胞系で、PG単独のIC50は共に100μMより大きかった。
in vivoにおける抗腫瘍活性:
全ての動物実験は、アンダーソン癌センター医学部門(M.D.Anderson Cancer Center)の動物施設において、施設のガイドラインに従って実施した。放射線腫瘍学実験部門(Department of Experimental Radiation Oncology)においてC3H/Kamマウスを交配し、病原体のない施設で飼育した。5x105のネズミの卵巣ガン細胞(OCa−I)、乳ガン(MCa−4)、肝臓ガン(HCa−I)、もしくは線維肉腫(FSa−II)を注射し、メスのC3H/Kamマウス(25−30g)の右腿の筋肉に孤立性腫瘍を生成した。これと平行した実験で、メスのフィッシャー344ラット(125−150g)に、0.1mlのPBSに溶解した13762F腫瘍細胞の生菌1.0x105を注射した。マウスの腫瘍が500mm3(直径10mm)に達した時点、あるいは、ラットの腫瘍が2400mm3(直径17mm)に達した時点で、処理を開始した。生理食塩水に溶解したPG−パクリタキセルもしくはクレモフォアEL媒体(vehicle)に溶解したパクリタキセルを、体重1kgあたり40から160mgパクリタキセル相当量の範囲で投与量を変化させて、単一投与した。対照実験には、生理食塩水、クレモフォア媒体(50/50クレモフォア/エタノールを生理食塩水で1:4に希釈)、PG(MW 38K)の生理食塩水溶液、およびパクリタキセル/PG混液を使用した。腫瘍の増殖は、3つの直交する腫瘍の直径を計測することにより、経日的に測定した(図7A、7B、7C、7D、および、7E)。腫瘍の体積は式(AxBxC)/2に従って算定した。マウスにおける絶対増殖遅延(absolute growth delay;AGD)は、マウスにおいて、種々の薬剤で処理した腫瘍が500から2000mm3に達するのに要する日数から、生理食塩水で処理した対照の腫瘍が500から2000mm3に達するのに要する日数を差し引いたものと定義する。表1に、ラットにおけるPGパクリタキセルの急性毒性をパクリタキセル/クレモフォアと比較して要約する。表2に、マウスのMCa−4、FSa−II、およびHCa−I腫瘍に対するPG−パクリタキセルの効果に関するデータの概要を示す。データは図7A−図7Eにも示す。

