JP3736149B2 - Electromagnetic clutch with 3-point contact ball bearing - Google Patents

Electromagnetic clutch with 3-point contact ball bearing Download PDF

Info

Publication number
JP3736149B2
JP3736149B2 JP31211098A JP31211098A JP3736149B2 JP 3736149 B2 JP3736149 B2 JP 3736149B2 JP 31211098 A JP31211098 A JP 31211098A JP 31211098 A JP31211098 A JP 31211098A JP 3736149 B2 JP3736149 B2 JP 3736149B2
Authority
JP
Japan
Prior art keywords
ball bearing
point contact
rotor
electromagnetic clutch
outer ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP31211098A
Other languages
Japanese (ja)
Other versions
JPH11210766A (en
Inventor
雅人 谷口
宏敏 荒牧
裕司 中野
博 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP31211098A priority Critical patent/JP3736149B2/en
Publication of JPH11210766A publication Critical patent/JPH11210766A/en
Application granted granted Critical
Publication of JP3736149B2 publication Critical patent/JP3736149B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/583Details of specific parts of races
    • F16C33/585Details of specific parts of races of raceways, e.g. ribs to guide the rollers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/70Diameters; Radii
    • F16C2240/76Osculation, i.e. relation between radii of balls and raceway groove
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/43Clutches, e.g. disengaging bearing

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ラジアル荷重を負荷して用いられる軸方向の位置決め性能に優れた3点接触玉軸受を有する電磁クラッチに関する。
【0002】
【従来の技術】
転がり軸受を用いて軸方向の変位を抑えるためには、通常、アンギュラ玉軸受や円すいころ軸受を用いる。しかし、これらの軸受は単独では一方向のアキシアル荷重しか支持できないため、両方向のアキシアル荷重に対する変位を抑えるためには、これらの軸受を2個以上組み合わせて用いるか、もしくは複列軸受を採用する必要がある。従って、軸方向にある程度のスペースを必要とし、機械装置のコンパクト化および軽量化設計が難しい。
【0003】
図1に示すように、単列の深みぞ玉軸受Aは、両方向のアキシアル荷重を支持できるが、内外輪2,3のみぞ断面形状がともに単一円弧であるため、軸方向のアキシアル変位が大きい。
【0004】
このようなアキシアル変位を抑える目的で、図2に示すような4点接触玉軸受Cが用いられることがある。4点接触玉軸受Cにおいては、内輪6および外輪7の軌道面が対向しており、玉8を軌道面に押し付けたとき、玉8の中心と接触点とを結ぶ線は軸受の中心線に対してある角度β(レストアングル)をとる。4点接触玉軸受Cは荷重条件によらず常に玉8が内外輪6,7とある角度をもって接触するため、コンパクトでありながら、アキシアル剛性が高く、軸方向の位置決め性能に優れている。
【0005】
【発明が解決しようとする課題】
しかしながら、4点接触玉軸受Cにラジアル荷重を負荷すると、内外輪6,7と玉8との接触点においてスピン運動によるすべりが大きくなる。玉8や回転荷重を受ける軌道輪では、最大荷重を受ける接触点の位置が刻々変化するため、すべりによって部材表面の特定の箇所が損傷を受ける可能性は低いと考えられる。しかし、静止荷重を受ける軌道輪では、最大荷重を受ける位置が一定であるため、軌道面には繰り返し大きなすべり運動にさらされる部分が存在する。この部分では、接触点での発熱による温度上昇から、焼付きが起こる危険性が高くなる。また、すべりが大きい部位で軌道表面が偏摩耗することにより、軸受の運転に支障をきたす可能性がある。
【0006】
また、電磁クラッチ用軸受においてはベルト荷重が軸面中央から変位する箇所に作用するため、複列の玉軸受が使用されている。玉軸受とプーリとは電磁クラッチをできるだけ小型化するために、軸方向に位置がずれている。Vベルトの張力によって生じるラジアル荷重は、プーリと玉軸受とが軸方向に位置ずれしているために、傾きを伴うモーメント荷重として玉軸受に作用する。このため、玉軸受の外輪と内輪との間に相対的な傾きが生じてしまい、外輪に嵌合されたロータに傾きを伴う軸方向変位が生じる。複列の玉軸受を用いると、ロータの傾きが小さくなり、図9に示すロータ35とアーマチュア37とが接触し、電磁クラッチが損傷するのが防止される。しかし、複列の玉軸受は幅寸法が大きい(幅広)ため、電磁クラッチのコンパクト化を困難とし、また電磁クラッチのコンパクト化に伴うコスト低減を困難としている。
【0007】
本発明は上記課題を解決するためになされたものであって、軌道輪と玉との接触点においてスピン運動によるすべりが小さく、偏摩耗を低減することができ、かつ、モーメント荷重が作用する場合であっても軸方向変位量を抑えることができる3点接触玉軸受を有する電磁クラッチを提供することを目的とする。
【0008】
【課題を解決するための手段】
本発明に係る3点接触玉軸受を有する電磁クラッチは、ハウジングに固定されるステータと、該ステータ内に固定される電磁コイルと、回転動力を伝えるベルトと、該ベルトが巻き掛けられたプーリと、該プーリが外周に取付けられたロータと、該ロータを回転可能に支持する玉軸受と、前記電磁コイルの発生する磁力によって前記ロータに吸引されるアーマチュアを備え、前記玉軸受とプーリとは軸方向にずれており、ベルト荷重が軸面中央から変位する箇所に作用する電磁クラッチにおいて、
前記玉軸受は、前記ロータと前記ハウジングとの間に嵌めこまれて、前記ロータを回転自在に支持する単列の3点接触玉軸受であり、
前記3点接触玉軸受は、単一円弧形状の軌道を有する外輪と、軸平行断面が単一円弧形状でなく、かつ、転動体と2点で接触する軌道を有する内輪とを具備し、前記外輪の軌道みぞ曲率半径転動体の玉直径の50.3%以上、51.2%以下とし、前記電磁コイルの通電を停止しているときに前記ロータと前記アーマチュアとの間に所定の隙間が存在することを特徴とする。
【0009】
本発明では単一円弧形状を有する外輪の軌道みぞ曲率(Re/Ra)を玉直径Daの50.3%以上、51.2%以下の範囲とする。このようにすると、スピンによる偏摩耗を小さくでき、かつ、深みぞ玉軸受より耐モーメント荷重性能を向上させることができる。
【0010】
なお、電磁クラッチの3点接触玉軸受では内輪及び外輪、転動体のうちの少なくとも一つの構成部材の表面に窒化処理を施すことが好ましい。このようにすると構成部材の耐摩耗性が高まる。
【0011】
また、軸受はラジアル荷重を支持し、軸方向の位置決めを目的として使用されることが好ましい。
【0015】
また、3点接触玉軸受は、電磁クラッチにおいて、摩擦面を有し回転するロータを回転支持する箇所に用いられる。
【0016】
さらに、転動体および内輪をセラミックス製とすることが望ましい。
【0017】
【作用】
本発明に係る3点接触玉軸受を有する電磁クラッチにおいては、外輪の軌道断面形状を単一円弧としているため、4点接触玉軸受に比べてラジアル荷重負荷時に、スピンすべりが小さくなり、同軌道面の偏摩耗が防止される。
【0018】
また、本発明の電磁クラッチでは、3点接触玉軸受において内輪の軌道面が対向しており、常に玉が軌道面と大きな接触角で接触するため、モーメント荷重が作用する場合であっても軸方向変位量が抑えられ、高い耐モーメント荷重性能を示すようになる。
【0019】
さらに、外輪、内輪、転動体のうち少なくとも1つをセラミックス製とすると、セラミックスは鋼材よりも線膨張係数が小さく、温度が変化したときに軸受の隙間の変動が少なくなるので、焼付きを生じにくくなる。また、転動体をセラミックスにすると、同一の溝の曲率に対して外輪の軸方向変位量を小さくすることができるので、設計の自由度が高まる。
【0020】
【発明の実施の形態】
以下、添付の図面と表を参照しながら本発明の種々の好ましい実施の形態について説明する。
(実施例1)
表1に示す同じ寸法の深みぞ玉軸受A、3点接触玉軸受B、4点接触玉軸受Cの各特性を計算機によってそれぞれシミュレート解析した。この解析手法には「4点接触玉軸受の性能解析」(谷口、荒牧、正田;(社)日本トライボロジー学会、トライボロジー会議1996年春の東京講演予稿集)に記載の方法を採用した。
【0021】
ここで、解析対象となる軸受は外輪に静止荷重がかかり、内輪回転で用いられるものとする。図4に示すように、本発明の3点接触玉軸受Bでは、静止荷重を受ける外輪13の軌道溝面13aを半径Reからなる単一円弧状の断面形状とする一方で、回転荷重を受ける内輪12の軌道溝面12aの断面形状を、玉14とレストアングルβで接触するゴシックアーチ形状としている。なお、本実施形態では内輪の軌道溝面12aにおける玉14のレストアングルβを30゜とした。一方、比較例の4点接触玉軸受Cでは、内外輪6,7の両者ともに玉8とレストアングルβで接触するゴシックアーチ形状とした。なお、各軸受A,B,Cの軌道溝面の表面粗さは同一とした。
【0022】
表2に各シミュレーション解析に用いた運転条件を示す。上記の各軸受A,B,Cに対し、解析1では純ラジアル荷重を負荷し、解析2では純アキシアル荷重を負荷した。内輪の回転数は解析1,2ともに10000rpmとした。
【0023】
シミュレーション解析結果を図6に示す。図6のグラフの横軸は、純ラジアル荷重下の解析1による玉と外輪軌道面の接触点におけるPV値の最大値を示している。図5に示すように、玉と軌道輪との接触点は、実際には表面の弾性変形によりヘルツの弾性接触理論に基づき楕円形で表される領域(図中にて斜線領域)となる。すなわち、二次曲面同士の点接触の場合は、幾何学的条件から相互接触部は楕円形状となり、転動体荷重をQとした場合に、その最大接触圧力PmaxはQ1/3 に比例し、その弾性変位量δはQ2/3 に比例する。
【0024】
PV値は、この接触面内の面圧Pとすべり速度Vとの積である。解析1,2では、各玉と外輪との接触面内において、PV値を計算しており、ここではその最大値を示している。PV値はすべりによる発熱や摩耗の指標として広く用いられている。このPV値に表面間のすべり摩擦係数μを乗じたμPV値は、単位面積・単位時間当たりのすべりによる摩擦損失を与える。また、軸受鋼を使用した4点接触玉軸受Cの場合は、本解析によるPV値が1.5〜2.0GPam/sを越えると、静止荷重を受ける軌道輪では局所的な摩耗につながることが、実験結果から得られている。
【0025】
内外輪の軌道みぞ曲率半径をともに50.5%としたものと、52%としたものについて解析をそれぞれ行った。各々について、本発明による3点接触玉軸受Bの純ラジアル荷重下の外輪最大PV値は、4点接触玉軸受Cに比べて小さく、深みぞ玉軸受Aとほぼ同等であった。4点接触玉軸受Cの外輪最大PV値は、1.5GPam/sを越えており、外輪軌道面に局所的な摩耗を生じる危険性がある。しかし、3点接触玉軸受BのPV値は、軌道みぞ曲率半径が50. 5%のときでも、およそ1.1GPam/sにすぎないので、外輪13に偏摩耗が生じる可能性は小さい。
【0026】
図6及び図8に示すグラフの縦軸は、純アキシアル荷重下の解析2による軸受の軸方向変位である。ここでアキシアル変位は、軸受の内部すきまによる軸方向の移動量と、荷重によって玉や軌道が弾性変形することによる変位とを含んでいる。図から明らかなように、本発明の3点接触玉軸受Bのアキシアル変位は、4点接触玉軸受Cよりは大きいが、深みぞ玉軸受Aに比べ、40〜50%小さい。また、本発明の3点接触玉軸受Bは、深みぞ玉軸受Aに比べて位置決めの効果が高いことを示している。
【0027】
なお、上記の解析では、軸受A,B,Cのいずれも一般的な深みぞ玉軸受6308に玉数を一致させている。しかし、玉14と内輪12が2点で接触するタイプの3点接触玉軸受Bや、4点接触玉軸受Cは、中心軸に垂直な平面で2分割された内輪をもつ場合がある。このような3点接触玉軸受Bや4点接触玉軸受Cは、同サイズの一般的な深みぞ玉軸受Aに比べて組立てが容易であることから、玉数を増やすことが容易である。玉数が増えることにより、玉1個当たりの荷重が減り、軌道輪との接触点の面圧や、軸受の弾性変形量が減少する。本発明の3点接触玉軸受Bでも、玉数を増やすことにより、ラジアル荷重下のPV値、アキシアル荷重下のアキシアル変位とも、図6に示したものより減少し、さらに優れた特性をもつ軸受を供することができる。
(実施例2)
第1実施例と同様の解析手法を用いて、上記の3点接触玉軸受Bについて軸受特性に及ぼす外輪みぞ曲率半径の影響を調べた。内輪12のみぞ曲率半径は玉径Daの52%とした。その他の軸受の諸元は表1に示す通りである。
【0028】
図7に表2の解析1による結果を示す。横軸は外輪のみぞ曲率半径Reを玉径Daに対する比率で表示している。縦軸は純ラジアル荷重下の運転において、玉と外輪軌道面の接触点におけるPV値の最大値を示している。みぞ曲率半径が大きいほど外輪の最大PV値は小さく、過大な発熱や摩耗の危険性が低いことを表している。上述の通り、PV値が1.5GPam/sを越えると、静止荷重を受ける外輪13の局所的な摩耗が発生し得る。従って、図7より、本実施例で外輪軌道面13aの偏摩耗を防止するためには、外輪のみぞ曲率半径Reは玉径Daの50.3%以上でなければならない。製造上あるいは運転上の誤差を考慮し、外輪軌道のPV値を1.0GPam/s以下に抑えるためには、さらに好ましくは外輪のみぞ曲率半径Reは玉径Daの50. 5%以上であることがよい。
【0029】
図8に表2の解析2による結果を示す。ここで、縦軸は純アキシアル荷重下の軸受のアキシアル変位である。外輪13のみぞ曲率半径Reが小さいほどアキシアル変位が小さく、位置決め性能に優れていることを表している。ここで、グラフ上の破線は、標準的な深みぞ玉軸受6308のアキシアル変位を示す。この図より明らかなように、本発明による3点接触玉軸受Bでは、外輪みぞ曲率半径Reが玉径Daの53%以下のとき、標準的な深みぞ玉軸受6308に比べ、アキシアル変位が小さくなるという利点がある。
【0030】
以上の実施例では、外輪が静止荷重を受け、内輪が回転する場合について本発明の3点接触玉軸受の効果について示した。内輪静止荷重、外輪回転荷重のときには、軌道断面が単一円弧からなる内輪と、断面が単一円弧形状でない2つの軌道をもつ外輪を有する3点接触玉軸受を用いることにより、軌道輪と玉との接触点においてスピン運動によるすべりが小さく、偏摩耗を低減することができ、かつ、アキシャル剛性を大きくすることができるという効果が得られる。
【0031】
本発明による3点接触玉軸受Bでは、回転荷重を受ける軌道輪と玉との接触点ではすべりが大きいが、これらの軌道や玉の表面では、最大荷重を受ける位置が変化するため、特定の部位が偏摩耗する可能性は低い。しかし、長期の運転を行ううちに、玉や軌道の表面が全体的に摩耗してくることが考えられる。従って、好ましくは鋼材表面に窒化処理を行い、耐摩耗性を高める。また静止荷重を受ける軌道輪についても、すべりが小さいとはいえ偏摩耗防止の観点から、また潤滑油中のごみによる摩耗を防止する意味から、同様の耐摩耗性の材料を使用することが好ましい。
【0032】
このような3点接触玉軸受Bは、軸方向の位置決めのために用いられるが、4点接触玉軸受Cの適用が難しいラジアル荷重の大きい荷重条件下で使用することが可能である。定常運転時にラジアル荷重を支持する用途はもちろん、起動時などに一時的に大きなラジアル荷重を受ける用途についても、本発明の3点接触玉軸受Bは有効である。
【0033】
このような用途の一例として、自動車などに用いられる、金属などのベルトを使用した無段変速機において、ベルトをかけるプーリ軸の荷重を支持する軸受が挙げられる。また、自動車などに用いられるトロイダル型の無段変速機において、ラジアル荷重を受けながら軸の位置決めを行う軸受としても使用できる。
【0034】
【表1】