Figure 0003737518
Figure 0003737518
Figure 0003737518
実施例3
ポリエチレングリコール−パクリタキセル
ポリエチレングリコール−パクリタキセル(PEG−パクリタキセル)の合成:
合成は2段階で行った。初めに、2’−スクシニル−パクリタキセルを報告されている方法(Deutschら,1989)に従って調製した。パクリタキセル(200mg、0.23mmol)および無水コハク酸(288mg、2.22mmol)を、無水ピリジン(6ml)中、室温で3時間反応させた。その後ピリジンを留去し、残渣を水で処理し、20分間撹拌して濾過した。沈殿物をアセトンに溶解し、水を徐々に添加し、微細な結晶を回収し、180mgの2’−スクシニル−パクリタキセルを得た。PEG−パクリタキセルはN−エトキシカルボニル−2−エトキシ−1,2−ジヒドロキノリン(EEDQ)を介するカップリング反応によって合成した。2’−スクシニル−パクリタキセル(160mg、0.18mmol)およびメトキシポリオキシエチレンアミン(PEG−NH2、MW5000、900mg、0.18mmol)の塩化メチレン溶液に、EEDQ(180mg、0.72mmol)を添加した。反応混液を室温で4時間撹拌した。粗生成物をシリカゲルクロマトグラフィーに付し、酢酸エチル、次いでクロロホルム−メタノール(10:1)で溶出した。これにより350mgの生成物を得た。1H NMR(CDCl3);δ 2.76(m、コハク酸、COCH2CH2CO2)、δ 3.63(PEG、OCH2CH2O)、δ 4.42(C7−H)、および、δ 5.51(C2’−H)。最大UV吸収は、パクリタキセルにも特徴的な、288nmであった。PEGへの付着により、パクリタキセルの水への溶解度が大幅に向上した(>20mgパクリタキセル相当量/ml水)。
PEG−パクリタキセルの加水分解に対する安定性:
PEG−パクリタキセルを0.4mMの濃度で種々のpHのリン酸緩衝液(0.01M)に溶解し、溶液を緩やかに撹拌しながら37℃でインキュベートした。選定した時間毎に一定画分(200μl)を除去し、凍結乾燥した。生成した乾燥結晶を塩化メチレンに再溶解し、ゲル侵透クロマトグラフィー(GPC分析)に付した。GPCの装置は、Perkin-Elmer社PLゲル混合ベッドカラム、Perkin-Elmer社イソクラティックLCポンプ、PE社ネルソン900シリーズインターフェース、Spectra-Physics社UV/Vis検出器、およびデータステーションからなる。溶離液(塩化メチル)は1.0ml/minで流し、UV検出器は228nmに調整した。PEG−パクリタキセルおよびパクリタキセルの保持時間は、それぞれ6.1分および8.2分であった。ピーク面積を測定し、残存するPEG−パクリタキセルおよび遊離したパクリタキセルの百分率を算出した。PEG−パクリタキセルの半減期をpH7.4での最小二乗法で算出したところ、54分であった。pH9.0での半減期は7.6分であった。pH7.4でのPEG−パクリタキセルからのパクリタキセルの遊離図を図8に示す。
in vitroにおけるマウスのB16黒色腫細胞を用いたPEG−パクリタキセルの細胞障害性の検討:
DTPA−パクリタキセルを用いた細胞障害性の検討で記載した方法に次いで、黒色腫細胞を2.5x104細胞/mlの濃度で24穴プレートに播種し、10%の子牛血清を含有する、ダルベッコの修飾型最少必須培養液(DME)およびF12培養液(50:50)中で、5.5%のCO2を含有する97%に加湿した大気中、37℃で24時間培養した。その後培養液を、5x10-9Mから75x10-9Mの濃度域のパクリタキセルもしくはその誘導体を含有する新鮮な培養液に交換した。40時間後、トリプシン処理により細胞を遊離させ、コールター計数器で計測した。細胞培養液中のDMSO(パクリタキセルを溶解するために使用)、および、0.05Mの炭酸水素ナトリウム溶液(PEG−パクリタキセルを溶解するために使用)の最終濃度は0.01%より低かった。対照実験で測定したところ、この量の溶媒は,細胞増殖にいかなる影響も及ぼさなかった。さらにPEGについても、5x10-9Mから75x10-9Mのパクリタキセル相当量の濃度を生成するのに用いられる濃度域では、細胞増殖に影響を及ぼさなかった。
マウスにおけるMCa−4腫瘍に対するPEG−パクリタキセルの抗腫瘍効果:
胸部の固形腫瘍に対するPEG−パクリタキセルの抗腫瘍効果を評価するために、MCa−4細胞(5x105)をメスのC3Hf/Kamマウスの右腿の筋肉に注射した。DTPA−パクリタキセルを用いた実施例1に記載したように、腫瘍が8mmに達した時点(約2週間)で、体重1kgあたり10、20、および40mgのパクリタキセル相当量のパクリタキセルもしくはPEG−パクリタキセルを単一投与した。まずパクリタキセルを、無水エタノールと等量のクレモフォアとの混合液に溶解した。この貯蔵用溶液を、注射する15分以内に無菌の生理食塩水でさらに希釈した(容量で1:4)。PEG−パクリタキセルは生理食塩水に溶解し(6mgパクリタキセル相当量/ml)、無菌フィルターで濾過した(ミリポア4.5μm)。生理食塩水、パクリタキセル媒体、無水アルコール:クレモフォア(1:1)を生理食塩水で1:4に希釈した溶液、およびPEGの生理食塩水溶液(600mg/kg体重)を対照実験に使用した。腫瘍の増殖は、3つの直交する腫瘍の直径を計測することにより、経日的に測定した。腫瘍の大きさが直径12mmに達した時点で、腫瘍の増殖の遅延を算定した。
腫瘍の増殖曲線を図9に示す。40mg/kgの投与量では、PEG−パクリタキセルおよびパクリタキセルは共に、腫瘍の増殖を効果的に遅延した。統計学的に有意な差はないが、パクリタキセルはPEG−パクリタキセルより効果が高かった。パクリタキセルで処理した腫瘍は直径が12mmに達するのに9.4日を要したが、PEG−パクリタキセルで処理した腫瘍は8.5日であった。それぞれに相当する対照、すなわち、パクリタキセル媒体の6.7日、およびPEGの生理食塩水溶液の6.5日と比較すると、これらの値は統計学的に有意な差があった(p>0.05)(図4)。
本発明の内容および方法を好ましい具体例に関して記載したが、ここに記載した内容、方法、および、方法の過程もしくは一連の過程を、本発明の概念、意図、および範囲を逸脱することなく変化させてもよいことは、当該分野の技術者には明白であろう。特に、化学的かつ物理的に関連する試薬をここに記載する試薬の代替として使用してもよく、同様の、あるいは類似の結果が得られるであろうことは、明白であろう。当該分野に精通する者に明らかな、そのような類似する代替物および修飾は全て、添付する請求の範囲に定義する本発明の意図、範囲、および概念の範囲内であると考えられる。
Figure 0003737518
Figure 0003737518
Figure 0003737518
Field of Invention
The present invention relates generally to the field of pharmaceutical compositions for use in the treatment of cancer, autoimmune diseases and restenosis. The invention also relates to the field of formulation of anticancer drugs such as paclitaxel (Taxol) and docetaxel (taxotere), in particular by coupling paclitaxel to a water-soluble moiety. It is related with making water-soluble.
Background of the Invention
Paclitaxel, an anti-microtubule agent extracted from the needles and bark of Pacific yew (Taxus brevifolia), has significant antitumor effects on human cancer Shown in Phase I experiments and early Phase II and III studies (Horwitz et al., 1993). This was mainly reported in advanced ovarian and breast cancers. Significant activity has been described in small-cell lung cancer and non-small cell lung cancer, head and neck cancer, and metastatic melanoma. However, the main difficulty in developing paclitaxel for clinical trials was that it is insoluble in water.
Docetaxel is semi-synthesized from 10-deacetylbaccatin III, a non-cytotoxic precursor extracted from the needles of Taxus baccata and esterified with chemically synthesized side chains (Cortes and Pazdur, 1995). Various cancer cell lines have been shown to be reactive to docetaxel, including breast cancer, lung cancer, ovarian cancer, and colorectal cancer and melanoma. In clinical trials, complete or partial responses were achieved in breast, ovarian, head and neck, and malignant melanoma with docetaxel.
Paclitaxel is generally formulated as a concentrate containing 6 mg of paclitaxel per ml of Cremophor EL (polyoxyethylated castor oil) and dehydrated alcohol (50% v / v) and must be further diluted prior to administration (Goldspiel, 1994). The amount of cremophor EL needed to deliver the required amount of paclitaxel is significantly higher than for any other drug formulated in the cremophor. Several toxicities have been attributed to the cremophor, including vasodilation, dyspnea and hypotension. This vehicle has also been shown to cause severe hypersensitivity in laboratory animals and humans (Weiss et al., 1990). In fact, the maximum amount of paclitaxel that can be administered to mice by intravenous bolus injection is determined by the acute lethal toxicity of Cremophor vehicle (Eiseman et al., 1994). Furthermore, Cremophor EL, which is a surfactant, is known to exude phthalate plasticizers such as di (2-ethylhexyl) phthalate (DEHP) from polyvinyl chloride bags and intravenous administration tubes. DEHP is known to cause hepatotoxicity in animals and to be carcinogenic in rodents. This paclitaxel formulation has also been shown to produce granules over time and therefore needs to be filtered during administration (Goldspiel, 1994). Therefore, special equipment is required for the preparation and administration of paclitaxel solutions to ensure safe drug delivery to the patient, which inevitably increases costs.
Previous attempts to obtain water-soluble paclitaxel include preparing a prodrug of paclitaxel by introducing a solubilizing moiety such as succinate and amino acid at the 2'-hydroxyl group or 7-hydroxyl position. (Deutsch et al., 1989; Mathew et al., 1992). However, it has been found that these prodrugs are not chemically stable enough for development. For example, Deutsch et al. (1989) reported a 2'-succinate derivative of paclitaxel, but the aqueous solubility of the sodium salt is only about 0.1% and the triethanolamine and N-methylglucamine salts are about 1%. % Could only be dissolved. Furthermore, amino acid esters have been reported to be unstable. Similar results were reported by Mathew et al. (1992). Greenwalt et al. Report the synthesis of taxol 2 'and 7-polyethylene glycol esters with high water solubility. (Greenwalt et al., 1994), but no data on the in vivo antitumor activity of these compounds has been reported (Greenwalt et al., 1995).
Other attempts to solve these problems involved microencapsulating paclitaxel in both liposomes and nanospheres (Bartoni and Boitard, 1990). Liposome formulations were reported to be as effective as free paclitaxel, but only liposome formulations containing less than 2% paclitaxel were physically stable (Sharma and Staubinger, 1994). Unfortunately, nanosphere formulations have been found to be toxic. Accordingly, there remains a need for water soluble paclitaxel formulations that can deliver effective amounts of paclitaxel and docetaxel without the disadvantages associated with drug insolubility.
Another obstacle to the widespread use of paclitaxel is that the source of paclitaxel production is limited, resulting in expensive paclitaxel therapy. For example, a course can cost thousands of dollars. In addition, there is a disadvantage that not all tumors respond to paclitaxel therapy, which appears to be because paclitaxel does not enter the tumor. Therefore, it has a high serum half-life water solubility for the treatment of tumors, autoimmune diseases such as rheumatoid arthritis, and to prevent restenosis of vessels undergoing trauma such as angioplasty and stenting There is an urgent need for effective formulations of paclitaxel and related drugs.
Summary of the Invention
The present invention relates to a composition comprising a chemotherapeutic and antiangiogenic drug, such as paclitaxel or docetaxel, conjugated to a water-soluble polymer, such as polyglutamic acid or polyaspartic acid, or to a water-soluble metal chelator. The provision aims to overcome these and other drawbacks of the prior art. These compositions are shown herein to be unexpectedly effective as anti-tumor agents for the exemplified tumor models, and taxanes or taxoids are known to be effective. It is expected to be at least as effective as paclitaxel or docetaxel for any disease or condition present. The compositions of the present invention provide water-soluble taxoids to overcome the disadvantages associated with the water insolubility of these drugs themselves and have the advantage of controlled release, so that tumors after a single intravenous administration in animal models Is shown herein to be eradicated.
The methods described herein can also be used to make water-soluble polymer conjugates of other therapeutic agents, contrast agents and drugs. This includes etopside, teniposide, fludarabine, doxorubicin, daunomycin, emodin, 5-fluorouracil, FUDR, estradiol, camptothecin, retinoic acid, verapamil, elone And cyclosporine. In particular, a drug with a free hydroxyl group could be attached to the polymer by a chemical reaction similar to that described herein for paclitaxel. Such linkages can be readily made by those skilled in the chemical arts and are within the scope of the present invention. These agents include, but are not limited to etopside, teniposide, camptothecin and epothilones. As used herein, binding to a water-soluble polymer refers to the covalent binding of a drug to a polymer or chelating agent.
It is also understood that the water-soluble conjugates of the present invention can be administered in combination with other drugs, including other anti-tumor drugs or anti-cancer drugs. Such combinations are known in the art. The water-soluble paclitaxel or docetaxel of the present invention can be combined with other drugs used in combination with platinum drugs, antibiotics such as doxorubicin or daunorubicin, or taxol in certain types of treatment.
The coupling of chemotherapeutic drugs to polymers is an attractive way to reduce systemic toxicity and improve therapeutic index. Polymers with molecular weights greater than 30 kDa do not diffuse easily through normal capillaries and glomerular endothelium, thus freeing normal tissue from unrelated drug-mediated toxicities (Maeda and Matsumura, 1989; Reynolds 1995). On the other hand, it is well established that malignant tumors are often accompanied by capillary endothelial dysfunction and are more permeable than normal tissue vessels (Maeda and Matsumura, 1989; Fidler et al., 1987). Thus, polymer-drug conjugates that remain in the blood vessels under normal conditions can selectively leak from the blood vessels into the tumor, resulting in the accumulation of effective therapeutic agents in the tumor. Furthermore, the polymer-drug conjugate acts as a drug reservoir for sustained release, allowing tumor cells to be exposed to the drug for long periods of time. Finally, water-soluble polymers can be used to solubilize components that are otherwise insoluble, as well as to stabilize drugs. A variety of synthetic and natural polymers are currently being tested for their ability to enhance tumor-specific drug delivery (Kopecek, 1990; Maeda and Matsumura, 1989). However, there are currently only clinical evaluations of several types including SMANCS in Japan and HPMA-Dox in the UK (Maeda, 1991; Kopecek and Kopeckova, 1993).
As used herein, taxoid is taken to mean compounds including paclitaxel and docetaxel, and other chemicals with a taxene skeleton (Cortes and Pazdur, 1995), and are derived from natural sources such as yew trees or cell cultures. It may be a molecule that can be released or chemically synthesized. Preferred is general formula C47H51NO14[2aR- [2aα, 4β, 4αβ, 6β, 9α (αR *, βS *), 11α, 12α, 12aα, 12bα]]-β- (benzoylamino) -α-hydroxybenzene Propanoic acid 6,12b-bis (acetyloxy) -12- (benzoyloxy) -2a, 3,4,4a, 5,6,9,10,11,12,12a, 12b-dodecahydro-4,11-dihydroxy -4a, 8,13,13-tetramethyl-5-oxo-7,11-methano-1H-cyclodeca [3,4] benz [1,2-b] oxyeth-9-yl ester. Paclitaxel and docetaxel are each more effective than other drugs for certain types of tumors, and in the practice of the present invention, tumors that are more sensitive to certain taxoids are treated with this water soluble taxoid conjugate. Interpreted.
In embodiments where paclitaxel is bound to a water soluble metal chelator, the composition will further comprise a chelated metal ion. The chelated metal ions of the present invention are aluminum, boron, calcium, chromium, cobalt, copper, dysprosium, erbium, europium, gadolinium, gallium, germanium, holmium, indium, iridium, iron, magnesium, manganese, nickel, platinum, rhenium. , Rubidium, ruthenium, samarium, sodium, technetium, thallium, tin, yttrium, or zinc. In certain preferred embodiments, the chelated metal ion will be a radionuclide of any of the metals listed above, i.e., a radioisotope. Preferred radionuclides include67Ga,68Ga,111In,99mTc,99Y,114mIn, and193mIncluding, but not limited to, Pt.
Preferred water-soluble chelating agents used in the practice of the present invention include, but are not limited to: diethylenetriaminepentaacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA), 1,4,7,10 -Tetraazacyclododecane-N, N ', N ", N'"-tetraacetate (DOTA), tetraazacyclotetradecane-N, N ', N ", N'"-tetraacetic acid (TETA), hydroxyethylidene Phosphonate (HEDP), dimercaptosuccinic acid (DMSA), diethylenetriaminetetramethylenephosphonic acid (DTTP), and 1- (p-aminobenzyl) -DTPA, 1,6-diaminohexane-N, N ′, N ″, N '"-Tetraacetic acid, DPDP, and ethylenebis (oxyethylenenitrilo) -tetraacetic acid. DTPA is most preferred. A preferred embodiment of the present invention is:111It can also be a composition comprising In-DTPA-paclitaxel.
In a particular embodiment of the invention, paclitaxel or docetaxel is attached to a water soluble polymer, preferably the polymer is attached to the 2 'or 7-hydroxyl or both of paclitaxel or docetaxel. Thus, as noted above, when a functional group is used to link the drug to the C2'-hydroxyl of paclitaxel, a degradable linkage (in this case an ester) to ensure that the active drug is released from the polymeric carrier. Is used. Preferred polymers include, but are not limited to: polyethylene glycol, poly (l-glutamic acid), poly (d-glutamic acid), poly (dl-glutamic acid), poly (l-aspartic acid), poly (D-aspartic acid), poly (dl-aspartic acid), polyethylene glycol, copolymers of polyamino acids and polyethylene glycols listed above, polycaprolactone, polyglycolic acid and polyacetic acid, and polyacrylic acid, poly (2-hydroxy Ethyl-1-glutamine), carboxymethyldextran, hyaluronic acid, human serum albumin, and alginic acid. Polyethylene glycol, polyaspartic acids and polyglutamic acids are particularly preferred. The polyglutamic acids or polyaspartic acids of the present invention preferably have a molecular weight of about 5,000 to about 100,000, more preferably about 20,000 to about 80,000, more preferably about 30,000 to about 60,000. preferable.
It is understood that the composition of the present invention may be dispersed in the following pharmaceutically acceptable carrier solution. Such solutions are sterilized or sterile and do not cause water, buffers, isotonic agents, or other allergic or other adverse reactions when administered to a subject animal or human. Components known to those skilled in the art can be included. Thus, the present invention can also be described as a pharmaceutical composition comprising a chemotherapeutic or anticancer drug such as paclitaxel or docetaxel conjugated to a high molecular weight water soluble polymer or chelating agent. The pharmaceutical composition can contain polyethylene glycol, polyglutamic acids, polyaspartic acids, or chelating agents, preferably DTPA. It is understood that radionuclides can be used as antineoplastic agents or drugs, and the pharmaceutical compositions of the present invention may contain a therapeutically effective amount of a chelated radioisotope.
In certain embodiments, the present invention can be described as a method of measuring uptake of a chemotherapeutic drug such as paclitaxel or docetaxel by tumor tissue. The method can include preparing a drug-metal chelator conjugate comprising a chelated metal ion, contacting the tumor tissue with the composition, and measuring the presence of the chelated metal ion in the tumor tissue. The presence of chelated metal ions in the tumor tissue indicates that the tumor tissue has taken up. The chelated metal ion may be a radionuclide and the detection may be by scintigraphy. The tumor tissue may be in the subject animal or human body, in which case the composition is administered to the subject.
The present invention can also be described as a method of treating cancer in a subject in certain embodiments. This method prepares a composition comprising a chemotherapeutic agent, such as paclitaxel or docetaxel, bound to a water-soluble polymer or chelating agent and dispersed in a pharmaceutically acceptable solution, and this solution is effective in treating tumors. Administration to a subject in an amount. Preferred compositions comprise paclitaxel or docetaxel conjugated to polyglutamic acids or polyaspartic acids, more preferably poly (l-glutamic acid) or poly (l-aspartic acid). The compositions of the invention are construed to be effective against any type of cancer where unbound taxoids have been shown to be effective. This includes, but is not limited to breast cancer, ovarian cancer, malignant melanoma, lung cancer, stomach cancer, colon cancer, head and neck cancer or leukemia.
Tumor treatment methods may include some estimation of the uptake of paclitaxel or docetaxel into the tumor prior to administering a therapeutically effective amount of the drug or prodrug. This method includes any of the imaging methods described above wherein a paclitaxel-chelator-chelated metal is administered to a subject and detected in a tumor. This step provides a cost effective way to determine that if the drug does not enter the tumor, it will not be expected to respond to DTPA-paclitaxel therapy. If it is possible to estimate the response to paclitaxel using an imaging method and identify a patient who does not seem to respond, it would be possible to save significant expense and significant time for the patient. If a reasonable amount of chemotherapeutic drug does not accumulate in the tumor, the tumor response to that drug is expected to be relatively small.
In certain embodiments, the present invention can be described as a method for obtaining a body image of a subject. A body image is obtained by administering an effective amount of a radioactive metal ion chelated to a paclitaxel-chelator conjugate to a subject, and measuring the scintigraphic signal of the radioactive metal to obtain an image.
In certain broad aspects, the invention relates to a method of alleviating at least one symptom of a systemic autoimmune disease, wherein a subject with systemic autoimmune disease is treated with poly-1-glutamic acid or poly-1-aspartic acid. It can also be described as a method comprising administering an effective amount of a composition comprising paclitaxel or docetaxel bound to Of particular importance with respect to the present disclosure is the treatment of rheumatoid arthritis, which is known in some cases to respond to taxol when administered in a standard cremophor formulation (US Pat. No. 5,583,153). Similar to tumor treatment, the effectiveness of the water-soluble taxoids of the present invention is not reduced by binding to the water-soluble moiety, and the water-soluble prodrug acts as a controlled release formulation that releases the active drug over a period of time It is considered possible. Thus, the compositions of the present invention are expected to be as effective as taxol for example for rheumatoid arthritis, but will provide the advantage of controlled release. It is also construed that the taxoid composition of the present invention can be used in combination with other drugs, such as an angiogenesis inhibitor (AGM-1470) (Oliver et al., 1994) or methotrexate.
The finding that paclitaxel also prevents restenosis after balloon angioplasty indicates that the water-soluble paclitaxel and docetaxel of the present invention have more versatile uses than direct parenteral administration (International Patent Publication No. WO 9625176). issue). For example, water-soluble paclitaxel is useful as a coating on implantable medical devices such as tubes, shunts, catheters, artificial implants, pins, electrical implants (eg pacemakers), especially arterial or venous stents (including balloon inflatable stents). I will. In these embodiments, water-soluble paclitaxel may be bound to the implantable medical device, or water-soluble paclitaxel may be passively attached to the surface of the implantable device. For example, a stent can be coated with a polymer-drug conjugate by immersing the stent in a polymer-drug solution or spraying such a solution onto the stent. Suitable materials for implantable devices must be biocompatible and non-toxic, from metals such as nickel-titanium alloys, steel, or biocompatible polymers, hydrogels, polyurethanes, polyethylene, ethylene-vinyl acetate copolymers, etc. You can choose. In a preferred embodiment, a water soluble paclitaxel, particularly a PG-paclitaxel conjugate, is coated on a stent for insertion into an artery or vein after balloon angioplasty. Accordingly, the present invention, in a specific broad aspect, is a method of preventing arterial restenosis or arterial occlusion after undergoing vascular trauma, wherein the subject is in need of poly-1-glutamic acid or poly-1- It can be described as a method comprising administering a composition comprising paclitaxel or docetaxel conjugated to aspartic acid. In performing the method, the subject is, for example, a patient who has undergone coronary artery bypass grafting, vascular surgery, organ transplantation, or coronary artery or arthroplasty, and the composition is administered directly intravenously or coated on a stent. This stent can then be implanted at the site of vascular trauma.
Accordingly, one aspect of the present invention is an implantable medical device wherein the device is coated with a composition comprising paclitaxel or docetaxel conjugated to polyglutamic acid or polyaspartic acid in an amount effective to inhibit smooth muscle cell proliferation. It is. A preferred device is a stent coated with the composition of the present invention described above, and in a particularly preferred embodiment, the stent is suitable for use after balloon angioplasty and the coating is effective to prevent restenosis. .
In certain preferred embodiments, the present invention provides a composition comprising polyglutamic acids bound to 2 'or 7-hydroxyl or both of paclitaxel, or a composition comprising polyaspartic acids bound to 2' or 7-hydroxyl or both of paclitaxel. It can be described as a product. As used herein, the term “polyglutamic acid” or “polyglutamic acids” includes poly (l-glutamic acid), poly (d-glutamic acid) and poly (dl-glutamic acid), and includes “polyaspartic acid” or The term “polyaspartic acids” includes poly (l-aspartic acid), poly (d-aspartic acid) and poly (dl-aspartic acid).
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, the preferred methods and materials are now described.
[Brief description of the drawings]
FIG. Chemical structure of paclitaxel, PEG-paclitaxel and DTPA-paclitaxel.
FIG. 1B. Chemical structure of PG-paclitaxel and reaction formula for its production.
FIG. Effect of paclitaxel, PEG-paclitaxel and DTPA-paclitaxel on proliferation of B16 melanoma cells.
FIG. Antitumor effect of DTPA-paclitaxel on MCa-4 breast tumor.
FIG. Median time in days to reach 12 mm tumor diameter after treatment with paclitaxel, DTPA-paclitaxel and PEG-paclitaxel.
FIG.111In-DTPA-paclitaxel and111Gamma-scintigraph of MCa-4 tumor-bearing mice after intravenous injection of In-DTPA. Arrow indicates tumor.
FIG. Hydrolysis of PG-paclitaxel measured at 37 ° C. in PBS (pH 7.4). -□-represents the percent of paclitaxel remaining bound to soluble PG, -Δ- represents the percent of released paclitaxel, and-○-represents the percent of metabolite-1 produced.
FIG. 7A. Antitumor effect of PG-paclitaxel on rats bearing murine breast tumor (13762F). -□-represents a response to a single intravenous administration of PG (0.3 g / kg), -Δ- represents a response to paclitaxel (40 mg / kg),-○-represents PG-paclitaxel (equivalent to 60 mg paclitaxel / kg) Represents the reaction to.
FIG. 7B. Antitumor effect of PG-paclitaxel and paclitaxel on mice bearing OCa-1 tumor. -□-represents a response to a single intravenous administration of PG (0.8 g / kg), -Δ- represents a response to paclitaxel (80 mg / kg),-●-represents PG-paclitaxel (equivalent to 80 mg paclitaxel / kg) -O- represents a reaction to PG-paclitaxel (equivalent to 160 mg / kg paclitaxel).
FIG. 7C. Antitumor effect of PG-paclitaxel on mice bearing MCa-4 breast cancer. -□-represents a response to a single intravenous administration of saline, -Δ- represents a response to a single intravenous administration of PG (0.6 mg / kg), and-♦-represents a response to PG-paclitaxel (40 mg / kg). -◇-represents a reaction to PG-paclitaxel (equivalent to 60 mg paclitaxel / kg), and -o- represents a reaction to PG-paclitaxel (120 mg / kg).
FIG. 7D. Anti-tumor effect of PG-paclitaxel on soft tissue sarcoma (FSa-II) in mice. -□-represents a response to a single intravenous administration of saline,-◇-represents a response to a single intravenous administration of PG (0.8 mg / kg), and-○-represents a response to paclitaxel (80 mg / kg). , -Δ- represents a reaction to PG-paclitaxel (equivalent to 160 mg / kg paclitaxel).
Figure 7E. Antitumor effect of PG-paclitaxel on syngeneic liver carcinoma (HCa-1) in mice. -□-represents a response to a single intravenous administration of saline, --Δ-- represents a response to a single intravenous administration of PG (0.8 mg / kg),-○-represents PG-paclitaxel (80 mg / kg) Represents the response to PG-paclitaxel (equivalent to 160 mg / kg paclitaxel / kg).
FIG. Release profile of paclitaxel from PEG-paclitaxel in phosphate buffer (pH 7.4). Paclitaxel, -X-; PEG-paclitaxel, -O-.
FIG. Anti-tumor effect of PEG-paclitaxel on MCa-4 breast tumor. -□-represents the response to a single intravenous injection of PEG salt solution (60 mg / ml),-■-represents the response to cremophor / alcohol vehicle,-○-represents a single dose of paclitaxel at 40 mg / kg (body weight) -●-represents PEG-paclitaxel equivalent to 40 mg / kg (body weight) of paclitaxel.
The present invention is based on the discovery of novel water soluble formulations of paclitaxel and docetaxel, and the surprising effects of these formulations in vivo on tumor cells. Poly (l-glutamic acid) -bound-paclitaxel (PG-paclitaxel) administered to mice bearing ovarian cancer (OCa-I) significantly delayed tumor growth compared to the same amount of paclitaxel without PG It was. Paclitaxel alone or the combination of free paclitaxel and PG initially showed tumor growth delay, but after 10 days the tumors regrown to a level comparable to the untreated control group. Furthermore, at the maximum tolerated dose (MTD) of the PG-paclitaxel conjugate (paclitaxel equivalent to 160 mg / kg), the tumor growth was completely suppressed, the tumor contracted, and the mouse observed for 2 months after the treatment had no tumor. (MTD: defined as the maximum dose with less than 15% weight loss occurring within 2 weeks after a single intravenous injection). In a parallel study, the antitumor activity of PG-paclitaxel was examined in rats with rat mammary carcinoma (13762F). Again, complete tumor eradication was seen with paclitaxel equivalent to 40-60 mg / kg of PG-paclitaxel. These surprising results demonstrate that the polymer-drug conjugate, PG-paclitaxel, succeeded in eradicating well established solid tumors after a single intravenous injection in both mice and rats. Furthermore, PG-paclitaxel with a half-life of 40 days at pH 7.4 is one of the most stable water-soluble paclitaxel derivatives known (Deutsch et al., 1989; Mathew et al., 1992; Zhao and Kingston, 1991).
It is also shown herein that DTPA-paclitaxel is as effective as paclitaxel in an in vitro anti-tumor efficacy assay using the B16 melanoma cell line. DTPA-paclitaxel showed no significant difference in anti-tumor effect compared to paclitaxel for MCa-4 breast tumors with a single injection of 40 mg / kg (body weight). further,111Indium-labeled DTPA-paclitaxel has been shown to accumulate in MCa-4 tumors as evidenced by gunmachigraphy. This demonstrates that the chelator-conjugated anti-tumor agents of the present invention are useful and effective for tumor imaging.
Water-soluble paclitaxel has been proposed to improve the efficacy of paclitaxel-based anticancer therapies and the novel compounds and methods of the present invention provide a composition derived from water-soluble and controlled release paclitaxel by It provides a significant advance over conventional methods and compositions. Such compositions eliminate the need for solvents that cause the side effects seen with conventional paclitaxel compositions. In addition, radiolabeled paclitaxel has been shown to retain anti-tumor activity, which may also be useful for tumor imaging. Furthermore, according to the present invention, whether or not paclitaxel is taken up by a specific tumor can be measured by scintigraphy, single photon emission computed tomography (SPECT) or positron emission computed tomography (PET). This measurement can then be used to determine the efficiency of anti-tumor therapy. This information may be useful for physicians to obtain guidance on selecting patients for paclitaxel therapy.
Paclitaxel can be rendered water-soluble in two ways: binding paclitaxel to a water-soluble polymer that acts as a drug carrier, and derivatizing with a water-soluble chelating agent. The latter method is useful for radionuclide (eg, for nuclear imaging studies and / or radiation therapy)111In,90Y,166Ho,68Ga,99mIt also provides an opportunity to label with Tc). The structures of paclitaxel, polyethylene glycol-paclitaxel (PEG-paclitaxel), polyglutamic acid-paclitaxel (PG-paclitaxel) and diethylenetriaminepentaacetic acid-paclitaxel (DTPA-paclitaxel) are shown in FIG.
In certain embodiments of the invention, DTPA-paclitaxel or other paclitaxel-chelator conjugates, such as EDTA-paclitaxel, DTTP-paclitaxel or DOTA-paclitaxel, are dissolved in water-soluble salts (sodium, potassium, tetrabutylammonium salts). , Calcium salt, iron (III) salt, etc.). These salts would be useful as therapeutic agents for tumor treatment. Secondly, DTPA-paclitaxel or other paclitaxel-chelators are useful as diagnostic agents,111In or99mLabeling with a radionuclide such as Tc can be used in combination with nuclear imaging to detect specific tumors. In addition to paclitaxel (taxol) and docetaxel (taxotere), other taxane derivatives can be adapted to the compositions and methods of the present invention, and all such compositions and methods are to be construed as being included in the claims. The