Figure 0003736149
【0035】
【表2】
Figure 0003736149
【0036】
(実施例3)
次に、図9〜図11を参照しながら第3の実施例として本発明の3点接触玉軸受を電磁クラッチに用いる場合について説明する。
【0037】
電磁クラッチ31は車両走行用エンジンに発生する回転動力を冷凍サイクルのコンプレッサに伝達したり遮断したりするものである。電磁クラッチ用軸受36にはベルト荷重が軸面中央から変位する箇所に作用するため、傾きを伴う軸方向変位量を極力抑えることが要求される。
【0038】
電磁クラッチ31は、コンプレッサハウジング40に固定されるステータ32と、このステータ32内に収容された電磁コイル33と、エンジンの回転動力を伝える多段式Vベルト41が巻き掛けられたプーリ34と、このプーリ34が外周に取り付けられたロータ35と、このロータ35を回転可能に支持する3点接触玉軸受36と、電磁コイル33の発生する磁力によってロータ35に吸引されるアーマチュア37と、このアーマチュア37の回転動力をコンプレッサ(図示しない)に伝える単一あるいは複数の部材からなるアーマチュア支持部38とコンプレッサ軸39と、を備えている。
【0039】
ロータ35は、磁性体金属製(例えば鉄製)であり、断面略コ字型を呈しており、アーマチュア37の反対側を向く凹所35aを有する。この凹所35aにはステータ32が収容されている。
【0040】
単列の3点接触玉軸受36がロータ35とコンプレッサハウジング40との間に嵌め込まれている。この玉軸受36によりロータ35はコンプレッサハウジング40に対して回転自在に支持されている。なお、玉軸受36の外輪13はロータ35の内周に嵌め合い接触し、玉軸受36の内輪12はコンプレッサハウジング40のハブ外周に嵌め合い接触している。
【0041】
ロータ35の外周には多段式のVベルト41が掛け渡されるプーリ34が溶接等の接合技術により固着されている。このプーリ34は、エンジンの回転をVベルト41を介して常に受け、固着されたロータ35とともに回転するようになっている。
【0042】
玉軸受36とプーリ34とは、できるだけ電磁クラッチ31をコンパクトにするために、通常は軸方向に位置がずれている。Vベルト41の張力によって生じるラジアル荷重は、プーリ34と玉軸受36とが軸方向に位置ずれしているために、傾きを伴うモーメント荷重として玉軸受36に作用する。したがって、玉軸受36の外輪13と内輪12との間に相対的な傾きが生じてしまい、外輪13に嵌合されたロータ35に傾きを伴う軸方向変位が生じる。
【0043】
ここで、電磁コイル33の通電が停止している場合に、ロータ35とアーマチュア37との間には所定の隙間g(例えば0.5mm)が存在するように設計される。この隙間gは、各種部材の寸法許容差あるいは、取り付け誤差を見込んで決められる。ここで、隙間gをあまり大きくすると、電磁コイル33による磁力も大きくしなければならないので、これらを見込んだ最小の値になるように隙間gは設定される。
【0044】
上述の理由により軸受36の傾きに伴う軸方向変位量を極力抑えるために、従来は電磁クラッチのロータ35の支持に供する軸受として複列の玉軸受が用いられている。複列の玉軸受を用いると、ロータ35の傾きが小さくなり、ロータ35とアーマチュア37とが接触し、電磁クラッチが損傷するのを防いでいる。しかし、複列の玉軸受は幅寸法が大きい(幅広)ため、電磁クラッチのコンパクト化を困難とし、また電磁クラッチのコンパクト化に伴うコスト低減を困難としている。
【0045】
これに対して本実施例の3点接触玉軸受36では、軸方向の最大変位量を小さく抑え、かつ、電磁クラッチ31のコンパクト化とコスト低減を実現することができる。表3に示す計算条件を用いて外輪13の外径面の軸方向最大変位量をコンピュータシミュレーション演算して得た結果を示す。
【0046】
表3では、2点接触する軌道輪12のみぞ曲率半径を玉径の52%に固定し、単一円弧の軌道輪13のみぞ曲率半径を変化させた。その計算結果を図10に示す。図10は、横軸に玉径Daに対する外輪のみぞ曲率半径Reの比率(百分率)をとり、縦軸に外輪の軸方向最大変位量(mm)をとって両者の関係につき調べた結果を示す特性線図である。図中にて特性線Aは3点接触玉軸受における両者の相関を表わす。ちなみに従来の複列玉軸受では軸方向最大変位量は0.09mm程度になる。部品精度および組立て精度を向上させることにより、軸方向最大変位量としては従来の90%程度大きい0.17mm程度以下までは許容することができ、この許容値を満足するためには、単一円弧軌道輪のみぞ曲率半径Reを玉径Daの53.3%以下にしなければならない。また、好ましくは部品精度や組立て精度を変えることなく、コンパクト化を実現するために単一円弧軌道輪のみぞ曲率半径を玉直径Daの51.9%以下とし、軸方向最大変位量を0125mm以下とする。
【0047】
さらに好ましくは軸方向最大変位量を0.1mm以下に抑え、従来の複列玉軸受と同等程度にするためには、単一円弧軌道輪のみぞ曲率半径Reを玉径の51.2%以下にすることが必要である。なお、みぞ曲率半径Reの最小値は、理論上玉径Daの50%であるが、図7で述べたようにPV値が上昇し、摩耗の危険性が高いため玉径Daの50.3%以上とする。さらに製造上あるいは運転上の誤差を考慮すると、玉径Daの50.5%以上であることが好ましい。
【0048】
【表3】
Figure 0003736149
【0049】
以上の結果より、3点接触玉軸受は、電磁クラッチの場合のようにモーメント荷重が作用する場合にも軸方向変位量を抑えることができる。なお、電磁クラッチ用軸受の場合、静止輪である内輪みぞを単一円弧形状にしても回転輪である外輪みぞを単一円弧形状にしても軸方向最大変位量は変わらないためどちらでもよい。しかし、電磁クラッチ用軸受の場合、内輪での面圧が高く内輪軌道面での剥離が発生するため、内輪荷重を2個所に分散できる3点接触玉軸受にすると寿命が延びるので好ましい。また、電磁クラッチ用軸受においても偏摩耗を抑える観点から、鋼材に窒化処理を行い、耐摩耗性を高めることが好ましい。
【0050】
また、剛性を上げ、外輪の軸方向最大変位量を減らす観点から、転動体に鋼よりヤング率の大きな窒化珪素あるいは炭化珪素等のセラミックスを使用するのが好ましい。図11は、横軸に玉径Daに対する外輪のみぞ曲率半径Reの比率(百分率)をとり、縦軸に外輪の軸方向最大変位量(mm)をとって両者の関係につき調べた結果を示す特性線図である。図中にて特性線Bは転動体に鋼球を用いた結果を、特性線Cは転動体にセラミックス球(窒化珪素)を用いた結果をそれぞれ示す。図から明らかなように、転動体を窒化珪素セラミックにすると、軸受の傾き剛性がさらに高まるので、軸受36の傾きに伴う軸方向変位量をさらに低減でき、これによって設計の自由度も高くなる。
【0051】
【発明の効果】
本発明の電磁クラッチによれば、外輪の軌道輪を軸平行断面が単一円弧形状とし、内輪を軸平行断面が単一円弧形状でなく、かつ、転動体と2点で接触する2つの軌道を有し、外輪のみぞ曲率半径が転動体直径の50.3%以上、51.2%以下とし、電磁コイルの通電を停止しているときにロータとアーマチュアとの間に所定の隙間を存在させることにより、ロータとアーマチュアとの接触を防止して偏摩耗を低減し、かつ、モーメント荷重が作用する場合であっても軸方向変位量を低く抑え、耐モーメント荷重性能を向上させることができる。
【0052】
また、本発明の3点接触玉軸受では、軸方向の位置決め機能を有しながら、ラジアル荷重を負荷したときにも発熱や摩耗が少なくなる。
【図面の簡単な説明】
【図1】従来の深みぞ玉軸受の一例を示す断面図。
【図2】従来の4点接触玉軸受の一例を示す断面図。
【図3】本発明の実施形態に係る3点接触玉軸受を示す断面図。
【図4】本発明の実施形態に係る3点接触玉軸受の一部を示す拡大断面図。
【図5】玉と軌道溝面との弾性接触を説明するための模式図。
【図6】深みぞ玉軸受、3点接触玉軸受、4点接触玉軸受のそれぞれについて、純ラジアル荷重下の外輪軌道面におけるPV値の最大値と、純アキシアル荷重下のアキシアル変位との関係を計算機によって解析した結果を示すシミュレート解析図。
【図7】3点接触玉軸受の外輪みぞ曲率半径と純ラジアル荷重下の外輪軌道面におけるPV値の最大値との関係を計算機によって解析した結果を示すシミュレート解析図。
【図8】3点接触玉軸受の外輪みぞ曲率半径と純アキシアル荷重下のアキシアル変位との関係を計算機によって解析した結果を示すシミュレート解析図である。
【図9】本発明の実施形態に係る3点接触玉軸受を用いた電磁クラッチを示す概略断面図。
【図10】本発明の3点接触玉軸受を電磁クラッチに適用した場合について、外輪外径面の軸方向最大変位量と単一円弧軌道輪のみぞ曲率半径の関係を計算機によって解析した結果を示すシミュレーション解析図。
【図11】本発明の3点接触玉軸受を電磁クラッチに適用した場合について、鋼球とセラミック球(窒化珪素)での外輪外径面の軸方向最大変位量と単一円弧軌道輪のみぞ曲率半径の関係の差を計算機によって解析した結果を示すシミュレーション解析図。
【符号の説明】
12…内輪(第2の軌道輪)、12a…軌道溝面、
13…外輪(第1の軌道輪)、13a…軌道溝面、
14…玉(転動体)、
A…深みぞ玉軸受、
B…3点接触玉軸受、
C…4点接触玉軸受、
β…レストアングル、
31…電磁クラッチ、
32…ステータ、
33…電磁コイル、
34…プーリ、
35…ロータ、
36…電磁クラッチ用3点接触玉軸受、
37…アーマチュア、
38…アーマチュア支持部、
39…コンプレッサ軸、
40…コンプレッサハウジング(電磁クラッチ用軸受の内輪支持部)。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electromagnetic clutch having a three-point contact ball bearing excellent in axial positioning performance that is used by applying a radial load.
[0002]
[Prior art]
In order to suppress the axial displacement using a rolling bearing, an angular ball bearing or a tapered roller bearing is usually used. However, these bearings can only support axial loads in one direction alone, so in order to suppress displacement against axial loads in both directions, it is necessary to use a combination of two or more of these bearings or to use double row bearings. There is. Therefore, a certain amount of space is required in the axial direction, and it is difficult to make the mechanical device compact and lightweight.
[0003]
As shown in FIG. 1, the single row deep groove ball bearing A can support axial loads in both directions. However, since the cross-sectional shapes of the inner and outer rings 2 and 3 are both single arcs, the axial displacement in the axial direction is small. large.
[0004]
In order to suppress such axial displacement, a four-point contact ball bearing C as shown in FIG. 2 may be used. In the four-point contact ball bearing C, the raceway surfaces of the inner ring 6 and the outer ring 7 face each other, and when the ball 8 is pressed against the raceway surface, the line connecting the center of the ball 8 and the contact point is the center line of the bearing. A certain angle β (rest angle) is taken. Since the four-point contact ball bearing C always contacts the inner and outer rings 6 and 7 at a certain angle regardless of the load condition, the four-point contact ball bearing C is compact but has high axial rigidity and excellent axial positioning performance.
[0005]
[Problems to be solved by the invention]
However, when a radial load is applied to the four-point contact ball bearing C, slip due to spin motion increases at the contact point between the inner and outer rings 6, 7 and the ball 8. In the ball 8 and the bearing ring that receives the rotational load, the position of the contact point that receives the maximum load changes every moment, so it is considered that the possibility that the specific part of the member surface is damaged by the slip is low. However, since the position where the maximum load is received is constant in the raceway ring that receives a static load, there are portions of the raceway surface that are repeatedly exposed to a large sliding motion. In this part, there is a high risk of seizure due to a temperature rise due to heat generation at the contact point. Further, uneven wear of the raceway surface at a site where the slip is large may hinder the operation of the bearing.
[0006]
Further, in the electromagnetic clutch bearing, a double row ball bearing is used because the belt load acts on a portion where the belt load is displaced from the center of the shaft surface. The ball bearing and the pulley are displaced in the axial direction in order to make the electromagnetic clutch as small as possible. The radial load generated by the tension of the V-belt acts on the ball bearing as a moment load with an inclination because the pulley and the ball bearing are displaced in the axial direction. For this reason, a relative inclination occurs between the outer ring and the inner ring of the ball bearing, and an axial displacement with an inclination occurs in the rotor fitted to the outer ring. When a double-row ball bearing is used, the inclination of the rotor is reduced, and the rotor 35 and the armature 37 shown in FIG. 9 are brought into contact with each other to prevent the electromagnetic clutch from being damaged. However, since the double row ball bearings have a large width (wide), it is difficult to make the electromagnetic clutch compact, and it is difficult to reduce the cost associated with making the electromagnetic clutch compact.
[0007]
The present invention has been made in order to solve the above-described problem, in which the sliding due to the spin motion is small at the contact point between the race and the ball, uneven wear can be reduced, and a moment load is applied. However , an object of the present invention is to provide an electromagnetic clutch having a three-point contact ball bearing that can suppress the amount of axial displacement .
[0008]
[Means for Solving the Problems]