Toxicity studies, pharmacokinetics, and tissue distribution of DTPA-paclitaxel were observed in DTPA-paclitaxel LD observed by single intravenous injection in mice.50(50% lethal dose) was about 110 mg / kg (body weight). There is a dose-volume limitation due to the limited solubility of paclitaxel, and intravenous administration is accompanied by vehicle toxicity, making direct comparison with paclitaxel difficult. However, chemotherapy personnel will determine the effective dose and maximum tolerated capacity for use in subjects in clinical trials in light of the present disclosure.
In a particular embodiment of the invention, a stent coated with a polymer-paclitaxel conjugate can be used to prevent restenosis, ie, arterial occlusion after balloon angioplasty. Recent results in clinical trials using balloon expandable stents for coronary angioplasty have shown significant advantages in patency and reduced restenosis compared to standard balloon angioplasty (Serruys et al ., 1994). According to the response-to-injury hypothesis, neointima formation occurs with cell proliferation. Currently, it is generally accepted that the clinical course leading to vascular lesions in both spontaneous and progressive atherosclerosis is smooth muscle cell (SMC) proliferation (Phillips-Hughes and Kandarpa 1996). Since SMC phenotypic proliferation after arterial injury is similar to that of neoplastic cells, anticancer drugs may be useful in preventing SMC accumulation due to neointima formation. Therefore, a polymer-bonded anti-proliferative drug-coated stent capable of releasing these drugs at sufficient concentrations over a long period of time prevents the hyperplastic intima and media from proliferating into the lumen, This will reduce restenosis.
Since paclitaxel has been shown to suppress collagen-induced arthritis in a mouse model (Oliver et al., 1994), the formulations of the present invention treat autoimmune and / or inflammatory diseases such as rheumatoid arthritis It is also useful. When paclitaxel binds to tubulin, the equilibrium shifts towards a stable microtubule polymer, which is a potent inhibitor of eukaryotic cell proliferation by blocking cells in late G2 mitosis. Several mechanisms may be involved in the suppression of arthritis by paclitaxel. For example, the phase specific cytotoxicity of paclitaxel will affect rapidly proliferating inflammatory cells. In addition, paclitaxel is a cell mitosis, migration, chemotaxis, intracellular transport and neutrophil H2O2Inhibits production. Furthermore, paclitaxel will have anti-angiogenic activity by blocking endothelial cell migration coordination (Oliver et al., 1994). Thus, the polymer-bound prodrugs of the present invention are believed to be as useful as free paclitaxel in the treatment of rheumatoid arthritis. The polymer binding formulations disclosed herein also provide the advantages of delayed or sustained release of the drug and increased solubility. Injecting or implanting the formulations of the present invention directly into the joint area is an aspect of arthritis treatment.
Paclitaxel or docetaxel formulations suitable for injection include sterile aqueous solutions or dispersions and sterile powders for the preparation of sterile solutions or dispersions. In all cases, for injection purposes, the formulation must be sterile and liquid. It must be stable under the conditions of manufacture and storage and must be preserved against the contaminating action of microorganisms such as bacteria and fungi. The carrier may be a solvent or dispersion medium and includes, for example, water, ethanol, polyol (for example, glyceryl, propylene glycol, and liquid polyethylene glycol, and the like), suitable mixtures thereof, and vegetable oils. Prevention of the action of microorganisms can be achieved by various antibacterial and antifungal agents, for example, parabens, chlorobutanol, phenol, sorbic acid, thimerosal, and the like. In many cases, it will be preferable to include isotonic agents, for example, sugars or sodium chloride.
Sterile injection solutions are prepared by containing the required amount of the active ingredient in a suitable solvent containing the various other ingredients listed above and then aseptically filtering. In general, liquid dispersions are prepared by incorporating a variety of sterilized active ingredients into a sterile vehicle containing a basic dispersion medium and other necessary ingredients selected from those listed above. In the case of a sterile powder for preparing a sterile injectable solution, the preferred method of preparation is a vacuum drying method and a freeze drying method from the solution which has been filtered aseptically in advance, whereby a powder containing the active ingredient and other target ingredients can be obtained. can get.
As used herein, “pharmaceutically acceptable carrier” includes any and all solvents, dispersion media, coatings, antibacterial and antifungal agents, isotonic agents and the like. The use of such media and agents for pharmaceutically active substances is well known in the art. However, if a conventional medium or drug is incompatible with the active ingredient, consider using it in the therapeutic composition. Supplementary active ingredients may be included in the composition.
The phrase “pharmaceutically acceptable” also refers to molecular forms and compositions that do not produce allergic reactions or similar adverse reactions when administered to animals or humans.
For example, for parenteral administration in an aqueous solution, the solution should be appropriately buffered if necessary, and the liquid diluent is first made isotonic with a sufficient amount of saline or glucose. These aqueous solutions are particularly suitable for intravenous and intraperitoneal administration. Sterile aqueous media that can be used in this regard will be apparent to those skilled in the art in view of the present disclosure.
The following examples are presented to demonstrate preferred embodiments of the invention. It is obvious that the techniques disclosed in the following examples are techniques that the present inventors have found to function well in the practice of the present invention, and therefore can be considered to constitute a preferred embodiment of the present invention. However, in light of the present disclosure, it is to be understood that many changes can be made in the specific embodiments presented and that similar or similar results can be obtained without departing from the spirit and scope of the present invention. It will be obvious to the contractor.
Example 1
DTPA-paclitaxel
Synthesis of DTPA-paclitaxel:
Diethylenetriaminepentaacetic anhydride (DTPA A) (210 mg, 0.585 mmol) was added to a solution of paclitaxel (100 mg, 0.117 mmol) in dry DMF (2.2 ml) at 0 ° C. The reaction mixture was stirred at 4 ° C. overnight. The suspension was filtered (0.2 μm Millipore filter) to remove unreacted anhydrous DTPA. The filtrate was poured into distilled water and stirred at 4 ° C. for 20 minutes to collect the precipitate. C18The crude product was purified by developing TLC for separation using a silica gel plate with acetonitrile / water (1: 1). Paclitaxel RfThe value was 0.34. R at the top of paclitaxelfA band with a value of 0.65 to 0.75 was scraped off and eluted with an acetonitrile / water (1: 1) mixture, and the solvent was removed to give 15 mg of DTPA-paclitaxel as the product (yield 10.4%). ): Mp;> 226 ° C. decomposition. The UV spectrum (aqueous solution of sodium salt) showed maximum absorption at 228 nm, which is also characteristic for paclitaxel. Mass spectrum; (FAB) m / e 1229 (M + H)+, 1251 (M + Na), 1267 (M + K).1H NM R spectrum (DMSO-d6) DTPA NCH2CH2N resonances to δ2.71-2.96 ppm as a complex series of signals, and CH2COOH resonance was observed as multiple lines at δ 3.42 ppm. The resonance signal of C7-H at 4.10 ppm in paclitaxel shifted to 5.51 ppm, suggesting that the 7-position is esterified. The remaining spectrum was consistent with the structure of paclitaxel.
The sodium salt of DTPA-paclitaxel is obtained by adding an ethanol solution of DTPA-paclitaxel to an equal amount of 0.05M NaHCO 3.ThreeAnd freeze-dried to produce a water-soluble solid powder (solubility> 20 mg paclitaxel equivalent / ml).
Stability of DTPA-paclitaxel to hydrolysis:
Examination of the stability of DTPA-paclitaxel to hydrolysis was performed under accelerated conditions. That is, 1 mg of DTPA-paclitaxel was added to 1 ml of 0.5 M NaHCO 3.ThreeIt was dissolved in an aqueous solution (pH 9.3) and analyzed by HPLC. The HPLC apparatus was a Waters 150 × 3.9 (inner diameter) mm Nova-Pac column (packed with C18 4 μm silica gel), Perkin-Elmer isocratic LC pump, PE Nelson 900 series interface, Spectra- It consists of a Physics UV-Vis detector and a data station. The eluent (acetonitrile / methanol / 0.02M ammonium acetate = 4: 1: 5) was allowed to flow at 1.0 ml / min, and detection was performed with a UV detector (228 nm). The retention times for DTPA-paclitaxel and paclitaxel were 1.38 and 8.83 minutes, respectively. Peak areas were quantified and compared to a standard curve to determine the concentrations of DTPA-paclitaxel and paclitaxel. DTPA-paclitaxel 0.5M NaHCOThreeThe half-life in aqueous solution is estimated to be about 16 days at room temperature.
Effect of DTPA-paclitaxel on proliferation of murine B16 melanoma cells in vitro:
Cells are 2.5x10FourDulbecco's modified minimal essential medium (DEM) and F12 medium (50:50) seeded in 24-well plates at a concentration of cells / ml and containing 10% calf serum Among them, 5.5% CO2The cells were cultured at 37 ° C. for 24 hours in an atmosphere containing 97% and humidified. Thereafter, the culture broth is 5 × 10-9M to 75x10-9The culture medium was replaced with a fresh medium containing paclitaxel or DTPA-paclitaxel in the M concentration range. After 40 hours, the cells were released by trypsin treatment and counted with a Coulter counter. The final concentrations of DMSO (used to dissolve paclitaxel) and 0.05 M sodium bicarbonate solution (used to dissolve DTPA-paclitaxel) in the cell culture were below 0.01%. This amount of solvent did not have any effect on cell growth, as measured in control experiments.
The effect of DTPA-paclitaxel on the growth of B16 melanoma cells is shown in FIG. After culturing at various concentrations for 40 hours, the cytotoxicity of DTPA-paclitaxel and paclitaxel was compared. IC of paclitaxel and DTPA-paclitaxel50The values are 15 nM and 7.5 nM, respectively.
Anti-tumor effect on breast cancer (MCa-4) tumor model:
Breast cancer (MCa-4) was inoculated into the right thigh muscle of female C3Hf / Kam mice (5 × 10 5FiveCells / mouse). When the tumor reached 8 mm (about 2 weeks), a single dose of 10, 20, and 40 mg paclitaxel equivalent to paclitaxel or DTPA-paclitaxel per kg body weight was administered. In the control experiment, physiological saline and a solution (1: 4) obtained by diluting anhydrous alcohol / Chremophor (50/50) with physiological saline were used. Tumor growth was measured daily by measuring the diameter of three orthogonal tumors. The tumor growth delay was calculated when the tumor size reached 12 mm in diameter. Mice were killed when the tumor reached approximately 15 mm.
The growth curve of the tumor is shown in FIG. Compared to the control experiment, both paclitaxel and DTPA-paclitaxel showed antitumor effects at a dose of 40 mg / kg. The data was further analyzed to determine the average number of days it took for the tumor to reach a diameter of 12 mm. Statistical analysis revealed that DTPA-paclitaxel significantly delayed tumor growth compared to saline-treated controls at a dose of 40 mg / kg (p <0. 0). 01). The average time required for the tumor to reach 12 mm in diameter was 12.1 days for DTPA-paclitaxel compared to 9.4 days for paclitaxel (FIG. 4).
Of DTPA-paclitaxel111In label:
0.6 μM sodium acetate buffer (pH 5.3) 40 μl, 0.06 M sodium citrate buffer (pH 5.5) 40 μl, DTPA-paclitaxel in ethanol (2% W / V) 20 μl, and sodium acetate buffer Dissolved in (pH 5.5)111InClThree20 μl of the solution (1.0 mCi) was added sequentially to a 2 ml V-vial. After incubation at room temperature for 30 minutes, the reaction mixture was passed through a C18 Sep-Pac cartridge using saline and then ethanol as the mobile phase and labeled.111In-DTPA-paclitaxel was purified. Free111In-DTPA (<3%) is removed by saline,111In-DTPA-paclitaxel was recovered by ethanol washing. Ethanol was evaporated under nitrogen gas and the labeled product was redissolved in saline. Radiochemical yield; 84%.
111Analysis of In-DTPA-paclitaxel:
Analyze the reaction mixture using HPLC,111The purity of In-DTPA-paclitaxel was analyzed. The apparatus consists of an LDC binary pump, a Waters 100 × 8.0 mm (inner diameter) column (packed with ODS 5 μm silica gel). The column was eluted with a gradient of water and ethanol (gradient from 0% to 85% methanol over 15 minutes) at a flow rate of 1 ml / min. The gradient system was measured with a NaI crystal detector and a Spectra-Physics UV / Vis detector. According to HPLC analysis, retention time is 2.7 minutes after purification with Sepppack cartridge.111It was revealed that most of In-DTPA was removed.111In-DTPA is believed to be derived from DTPA, a trace amount of contaminant in DTPA-paclitaxel.111The radiochromatogram of In-DTPA-paclitaxel correlated with its UV chromatogram, suggesting that the peak at 12.3 minutes is the target compound. Under similar chromatographic conditions, the retention time of paclitaxel was 17.1 minutes. The radiochemical purity of the final preparation was 90% as determined by HPLC analysis.
Whole body scintigraphy:
Breast cancer (MCa-4) was inoculated into the right thigh muscle of female C3Hf / Kam mice (5 × 10 5Fivecell). When the tumor reached 12 mm in diameter, the mice were separated into two groups. In Group I, mice are anesthetized by intraperitoneal injection of sodium pentobarbital, then111In-DTPA-paclitaxel (100-200 mCi) was infused via the tail vein. A γ-camera equipped with a medium energy collimator was placed on top of the mice (3 per group). A series of 5-minute acquisitions were collected at 5, 30, 60, 120, 240 minutes, and 24 hours after injection. In group II, the mice served as controls111The same method was performed except that In-DTPA was injected. In FIG.111In-DTPA and111Figure 3 shows a gamma-scintigraph of mice injected with In-DTPA-paclitaxel.111In-DTPA is quickly removed from plasma, rapidly and highly excreted in urine with minimal retention in the kidney, and negligible in tumors, liver, intestines, and other organs or body parts There was a feature that only stopped. In contrast,111In-DTPA-paclitaxel showed a pharmacological profile similar to paclitaxel (Eiseman et al., 1994). There was very little radioactivity in the brain. The liver and kidney have the largest tissue: plasma ratio. Hepatobiliary excretion of radiolabeled DTPA-paclitaxel or its metabolites was one of the main routes by which drugs are removed from the blood. Unlike paclitaxel, a significant amount111In-DTPA-paclitaxel was also excreted through the kidney, but the kidney played only a minor role in the removal of paclitaxel. Tumor111In-DTPA-paclitaxel was significantly incorporated. From these results,111Detection of tumors with In-DTPA-paclitaxel, and111Quantification of tumor uptake of In-DTPA-paclitaxel is possible, and to select patients for paclitaxel treatment111It has been found that In-DTPA-paclitaxel may be used.
Example 2
Polyglutamic acid-paclitaxel
This example describes the binding of paclitaxel to a water soluble polymer, poly 1-glutamic acid (PG). The potential of water-soluble polymers used as drug carriers is sufficiently stable (Kopecek, 1990; Maeda and Matsumura, 1989). In addition to the ability to solubilize other insoluble drugs, the drug-polymer conjugate also serves as a slow-release depot to control drug release.
Synthesis of PG-paclitaxel:
PG was selected as a carrier for paclitaxel because it can be rapidly degraded by lysosomal enzymes, is stable in plasma, and contains sufficient functional groups to adhere to the drug. Antitumor agents, including adriamycin (Van Heeswijk et al., 1985; Hoes et al., 1985), cyclophosphamide (Hirano et al., 1979), and Ara-C (Kato et al., 1984) have been conjugated to PG.
PG sodium salt (MW 34K, Sigma, 0.35 g) was dissolved in water. The pH of the aqueous solution was adjusted to 2 using 0.2M HCl. The precipitate was collected, dialyzed against distilled water, and lyophilized to obtain 0.29 g of PG.
To a solution of PG (75 mg, repeat unit FW 170, 0.44 mmol) in dry DMF (1.5 mL), 20 mg paclitaxel (0.023 mmol, molar ratio PG / paclitaxel = 19), 15 mg dicyclohexylcarbodiimide (DCC) (0 0.073 mmol), and a trace amount of dimethylaminopyridine (DMAP) was added. The reaction was carried out at room temperature for 4 hours. Thin layer chromatography (TLC, silica) showed that paclitaxel (Rf = 0.55) was completely converted to polymer conjugate (Rf = 0) (mobile phase CHCl).Three/ MeOH = 10: 1). The reaction mixture was poured into chloroform. The produced precipitate was collected and dried under vacuum to obtain a 65-m polymer-drug conjugate. By varying the weight ratio of paclitaxel to PG in the starting material, it is possible to synthesize polymer conjugates of various concentrations of paclitaxel.
The sodium salt of the PG-paclitaxel conjugate gives the product 0.5M NaHCO 3.ThreeIt was obtained by dissolving in An aqueous solution of PG-paclitaxel was dialyzed against distilled water (MWCO 1,000), low molecular weight contaminants and excess NaHCOThreeSalt was removed. The dialyzed product was lyophilized to obtain 88.6 mg of white powder. When the paclitaxel content in this polymer conjugate was measured by UV (described later), it was 21% (W / W). Yield (conversion to polymer-bound paclitaxel, UV); 93%. By simply increasing the ratio of paclitaxel to PG used, PG-paclitaxel containing more paclitaxel (up to 35%) can be synthesized in this way.
1H-NMR (GE model GN 500 spectrometer, 500 MHz, D2O): δ = 7.75-7.36 ppm (aromatic constituents of paclitaxel); δ = 6.38 ppm (CTen-H), 5.97 ppm (C13-H), 5.63 and 4.78 ppm (C2'-H), 5.55-5.36 ppm (CThree'-H and C2-H, m), 5.10 ppm (CFive-H), 4.39 ppm (C7-H), 4.10 (C20-H), 1.97 ppm (OCOCHThree) And 1.18-1.20 ppm (C-CHThree) Is assigned to the aliphatic component of paclitaxel. The other resonance signal of paclitaxel was ambiguous due to the resonance signal of PG. The resonance signals of PG at 4.27 ppm (H-α), 2.21 ppm (H-γ), and 2.04 ppm (H-β) are consistent with the spectrum of pure PG. The coupling of polymer-bound paclitaxel cannot be measured with sufficient accuracy due to insufficient separation. The solubility in water was> 20 mg paclitaxel / ml.
Characterization of PG-paclitaxel:
The ultraviolet spectrum (UV) was obtained with a Beckman DU-640 spectrophotometer (Fullerton, CA). Made with known concentrations of paclitaxel dissolved in methanol, assuming that the polymer conjugate dissolved in water and the free drug dissolved in methanol have the same molar extinction coefficient and that both follow Lambert-Beer law Based on the standard curve, the content of paclitaxel bound to PG was measured by UV. (Λ = 228 nm). As shown in the UV spectrum, PG-paclitaxel had an absorption characteristic of paclitaxel, which was λ shifted from 228 nm to 230 nm. Assuming that the polymer conjugate dissolved in water (230 nm) and the free drug dissolved in methanol (228 nm) have the same molar extinction and both obey Lambert-Beer law, The concentration of paclitaxel in PG-paclitaxel was quantified based on a standard curve made with an absorption at 228 nm using a concentration of paclitaxel.
Examination of gel permeation chromatography of PG-paclitaxel:
The relative molecular weight of PG-paclitaxel was determined by gel permeation chromatography (GPC). The GPC instrument consists of two LDC model III pumps frozen on an LDC gradient instrument, a PL gel GPC column, and a Waters 990 photodiode array detector. The eluent (DMF) was flowed at 1.0 ml / min, and the UV detector was set at 270 nm. Binding of paclitaxel to PG increases the molecular weight of PG-paclitaxel, which means that the retention time shifts from 6.4 minutes of PG to 5.0 minutes of PG-paclitaxel conjugate by analysis by GPC. Indicated. The molecular weight of PG-paclitaxel containing 15-25% paclitaxel (W / W) is estimated to be in the range of 45-55 kDa. The crude product contained low molecular weight contaminants (retention times 8.0 to 10.0 minutes, and 11.3 minutes), but they were converted by dialyzing PG-paclitaxel after converting it to its sodium salt. Could be removed effectively.
Hydrolysis of PG-paclitaxel conjugate:
PG-paclitaxel was dissolved in phosphate buffer (PBS, 0.01M) at pH 6.0, pH 7.4, and pH 9.6 to a concentration corresponding to 0.4 mM paclitaxel. The solution was incubated at 37 ° C. with gentle agitation. A fixed fraction (100 μl) was removed every selected time, mixed with an equal amount of methanol, and analyzed by high performance liquid chromatography (HPLC). The HPLC instrument consists of a reverse phase silica column (Novapack, Waters, CA), a methanol-water (2: 1, v / v) mobile phase (flow rate 1.0 ml / min), and a photodiode detector. Assuming that the molar extinction coefficient of each peak at 228 nm is equal to that of paclitaxel, the peak area is compared to a standard curve prepared separately with paclitaxel and PG-bound paclitaxel, free paclitaxel in each sample. , And other degradation product concentrations were quantified. The half-life of the conjugate as calculated by the least squares method was 132 days, 40 days, and 4 days at pH 6.0, pH 7.4, and pH 9.6, respectively. HPLC analysis revealed that incubating PG-paclitaxel in a PBS solution produced paclitaxel and other substances, including substances that are more hydrophobic than paclitaxel (metabolite-1). Indeed, after 100 hours of incubation, the amount of metabolite-1 (most likely 7-epipaclitaxel) recovered with PBS pH 7.4 was greater than the amount of paclitaxel (FIG. 6).
In vitro study:
Certain fractions obtained from a pH 7.4 PBS solution were analyzed in a tubulin polymerization assay. The tubulin assembly reaction was performed at a tubulin (cow brain, Cytoskeleton, Boulder, CO) concentration of 1 mg / ml (10 μM) in PEM buffer (pH 6.9), with test samples (equivalent to 1.0 μM paclitaxel) Performed at 32 ° C. in the presence of 1.0 mM GTP. After tubulin polymerization, the absorbance of the solution was measured at 340 nm outside the specified time. After 15 minutes, calcium chloride (125 mM) is added and CaCl2-Measurement of microtubule depolymerization by induction. PG-paclitaxel freshly dissolved in PBS was inactive in producing microtubules, but the fraction of PG-paclitaxel incubated for 3 days caused tubulin polymerization. Microtubules are CaCl2-Stable to induced depolymerization.
The effect of PG-paclitaxel on cell proliferation was also tested in a tetrazolium salt (MTT) assay (Mosmann, 1983). 2x10 MCF-7 cells or 13762F cellsFourThe cells were seeded in a 96-well plate at a concentration of cells / ml, treated with various concentrations of PG-paclitaxel, paclitaxel, or PG after 24 hours, and further incubated for 72 hours. MTT solution (20 μl, 5 mg / ml) was then added to each well and incubated for 4 hours. The supernatant was aspirated and MTT formazan produced metabolically by viable bacteria was measured at a wavelength of 590 nm using a microplate fluorescence reader. For more than 3 days, PG-paclitaxel inhibited tumor cell growth to the same extent as free paclitaxel. IC obtained with human breast tumor cell line MCF-750The values were 0.59 μM for paclitaxel and 0.82 μM for PG-paclitaxel (measured in units of paclitaxel equivalent). For the 13762F cell line, the sensitivity of PG-paclitaxel (IC50= 1.86 μM) is that of paclitaxel (IC50= 6.79 μM). PG alone IC in both cell lines50Both were greater than 100 μM.
In vivo anti-tumor activity:
All animal experiments were performed at the animal facility of the M.D. Anderson Cancer Center according to institutional guidelines. In the Department of Experimental Radiation Oncology, C3H / Kam mice were crossed and reared in a pathogen free facility. 5x10FiveMurine ovarian cancer cells (OCa-I), breast cancer (MCa-4), liver cancer (HCa-I), or fibrosarcoma (FSa-II), and female C3H / Kam mice (25-30 g) A solitary tumor was generated in the right thigh muscle. In a parallel experiment, female Fischer 344 rats (125-150 g) were immunized with 1.0 x 10 viable 13762F tumor cells dissolved in 0.1 ml PBS.FiveWas injected. Mouse tumor is 500mmThree(Diameter 10mm) or when the rat tumor is 2400mmThreeWhen reaching (diameter 17 mm), the treatment was started. PG-paclitaxel dissolved in physiological saline or paclitaxel dissolved in Cremophor EL vehicle (vehicle) was administered in a single dose with a dose varied in the range of 40 to 160 mg paclitaxel per kg body weight. In the control experiment, physiological saline, cremophor medium (50/50 cremophor / ethanol diluted 1: 4 with physiological saline), physiological saline solution of PG (MW 38K), and a paclitaxel / PG mixture were used. Tumor growth was measured over time by measuring the diameter of three orthogonal tumors (FIGS. 7A, 7B, 7C, 7D, and 7E). Tumor volume was calculated according to the formula (AxBxC) / 2. The absolute growth delay (AGD) in mice is 500 to 2000 mm in tumors treated with various drugs in mice.ThreeFrom the number of days required to reach 500 to 2000 mm in control tumors treated with salineThreeDefined as the number of days required to reach Table 1 summarizes the acute toxicity of PG paclitaxel in rats compared to paclitaxel / cremophor. Table 2 summarizes the data regarding the effects of PG-paclitaxel on mouse MCa-4, FSa-II, and HCa-I tumors. Data are also shown in FIGS. 7A-7E.
Figure 0003737518
Figure 0003737518
Figure 0003737518
Example 3
Polyethylene glycol-paclitaxel
Synthesis of polyethylene glycol-paclitaxel (PEG-paclitaxel):
The synthesis was performed in two stages. First, 2'-succinyl-paclitaxel was prepared according to a reported method (Deutsch et al., 1989). Paclitaxel (200 mg, 0.23 mmol) and succinic anhydride (288 mg, 2.22 mmol) were reacted in anhydrous pyridine (6 ml) at room temperature for 3 hours. The pyridine was then distilled off and the residue was treated with water, stirred for 20 minutes and filtered. The precipitate was dissolved in acetone, water was gradually added, and fine crystals were collected to obtain 180 mg of 2'-succinyl-paclitaxel. PEG-paclitaxel was synthesized by a coupling reaction via N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ). 2'-succinyl-paclitaxel (160 mg, 0.18 mmol) and methoxypolyoxyethyleneamine (PEG-NH2, MW5000, 900 mg, 0.18 mmol) in methylene chloride was added EEDQ (180 mg, 0.72 mmol). The reaction mixture was stirred at room temperature for 4 hours. The crude product was chromatographed on silica gel eluting with ethyl acetate and then chloroform-methanol (10: 1). This gave 350 mg of product.11 H NMR (CDClThree); Δ 2.76 (m, succinic acid, COCH)2CH2CO2), Δ 3.63 (PEG, OCH2CH2O), [delta] 4.42 (C7-H), and [delta] 5.51 (C2'-H). The maximum UV absorption was 288 nm, which is also characteristic for paclitaxel. Adhesion to PEG significantly improved the solubility of paclitaxel in water (> 20 mg paclitaxel equivalent / ml water).
Stability of PEG-paclitaxel to hydrolysis:
PEG-paclitaxel was dissolved in various pH phosphate buffers (0.01 M) at a concentration of 0.4 mM and the solution was incubated at 37 ° C. with gentle agitation. A fixed fraction (200 μl) was removed at each selected time and lyophilized. The produced dry crystals were redissolved in methylene chloride and subjected to gel permeation chromatography (GPC analysis). The GPC instrument consists of a Perkin-Elmer PL gel mixed bed column, a Perkin-Elmer isocratic LC pump, a PE Nelson 900 series interface, a Spectra-Physics UV / Vis detector, and a data station. The eluent (methyl chloride) was flowed at 1.0 ml / min, and the UV detector was adjusted to 228 nm. Retention times for PEG-paclitaxel and paclitaxel were 6.1 minutes and 8.2 minutes, respectively. The peak area was measured and the percentage of remaining PEG-paclitaxel and free paclitaxel was calculated. It was 54 minutes when the half life of PEG-paclitaxel was computed by the least squares method at pH 7.4. The half-life at pH 9.0 was 7.6 minutes. The release diagram of paclitaxel from PEG-paclitaxel at pH 7.4 is shown in FIG.
In vitro cytotoxicity of PEG-paclitaxel using mouse B16 melanoma cells:
Following the method described in the cytotoxicity studies with DTPA-paclitaxel, 2.5 × 10Four5.5% in Dulbecco's modified minimal essential medium (DME) and F12 medium (50:50) seeded in 24-well plates at a concentration of cells / ml and containing 10% calf serum CO2The cells were cultured at 37 ° C. for 24 hours in an atmosphere containing 97% and humidified. Thereafter, the culture broth is 5 × 10-9M to 75x10-9The culture medium was replaced with a fresh culture solution containing paclitaxel in the M concentration range or a derivative thereof. After 40 hours, the cells were released by trypsin treatment and counted with a Coulter counter. The final concentrations of DMSO (used to dissolve paclitaxel) and 0.05 M sodium bicarbonate solution (used to dissolve PEG-paclitaxel) in the cell culture were below 0.01%. This amount of solvent did not have any effect on cell growth, as measured in control experiments. Also for PEG, 5x10-9M to 75x10-9The concentration range used to generate M paclitaxel equivalent concentrations did not affect cell growth.
Anti-tumor effect of PEG-paclitaxel against MCa-4 tumor in mice:
To evaluate the anti-tumor effect of PEG-paclitaxel on breast solid tumors, MCa-4 cells (5 × 10 5Five) Was injected into the right thigh muscle of female C3Hf / Kam mice. As described in Example 1 using DTPA-paclitaxel, when the tumor reached 8 mm (approximately 2 weeks), 10, 20, and 40 mg of paclitaxel per kg body weight equivalent to paclitaxel or PEG-paclitaxel One dose was administered. First, paclitaxel was dissolved in a mixture of absolute ethanol and an equal amount of cremophor. This stock solution was further diluted with sterile saline (1: 4 by volume) within 15 minutes of injection. PEG-paclitaxel was dissolved in physiological saline (6 mg paclitaxel equivalent / ml) and filtered through a sterile filter (Millipore 4.5 μm). Saline, paclitaxel vehicle, absolute alcohol: Cremophor (1: 1) diluted 1: 4 with saline, and saline solution of PEG (600 mg / kg body weight) were used for control experiments. Tumor growth was measured daily by measuring the diameter of three orthogonal tumors. The tumor growth delay was calculated when the tumor size reached 12 mm in diameter.
The tumor growth curve is shown in FIG. At the 40 mg / kg dose, both PEG-paclitaxel and paclitaxel effectively delayed tumor growth. Although there was no statistically significant difference, paclitaxel was more effective than PEG-paclitaxel. Tumors treated with paclitaxel took 9.4 days to reach a diameter of 12 mm, whereas tumors treated with PEG-paclitaxel were 8.5 days. There was a statistically significant difference in these values when compared to the corresponding controls, ie, 6.7 days for paclitaxel vehicle and 6.5 days for saline solution of PEG (p> 0. 05) (FIG. 4).
Although the content and method of the present invention have been described with reference to preferred embodiments, the content, method, and process or sequence of methods described herein may be altered without departing from the concept, intent, and scope of the present invention. It will be apparent to those skilled in the art that this may be possible. In particular, it will be apparent that chemically and physically related reagents may be used as an alternative to the reagents described herein and that similar or similar results will be obtained. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the spirit, scope and concept of the invention as defined by the appended claims.
Figure 0003737518
Figure 0003737518
Figure 0003737518