An electromagnetic clutch having a three-point contact ball bearing according to the present invention includes a stator fixed to a housing, an electromagnetic coil fixed in the stator, a belt for transmitting rotational power, and a pulley around which the belt is wound. A rotor on which the pulley is mounted on the outer periphery, a ball bearing that rotatably supports the rotor, and an armature that is attracted to the rotor by a magnetic force generated by the electromagnetic coil. In the electromagnetic clutch acting in the direction where the belt load is displaced from the axial center,
The ball bearing is a single-row three-point contact ball bearing that is fitted between the rotor and the housing and rotatably supports the rotor;
The three-point contact ball bearing, comprising an outer ring having a raceway of a single arc shape, the axis not parallel cross section single arc shape, and the inner ring having a raceway in contact with the rolling element and two points, the The radius of curvature of the outer ring raceway is 50.3% to 51.2% of the ball diameter of the rolling element, and a predetermined gap is provided between the rotor and the armature when energization of the electromagnetic coil is stopped. Is present .
[0009]
In the present invention, the track groove curvature (Re / Ra) of the outer ring having a single circular arc shape is set in the range of 50.3% to 51.2% of the ball diameter Da . In this way, uneven wear due to spin can be reduced, and moment load resistance can be improved as compared with deep groove ball bearings.
[0010]
In the three-point contact ball bearing of the electromagnetic clutch, it is preferable to perform nitriding treatment on the surface of at least one of the inner ring , the outer ring , and the rolling element. If it does in this way, the abrasion resistance of a component will increase.
[0011]
The bearing preferably supports a radial load and is used for the purpose of axial positioning.
[0015]
In addition, the three-point contact ball bearing is used in an electromagnetic clutch at a location where a rotor having a friction surface and rotating is supported .
[0016]
Furthermore, it is desirable that the rolling elements and the inner ring are made of ceramics.
[0017]
[Action]
In the electromagnetic clutch having the three-point contact ball bearing according to the present invention, the raceway cross-sectional shape of the outer ring is a single arc, so that the spin slip becomes smaller when a radial load is applied compared to the four-point contact ball bearing. Uneven wear of the surface is prevented.
[0018]
In the electromagnetic clutch according to the present invention, the raceway surface of the inner ring is opposed to the three-point contact ball bearing, and the ball always contacts the raceway surface with a large contact angle. The amount of directional displacement is suppressed, and high moment load resistance is exhibited.
[0019]
Furthermore, if at least one of the outer ring, the inner ring, and the rolling element is made of ceramics, ceramics has a smaller coefficient of linear expansion than steel, and the variation in the clearance of the bearing is reduced when the temperature changes. It becomes difficult. Further, when the rolling elements are made of ceramics, the axial displacement amount of the outer ring can be reduced with respect to the curvature of the same groove, so that the degree of freedom in design increases.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, various preferred embodiments of the present invention will be described with reference to the accompanying drawings and tables.
Example 1
Each characteristic of the deep groove ball bearing A, the 3-point contact ball bearing B, and the 4-point contact ball bearing C having the same dimensions shown in Table 1 was simulated and analyzed by a computer. For this analysis method, the method described in “Performance Analysis of Four-Point Contact Ball Bearing” (Taniguchi, Aramaki, Masada; Japan Tribology Society, Tribology Conference Tokyo Spring Proceedings of 1996) was adopted.
[0021]
Here, it is assumed that the bearing to be analyzed is subjected to a stationary load on the outer ring and is used for inner ring rotation. As shown in FIG. 4, in the three-point contact ball bearing B of the present invention, the raceway groove surface 13a of the outer ring 13 that receives a static load has a single arc-shaped cross section having a radius Re while receiving a rotational load. The cross-sectional shape of the raceway groove surface 12a of the inner ring 12 is a Gothic arch shape that contacts the ball 14 at a rest angle β. In this embodiment, the rest angle β of the ball 14 on the raceway groove surface 12a of the inner ring is set to 30 °. On the other hand, the four-point contact ball bearing C of the comparative example has a Gothic arch shape in which both the inner and outer rings 6 and 7 are in contact with the ball 8 at a rest angle β. The surface roughness of the raceway groove surfaces of the bearings A, B, and C was the same.
[0022]
Table 2 shows the operating conditions used for each simulation analysis. For each of the bearings A, B, and C, a pure radial load was applied in Analysis 1, and a pure axial load was applied in Analysis 2. The number of rotations of the inner ring was 10,000 rpm for both analyzes 1 and 2.
[0023]
The simulation analysis results are shown in FIG. The horizontal axis of the graph of FIG. 6 shows the maximum PV value at the contact point between the ball and the outer ring raceway surface according to Analysis 1 under a pure radial load. As shown in FIG. 5, the contact point between the ball and the race is actually an area represented by an ellipse (hatched area in the figure) based on the elastic contact theory of Hertz due to elastic deformation of the surface. That is, in the case of point contact between quadratic curved surfaces, the mutual contact portion is elliptical due to geometric conditions, and when the rolling element load is Q, the maximum contact pressure Pmax is proportional to Q 1/3 , The elastic displacement amount δ is proportional to Q 2/3 .
[0024]
The PV value is the product of the surface pressure P in the contact surface and the sliding speed V. In the analysis 1 and 2, the PV value is calculated in the contact surface between each ball and the outer ring, and the maximum value is shown here. The PV value is widely used as an index of heat generation and wear due to sliding. The μPV value obtained by multiplying the PV value by the sliding friction coefficient μ between the surfaces gives friction loss due to sliding per unit area / unit time. In addition, in the case of a four-point contact ball bearing C using bearing steel, if the PV value in this analysis exceeds 1.5 to 2.0 GPam / s, it will lead to local wear in the bearing ring that receives a static load. Is obtained from the experimental results.
[0025]
The analysis was performed for both the inner and outer rings where the track radius of curvature was 50.5% and 52%. For each, the maximum PV value of the outer ring under a pure radial load of the three-point contact ball bearing B according to the present invention was smaller than that of the four-point contact ball bearing C and was almost equivalent to the deep groove ball bearing A. The maximum PV value of the outer ring of the four-point contact ball bearing C exceeds 1.5 GPam / s, and there is a risk of causing local wear on the outer ring raceway surface. However, since the PV value of the three-point contact ball bearing B is only about 1.1 GPam / s even when the raceway radius of curvature is 50.5%, the possibility of uneven wear on the outer ring 13 is small.
[0026]
The vertical axis of the graphs shown in FIGS. 6 and 8 is the axial displacement of the bearing according to Analysis 2 under a pure axial load. Here, the axial displacement includes the amount of movement in the axial direction due to the internal clearance of the bearing and the displacement due to the elastic deformation of the ball and the track by the load. As is apparent from the figure, the axial displacement of the three-point contact ball bearing B of the present invention is larger than that of the four-point contact ball bearing C, but 40 to 50% smaller than that of the deep groove ball bearing A. Further, the three-point contact ball bearing B of the present invention has a higher positioning effect than the deep groove ball bearing A.
[0027]
In the above analysis, all of the bearings A, B, and C have the same number of balls as that of a general deep groove ball bearing 6308. However, the three-point contact ball bearing B or the four-point contact ball bearing C of the type in which the ball 14 and the inner ring 12 are in contact at two points may have an inner ring divided into two by a plane perpendicular to the central axis. Since such a three-point contact ball bearing B and a four-point contact ball bearing C are easier to assemble than a general deep groove ball bearing A of the same size, it is easy to increase the number of balls. By increasing the number of balls, the load per ball decreases, and the surface pressure at the contact point with the race and the elastic deformation of the bearing decrease. Even in the three-point contact ball bearing B of the present invention, by increasing the number of balls, both the PV value under radial load and the axial displacement under axial load are reduced from those shown in FIG. Can be provided.
(Example 2)
Using the same analysis method as in the first example, the influence of the outer ring groove radius of curvature on the bearing characteristics of the above three-point contact ball bearing B was examined. The radius of curvature of the inner ring 12 was 52% of the ball diameter Da. The other bearing specifications are as shown in Table 1.
[0028]
FIG. 7 shows the result of analysis 1 in Table 2. The abscissa represents the groove radius Re of the outer ring as a ratio to the ball diameter Da. The vertical axis represents the maximum PV value at the contact point between the ball and the outer ring raceway surface during operation under a pure radial load. As the groove radius of curvature increases, the maximum PV value of the outer ring decreases, indicating that the risk of excessive heat generation and wear is low. As described above, when the PV value exceeds 1.5 GPam / s, local wear of the outer ring 13 that receives a static load may occur. Accordingly, as shown in FIG. 7, in order to prevent uneven wear of the outer ring raceway surface 13a in this embodiment, the groove radius Re of the outer ring must be 50.3% or more of the ball diameter Da. In order to suppress the PV value of the outer ring raceway to 1.0 GPam / s or less in consideration of manufacturing or operational errors, the outer ring groove radius Re is more preferably 50.5% or more of the ball diameter Da. It is good.
[0029]
FIG. 8 shows the result of analysis 2 in Table 2. Here, the vertical axis represents the axial displacement of the bearing under a pure axial load. The smaller the radius of curvature Re of the outer ring 13, the smaller the axial displacement and the better the positioning performance. Here, the broken line on the graph indicates the axial displacement of the standard deep groove ball bearing 6308. As is clear from this figure, in the three-point contact ball bearing B according to the present invention, when the outer ring groove radius of curvature Re is 53% or less of the ball diameter Da, the axial displacement is smaller than that of the standard deep groove ball bearing 6308. There is an advantage of becoming.
[0030]
In the above embodiment, the effect of the three-point contact ball bearing of the present invention was shown for the case where the outer ring receives a static load and the inner ring rotates. For inner ring static load and outer ring rotational load, by using a three-point contact ball bearing having an inner ring whose cross section is a single arc and an outer ring having two tracks whose cross section is not a single arc shape, The sliding due to the spin motion is small at the contact point, and the partial wear can be reduced, and the axial rigidity can be increased.
[0031]
In the three-point contact ball bearing B according to the present invention, the slip is large at the contact point between the bearing ring and the ball that receives the rotational load, but the position that receives the maximum load changes on the surface of the raceway and the ball. It is unlikely that the site will wear unevenly. However, it is conceivable that the surface of the ball and the track wears out as a whole during long-term operation. Accordingly, nitriding treatment is preferably performed on the steel material surface to improve wear resistance. In addition, for the bearing ring that receives a static load, it is preferable to use the same wear-resistant material from the viewpoint of preventing uneven wear even though the sliding is small and from the viewpoint of preventing wear due to dust in the lubricating oil. .
[0032]
Although such a three-point contact ball bearing B is used for axial positioning, it can be used under a load condition with a large radial load to which the four-point contact ball bearing C is difficult to apply. The three-point contact ball bearing B of the present invention is effective not only for the purpose of supporting a radial load during steady operation but also for the purpose of receiving a large radial load temporarily at the time of startup or the like.
[0033]
As an example of such an application, in a continuously variable transmission using a belt made of metal or the like used in an automobile or the like, there is a bearing that supports a load of a pulley shaft on which the belt is applied. Further, in a toroidal-type continuously variable transmission used in an automobile or the like, it can also be used as a bearing for positioning a shaft while receiving a radial load.
[0034]
[Table 1]
Figure 0003736149
[0035]
[Table 2]
Figure 0003736149
[0036]
Example 3
Next, a case where the three-point contact ball bearing of the present invention is used for an electromagnetic clutch will be described as a third embodiment with reference to FIGS.
[0037]
The electromagnetic clutch 31 transmits or blocks the rotational power generated in the vehicle travel engine to the compressor of the refrigeration cycle. The electromagnetic clutch bearing 36 is required to suppress the amount of axial displacement with inclination as much as possible because the belt load acts on a portion where the belt load is displaced from the center of the shaft surface.
[0038]
The electromagnetic clutch 31 includes a stator 32 fixed to the compressor housing 40, an electromagnetic coil 33 housed in the stator 32, a pulley 34 around which a multi-stage V-belt 41 that transmits the rotational power of the engine is wound, A rotor 35 having a pulley 34 attached to the outer periphery, a three-point contact ball bearing 36 that rotatably supports the rotor 35, an armature 37 that is attracted to the rotor 35 by the magnetic force generated by the electromagnetic coil 33, and the armature 37 The armature support part 38 which consists of a single or several member which transmits the rotational power of this to a compressor (not shown), and the compressor shaft 39 are provided.
[0039]
The rotor 35 is made of a magnetic metal (for example, iron), has a substantially U-shaped cross section, and has a recess 35 a facing the opposite side of the armature 37. The stator 32 is accommodated in the recess 35a.
[0040]
A single row three-point contact ball bearing 36 is fitted between the rotor 35 and the compressor housing 40. With this ball bearing 36, the rotor 35 is rotatably supported with respect to the compressor housing 40. The outer ring 13 of the ball bearing 36 is fitted in contact with the inner periphery of the rotor 35, and the inner ring 12 of the ball bearing 36 is fitted in contact with the outer periphery of the hub of the compressor housing 40.
[0041]
A pulley 34 around which a multistage V-belt 41 is stretched is fixed to the outer periphery of the rotor 35 by a joining technique such as welding. The pulley 34 always receives the rotation of the engine via the V-belt 41 and rotates together with the fixed rotor 35.
[0042]
The ball bearing 36 and the pulley 34 are usually displaced in the axial direction in order to make the electromagnetic clutch 31 as compact as possible. The radial load generated by the tension of the V-belt 41 acts on the ball bearing 36 as a moment load with an inclination because the pulley 34 and the ball bearing 36 are displaced in the axial direction. Therefore, a relative inclination occurs between the outer ring 13 and the inner ring 12 of the ball bearing 36, and an axial displacement with inclination occurs in the rotor 35 fitted to the outer ring 13.
[0043]
Here, when energization of the electromagnetic coil 33 is stopped, a predetermined gap g (for example, 0.5 mm) exists between the rotor 35 and the armature 37. The gap g is determined in consideration of dimensional tolerances of various members or attachment errors. Here, if the gap g is too large, the magnetic force generated by the electromagnetic coil 33 must be increased. Therefore, the gap g is set so as to have a minimum value considering these.
[0044]