Claims (19)

ポリグルタミン酸に結合したパクリタキセルからなる結合体を含む薬学的組成物。 A pharmaceutical composition comprising a conjugate comprising paclitaxel conjugated to polyglutamic acid . 前記ポリグルタミン酸が、ポリ(d−グルタミン酸)、ポリ(l−グルタミン酸)、およびポリ(dl−グルタミン酸)からなる群から選択される、請求項1に記載の薬学的組成物。The pharmaceutical composition according to claim 1, wherein the polyglutamic acid is selected from the group consisting of poly (d-glutamic acid), poly (l-glutamic acid), and poly (dl-glutamic acid). 前記結合体が35%のパクリタキセルを含む、請求項1または2に記載の薬学的組成物。The pharmaceutical composition according to claim 1 or 2, wherein the conjugate comprises 35% paclitaxel. 前記ポリマーが、5,000〜100,000の分子量を有する、請求項1〜3のいずれか1項に記載の薬学的組成物。4. The pharmaceutical composition according to any one of claims 1 to 3, wherein the polymer has a molecular weight of 5,000 to 100,000. 前記ポリマーが、20,000〜80,000の分子量を有する、請求項1〜3のいずれか1項に記載の薬学的組成物。4. The pharmaceutical composition according to any one of claims 1 to 3, wherein the polymer has a molecular weight of 20,000 to 80,000. 前記ポリマーが、30,000〜60,000の分子量を有する、請求項1〜3のいずれか1項に記載の薬学的組成物。The pharmaceutical composition according to any one of claims 1 to 3, wherein the polymer has a molecular weight of 30,000 to 60,000. 前記水溶性ポリマーが、パクリタキセルの2’−および/または7−ヒドロキシルに結合体化されている、請求項1〜6のいずれか1項に記載の薬学的組成物。The pharmaceutical composition according to any one of claims 1 to 6, wherein the water-soluble polymer is conjugated to the 2'- and / or 7-hydroxyl of paclitaxel. 前記薬学的組成物が、薬学的に許容できるキャリア溶液中に分散されている、請求項1〜7のいずれか1項に記載の薬学的組成物。The pharmaceutical composition according to any one of claims 1 to 7, wherein the pharmaceutical composition is dispersed in a pharmaceutically acceptable carrier solution. 前記薬学的組成物が注射に適している、請求項1〜7のいずれか1項に記載の薬学的組成物。8. The pharmaceutical composition according to any one of claims 1 to 7, wherein the pharmaceutical composition is suitable for injection. 前記薬学的組成物が凍結乾燥されている、請求項1〜7のいずれか1項に記載の薬学的組成物。The pharmaceutical composition according to any one of claims 1 to 7, wherein the pharmaceutical composition is lyophilized. 前記薬学的組成物が癌の処置のためのものである、請求項1〜10のいずれか1項に記載の薬学的組成物。11. The pharmaceutical composition according to any one of claims 1 to 10, wherein the pharmaceutical composition is for the treatment of cancer. 前記癌が、癌、卵巣癌、悪性黒色腫、肺癌、胃癌、結腸癌、頭頚部癌または白血病である、請求項11に記載の薬学的組成物。Wherein the cancer is breast cancer, ovarian cancer, malignant melanoma, lung cancer, stomach cancer, colon cancer, head and neck cancer or leukemia, a pharmaceutical composition of claim 11. パクリタキセルポリグルタミン酸との結合体であって、該パクリタキセルが該ポリグルタミン酸に、該パクリタキセルの1つ以上の遊離ヒドロキシル基において結合している、結合体。A conjugate of paclitaxel and polyglutamic acid , wherein the paclitaxel is attached to the polyglutamic acid at one or more free hydroxyl groups of the paclitaxel . 前記ポリマーが、ポリ(d−グルタミン酸)、ポリ(l−グルタミン酸)、およびポリ(dl−グルタミン酸)からなる群から選択される、請求項13に記載の結合体。14. The conjugate according to claim 13 , wherein the polymer is selected from the group consisting of poly (d-glutamic acid), poly (l-glutamic acid), and poly (dl-glutamic acid). 前記パクリタキセルが前記ポリマーに、該パクリタキセルの2’−および/または7−ヒドロキシルに結合体化されている、請求項13または14に記載の結合体。15. A conjugate according to claim 13 or 14 , wherein the paclitaxel is conjugated to the polymer to the 2'- and / or 7-hydroxyl of the paclitaxel. 前記ポリマーが、5,000〜100,000の分子量を有する、請求項13〜15のいずれか1項に記載の結合体。16. A conjugate according to any one of claims 13 to 15 , wherein the polymer has a molecular weight of 5,000 to 100,000. 前記ポリマーが、20,000〜80,000の分子量を有する、請求項13〜15のいずれか1項に記載の結合体。16. A conjugate according to any one of claims 13 to 15 , wherein the polymer has a molecular weight of 20,000 to 80,000. 前記ポリマーが、30,000〜60,000の分子量を有する、請求項13〜15のいずれか1項に記載の結合体。16. A conjugate according to any one of claims 13 to 15 , wherein the polymer has a molecular weight of 30,000 to 60,000. 請求項13〜18のいずれか1項に記載の結合体を製造するための方法であって、前記ポリマーを、パクリタキセルと反応させて、エステル結合を形成する、方法。19. A method for producing a conjugate according to any one of claims 13-18 , wherein the polymer is reacted with paclitaxel to form an ester linkage.
JP53273497A 1996-03-12 1997-03-11 Water-soluble paclitaxel prodrug Expired - Lifetime JP3737518B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US1318496P 1996-03-12 1996-03-12
US60/013,184 1996-03-12
PCT/US1997/003687 WO1997033552A1 (en) 1996-03-12 1997-03-11 Water soluble paclitaxel prodrugs

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2002236654A Division JP2003063960A (en) 1996-03-12 2002-08-14 Water-soluble paclitaxel prodrug

Publications (2)

Publication Number Publication Date
JP2000507930A JP2000507930A (en) 2000-06-27
JP3737518B2 true JP3737518B2 (en) 2006-01-18

Family

ID=21758713

Family Applications (2)

Application Number Title Priority Date Filing Date
JP53273497A Expired - Lifetime JP3737518B2 (en) 1996-03-12 1997-03-11 Water-soluble paclitaxel prodrug
JP2002236654A Pending JP2003063960A (en) 1996-03-12 2002-08-14 Water-soluble paclitaxel prodrug

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2002236654A Pending JP2003063960A (en) 1996-03-12 2002-08-14 Water-soluble paclitaxel prodrug

Country Status (23)

Country Link
US (2) US5977163A (en)
EP (2) EP0932399B1 (en)
JP (2) JP3737518B2 (en)
KR (1) KR100561788B1 (en)
CN (2) CN1304058C (en)
AT (1) ATE314843T1 (en)
AU (1) AU735900B2 (en)
BR (1) BR9710646A (en)
CA (1) CA2250295C (en)
CZ (1) CZ297979B6 (en)
DE (1) DE69735057T2 (en)
DK (1) DK0932399T3 (en)
EA (1) EA002400B1 (en)
ES (2) ES2448467T3 (en)
HU (1) HU226646B1 (en)
IL (1) IL126179A (en)
NO (2) NO324461B1 (en)
NZ (1) NZ332234A (en)
PL (1) PL189698B1 (en)
PT (1) PT932399E (en)
SI (1) SI0932399T1 (en)
UA (1) UA68330C2 (en)
WO (1) WO1997033552A1 (en)