For the reasons described above, a double-row ball bearing is conventionally used as a bearing for supporting the rotor 35 of the electromagnetic clutch in order to suppress the amount of axial displacement associated with the inclination of the bearing 36 as much as possible. When a double-row ball bearing is used, the inclination of the rotor 35 is reduced, the rotor 35 and the armature 37 are in contact with each other, and the electromagnetic clutch is prevented from being damaged. However, since the double row ball bearings have a large width (wide), it is difficult to make the electromagnetic clutch compact, and it is difficult to reduce the cost associated with making the electromagnetic clutch compact.
[0045]
On the other hand, in the three-point contact ball bearing 36 of the present embodiment, the maximum amount of axial displacement can be kept small, and the electromagnetic clutch 31 can be made compact and reduced in cost. A result obtained by computer simulation calculation of the axial maximum displacement amount of the outer diameter surface of the outer ring 13 using the calculation conditions shown in Table 3 is shown.
[0046]
In Table 3, the radius of curvature of the track ring 12 in contact at two points was fixed to 52% of the ball diameter, and the radius of curvature of the track ring 13 having a single arc was changed. The calculation result is shown in FIG. FIG. 10 shows the result of examining the relationship between the horizontal axis with the ratio (percentage) of the outer ring groove radius Re to the ball diameter Da and the vertical axis with the axial maximum displacement (mm) of the outer ring. It is a characteristic diagram. In the figure, the characteristic line A represents the correlation between the three-point contact ball bearings. Incidentally, in the conventional double row ball bearing, the maximum axial displacement is about 0.09 mm. By improving the component accuracy and assembly accuracy, the maximum axial displacement can be allowed to be about 0.17 mm or less, which is about 90% larger than the conventional one. To satisfy this tolerance, a single arc The groove radius of curvature Re must be 53.3% or less of the ball diameter Da. In order to achieve compactness, preferably without changing the component accuracy and assembly accuracy, the radius of curvature of the single arc raceway ring is set to 51.9% or less of the ball diameter Da, and the maximum axial displacement is 0125 mm or less. And
[0047]
More preferably, in order to keep the maximum axial displacement to 0.1 mm or less and to the same level as a conventional double row ball bearing, the radius of curvature Re of the single arc raceway ring is 51.2% or less of the ball diameter. It is necessary to make it. The minimum value of the groove curvature radius Re is theoretically 50% of the ball diameter Da. However, as described with reference to FIG. 7, the PV value increases and the risk of wear is high. % Or more. Furthermore, if manufacturing or operational errors are taken into account, it is preferably 50.5% or more of the ball diameter Da.
[0048]
[Table 3]
Figure 0003736149
[0049]
From the above results, the three-point contact ball bearing can suppress the amount of axial displacement even when a moment load acts as in the case of an electromagnetic clutch. In the case of a bearing for an electromagnetic clutch, the axial maximum displacement amount in the single arc shape outer ring groove even if the inner ring groove which is stationary ring into a single arc shape is rotating ring may be either because it does not change. However, in the case of a bearing for an electromagnetic clutch, since the surface pressure at the inner ring is high and separation occurs at the inner ring raceway surface, it is preferable to use a three-point contact ball bearing that can disperse the inner ring load at two locations because the life is extended. Also, in the electromagnetic clutch bearing, from the viewpoint of suppressing uneven wear, it is preferable to increase the wear resistance by nitriding the steel material.
[0050]
Further, from the viewpoint of increasing rigidity and reducing the maximum amount of axial displacement of the outer ring, it is preferable to use ceramics such as silicon nitride or silicon carbide having a Young's modulus larger than steel for the rolling element. FIG. 11 shows the results of examining the relationship between the horizontal axis with the ratio (percentage) of the outer ring groove radius Re to the ball diameter Da and the vertical axis with the maximum axial displacement (mm) of the outer ring. It is a characteristic diagram. In the figure, the characteristic line B shows the result of using a steel ball as the rolling element, and the characteristic line C shows the result of using a ceramic sphere (silicon nitride) as the rolling element. As can be seen from the figure, when the rolling element is made of silicon nitride ceramic, the tilt rigidity of the bearing is further increased, so that the amount of axial displacement associated with the tilt of the bearing 36 can be further reduced, thereby increasing the degree of freedom in design.
[0051]
【The invention's effect】
According to the electromagnetic clutch of the present invention, the raceway of the outer ring has a single arc shape in the axial parallel cross section, and the inner race has two raceways in which the axis parallel cross section does not have the single arc shape and contacts the rolling element at two points has, groove curvature radius of the outer ring is rolling of the rolling elements in diameter 50.3% or more, and less 51.2%, present a predetermined gap between the rotor and the armature when stopping the energization of the electromagnetic coil As a result, contact between the rotor and the armature can be prevented to reduce uneven wear, and even when a moment load is applied, the amount of axial displacement can be kept low and the moment load resistance performance can be improved. .
[0052]
Further, the three-point contact ball bearing of the present invention has an axial positioning function, and heat generation and wear are reduced even when a radial load is applied.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing an example of a conventional deep groove ball bearing.
FIG. 2 is a cross-sectional view showing an example of a conventional four-point contact ball bearing.
FIG. 3 is a cross-sectional view showing a three-point contact ball bearing according to an embodiment of the present invention.
FIG. 4 is an enlarged cross-sectional view showing a part of a three-point contact ball bearing according to an embodiment of the present invention.
FIG. 5 is a schematic diagram for explaining elastic contact between a ball and a raceway groove surface.
FIG. 6 shows the relationship between the maximum PV value on the outer ring raceway surface under pure radial load and the axial displacement under pure axial load for each of the deep groove ball bearing, the three-point contact ball bearing, and the four-point contact ball bearing. The simulation analysis figure which shows the result of having analyzed by the computer.
FIG. 7 is a simulation analysis diagram showing the result of analyzing the relationship between the radius of curvature of the outer ring groove of the three-point contact ball bearing and the maximum PV value on the outer ring raceway surface under a pure radial load by a computer.
FIG. 8 is a simulation analysis diagram showing a result of a computer analyzing a relationship between an outer ring groove radius of curvature of a three-point contact ball bearing and an axial displacement under a pure axial load.
FIG. 9 is a schematic cross-sectional view showing an electromagnetic clutch using a three-point contact ball bearing according to an embodiment of the present invention.
FIG. 10 shows the result of analyzing, by a computer, the relationship between the maximum axial displacement of the outer ring outer diameter surface and the radius of curvature of a single arc raceway ring when the three-point contact ball bearing of the present invention is applied to an electromagnetic clutch. The simulation analysis figure shown.
FIG. 11 shows a case where the three-point contact ball bearing of the present invention is applied to an electromagnetic clutch; The simulation analysis figure which shows the result of having analyzed the difference of the relationship of the curvature radius with the computer.
[Explanation of symbols]
12 ... Inner ring (second race ring), 12a ... Raceway groove surface,
13 ... Outer ring (first race ring), 13a ... Raceway groove surface,
14 ... ball (rolling element),
A ... Deep groove ball bearing,
B: 3-point contact ball bearing,
C: 4-point contact ball bearing,
β ... rest angle,
31 ... Electromagnetic clutch,
32 ... stator,
33 ... Electromagnetic coil,
34 ... pulley,
35 ... Rotor,
36. Three-point contact ball bearing for electromagnetic clutch,
37 ... Armature,
38 ... Armature support,
39 ... Compressor shaft,
40: Compressor housing (inner ring support portion of electromagnetic clutch bearing).