Families Citing this family (371)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6096331A (en) * 1993-02-22 2000-08-01 Vivorx Pharmaceuticals, Inc. Methods and compositions useful for administration of chemotherapeutic agents
US6749868B1 (en) 1993-02-22 2004-06-15 American Bioscience, Inc. Protein stabilized pharmacologically active agents, methods for the preparation thereof and methods for the use thereof
US6753006B1 (en) 1993-02-22 2004-06-22 American Bioscience, Inc. Paclitaxel-containing formulations
US6537579B1 (en) 1993-02-22 2003-03-25 American Bioscience, Inc. Compositions and methods for administration of pharmacologically active compounds
US20030133955A1 (en) * 1993-02-22 2003-07-17 American Bioscience, Inc. Methods and compositions useful for administration of chemotherapeutic agents
US20030068362A1 (en) * 1993-02-22 2003-04-10 American Bioscience, Inc. Methods and formulations for the delivery of pharmacologically active agents
US6179817B1 (en) 1995-02-22 2001-01-30 Boston Scientific Corporation Hybrid coating for medical devices
US6774278B1 (en) 1995-06-07 2004-08-10 Cook Incorporated Coated implantable medical device
US6441025B2 (en) * 1996-03-12 2002-08-27 Pg-Txl Company, L.P. Water soluble paclitaxel derivatives
JP3737518B2 (en) * 1996-03-12 2006-01-18 ピージー−ティーエックスエル カンパニー, エル.ピー. Water-soluble paclitaxel prodrug
WO1997038727A1 (en) * 1996-04-15 1997-10-23 Asahi Kasei Kogyo Kabushiki Kaisha Medicament composite
JP2000509394A (en) * 1996-05-01 2000-07-25 アンティバイラルズ インコーポレイテッド Polypeptide conjugates for transporting substances across cell membranes
US6030941A (en) * 1996-05-01 2000-02-29 Avi Biopharma, Inc. Polymer composition for delivering substances in living organisms
ATE302599T1 (en) * 1996-05-24 2005-09-15 Angiotech Pharm Inc PREPARATIONS AND METHODS FOR THE TREATMENT OR PREVENTION OF DISEASES OF THE BODY PASSAGES
US20070092563A1 (en) * 1996-10-01 2007-04-26 Abraxis Bioscience, Inc. Novel formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
GB9708265D0 (en) * 1997-04-24 1997-06-18 Nycomed Imaging As Contrast agents
US6515016B2 (en) 1996-12-02 2003-02-04 Angiotech Pharmaceuticals, Inc. Composition and methods of paclitaxel for treating psoriasis
US6495579B1 (en) 1996-12-02 2002-12-17 Angiotech Pharmaceuticals, Inc. Method for treating multiple sclerosis
US20030157187A1 (en) * 1996-12-02 2003-08-21 Angiotech Pharmaceuticals, Inc. Compositions and methods for treating or preventing inflammatory diseases
US6204388B1 (en) 1996-12-03 2001-03-20 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto and analogues thereof
AU756699B2 (en) 1996-12-03 2003-01-23 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto, analogues and uses thereof
US6458373B1 (en) 1997-01-07 2002-10-01 Sonus Pharmaceuticals, Inc. Emulsion vehicle for poorly soluble drugs
US7112338B2 (en) * 1997-03-12 2006-09-26 The Regents Of The University Of California Cationic liposome delivery of taxanes to angiogenic blood vessels
DE19718339A1 (en) * 1997-04-30 1998-11-12 Schering Ag Polymer coated stents, processes for their manufacture and their use for restenosis prophylaxis
EP0975370B9 (en) 1997-05-21 2004-11-03 The Board Of Trustees Of The Leland Stanford Junior University Composition and method for enhancing transport across biological membranes
US8853260B2 (en) * 1997-06-27 2014-10-07 Abraxis Bioscience, Llc Formulations of pharmacological agents, methods for the preparation thereof and methods for the use thereof
US20030199425A1 (en) * 1997-06-27 2003-10-23 Desai Neil P. Compositions and methods for treatment of hyperplasia
US6306166B1 (en) * 1997-08-13 2001-10-23 Scimed Life Systems, Inc. Loading and release of water-insoluble drugs
DE19744135C1 (en) * 1997-09-29 1999-03-25 Schering Ag Medical implants coated with epothilone
US20040170563A1 (en) * 1997-10-27 2004-09-02 Meade Thomas J. Magnetic resonance imaging agents for the delivery of therapeutic agents
US6485514B1 (en) * 1997-12-12 2002-11-26 Supergen, Inc. Local delivery of therapeutic agents
US6394945B1 (en) * 1997-12-22 2002-05-28 Mds (Canada), Inc. Radioactively coated devices
CZ298511B6 (en) * 1997-12-22 2007-10-24 Schering Corporation Use of benzocycloheptapyridine compounds in combination with antineoplastic medicaments for preparing a compound medicament intended for treating proliferative diseases
KR100228187B1 (en) * 1997-12-24 1999-11-01 김성년 A radioactive ballon used in balloon dilatation catherer and process for preparation thereof
CA2281937A1 (en) * 1997-12-25 1999-07-08 Toray Industries, Inc. Drug for treating abnormalities in bone marrow
US6683100B2 (en) 1999-01-19 2004-01-27 Novartis Ag Organic compounds
GB9802451D0 (en) * 1998-02-05 1998-04-01 Ciba Geigy Ag Organic compounds
ES2324378T3 (en) * 1998-02-05 2009-08-05 Novartis Ag PHARMACEUTICAL COMPOSITION CONTAINING EPOTILONE.
US7030155B2 (en) 1998-06-05 2006-04-18 Sonus Pharmaceuticals, Inc. Emulsion vehicle for poorly soluble drugs
DE69900689T2 (en) * 1998-06-26 2002-08-29 Quanam Medical Corp TOPOISOMERASE INHIBITORS FOR RESTENOSE PREVENTION
US7314637B1 (en) 1999-06-29 2008-01-01 Neopharm, Inc. Method of administering liposomal encapsulated taxane
US5981564A (en) * 1998-07-01 1999-11-09 Universite Laval Water-soluble derivatives of paclitaxel, method for producing same and uses thereof
US7008645B2 (en) 1998-07-14 2006-03-07 Yissum Research Development Company Of The Hebrew University Of Jerusalem Method of inhibiting restenosis using bisphosphonates
US6984400B2 (en) 1998-07-14 2006-01-10 Yissum Research Development Company Of The Hebrew University Of Jerusalem Method of treating restenosis using bisphosphonate nanoparticles
IL125336A0 (en) * 1998-07-14 1999-03-12 Yissum Res Dev Co Compositions for inhibition and treatment of restinosis
AU771367B2 (en) * 1998-08-20 2004-03-18 Cook Medical Technologies Llc Coated implantable medical device
US6350786B1 (en) 1998-09-22 2002-02-26 Hoffmann-La Roche Inc. Stable complexes of poorly soluble compounds in ionic polymers
DE19845798A1 (en) * 1998-09-29 2000-04-13 Schering Ag Use of neoangiogenesis markers for diagnosis and therapy of tumors, agents containing them, and methods for their production
DE60004630T2 (en) * 1999-01-12 2004-06-17 Quanam Medical Corp., Santa Clara MEDICINAL PRODUCT AND METHOD FOR ADMINISTRATING WATER-INSOLUBLE PACLITAXEL DERIVATIVES
US6333347B1 (en) * 1999-01-29 2001-12-25 Angiotech Pharmaceuticals & Advanced Research Tech Intrapericardial delivery of anti-microtubule agents
WO2000050016A2 (en) * 1999-02-23 2000-08-31 Angiotech Pharmaceuticals, Inc. Compositions and methods for improving integrity of compromised body passageways and cavities
US7018654B2 (en) * 1999-03-05 2006-03-28 New River Pharmaceuticals Inc. Pharmaceutical composition containing an active agent in an amino acid copolymer structure
US6716452B1 (en) * 2000-08-22 2004-04-06 New River Pharmaceuticals Inc. Active agent delivery systems and methods for protecting and administering active agents
US7060708B2 (en) 1999-03-10 2006-06-13 New River Pharmaceuticals Inc. Active agent delivery systems and methods for protecting and administering active agents
US20040121954A1 (en) * 1999-04-13 2004-06-24 Xu Wuhan Jingya Poly(dipeptide) as a drug carrier
US20010041189A1 (en) * 1999-04-13 2001-11-15 Jingya Xu Poly(dipeptide) as a drug carrier
US6317615B1 (en) 1999-04-19 2001-11-13 Cardiac Pacemakers, Inc. Method and system for reducing arterial restenosis in the presence of an intravascular stent
US6368658B1 (en) * 1999-04-19 2002-04-09 Scimed Life Systems, Inc. Coating medical devices using air suspension
ATE372785T1 (en) * 1999-06-21 2007-09-15 Nihon Mediphysics Co Ltd METHOD FOR ADMINISTRATION OF DRUGS HAVING BINDING AFFINITY TO PLASMA PROTEIN AND USE OF THE COMPOSITION IN THE METHOD
US6258121B1 (en) 1999-07-02 2001-07-10 Scimed Life Systems, Inc. Stent coating
US6273901B1 (en) 1999-08-10 2001-08-14 Scimed Life Systems, Inc. Thrombosis filter having a surface treatment
US6730293B1 (en) 1999-08-24 2004-05-04 Cellgate, Inc. Compositions and methods for treating inflammatory diseases of the skin
US6593292B1 (en) 1999-08-24 2003-07-15 Cellgate, Inc. Compositions and methods for enhancing drug delivery across and into epithelial tissues
US7229961B2 (en) 1999-08-24 2007-06-12 Cellgate, Inc. Compositions and methods for enhancing drug delivery across and into ocular tissues
US6669951B2 (en) * 1999-08-24 2003-12-30 Cellgate, Inc. Compositions and methods for enhancing drug delivery across and into epithelial tissues
JP4848113B2 (en) * 1999-09-09 2011-12-28 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア Cationic liposome delivery of taxanes to angiogenic blood vessels
CN1111166C (en) * 1999-09-10 2003-06-11 云南汉德生物技术有限公司 Water soluble cephalotaxin phosphorus poly aminoacid ester or its salt, pharmaceutical compositions contg. same, and pharmaceutical use thereof
US6380405B1 (en) 1999-09-13 2002-04-30 Nobex Corporation Taxane prodrugs
US6541508B2 (en) 1999-09-13 2003-04-01 Nobex Corporation Taxane prodrugs
US6713454B1 (en) * 1999-09-13 2004-03-30 Nobex Corporation Prodrugs of etoposide and etoposide analogs
EP2266607A3 (en) 1999-10-01 2011-04-20 Immunogen, Inc. Immunoconjugates for treating cancer
CN101507820A (en) 1999-10-12 2009-08-19 细胞治疗公司 Manufacture of polyglutamate-therapeutic agent conjugates
US20030054977A1 (en) * 1999-10-12 2003-03-20 Cell Therapeutics, Inc. Manufacture of polyglutamate-therapeutic agent conjugates
US6692724B1 (en) 1999-10-25 2004-02-17 Board Of Regents, The University Of Texas System Ethylenedicysteine (EC)-drug conjugates, compositions and methods for tissue specific disease imaging
US7067111B1 (en) * 1999-10-25 2006-06-27 Board Of Regents, University Of Texas System Ethylenedicysteine (EC)-drug conjugates, compositions and methods for tissue specific disease imaging
US6638906B1 (en) 1999-12-13 2003-10-28 Nobex Corporation Amphiphilic polymers and polypeptide conjugates comprising same
US6313143B1 (en) * 1999-12-16 2001-11-06 Hoffmann-La Roche Inc. Substituted pyrroles
US6362217B2 (en) * 2000-03-17 2002-03-26 Bristol-Myers Squibb Company Taxane anticancer agents
CZ20023330A3 (en) * 2000-03-17 2003-02-12 Cell Therapeutics, Inc. Conjugates of camptothecin and polyglutamic acid and processes of their preparation
US20020077290A1 (en) * 2000-03-17 2002-06-20 Rama Bhatt Polyglutamic acid-camptothecin conjugates and methods of preparation
US8101200B2 (en) 2000-04-13 2012-01-24 Angiotech Biocoatings, Inc. Targeted therapeutic agent release devices and methods of making and using the same
US8236048B2 (en) 2000-05-12 2012-08-07 Cordis Corporation Drug/drug delivery systems for the prevention and treatment of vascular disease
US6776796B2 (en) 2000-05-12 2004-08-17 Cordis Corportation Antiinflammatory drug and delivery device
EP1286704B1 (en) * 2000-06-02 2014-07-23 Board of Regents, The University of Texas System ETHYLENEDICYSTEINE (EC)-glucose analog CONJUGATES
DE60131537T2 (en) 2000-06-22 2008-10-23 Nitromed, Inc., Lexington NITROSED AND NITROSYLATED TAXANES, PREPARATIONS AND METHODS OF USE
CN1125097C (en) * 2000-07-05 2003-10-22 天津大学 Precursor of polyglycol carried taxusol or polyene taxusol
US7163918B2 (en) 2000-08-22 2007-01-16 New River Pharmaceuticals Inc. Iodothyronine compositions
US20020099013A1 (en) * 2000-11-14 2002-07-25 Thomas Piccariello Active agent delivery systems and methods for protecting and administering active agents
US20060177416A1 (en) 2003-10-14 2006-08-10 Medivas, Llc Polymer particle delivery compositions and methods of use
US8303609B2 (en) 2000-09-29 2012-11-06 Cordis Corporation Coated medical devices
US6616592B1 (en) * 2000-11-13 2003-09-09 Isotech, L.L.C. Radioactive medical devices for inhibiting a hyperplastic response and method of making radioactive medical devices
US6612976B2 (en) * 2000-11-13 2003-09-02 Isotech, L.L.C. Radioactive medical devices and methods of making radioactive medical devices
JP2006516948A (en) * 2000-11-14 2006-07-13 ニュー リバー ファーマシューティカルズ インコーポレイテッド New drug compound containing abacavir sulfate and method for producing and using the compound
US8394813B2 (en) 2000-11-14 2013-03-12 Shire Llc Active agent delivery systems and methods for protecting and administering active agents
US20090306228A1 (en) * 2000-11-14 2009-12-10 Shire Llc Active agent delivery systems and methods for protecting and administering active agents
EP1347794A2 (en) * 2000-11-27 2003-10-01 Medtronic, Inc. Stents and methods for preparing stents from wires having hydrogel coating layers thereon
WO2002049501A2 (en) * 2000-12-18 2002-06-27 Board Of Regents, University Of Texas System Local regional chemotherapy and radiotherapy using in situ hydrogel
AU2002236765A1 (en) * 2001-01-16 2002-07-30 Glaxo Group Limited Pharmaceutical combination for the treatment of cancer containing a 4-quinazolineamine and another anti-neoplastic agent
CA2435418A1 (en) * 2001-01-24 2002-08-01 Mestex Ag Use of neurotoxic substances in producing a medicament for treating joint pains
NZ526871A (en) * 2001-01-25 2006-01-27 Bristol Myers Squibb Co Pharmaceutical dosage forms of epothilones for oral administration
EP1353667A1 (en) * 2001-01-25 2003-10-22 Bristol-Myers Squibb Company Parenteral formulations containing epothilone analogs
US7771468B2 (en) * 2001-03-16 2010-08-10 Angiotech Biocoatings Corp. Medicated stent having multi-layer polymer coating
TWI331525B (en) * 2001-03-19 2010-10-11 Novartis Ag Combinations comprising an antidiarrheal agent and an epothilone or an epothilone derivative
US20020169125A1 (en) * 2001-03-21 2002-11-14 Cell Therapeutics, Inc. Recombinant production of polyanionic polymers and uses thereof
DE10115740A1 (en) 2001-03-26 2002-10-02 Ulrich Speck Preparation for restenosis prophylaxis
EP1389090A2 (en) * 2001-04-26 2004-02-18 Board of Regents, The University of Texas System Diagnostic imaging compositions, their methods of synthesis and use
CA2445985A1 (en) * 2001-05-04 2002-11-14 University Of Utah Research Foundation Hyaluronic acid containing bioconjugates: targeted delivery of anti-cancer drugs to cancer cells
US20070066537A1 (en) * 2002-02-22 2007-03-22 New River Pharmaceuticals Inc. Compounds and compositions for prevention of overdose of oxycodone
US7338939B2 (en) * 2003-09-30 2008-03-04 New River Pharmaceuticals Inc. Abuse-resistant hydrocodone compounds
US7375082B2 (en) * 2002-02-22 2008-05-20 Shire Llc Abuse-resistant hydrocodone compounds
US7169752B2 (en) * 2003-09-30 2007-01-30 New River Pharmaceuticals Inc. Compounds and compositions for prevention of overdose of oxycodone
US20060014697A1 (en) 2001-08-22 2006-01-19 Travis Mickle Pharmaceutical compositions for prevention of overdose or abuse
US7708712B2 (en) * 2001-09-04 2010-05-04 Broncus Technologies, Inc. Methods and devices for maintaining patency of surgically created channels in a body organ
CA2458828A1 (en) * 2001-09-24 2003-05-01 James J. Barry Optimized dosing for drug coated stents
JP2005507934A (en) * 2001-10-30 2005-03-24 ネクター セラピューティックス エイエル,コーポレイション Water-soluble polymer conjugate of retinoic acid
US7488313B2 (en) * 2001-11-29 2009-02-10 Boston Scientific Scimed, Inc. Mechanical apparatus and method for dilating and delivering a therapeutic agent to a site of treatment
DE10158904A1 (en) * 2001-11-30 2003-06-12 Roche Diagnostics Gmbh Process for the preparation of linear DNA fragments for the in vitro expression of proteins
KR20030049023A (en) * 2001-12-13 2003-06-25 주식회사 코오롱 Paclitaxel derivatives for radio-sensitizer
RS52904A (en) * 2001-12-20 2006-12-15 Bristol-Myers Squib Company Pharmaceutical compositions of orally active taxane derivatives having enhanced bioavailability
US7261875B2 (en) 2001-12-21 2007-08-28 Board Of Regents, The University Of Texas System Dendritic poly (amino acid) carriers and methods of use
ATE410459T1 (en) 2002-01-14 2008-10-15 Gen Hospital Corp BIODEGRADABLE POLYKETALS, METHOD FOR THE PRODUCTION THEREOF AND THEIR USE
KR20030068955A (en) * 2002-02-19 2003-08-25 주식회사 코오롱 New self-immolating linker and its preparation method, water-soluble prodrug compound comprising residue of paclitaxel or derivatives thereof using the same, its preparation method, and pharmaceutical composition comprising the same
KR20050010756A (en) * 2002-02-22 2005-01-28 뉴 리버 파마슈티칼스, 인크. Use of peptide-drug conjugation to reduce inter-subject variability of drug serum levels
US7700561B2 (en) * 2002-02-22 2010-04-20 Shire Llc Abuse-resistant amphetamine prodrugs
US7105486B2 (en) * 2002-02-22 2006-09-12 New River Pharmaceuticals Inc. Abuse-resistant amphetamine compounds
ES2500117T3 (en) * 2002-02-22 2014-09-30 Shire Llc Novel sustained release pharmaceutical compounds to prevent the abuse of controlled substances
US7659253B2 (en) 2002-02-22 2010-02-09 Shire Llc Abuse-resistant amphetamine prodrugs
EP2266590A3 (en) 2002-02-22 2011-04-20 Shire LLC Active agent delivery sytems and methods for protecting and administering active agents
US7138105B2 (en) 2002-02-27 2006-11-21 Pharmain Compositions for delivery of therapeutics and other materials, and methods of making and using the same
US7635463B2 (en) 2002-02-27 2009-12-22 Pharmain Corporation Compositions for delivery of therapeutics and other materials
CN100475269C (en) * 2002-03-05 2009-04-08 北京键凯科技有限公司 Binding agent of hydrophilic polymer-glutamic acid oligopeptide and medicinal molecular, composition containing said binding agent and use thereof
DE10209821A1 (en) 2002-03-06 2003-09-25 Biotechnologie Ges Mittelhesse Coupling of proteins to a modified polysaccharide
DE10209822A1 (en) * 2002-03-06 2003-09-25 Biotechnologie Ges Mittelhesse Coupling of low molecular weight substances to a modified polysaccharide
US8003089B2 (en) * 2002-03-13 2011-08-23 Beijing Jiankai Technology Co., Ltd. Y shape branched hydrophilic polymer derivatives, their preparation methods, conjugates of the derivatives and drug molecules, and pharmaceutical compositions comprising the conjugates
AU2003236076A1 (en) * 2002-03-22 2003-10-08 Beijing Jiankai Technology Co., Ltd. Hydrophilic polymers-flavonoids conjugates and pharmaceutical compositions comprising them
US7264822B2 (en) * 2002-04-03 2007-09-04 Poly-Med, Inc. Conjugated drug-polymer coated stent
WO2004103267A2 (en) * 2002-05-20 2004-12-02 Kosan Biosciences, Inc. Methods to administer epothilone d
CA2484383C (en) * 2002-07-12 2016-05-31 Cook Incorporated Medical device coated with a bioactive agent
JP4791183B2 (en) 2002-08-23 2011-10-12 スローン−ケッタリング インスティトュート フォア キャンサー リサーチ Synthesis and use of epothilone, its intermediates and analogues
US7649006B2 (en) 2002-08-23 2010-01-19 Sloan-Kettering Institute For Cancer Research Synthesis of epothilones, intermediates thereto and analogues thereof
US20040047835A1 (en) * 2002-09-06 2004-03-11 Cell Therapeutics, Inc. Combinatorial drug therapy using polymer drug conjugates
KR101476067B1 (en) 2002-09-06 2014-12-23 인설트 테라페틱스, 인코퍼레이티드 Cyclodextrin-based polymers for delivering the therapeutic agents covalently bound thereto
WO2004024776A1 (en) * 2002-09-11 2004-03-25 Fresenius Kabi Deutschland Gmbh Method of producing hydroxyalkyl starch derivatives
DE10244847A1 (en) * 2002-09-20 2004-04-01 Ulrich Prof. Dr. Speck Medical device for drug delivery
ITPD20020271A1 (en) 2002-10-18 2004-04-19 Fidia Farmaceutici CHEMICAL-PHARMACEUTICAL COMPOUNDS CONSISTING OF TAXAN DERIVATIVES COVALENTLY LINKED TO HYALURONIC ACID OR ITS DERIVATIVES.
AU2003284885A1 (en) * 2002-10-21 2004-05-13 Kensey Nash Corporation Device and methods for sequential, regional delivery of multiple cytotoxic agents
BR0316046A (en) * 2002-11-07 2005-09-13 Univ Texas Drug and ethylenodicysteine (ec) conjugates, compositions and methods for imaging tissue specific disease
EP2135867B1 (en) 2002-11-07 2013-09-25 Kosan Biosciences Incorporated Trans-9, 10-dehydroepothilone C and trans-9, 10-dehydroepothilone D, analogs thereof and methods of making the same
ES2685436T3 (en) 2002-12-09 2018-10-09 Abraxis Bioscience, Llc Compositions and procedures for administration of pharmacological agents
WO2004063195A1 (en) * 2003-01-03 2004-07-29 Sloan-Kettering Institute For Cancer Research Pyridopyrimidine kinase inhibitors
EA200501252A1 (en) 2003-02-03 2006-02-24 Неофарм, Инк. LIPOSOMAL COMPOSITION, METHOD FOR ITS PREPARATION AND MEDICATION ON ITS BASIS (OPTIONS)
US7311727B2 (en) * 2003-02-05 2007-12-25 Board Of Trustees Of The University Of Arkansas Encased stent
ES2351338T3 (en) * 2003-03-20 2011-02-03 Nippon Kayaku Kabushiki Kaisha MICELAR PREPARATION CONTAINING A LITTLE SOLUBLE ANTINEOPLASTIC AGENT IN WATER AND NEW BLOCK COPOLYMER.
US7306580B2 (en) * 2003-04-16 2007-12-11 Cook Incorporated Medical device with therapeutic agents
KR100512483B1 (en) 2003-05-07 2005-09-05 선바이오(주) Novel Preparation method of PEG-maleimide PEG derivatives
EP1475105A1 (en) * 2003-05-09 2004-11-10 Schering AG Bone localising radiopharmaceutical and tubulin-interacting compound combinatorial radiotherapy
TW200427503A (en) * 2003-05-27 2004-12-16 Kureha Chemical Ind Co Ltd Process for producing thermoplastic resin molding
PT1644019E (en) * 2003-05-29 2012-05-23 Shire Llc Abuse resistant amphetamine compounds
US20050054625A1 (en) * 2003-05-30 2005-03-10 Kosan Biosciences, Inc. Method for treating diseases using HSP90-inhibiting agents in combination with nuclear export inhibitors
US20050026893A1 (en) * 2003-05-30 2005-02-03 Kosan Biosciences, Inc. Method for treating diseases using HSP90-inhibiting agents in combination with immunosuppressants
US20050020557A1 (en) * 2003-05-30 2005-01-27 Kosan Biosciences, Inc. Method for treating diseases using HSP90-inhibiting agents in combination with enzyme inhibitors
US20050020534A1 (en) * 2003-05-30 2005-01-27 Kosan Biosciences, Inc. Method for treating diseases using HSP90-inhibiting agents in combination with antimetabolites
DE10324710A1 (en) 2003-05-30 2004-12-16 Supramol Parenteral Colloids Gmbh Starch derivative Complex
US20050020556A1 (en) * 2003-05-30 2005-01-27 Kosan Biosciences, Inc. Method for treating diseases using HSP90-inhibiting agents in combination with platinum coordination complexes
US20050054589A1 (en) * 2003-05-30 2005-03-10 Kosan Biosciences, Inc. Method for treating diseases using HSP90-inhibiting agents in combination with antibiotics
US7691838B2 (en) 2003-05-30 2010-04-06 Kosan Biosciences Incorporated Method for treating diseases using HSP90-inhibiting agents in combination with antimitotics
US10517883B2 (en) 2003-06-27 2019-12-31 Zuli Holdings Ltd. Method of treating acute myocardial infarction
WO2005014655A2 (en) * 2003-08-08 2005-02-17 Fresenius Kabi Deutschland Gmbh Conjugates of hydroxyalkyl starch and a protein
US20080274948A1 (en) * 2003-08-08 2008-11-06 Fresenius Kabi Deutschland Gmbh Conjugates of Hydroxyalkyl Starch and G-Csf
US20050152979A1 (en) * 2003-09-05 2005-07-14 Cell Therapeutics, Inc. Hydrophobic drug compositions containing reconstitution enhancer
WO2005023294A2 (en) 2003-09-05 2005-03-17 The General Hospital Corporation Polyacetal drug conjugates as release system
CN1852740B (en) 2003-09-17 2011-05-11 耐科塔医药公司 Multi-arm polymer prodrugs
US8394365B2 (en) 2003-09-17 2013-03-12 Nektar Therapeutics Multi-arm polymer prodrugs
CA2540678C (en) * 2003-09-30 2011-02-22 New River Pharmaceuticals Inc. Pharmaceutical compositions for prevention of overdose or abuse
WO2005056636A2 (en) 2003-12-03 2005-06-23 Nektar Therapeutics Al, Corporation Method of preparing maleimide functionalized polymers
US9050378B2 (en) 2003-12-10 2015-06-09 Board Of Regents, The University Of Texas System N2S2 chelate-targeting ligand conjugates
ITTO20040056A1 (en) * 2004-02-05 2004-05-05 Sorin Biomedica Cardio Spa STENT FOR THE ENDOLIMINAL DELIVERY OF PRINCIPLES OR ACTIVE AGENTS
CN102302787A (en) * 2004-03-11 2012-01-04 费森尤斯卡比德国有限公司 Conjugates of hydroxyalkyl starch and a protein
WO2005092928A1 (en) 2004-03-11 2005-10-06 Fresenius Kabi Deutschland Gmbh Conjugates of hydroxyalkyl starch and a protein, prepared by reductive amination
GB0406445D0 (en) * 2004-03-23 2004-04-28 Astrazeneca Ab Combination therapy
US7705036B2 (en) 2004-04-01 2010-04-27 Cardiome Pharma Corp. Deuterated aminocyclohexyl ether compounds and processes for preparing same
JP4954864B2 (en) 2004-04-01 2012-06-20 カーディオム ファーマ コーポレイション Prodrugs of ion channel modulating compounds and uses thereof
KR20050099311A (en) * 2004-04-09 2005-10-13 에이엔에이치 케어연구소(주) Composition for injection comprising anticancer drug
US20080095704A1 (en) * 2004-07-02 2008-04-24 Alan Cuthbertson Imaging Agents with Improved Pharmacokinetic Profiles
WO2006020719A2 (en) * 2004-08-11 2006-02-23 Arqule, Inc. Aminoacid conjugates of beta - lapachone for tumor targeting
US8614228B2 (en) 2004-08-11 2013-12-24 Arqule, Inc. Quinone prodrug compositions and methods of use
CN101023119B (en) * 2004-09-22 2010-05-05 日本化药株式会社 Novel block copolymer, micelle preparation, and anticancer agent containing the same as active ingredient
EP1828099B1 (en) 2004-11-18 2020-01-22 Correvio International Sàrl Synthetic process for aminocyclohexyl ether compounds
HUE048419T2 (en) 2004-12-22 2020-08-28 Nitto Denko Corp Drug carrier and drug carrier kit for inhibiting fibrosis
US20120269886A1 (en) 2004-12-22 2012-10-25 Nitto Denko Corporation Therapeutic agent for pulmonary fibrosis
CA3054535A1 (en) 2005-02-18 2006-08-24 Abraxis Bioscience, Llc Combinations and modes of administration of therapeutic agents and combination therapy
AU2006222187A1 (en) * 2005-03-11 2006-09-14 Fresenius Kabi Deutschland Gmbh Production of bioactive glycoproteins from inactive starting material by conjugation with hydroxyalkylstarch
KR20080008364A (en) * 2005-05-05 2008-01-23 헤모텍 아게 All-over coating of vessel stents
US8574259B2 (en) 2005-05-10 2013-11-05 Lifescreen Sciences Llc Intravascular filter with drug reservoir
JP4954983B2 (en) 2005-05-18 2012-06-20 ファーマサイエンス・インコーポレイテッド BIR domain binding compound
JP5159616B2 (en) 2005-06-15 2013-03-06 カーディオム ファーマ コーポレイション Synthetic process for the preparation of aminocyclohexyl ether compounds
KR101334541B1 (en) 2005-07-19 2013-11-28 넥타르 테라퓨틱스 Method for preparing polymer maleimides
US8257727B2 (en) 2005-07-21 2012-09-04 Fmc Biopolymer As Medical devices coated with a fast dissolving biocompatible coating
ITPD20050242A1 (en) 2005-08-03 2007-02-04 Fidia Farmaceutici BIOCONIUGATI ANTITUMORALI OF HYALURONIC ACID OR ITS DERIVATIVES, OBTAINABLE FOR DIRECT OR INDIRECT CHEMICAL CONJUGATION, AND THEIR USE IN PHARMACEUTICAL FIELD
NZ592132A (en) * 2005-08-31 2012-12-21 Abraxis Bioscience Llc Composition comprising nanoparticles of docitaxel and a citrate
CN101291659A (en) * 2005-08-31 2008-10-22 阿布拉科斯生物科学有限公司 Compositions comprising poorly water soluble pharmaceutical agents and antimicrobial agents
EP1762250A1 (en) * 2005-09-12 2007-03-14 Fresenius Kabi Deutschland GmbH Conjugates of hydroxyalkyl starch and an active substance, prepared by chemical ligation via thiazolidine
CA2623198C (en) 2005-09-22 2014-08-05 Medivas, Llc Bis-(a-amino)-diol-diester-containing poly(ester amide) and poly(ester urethane) compositions and methods of use
EP1933881B1 (en) 2005-09-22 2019-03-13 Medivas, LLC Solid polymer delivery compositions and methods for use thereof
US7855279B2 (en) 2005-09-27 2010-12-21 Amunix Operating, Inc. Unstructured recombinant polymers and uses thereof
US7846445B2 (en) 2005-09-27 2010-12-07 Amunix Operating, Inc. Methods for production of unstructured recombinant polymers and uses thereof
CN100384419C (en) * 2005-12-02 2008-04-30 菏泽睿鹰制药集团有限公司 Epothilone slow-release implanting composition and use
JP5237821B2 (en) * 2005-12-05 2013-07-17 日東電工株式会社 Polyglutamic acid-amino acid conjugates and methods
RU2008127309A (en) * 2005-12-06 2010-01-20 Селл Терапьютикс, Инк. (Us) TREATMENT OF ESTROGEN-DEPENDENT CANCER
EP1971372B1 (en) 2005-12-19 2018-11-14 PharmaIN Corporation Hydrophobic core carrier compositions for delivery of therapeutic agents, methods of making and using the same
US9572886B2 (en) 2005-12-22 2017-02-21 Nitto Denko Corporation Agent for treating myelofibrosis
US8834912B2 (en) * 2005-12-30 2014-09-16 Boston Scientific Scimed, Inc. Medical devices having multiple charged layers
US7910152B2 (en) * 2006-02-28 2011-03-22 Advanced Cardiovascular Systems, Inc. Poly(ester amide)-based drug delivery systems with controlled release rate and morphology
KR20080106254A (en) * 2006-03-28 2008-12-04 니폰 가야꾸 가부시끼가이샤 Polymer conjugate of taxane
US8758723B2 (en) 2006-04-19 2014-06-24 The Board Of Regents Of The University Of Texas System Compositions and methods for cellular imaging and therapy
CA2649335A1 (en) * 2006-05-03 2007-11-08 I.Q.A., A.S. Pharmaceutical composition containing a taxane derivative, destined for the preparation of an infusion solution, method of preparation thereof and use thereof
CN101535300B (en) 2006-05-16 2014-05-28 埃格拉医疗公司 Iap bir domain binding compounds
WO2007135910A1 (en) * 2006-05-18 2007-11-29 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of podophyllotoxin
EP1867657A1 (en) 2006-06-15 2007-12-19 Cell Therapeutics Europe S.R.L. Process for the preparation of poly-a-glutamic acid and derivatives thereof
US20080051603A1 (en) 2006-06-15 2008-02-28 Cell Therapeutics, Inc. Process for the preparation of poly-alpha-glutamic acid and derivatives thereof
CA2656077C (en) 2006-06-15 2014-12-09 Marc Mckennon A process for the preparation of poly-alpha-glutamic acid and derivatives thereof
US20070298069A1 (en) * 2006-06-26 2007-12-27 Boston Scientific Scimed, Inc. Medical devices for release of low solubility therapeutic agents
US8222256B2 (en) * 2006-07-05 2012-07-17 Exelixis, Inc. Methods of using IGFIR and ABL kinase modulators
WO2008026048A2 (en) * 2006-08-31 2008-03-06 Wockhardt Research Centre Stable injectable pharmaceutical compositions of docetaxel
CA2664852A1 (en) * 2006-10-03 2008-04-10 Nippon Kayaku Kabushiki Kaisha High-molecular weight conjugate of resorcinol derivatives
US10925977B2 (en) 2006-10-05 2021-02-23 Ceil>Point, LLC Efficient synthesis of chelators for nuclear imaging and radiotherapy: compositions and applications
US20080086195A1 (en) * 2006-10-05 2008-04-10 Boston Scientific Scimed, Inc. Polymer-Free Coatings For Medical Devices Formed By Plasma Electrolytic Deposition
WO2008056596A1 (en) * 2006-11-06 2008-05-15 Nippon Kayaku Kabushiki Kaisha Polymeric derivative of nucleic acid metabolic antagonist
EP2090607B1 (en) * 2006-11-08 2015-05-20 Nippon Kayaku Kabushiki Kaisha Polymeric derivative of nucleic acid metabolic antagonist
US8414526B2 (en) 2006-11-20 2013-04-09 Lutonix, Inc. Medical device rapid drug releasing coatings comprising oils, fatty acids, and/or lipids
US20080276935A1 (en) 2006-11-20 2008-11-13 Lixiao Wang Treatment of asthma and chronic obstructive pulmonary disease with anti-proliferate and anti-inflammatory drugs
US8414525B2 (en) * 2006-11-20 2013-04-09 Lutonix, Inc. Drug releasing coatings for medical devices
US9700704B2 (en) 2006-11-20 2017-07-11 Lutonix, Inc. Drug releasing coatings for balloon catheters
US8998846B2 (en) 2006-11-20 2015-04-07 Lutonix, Inc. Drug releasing coatings for balloon catheters
US8414910B2 (en) 2006-11-20 2013-04-09 Lutonix, Inc. Drug releasing coatings for medical devices
US9737640B2 (en) 2006-11-20 2017-08-22 Lutonix, Inc. Drug releasing coatings for medical devices
US8414909B2 (en) 2006-11-20 2013-04-09 Lutonix, Inc. Drug releasing coatings for medical devices
US8425459B2 (en) 2006-11-20 2013-04-23 Lutonix, Inc. Medical device rapid drug releasing coatings comprising a therapeutic agent and a contrast agent
KR100847123B1 (en) * 2006-11-22 2008-07-18 주식회사 스텐다드싸이텍 Stent
KR101441709B1 (en) 2006-11-30 2014-09-18 넥타르 테라퓨틱스 Method for preparing a polymer conjugate
CN101209350B (en) * 2006-12-30 2011-09-07 中国人民解放军军事医学科学院毒物药物研究所 Polyglutamate-medicament coupling compound with amino acid as communicating terminal
NZ588816A (en) 2007-01-21 2011-11-25 Hemoteq Ag Medical device for the treatment of stenoses of corporal lumina and for the prevention of impending restenoses
JP2010516625A (en) 2007-01-24 2010-05-20 インサート セラピューティクス, インコーポレイテッド Polymer-drug conjugates with tether groups for controlled drug delivery
US20080181852A1 (en) * 2007-01-29 2008-07-31 Nitto Denko Corporation Multi-functional Drug Carriers
ES2353653T3 (en) 2007-03-06 2011-03-03 Cell Therapeutics Europe S.R.L. METHOD FOR DETERMINING THE AMOUNT OF CONJUGATED TAXAN IN POLYGLUTAMIC ACID-TAXAN CONJUGATES.
US8784866B2 (en) 2007-03-26 2014-07-22 William Marsh Rice University Water-soluble carbon nanotube compositions for drug delivery and medicinal applications
TWI407971B (en) 2007-03-30 2013-09-11 Nitto Denko Corp Cancer cells and tumor-related fibroblasts
CN104800856A (en) * 2007-04-10 2015-07-29 日东电工株式会社 Multi-functional polyglutamate drug carriers
WO2008134528A1 (en) * 2007-04-25 2008-11-06 Board Of Regents, The University Of Texas System Anti-cancer agent-hyaluronic acid conjugate compositions and methods
CN101687835B (en) 2007-04-30 2015-08-19 艾科尔公司 The hydroxy sulfonate of quinone compounds and their application
EP2155255B1 (en) 2007-05-09 2013-08-14 Nitto Denko Corporation Compositions that include a hydrophobic compound and a polyamino acid conjugate
JP2010526917A (en) * 2007-05-09 2010-08-05 日東電工株式会社 Polyglutamate complex and polyglutamate-amino acid complex having plural kinds of drugs
WO2008141111A2 (en) * 2007-05-09 2008-11-20 Nitto Denko Corporation Polymers conjugated with platinum drugs
US8252361B2 (en) * 2007-06-05 2012-08-28 Abbott Cardiovascular Systems Inc. Implantable medical devices for local and regional treatment
NZ599430A (en) 2007-06-11 2014-03-28 Loch Macdonald R A drug delivery system for the prevention of cerebral vasospasm
US10092524B2 (en) 2008-06-11 2018-10-09 Edge Therapeutics, Inc. Compositions and their use to treat complications of aneurysmal subarachnoid hemorrhage
US9192697B2 (en) 2007-07-03 2015-11-24 Hemoteq Ag Balloon catheter for treating stenosis of body passages and for preventing threatening restenosis
US7960336B2 (en) 2007-08-03 2011-06-14 Pharmain Corporation Composition for long-acting peptide analogs
CA2695374A1 (en) 2007-08-15 2009-02-19 Amunix, Inc. Compositions and methods for modifying properties of biologically active polypeptides
US8563527B2 (en) 2007-08-20 2013-10-22 Pharmain Corporation Oligonucleotide core carrier compositions for delivery of nucleic acid-containing therapeutic agents, methods of making and using the same
JP2010539245A (en) * 2007-09-14 2010-12-16 日東電工株式会社 Drug carrier
WO2009041570A1 (en) * 2007-09-28 2009-04-02 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of steroid
WO2009070380A2 (en) * 2007-10-03 2009-06-04 William Marsh Rice University Water-soluble carbon nanotube compositions for drug delivery and medical applications
EP2070951A1 (en) * 2007-12-14 2009-06-17 Fresenius Kabi Deutschland GmbH Method for producing a hydroxyalkyl starch derivatives with two linkers
US20090169480A1 (en) * 2007-12-31 2009-07-02 Industrial Technology Research Institute Dendritic polymers and magnetic resonance imaging contrast agent employing the same
US20090176892A1 (en) 2008-01-09 2009-07-09 Pharmain Corporation Soluble Hydrophobic Core Carrier Compositions for Delivery of Therapeutic Agents, Methods of Making and Using the Same
US8101706B2 (en) 2008-01-11 2012-01-24 Serina Therapeutics, Inc. Multifunctional forms of polyoxazoline copolymers and drug compositions comprising the same
WO2009111271A1 (en) * 2008-03-06 2009-09-11 Nitto Denko Corporation Polymer paclitaxel conjugates and methods for treating cancer
CN101977631A (en) * 2008-03-18 2011-02-16 日本化药株式会社 Polymer conjugate of physiologically active substance
CN101569747B (en) * 2008-04-30 2012-08-22 宁波大学 Preparation method of taxol prodrug using polyethylene glycol as carrier
CN101569748B (en) * 2008-04-30 2012-08-22 宁波大学 Water-soluble taxol prodrug prodrug preparation method
WO2009135125A2 (en) * 2008-05-01 2009-11-05 Bayer Schering Pharma Ag Catheter balloon drug adherence techniques and methods
WO2009136572A1 (en) 2008-05-08 2009-11-12 日本化薬株式会社 Polymer conjugate of folic acid or folic acid derivative
JP2011162569A (en) * 2008-05-23 2011-08-25 Nano Career Kk Camptothecin polymer derivative and use thereof
US20100028416A1 (en) * 2008-07-30 2010-02-04 Nitto Denko Corporation Drug carriers
CA2732508C (en) 2008-08-11 2016-03-15 Nektar Therapeutics Multi-arm polymeric alkanoate conjugates
WO2010024898A2 (en) 2008-08-29 2010-03-04 Lutonix, Inc. Methods and apparatuses for coating balloon catheters
PT2349346T (en) 2008-09-23 2019-10-24 Nektar Therapeutics Method of metronomic dosing with camptothecin prodrugs (e.g. peg-irinotecan)
US8226603B2 (en) 2008-09-25 2012-07-24 Abbott Cardiovascular Systems Inc. Expandable member having a covering formed of a fibrous matrix for intraluminal drug delivery
US8076529B2 (en) 2008-09-26 2011-12-13 Abbott Cardiovascular Systems, Inc. Expandable member formed of a fibrous matrix for intraluminal drug delivery
US8049061B2 (en) 2008-09-25 2011-11-01 Abbott Cardiovascular Systems, Inc. Expandable member formed of a fibrous matrix having hydrogel polymer for intraluminal drug delivery
US8500687B2 (en) 2008-09-25 2013-08-06 Abbott Cardiovascular Systems Inc. Stent delivery system having a fibrous matrix covering with improved stent retention
US8545856B2 (en) 2008-10-31 2013-10-01 The Invention Science Fund I, Llc Compositions and methods for delivery of frozen particle adhesives
US8721583B2 (en) 2008-10-31 2014-05-13 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US9060926B2 (en) 2008-10-31 2015-06-23 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US8849441B2 (en) 2008-10-31 2014-09-30 The Invention Science Fund I, Llc Systems, devices, and methods for making or administering frozen particles
US9050070B2 (en) 2008-10-31 2015-06-09 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US9072688B2 (en) 2008-10-31 2015-07-07 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US20100111845A1 (en) * 2008-10-31 2010-05-06 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Compositions and methods for therapeutic delivery with frozen particles
US8221480B2 (en) 2008-10-31 2012-07-17 The Invention Science Fund I, Llc Compositions and methods for biological remodeling with frozen particle compositions
US8788211B2 (en) 2008-10-31 2014-07-22 The Invention Science Fund I, Llc Method and system for comparing tissue ablation or abrasion data to data related to administration of a frozen particle composition
US9072799B2 (en) 2008-10-31 2015-07-07 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US8793075B2 (en) 2008-10-31 2014-07-29 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US8731840B2 (en) 2008-10-31 2014-05-20 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US9060934B2 (en) 2008-10-31 2015-06-23 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US20100111857A1 (en) 2008-10-31 2010-05-06 Boyden Edward S Compositions and methods for surface abrasion with frozen particles
US8762067B2 (en) 2008-10-31 2014-06-24 The Invention Science Fund I, Llc Methods and systems for ablation or abrasion with frozen particles and comparing tissue surface ablation or abrasion data to clinical outcome data
US8725420B2 (en) 2008-10-31 2014-05-13 The Invention Science Fund I, Llc Compositions and methods for surface abrasion with frozen particles
US8798932B2 (en) 2008-10-31 2014-08-05 The Invention Science Fund I, Llc Frozen compositions and methods for piercing a substrate
US9050317B2 (en) 2008-10-31 2015-06-09 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US8731841B2 (en) 2008-10-31 2014-05-20 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
US9060931B2 (en) 2008-10-31 2015-06-23 The Invention Science Fund I, Llc Compositions and methods for delivery of frozen particle adhesives
AR074584A1 (en) 2008-12-10 2011-01-26 Mersana Therapeutics Inc PHARMACEUTICAL FORMULATIONS OF BIODEGRADABLE BIOCOMPATIBLE POLYMER-POLYMER CONJUGATES
US8703717B2 (en) 2009-02-03 2014-04-22 Amunix Operating Inc. Growth hormone polypeptides and methods of making and using same
US8716448B2 (en) 2009-02-03 2014-05-06 Amunix Operating Inc. Coagulation factor VII compositions and methods of making and using same
CN102348715B (en) 2009-02-03 2017-12-08 阿穆尼克斯运营公司 Extension recombinant polypeptide and the composition for including the extension recombinant polypeptide
US8680050B2 (en) 2009-02-03 2014-03-25 Amunix Operating Inc. Growth hormone polypeptides fused to extended recombinant polypeptides and methods of making and using same
US8808749B2 (en) 2009-05-15 2014-08-19 Nippon Kayaku Kabushiki Kaisha Polymer conjugate of bioactive substance having hydroxy group
US9849188B2 (en) 2009-06-08 2017-12-26 Amunix Operating Inc. Growth hormone polypeptides and methods of making and using same
PT2440228T (en) 2009-06-08 2018-12-24 Amunix Operating Inc Glucose-regulating polypeptides and methods of making and using same
WO2011005421A2 (en) 2009-07-10 2011-01-13 Boston Scientific Scimed, Inc. Use of nanocrystals for a drug delivery balloon
JP5933434B2 (en) 2009-07-17 2016-06-08 ボストン サイエンティフィック サイムド,インコーポレイテッドBoston Scientific Scimed,Inc. Method for producing drug delivery balloon
EP2503888A4 (en) * 2009-11-23 2015-07-29 Cerulean Pharma Inc Cyclodextrin-based polymers for therapeutic delivery
US20110160645A1 (en) * 2009-12-31 2011-06-30 Boston Scientific Scimed, Inc. Cryo Activated Drug Delivery and Cutting Balloons
WO2011098904A1 (en) 2010-02-12 2011-08-18 Aegera Therapeutics, Inc. Iap bir domain binding compounds
CN107158389A (en) 2010-03-29 2017-09-15 阿布拉科斯生物科学有限公司 Strengthen the method for medicine delivery and therapeutic agent validity
NZ602385A (en) 2010-03-29 2014-08-29 Abraxis Bioscience Llc Methods of treating cancer
WO2011123830A2 (en) 2010-04-02 2011-10-06 Amunix Operating Inc. Alpha 1-antitrypsin compositions and methods of making and using same
DE102010022588A1 (en) 2010-05-27 2011-12-01 Hemoteq Ag Balloon catheter with a particle-free drug-releasing coating
WO2011153010A1 (en) 2010-06-04 2011-12-08 Abraxis Biosciences, Llc Methods of treatment of pancreatic cancer
US20130178437A1 (en) 2010-07-09 2013-07-11 Fresenius Kabi Deutschland Gmbh Conjugates comprising hydroxyalkyl starch and a cytotoxic agent and process for their preparation
US20140088298A9 (en) 2010-07-09 2014-03-27 Fresenius Kabi Deutschland Gmbh Conjugates comprising hydroxyalkyl starch and a cytotoxic agent and process for their preparation
WO2012004009A1 (en) 2010-07-09 2012-01-12 Fresenius Kabi Deutschland Gmbh Conjugates comprising hydroxyalkyl starch and a cytotoxic agent and process for their preparation
WO2012004008A1 (en) 2010-07-09 2012-01-12 Fresenius Kabi Deutschland Gmbh Conjugates comprising hydroxyalkyl starch and a cytotoxic agent and process for their preparation
CN102339813A (en) 2010-07-14 2012-02-01 中国科学院微电子研究所 Semiconductor structure and manufacturing method thereof
US8889211B2 (en) 2010-09-02 2014-11-18 Boston Scientific Scimed, Inc. Coating process for drug delivery balloons using heat-induced rewrap memory
EP2641605B1 (en) 2010-11-17 2018-03-07 Nippon Kayaku Kabushiki Kaisha Polymer derivative of cytidine metabolism antagonist
US20130331443A1 (en) 2010-12-22 2013-12-12 Nektar Therapeutics Multi-arm polymeric prodrug conjugates of taxane-based compounds
US10894087B2 (en) 2010-12-22 2021-01-19 Nektar Therapeutics Multi-arm polymeric prodrug conjugates of cabazitaxel-based compounds
AU2012214137B2 (en) 2011-02-11 2016-10-06 Edge Therapeutics, Inc. Compositions and methods for improving prognosis of a human with subarachnoid hemorrhage
KR101302703B1 (en) 2011-02-28 2013-09-03 부산대학교 산학협력단 Drug eluting stent of graft copolymers composed of poly(3-hydroxyoctanoate) and biodegradable polymer
KR101302698B1 (en) * 2011-02-28 2013-09-03 부산대학교 산학협력단 Drug-eluting stent using block copolymers composed of poly(hydroxyoctanoate) and biodegradable polymer
KR101328660B1 (en) * 2011-02-28 2013-11-14 부산대학교 산학협력단 Sorafenib-incorporated poly(ε-caprolactone) film and its drug-eluting stent
CN103517726B (en) 2011-04-05 2016-08-17 优势医疗 The Intraventricular drug delivery system of the result of cerebral blood flow is affected after improving brain injury
EP2723800B1 (en) 2011-06-23 2015-10-07 DSM IP Assets B.V. Micro- or nanoparticles comprising a biodegradable polyesteramide copolymer for use in the delivery of bioactive agents
US9873765B2 (en) 2011-06-23 2018-01-23 Dsm Ip Assets, B.V. Biodegradable polyesteramide copolymers for drug delivery
CN102850301A (en) * 2011-06-28 2013-01-02 中国人民解放军军事医学科学院毒物药物研究所 Water-soluble paclitaxel derivates and pharmaceutical composition and medicinal application thereof
WO2013022458A1 (en) 2011-08-05 2013-02-14 Boston Scientific Scimed, Inc. Methods of converting amorphous drug substance into crystalline form
US9056152B2 (en) 2011-08-25 2015-06-16 Boston Scientific Scimed, Inc. Medical device with crystalline drug coating
RU2623426C2 (en) 2011-09-11 2017-06-26 Ниппон Каяку Кабусики Кайся Method of obtaining a block copolymer
CN103083680B (en) 2011-11-07 2014-12-24 北京键凯科技有限公司 Polyethylene glycol (PEG)-amino acid oligopeptide-irinotecan combo and its medicinal composition
CN111548418A (en) 2012-02-15 2020-08-18 比奥贝拉蒂治疗公司 Factor VIII compositions and methods of making and using same
KR20190094480A (en) 2012-02-15 2019-08-13 바이오버라티브 테라퓨틱스 인크. Recombinant factor viii proteins
CN117462693A (en) 2012-02-27 2024-01-30 阿穆尼克斯运营公司 XTEN conjugate compositions and methods of making the same
WO2013146381A1 (en) * 2012-03-27 2013-10-03 テルモ株式会社 Drug coat layer and medical instrument including same
CA2869460C (en) 2012-04-04 2018-05-15 Halozyme, Inc. Combination therapy with an anti-hyaluronan agent and a tumor-targeted taxane
CN102614110B (en) * 2012-04-27 2013-12-25 北京大学 Stable polyethylene glycol medicinal micelle composition and preparation method thereof
US9399019B2 (en) 2012-05-09 2016-07-26 Evonik Corporation Polymorph compositions, methods of making, and uses thereof
CN102702140B (en) * 2012-06-19 2014-05-14 中国医学科学院生物医学工程研究所 Preparation method and application of water-soluble paclitaxel compound
CN102731442B (en) * 2012-07-18 2014-06-11 中国医学科学院生物医学工程研究所 Preparation method and application of water-soluble docetaxel compounds
US20140094432A1 (en) 2012-10-02 2014-04-03 Cerulean Pharma Inc. Methods and systems for polymer precipitation and generation of particles
JP6313779B2 (en) 2012-11-30 2018-04-18 ノボメディックス, エルエルシーNovomedix, Llc Substituted biarylsulfonamides and uses thereof
US9993427B2 (en) 2013-03-14 2018-06-12 Biorest Ltd. Liposome formulation and manufacture
EP2994174A1 (en) 2013-05-06 2016-03-16 Abbott Cardiovascular Systems Inc. A hollow stent filled with a therapeutic agent formulation
CN103263675B (en) * 2013-05-16 2015-02-11 湘潭大学 Poly (epsilon-caprolactone) supported anti-tumor prodrug and preparation method thereof
TW202003554A (en) 2013-08-14 2020-01-16 美商百歐維拉提夫治療公司 Factor VIII-XTEN fusions and uses thereof
CN104721830A (en) * 2013-12-20 2015-06-24 北京蓝贝望生物医药科技股份有限公司 Top peptide
US10434071B2 (en) 2014-12-18 2019-10-08 Dsm Ip Assets, B.V. Drug delivery system for delivery of acid sensitivity drugs
WO2016187147A1 (en) * 2015-05-15 2016-11-24 Fl Therapeutics Llc Docetaxel and human serum albumin complexes
KR101726728B1 (en) * 2015-07-28 2017-04-14 주식회사 삼양바이오팜 Method for analyzing related substances of a pharmaceutical composition containing a polymeric carrier
JP6909203B2 (en) 2015-08-03 2021-07-28 バイオベラティブ セラピューティクス インコーポレイテッド Factor IX fusion proteins and their production and usage
WO2017040344A2 (en) 2015-08-28 2017-03-09 Amunix Operating Inc. Chimeric polypeptide assembly and methods of making and using the same
CN106554329B (en) * 2015-09-26 2019-07-05 南京友怡医药科技有限公司 Water-soluble paclitaxel anti-cancer drug compounds and its preparation method and application
CN106554330B (en) * 2015-09-26 2019-07-05 南京友怡医药科技有限公司 Water-soluble docetaxel anti-cancer drug compounds and its preparation method and application
WO2017193757A1 (en) * 2016-05-10 2017-11-16 浙江海正药业股份有限公司 Water-soluble epothilone derivative and preparation method therefor
CN109415378B (en) * 2016-05-10 2021-11-09 浙江海正药业股份有限公司 Water-soluble Epothilone derivative and preparation method thereof
CN108478804B (en) * 2018-05-08 2020-09-22 辽宁大学 Polyacrylic acid-S-S-drug copolymer and preparation method thereof
WO2019222435A1 (en) 2018-05-16 2019-11-21 Halozyme, Inc. Methods of selecting subjects for combination cancer therapy with a polymer-conjugated soluble ph20
EP3917397A4 (en) * 2019-01-28 2022-10-26 Board of Regents, The University of Texas System Metal chelator combination therapy for the treatment of cancer
CN112604002A (en) * 2020-07-12 2021-04-06 苏州裕泰医药科技有限公司 Disulfide-bond bridged docetaxel-fatty acid prodrug and self-assembled nanoparticles thereof
US20230277490A1 (en) * 2020-07-31 2023-09-07 Cedars-Sinai Medical Center Glutamine as an anticancer therapy in solid tumors

Family Cites Families (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356166A (en) 1978-12-08 1982-10-26 University Of Utah Time-release chemical delivery system
IN165717B (en) 1986-08-07 1989-12-23 Battelle Memorial Institute
US4942184A (en) 1988-03-07 1990-07-17 The United States Of America As Represented By The Department Of Health And Human Services Water soluble, antineoplastic derivatives of taxol
US5169933A (en) * 1988-08-15 1992-12-08 Neorx Corporation Covalently-linked complexes and methods for enhanced cytotoxicity and imaging
US4960790A (en) * 1989-03-09 1990-10-02 University Of Kansas Derivatives of taxol, pharmaceutical compositions thereof and methods for the preparation thereof
US5219564A (en) * 1990-07-06 1993-06-15 Enzon, Inc. Poly(alkylene oxide) amino acid copolymers and drug carriers and charged copolymers based thereon
US5059699A (en) 1990-08-28 1991-10-22 Virginia Tech Intellectual Properties, Inc. Water soluble derivatives of taxol
US5811447A (en) 1993-01-28 1998-09-22 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US6515009B1 (en) * 1991-09-27 2003-02-04 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
US5272171A (en) 1992-02-13 1993-12-21 Bristol-Myers Squibb Company Phosphonooxy and carbonate derivatives of taxol
JPH05286868A (en) 1992-04-03 1993-11-02 Kiyoshi Okawa Carcinostatic agent complex and its screening method
JPH069600A (en) 1992-05-06 1994-01-18 Bristol Myers Squibb Co Benzoate derivative of taxole
AU4406793A (en) * 1992-06-04 1993-12-30 Clover Consolidated, Limited Water-soluble polymeric carriers for drug delivery
GB9213077D0 (en) * 1992-06-19 1992-08-05 Erba Carlo Spa Polymerbound taxol derivatives
CA2086874E (en) 1992-08-03 2000-01-04 Renzo Mauro Canetta Methods for administration of taxol
US5614549A (en) * 1992-08-21 1997-03-25 Enzon, Inc. High molecular weight polymer-based prodrugs
WO1994005282A1 (en) 1992-09-04 1994-03-17 The Scripps Research Institute Water soluble taxol derivatives
US5489525A (en) * 1992-10-08 1996-02-06 The United States Of America As Represented By The Department Of Health And Human Services Monoclonal antibodies to prostate cells
US5380751A (en) 1992-12-04 1995-01-10 Bristol-Myers Squibb Company 6,7-modified paclitaxels
CA2111527C (en) 1992-12-24 2000-07-18 Jerzy Golik Phosphonooxymethyl ethers of taxane derivatives
US5981568A (en) 1993-01-28 1999-11-09 Neorx Corporation Therapeutic inhibitor of vascular smooth muscle cells
EP0683676A4 (en) * 1993-02-02 1998-09-30 Neorx Corp Directed biodistribution of small molecules.
WO1994020453A1 (en) * 1993-03-09 1994-09-15 Enzon, Inc. Taxol polyalkylene oxide conjugates of taxol and taxol intermediates
WO1994020089A1 (en) * 1993-03-09 1994-09-15 Enzon, Inc. Taxol-based compositions with enhanced bioactivity
US5468769A (en) 1993-07-15 1995-11-21 Abbott Laboratories Paclitaxel derivatives
US5716981A (en) 1993-07-19 1998-02-10 Angiogenesis Technologies, Inc. Anti-angiogenic compositions and methods of use
ES2290074T3 (en) * 1993-07-19 2008-02-16 Angiotech Pharmaceuticals, Inc. ANTI-ANGIOGENIC COMPOSITIONS CONTAINING TAXOL AND A NON-BIODEGRADABLE VEHICLE AND ITS USE.
US5880131A (en) * 1993-10-20 1999-03-09 Enzon, Inc. High molecular weight polymer-based prodrugs
US5840900A (en) * 1993-10-20 1998-11-24 Enzon, Inc. High molecular weight polymer-based prodrugs
US5622986A (en) * 1993-10-20 1997-04-22 Enzon, Inc. 2'-and/or 7-substituted taxanes
US5643575A (en) * 1993-10-27 1997-07-01 Enzon, Inc. Non-antigenic branched polymer conjugates
US5415869A (en) * 1993-11-12 1995-05-16 The Research Foundation Of State University Of New York Taxol formulation
US5730968A (en) * 1994-03-31 1998-03-24 Sterling Winthrop Inc. Segmented chelating polymers as imaging and therapeutic agents
US5626862A (en) * 1994-08-02 1997-05-06 Massachusetts Institute Of Technology Controlled local delivery of chemotherapeutic agents for treating solid tumors
US5583153A (en) * 1994-10-06 1996-12-10 Regents Of The University Of California Use of taxol in the treatment of rheumatoid arthritis
US5489589A (en) 1994-12-07 1996-02-06 Bristol-Myers Squibb Company Amino acid derivatives of paclitaxel
CA2178541C (en) 1995-06-07 2009-11-24 Neal E. Fearnot Implantable medical device
US5762909A (en) 1995-08-31 1998-06-09 General Electric Company Tumor targeting with polymeric molecules having extended conformation
JP3737518B2 (en) * 1996-03-12 2006-01-18 ピージー−ティーエックスエル カンパニー, エル.ピー. Water-soluble paclitaxel prodrug
US5854382A (en) 1997-08-18 1998-12-29 Meadox Medicals, Inc. Bioresorbable compositions for implantable prostheses