Claims (3)

ハウジングに固定されるステータと、該ステータ内に固定される電磁コイルと、回転動力を伝えるベルトと、該ベルトが巻き掛けられたプーリと、該プーリが外周に取付けられたロータと、該ロータを回転可能に支持する玉軸受と、前記電磁コイルの発生する磁力によって前記ロータに吸引されるアーマチュアを備え、前記玉軸受とプーリとは軸方向にずれており、ベルト荷重が軸面中央から変位する箇所に作用する電磁クラッチにおいて、
前記玉軸受は、前記ロータと前記ハウジングとの間に嵌めこまれて、前記ロータを回転自在に支持する単列の3点接触玉軸受であり、
前記3点接触玉軸受は、単一円弧形状の軌道を有する外輪と、軸平行断面が単一円弧形状でなく、かつ、転動体と2点で接触する軌道を有する内輪とを具備し、前記外輪の軌道みぞ曲率半径転動体の玉直径の50.3%以上、51.2%以下とし、前記電磁コイルの通電を停止しているときに前記ロータと前記アーマチュアとの間に所定の隙間が存在することを特徴とする3点接触玉軸受を有する電磁クラッチ。
A stator fixed to the housing, an electromagnetic coil fixed in the stator, a belt for transmitting rotational power, a pulley on which the belt is wound, a rotor on which the pulley is attached to the outer periphery, and the rotor A ball bearing that is rotatably supported and an armature that is attracted to the rotor by the magnetic force generated by the electromagnetic coil, the ball bearing and the pulley are offset in the axial direction, and the belt load is displaced from the center of the shaft surface. In the electromagnetic clutch acting on the location,
The ball bearing is a single-row three-point contact ball bearing that is fitted between the rotor and the housing and rotatably supports the rotor;
The three-point contact ball bearing, comprising an outer ring having a raceway of a single arc shape, the axis not parallel cross section single arc shape, and the inner ring having a raceway in contact with the rolling element and two points, the The radius of curvature of the outer ring raceway is 50.3% to 51.2% of the ball diameter of the rolling element, and a predetermined gap is provided between the rotor and the armature when energization of the electromagnetic coil is stopped. electromagnetic clutch having a three-point contact ball bearing, characterized in that but there.
前記内輪の軌道溝面の断面形状はゴシックアーチ形状であることを特徴とする請求項1記載の電磁クラッチ。The electromagnetic clutch according to claim 1, wherein a cross-sectional shape of a raceway groove surface of the inner ring is a Gothic arch shape. 前記内輪及び外輪の軌道みぞの表面は窒化処理が施されていることを特徴とする請求項1または2のいずれか1項記載の電磁クラッチ。3. The electromagnetic clutch according to claim 1, wherein surfaces of the inner and outer ring raceways are subjected to nitriding treatment. 4.
JP31211098A 1997-11-07 1998-11-02 Electromagnetic clutch with 3-point contact ball bearing Expired - Fee Related JP3736149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31211098A JP3736149B2 (en) 1997-11-07 1998-11-02 Electromagnetic clutch with 3-point contact ball bearing