Also Published As

Publication number Publication date
CN101028259A (en) 2007-09-05
NO984210L (en) 1998-11-11
AU2580697A (en) 1997-10-01
EP1683520B1 (en) 2013-11-20
EP0932399A4 (en) 2002-10-24
ES2258790T3 (en) 2006-09-01
EA199800817A1 (en) 1999-04-29
CN1217662A (en) 1999-05-26
EP0932399A1 (en) 1999-08-04
CZ297979B6 (en) 2007-05-16
DE69735057D1 (en) 2006-03-30
NO324461B1 (en) 2007-10-22
CN1304058C (en) 2007-03-14
KR20000067033A (en) 2000-11-15
CA2250295C (en) 2008-12-30
NO20072562L (en) 1998-11-11
KR100561788B1 (en) 2006-09-20
HUP9903952A3 (en) 2001-06-28
US5977163A (en) 1999-11-02
ATE314843T1 (en) 2006-02-15
AU735900B2 (en) 2001-07-19
CZ290898A3 (en) 1999-07-14
JP2000507930A (en) 2000-06-27
DE69735057T2 (en) 2006-08-31
EP1683520A3 (en) 2009-11-18
ES2448467T3 (en) 2014-03-14
BR9710646A (en) 2000-01-11
EP0932399B1 (en) 2006-01-04
JP2003063960A (en) 2003-03-05
NO332539B1 (en) 2012-10-15
WO1997033552A1 (en) 1997-09-18
EP1683520A2 (en) 2006-07-26
SI0932399T1 (en) 2006-10-31
US6262107B1 (en) 2001-07-17
NO984210D0 (en) 1998-09-11
HUP9903952A2 (en) 2001-05-28
PL189698B1 (en) 2005-09-30
PL328807A1 (en) 1999-02-15
EA002400B1 (en) 2002-04-25
HU226646B1 (en) 2009-05-28
IL126179A0 (en) 1999-05-09
PT932399E (en) 2006-05-31
DK0932399T3 (en) 2006-05-15
NZ332234A (en) 2000-06-23
UA68330C2 (en) 2004-08-16
CA2250295A1 (en) 1997-09-18
IL126179A (en) 2003-04-10

Similar Documents

Publication Publication Date Title
JP3737518B2 (en) Water-soluble paclitaxel prodrug
US7135496B2 (en) Water soluble paclitaxel derivatives
JP2001288097A (en) Water-soluble paclitaxel derivative
KR100547931B1 (en) A composition comprising water soluble parclitaxel prodrugs and an implantable medical device comprising the same
Copie et al. Water soluble paclitaxel prodrugs
MXPA98007442A (en) Soluble paclitaxel profarmacos in a

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20031224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051027

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term