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-305844 1997-11-07
JP30584497 1997-11-07
JP31211098A JP3736149B2 (en) 1997-11-07 1998-11-02 Electromagnetic clutch with 3-point contact ball bearing

Publications (2)

Publication Number Publication Date
JPH11210766A JPH11210766A (en) 1999-08-03
JP3736149B2 true JP3736149B2 (en) 2006-01-18

Family

ID=26564475

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31211098A Expired - Fee Related JP3736149B2 (en) 1997-11-07 1998-11-02 Electromagnetic clutch with 3-point contact ball bearing

Country Status (1)

Country Link
JP (1) JP3736149B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10672207B2 (en) 2017-01-20 2020-06-02 Polaris Industries Inc. Diagnostic systems and methods of a continuously variable transmission

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4834921B2 (en) 2001-01-30 2011-12-14 日本精工株式会社 Rotation support device for pulley for compressor
JP4736235B2 (en) * 2001-05-11 2011-07-27 日本精工株式会社 Rotation support device for pulley
US7325974B2 (en) * 2001-09-18 2008-02-05 Nsk Ltd. Pulley rotation support apparatus
EP1429042A4 (en) * 2001-09-18 2004-12-15 Nsk Ltd Pulley rotatingly supporting device
US7163341B2 (en) 2002-01-31 2007-01-16 Nsk Ltd. Bearing to be used for pulley in auxiliary device for engine
EP1496278A4 (en) 2002-02-12 2005-09-14 Nsk Ltd Pulley bearing for engine auxiliaries
KR100841824B1 (en) * 2002-02-20 2008-06-26 닛뽄 세이꼬 가부시기가이샤 Rotation support device for compressor pulley
WO2004038242A1 (en) * 2002-10-18 2004-05-06 Ina-Schaeffler Kg Helical rotary compressor
US9033581B2 (en) * 2011-10-10 2015-05-19 General Electric Company Dynamically-lubricated bearing and method of dynamically lubricating a bearing
JP6309703B2 (en) * 2012-03-12 2018-04-11 Ntn株式会社 Rolling bearing
JP2015059645A (en) * 2013-09-20 2015-03-30 Ntn株式会社 Rolling bearing
DE102015207394A1 (en) * 2015-04-23 2016-10-27 Aktiebolaget Skf Rolling bearings, high speed bearings and compressors
CN105673702A (en) * 2016-04-20 2016-06-15 哈尔滨理工大学 Novel ball bearing with outer ring being V-shaped rolling track and inner ring being arc-shaped rolling track
CN105673705A (en) * 2016-04-20 2016-06-15 哈尔滨理工大学 Novel asymmetric V-shaped inner ring bearing structure
CN105805167A (en) * 2016-04-20 2016-07-27 哈尔滨理工大学 Novel bearing with inner-ring conical ball track and outer-ring arc-shaped ball track
CN105673704A (en) * 2016-04-20 2016-06-15 哈尔滨理工大学 Novel bearing with inner ring being in arc and conical shape and outer ring being arc rolling track
CN110131306B (en) * 2018-02-09 2023-05-02 舍弗勒技术股份两合公司 Rolling bearing and static ring thereof
JP2022036872A (en) * 2020-08-24 2022-03-08 隆志 浜口 Self-aligning ball bearing
CN115013443A (en) * 2022-06-24 2022-09-06 重庆市新超力轴承有限公司 Low-friction bearing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10672207B2 (en) 2017-01-20 2020-06-02 Polaris Industries Inc. Diagnostic systems and methods of a continuously variable transmission
US11430272B2 (en) 2017-01-20 2022-08-30 Polaris Industries Inc. Diagnostic systems and methods of a continuously variable transmission

Also Published As

Publication number Publication date
JPH11210766A (en) 1999-08-03

Similar Documents

Publication Publication Date Title
JP3736149B2 (en) Electromagnetic clutch with 3-point contact ball bearing
US4641977A (en) Bearing system
JP2001208081A (en) Single row deep groove radial ball bearing
US5522667A (en) Ball bearing for turbocharger
US6877901B2 (en) Bearing system for high-speed rotating machinery
WO2003071142A1 (en) Rotation support device for compressor pulley
US6273230B1 (en) Ball bearing and electromagnetic clutch having the same
JP4017818B2 (en) Ball bearing
JPH09291942A (en) Radial rolling bearing
JP4085235B2 (en) Single row ball bearings for pulley support
JPH08326751A (en) Magnetic bearing
JP3252587B2 (en) Ball bearing device
JP2003247556A (en) Multi-point contact ball bearing and pulley for automobiles
JP4058601B2 (en) Single row bearing for pulley support
JP3252588B2 (en) Ball bearing device
JP2005042892A (en) Ball bearing
JPH1182522A (en) Touchdown bearing for magnetic bearing device
JPH084773A (en) Solid lubricating rolling bearing
EP0138984A1 (en) Bearing system
JP3814890B2 (en) Low friction torque thrust ball bearing
JP4203843B2 (en) Rolling bearing and bearing device
JPH10159579A (en) Rolling bearing for engine auxiliary machine
JP2003021149A (en) Rotary support device for pulley for compressor
CN112714833B (en) Spindle device
JP2004190763A (en) Rotary supporting device for pulley

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050329

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050621

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20051004

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051017

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091104

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101104

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111104

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121104

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131104

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees