JP3733863B2 - Radar equipment - Google Patents

Radar equipment Download PDF

Info

Publication number
JP3733863B2
JP3733863B2 JP2001026231A JP2001026231A JP3733863B2 JP 3733863 B2 JP3733863 B2 JP 3733863B2 JP 2001026231 A JP2001026231 A JP 2001026231A JP 2001026231 A JP2001026231 A JP 2001026231A JP 3733863 B2 JP3733863 B2 JP 3733863B2
Authority
JP
Japan
Prior art keywords
optical axis
vehicle
radar apparatus
axis deviation
deviation amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001026231A
Other languages
Japanese (ja)
Other versions
JP2002228749A (en
Inventor
文彦 岡井
浩司 黒田
満 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001026231A priority Critical patent/JP3733863B2/en
Publication of JP2002228749A publication Critical patent/JP2002228749A/en
Application granted granted Critical
Publication of JP3733863B2 publication Critical patent/JP3733863B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • G01S7/403Antenna boresight in azimuth, i.e. in the horizontal plane
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4026Antenna boresight
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4052Means for monitoring or calibrating by simulation of echoes
    • G01S7/4082Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder
    • G01S7/4091Means for monitoring or calibrating by simulation of echoes using externally generated reference signals, e.g. via remote reflector or transponder during normal radar operation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/932Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles using own vehicle data, e.g. ground speed, steering wheel direction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9325Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles for inter-vehicle distance regulation, e.g. navigating in platoons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • G01S2013/9327Sensor installation details
    • G01S2013/93271Sensor installation details in the front of the vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Traffic Control Systems (AREA)
  • Radar Systems Or Details Thereof (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は自車周辺に存在する物体を検知するレーダ装置に関し、レーダ光軸のずれ量を検知して補正することにより検知物体の正確な位置を得ることが可能なレーダ装置に関する。
【0002】
【従来の技術】
自車の自動運転や衝突防止を実現するための前方監視手段として、通常、レーダ装置が用いられている。そして、物体の正確な位置を検出するためには、レーダ装置の光軸と自車の前後軸を一致させる必要がある。しかし、レーダ装置の取付精度や取付後の経年変化が原因でレーダの光軸がずれると、先行車の位置を誤認識し、場合によっては前方に先行車が存在するにもかかわらず存在しないと判断し、その結果衝突を引き起こしてしまう恐れがある。
【0003】
その対策として特開平9−281239号公報および特開平10−132939号公報,特開平11−14748号公報などがあるが、例えば特開平9−281129号公報では、車両走行中において、車両進行方向に直交する方向に対する停止物の位置変化量からレーダ装置の光軸ずれ量を求め、検知物体の位置を補正するといった方法がある。
【0004】
【発明が解決しようとする課題】
しかしこの光軸ずれ算出方法では、自車と静止物間の距離や車速の測定値に誤差がある場合、光軸ずれ量の算出精度に影響を与え、その結果検知物体の位置補正に誤差が生じるといった問題がある。本発明は、これら誤差の影響を最小限に抑えて光軸ずれ量を算出し、より正確な検知物体の位置情報を得ることができるレーダ装置を提供することにある。
【0005】
さらに、本発明は、求めた光軸ずれ量が所定値以上の時にその旨を運転者に報告することにより、レーダ装置を用いたシステムの信頼性を高めることを目的としている。
【0006】
さらに、本発明は、光軸ずれ量の算出結果を保存することにより、レーダ装置の起動直後から光軸ずれ補正を行うことを目的としている。
【0007】
さらに、本発明は、レーダ装置取付時に得られる算出精度の高い光軸ずれ量の算出値が存在しない場合、光軸がずれている可能性を運転者に示唆することにより、レーダ装置を用いたシステムの信頼性を高めることを目的としている。
【0008】
さらに、本発明は、車両基準点の位置に応じて検知物体の位置を補正することにより、車両基準点と検知物体の正確な位置関係を得ることを目的としている。
【0009】
さらに、本発明は、車速の測定誤差を算出することにより、正確な車速値を得ることを目的としている。
【0010】
【課題を解決するための手段】
自車の周辺に存在する物体との相対速度および方位角度を検知する手段と、自車の車速を検知する手段と、前記車速に基づき前記物体が静止物であることを判断する手段と、前記静止物に対する相対速度の方位角度依存性を利用して光軸ずれ量を算出する手段と、前記光軸ずれ量に応じて検知した物体の方位角度を補正する手段を備えたことにより課題を解決する。
【0011】
さらに、本発明は、求めた光軸ずれ量が所定値以上かどうか判断する手段と、所定値を超えた場合、運転者に報知する手段を備えたものである。
【0012】
さらに、本発明は、求めた光軸ずれ量の算出精度を判定する手段と求めた光軸ずれ量を記憶する手段を備えたものである。
【0013】
さらに、本発明は、レーダ装置取付時に算出した光軸ずれ量およびその算出精度を取得する手段と、前記算出精度が高い光軸ずれ量が存在しない時、その旨を運転者に報知する手段を備えたものである。
【0014】
さらに、本発明は、自車の周辺に存在する物体までの距離および方位角度を検知する手段と、自車の進行方向をy軸、ならびにy軸に直行する水平方向をx軸とした時、前記検知物体の距離および方位角度をxy座標に変換する手段と、自車の前端中央を車両基準点とした時、レーダ装置と車両基準点間のオフセット位置関係を記憶する手段と、前記オフセット位置関係に応じて前記物体のxy座標を補正する手段を備えたものである。
【0015】
自車の周辺に存在する物体との相対速度および方位角度を検知する手段と、自車の車速を検知する手段と、前記車速に基づき前記物体が静止物であることを判断する手段と、前記静止物に対する相対速度の方位角度依存性を利用して車速誤差を算出する手段を備えたものである。
【0016】
【発明の実施の形態】
以下、本出願の実施例を図面を用いて説明する。まず、本発明が適用される車間距離制御(ACC)システムについて説明する。図11および図12は、それぞれACCシステムの概略図およびレーダ装置42の機能ブロック図を示している。ACCシステムは、先行車41との車間距離を適切に保つよう自車21のブレーキやスロットルなどを制御するものである。そのため、レーダ装置42は先行車情報19(先行車に対する車間距離,相対速度,方位角度)を検出し、その先行車情報19をACCユニット10に出力する機能を有しており、この先行車情報19を検出するため、レーダ装置42では図12で示した処理を行っている。まず、ミリ波レーダヘッド1で先行車を含む周辺物情報11(周辺物に対する車間距離,相対速度,方位角度)を検出する。この周辺物情報11の中から先行車情報19を取り出すため、車速センサ2および角速度センサ3で測定した車速12と角速度13を用いる。自車線内で最も距離が近い周辺物を先行車19として判定し、その先行車情報19をACCユニット10に出力することにより、車間距離制御を行うのがACCシステムである。
【0017】
次に本出願の実施例を、図1に示したブロック図を用いて説明する。周辺物情報11を取得する手段にミリ波レーダヘッド1を用い、車速12および角速度
13の検出手段として、それぞれ車速センサ2および角速度センサ3を用いる。直線判定手段4では自車が直線走行しているかを判定しており、もし、角速度
13が一定期間、所定値以下であれば直進走行していると判断し、次に静止物判定手段5を行う。静止物判定手段5では、車速12を用いて周辺物情報11から静止物情報15を検出し、相対速分布データ収集手段6では、その静止物の相対速を車速12で割ることにより、各方位角度に対する相対速分布データ16を求める。そして光軸ずれ量計算手段7では、この相対速分布データ16から光軸ずれ量17の算出を行う。ただし、ここでいう光軸ずれ量17は、車両進行方向とレーダ光軸方向のずれ角度を意味している。また、方位角度補正手段8では、この光軸ずれ量17を用いて周辺物情報11の方位角度を補正し、周辺物補正情報18として出力する。そして先行車検出手段9により、周辺物補正情報18から先行車情報19を検出し、ACCユニット10に出力する。
【0018】
まず光軸ずれ量の算出原理について、図3〜図6を用いて説明する。図3は、光軸がずれていない時の自車21と静止物22の速度関係を表したものであり、方位角度θの方向に静止物22が存在しているとする。ここで、Vhは自車21の車速12、Vsは自車21と静止物22の相対速23とすると、車速Vhと相対速Vsの間には(1)式の関係が成立つ。

Figure 0003733863
【0019】
ただし、Aは車速Vhと相対速Vsに含まれる速度誤差の比を表わしており、誤差が存在しない時はA=1となる。
【0020】
よって(1)式より、Vs/Vhは図4で示したような方位角度θのcos 関数となることがわかる。
【0021】
これに対し、図5のように光軸がαだけずれた場合を考える。この時、静止物22に対する方位角度26を測定すると、見かけ上はθ′=θ−αとなるが、相対速Vsは変わらない。この方位角度測定値θ′と相対速Vsを式(1)に代入すると(2)式に書き直せる。
Figure 0003733863
【0022】
ここで図6は(2)式を図に表わしたものであるが、これはAcos(θ′)の関数が光軸ずれ量αだけ横に平行移動したものとなる。以上から、静止物22に対する方位角度測定値θ′と相対速Vs/車速Vhの関係を図6のグラフにプロットし、Acos(θ′+α)の関係を求めることにより、速度誤差比Aおよび光軸ずれ量αをそれぞれ求めることができる。すなわち、車速Vhや相対速Vsの誤差を速度誤差比Aとして吸収できるので、光軸ずれ量αの算出精度を向上させることができる。更に、相対速Vsの測定誤差がなければ、速度誤差比Aは車速の測定誤差を表わしたものとなり、これを用いることにより、車速の測定値を正しく補正することができる。
【0023】
次に本発明の実現方法について、図2および図1を用いて説明する。まずステップ201では、ミリ波レーダヘッド1および車速センサ2,角速度センサ3を用いて、周辺物情報11および車速12,角速度13を検出する。そして次のステップ202では、検出した車速12および角速度13を用いて直進走行判定
(直線判定手段4)を行い、直進走行状態であればステップ203に進み、そうでなければステップ206に進む。この直線判定条件として、車速12が所定値以上かつ角速度が所定値以下の状態が一定期間以上続けば直線走行していると判断する。また、ステップ203では周辺物情報11から静止物情報15を検出
(静止物判定手段5)し、ステップ204により相対速分布データ16に変換
(相対速分布データ収集手段6)する。ここで相対速分布データ16は、静止物情報15の方位角度測定値26を横軸、相対速23を車速12で割ったものを縦軸とした座標系に静止物情報15をプロットしたもの(図6に相当)である。そしてステップ205では、最小二乗法を用いて相対速分布データ16を(2)式の右辺に近似し、光軸ずれ量17および速度誤差比25を算出(光軸ずれ量算出手段7)する。また、ステップ206では、周辺物情報11の方位角度測定値
26に光軸ずれ量17を足し込むことにより正確な位置を算出(方位角度補正手段8)し、周辺物補正情報11を求める。最後にステップ207では、この周辺物補正情報11を用いて先行車の情報19の検出を行う。ここでは、自車線内で最も車間距離が近い周辺物を先行車41とみなす。
【0024】
また、相対速2の代わりに、一定期間内における車間距離の変化量を用いても良い。
【0025】
図7は次の実施の形態を示したものである。光軸ずれ判定手段27を備えることにより、算出した光軸ずれ量17が所定値を超えた場合、それを知らせる光軸ずれ検出信号28をACCユニット10に出力しても良い。
【0026】
図8は他の実施の形態を示したものである。算出した光軸ずれ量17の算出精度を判定する手段30および光軸ずれ量を保存する手段31を備えることにより、光軸ずれ量17の算出精度が低い時、光軸ずれ量保存手段31に保存された光軸ずれ量の保存値29を光軸ずれ量17として採用しても良い。ただし、この算出精度として光軸ずれ量17算出に伴う分散値を用い、分散値が所定値以上の時、算出精度が低いと判断する。ここでは分散値の計算式として(3)式を用い、N個の光軸ずれ量測定値および光軸ずれ量17算出値から計算する。
Figure 0003733863
【0027】
図9は他の実施の形態を示したものである。レーダ装置取付時に得られる光軸ずれ量および算出精度の情報を有する光軸ずれ情報33を光軸ずれ情報取得手段32で取得し、更に光軸ずれ量有効判定手段34を備えることにより、所定値以上の算出精度を有する光軸ずれ情報33が1つ以上存在しない時、光軸ずれの可能性を知らせる信号35を発生して、その旨を運転者に報知しても良い。
【0028】
図10は次の実施の形態を示したものである。まず、ミリ波レーダヘッド1を用いて周辺物情報11を検出する。ここでいう周辺物情報11とは、図13に示したように周辺物44に対する車間距離Dおよび方位角θであり、xy座標変換手段36は、この周辺物情報11を自車21の進行方向をy軸,y軸に垂直な水平方向をx軸としたxy座標系に換算するものである。換算は(4)式によって行われ、求めた(x,y)を周辺物xy情報37とする。ただし、このxy座標系はレーダ装置42を原点としたものである。
【0029】
(x,y)=(Dsinθ,Dcosθ) (4)
また、自車21の前端中央を車両基準点(x0,y0)にとり、車両基準位置39として車両基準位置保存手段38にあらかじめ保存しておく。オフセット位置補正手段40では、この車両基準位置39を用いて周辺物xy情報37を補正することにより、車両21と周辺物44の位置関係を(x−x0,y−y0)と求め、周辺物補正情報18とする。この周辺物補正情報18を用いて先行車検出手段9で先行車情報19を検出し、ACCユニット10に出力しても良い。
【0030】
また、前記ステップ205で算出した速度誤差比Aを用いて、(5)式のように車速値Vhを補正しても良い。
【0031】
車速補正値=A×Vh (5)
【0032】
【発明の効果】
本発明によれば、車速と相対速度比の方位角度依存性を用いて光軸ずれ量を算出しているので、車速や相対速の測定誤差の影響を最小限に抑えてより正確な検知物体の位置情報を得ることができる。
【0033】
また、求めた光軸ずれ量が所定値以上の時にその旨を運転者に報告することにより、レーダ装置を用いたシステムの信頼性を高めることができる。
【0034】
また、光軸ずれ量の算出結果を保存することにより、レーダ装置の起動直後から光軸ずれ補正を行うことができる。
【0035】
また、レーダ装置取付時に得られる算出精度の高い光軸ずれ量の算出値が存在しない場合、レーダ装置の車体取付時に行う光軸調整が実施されていないと判断し、光軸がずれている可能性を運転者に示唆することにより、レーダ装置を用いたシステムの信頼性を高めることができる。
【0036】
また、車両基準点の位置に応じて検知物体の位置をオフセット補正することにより、車両基準点と検知物体の正確な位置関係を得ることができる。
【0037】
また、車速と相対速度比の方位角度依存性を用いて、車速誤差を算出し補正することにより、車速の正確な値を得ることができる。
【図面の簡単な説明】
【図1】本発明の光軸ずれ量補正を説明するブロック図。
【図2】本発明の光軸ずれ量補正を行う手順。
【図3】本発明の光軸ずれ量算出原理の説明図(光軸ずれなしの時)。
【図4】本発明の光軸ずれ量算出原理の説明グラフ(光軸ずれなしの時)。
【図5】本発明の光軸ずれ量算出原理の説明図(光軸ずれありの時)。
【図6】本発明の光軸ずれ量算出原理の説明グラフ(光軸ずれありの時)。
【図7】光軸ずれの発生報知を説明するブロック図。
【図8】光軸ずれ量を保存することを説明するブロック図。
【図9】光軸ずれの可能性の報知を説明するブロック図。
【図10】レーダ装置のオフセット位置補正を説明するブロック図。
【図11】ACCシステムの概略図。
【図12】レーダ装置の機能ブロック図。
【図13】xy座標説明図。
【符号の説明】
1…ミリ波レーダヘッド、2…車速センサ、3…角速度センサ、4…直進判定手段、5…静止物判定手段、6…相対速分布データ手段、7…光軸ずれ量算出手段、8…方位角度補正手段、9…先行車検出手段、10…ACCユニット、11…周辺物情報、12…車速、13…角速度、14…直進判定結果、15…静止物情報、16…相対速分布データ、17…光軸ずれ量、18…周辺物補正情報、19…先行車情報、20…レーダ光軸、21…自車、22…静止物、23…相対速、24…真の方位角度、25…速度誤差比、26…方位角度測定値、27…光軸ずれ判定手段、28…光軸ずれ検出信号、29…光軸ずれ量保存値、30…算出精度判定手段、31…光軸ずれ量保存手段、32…光軸ずれ情報取得手段、33…光軸ずれ情報、34…光軸ずれ量有効判定手段、35…光軸ずれ注意信号、36…xy座標変換手段、37…周辺物xy情報、38…車両基準位置保存手段、39…車両基準位置、40…オフセット位置補正手段、41…先行車、42…レーダ装置、43…車間距離、44…周辺物、45…車両基準点。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a radar apparatus that detects an object existing around a vehicle, and more particularly to a radar apparatus that can obtain an accurate position of a detected object by detecting and correcting a deviation amount of a radar optical axis.
[0002]
[Prior art]
A radar device is usually used as a forward monitoring means for realizing automatic driving of the own vehicle and collision prevention. And in order to detect the exact position of an object, it is necessary to make the optical axis of a radar apparatus and the front-back axis of the own vehicle correspond. However, if the radar optical axis is misaligned due to the mounting accuracy of the radar device or the secular change after mounting, the position of the preceding vehicle will be misrecognized, and in some cases it will not exist even though there is a preceding vehicle ahead Judgment may result in a collision.
[0003]
JP 9-281 23 9 and JP Hei 10-132939 discloses as a countermeasure, there are such Hei 11-14748 discloses, for example, in JP-A 9-281129 and JP-in while the vehicle is traveling, vehicle traveling There is a method in which the optical axis deviation amount of the radar apparatus is obtained from the position change amount of the stationary object with respect to the direction orthogonal to the direction, and the position of the detected object is corrected.
[0004]
[Problems to be solved by the invention]
However, in this optical axis deviation calculation method, if there is an error in the measured value of the distance between the host vehicle and the stationary object or the vehicle speed, the calculation accuracy of the optical axis deviation amount is affected, and as a result, the position correction of the detected object has an error. There is a problem that occurs. An object of the present invention is to provide a radar apparatus that can calculate the amount of optical axis deviation while minimizing the influence of these errors and obtain more accurate position information of a detected object.
[0005]
Another object of the present invention is to improve the reliability of a system using a radar device by reporting to the driver when the calculated optical axis deviation amount is equal to or greater than a predetermined value.
[0006]
Another object of the present invention is to perform optical axis deviation correction immediately after the radar apparatus is activated by storing the calculation result of the optical axis deviation amount.
[0007]
Furthermore, the present invention uses the radar apparatus by suggesting to the driver that the optical axis may be deviated when there is no calculated value of the optical axis deviation amount with high calculation accuracy obtained when the radar apparatus is attached. The purpose is to increase the reliability of the system.
[0008]
Furthermore, an object of the present invention is to obtain an accurate positional relationship between the vehicle reference point and the detected object by correcting the position of the detected object according to the position of the vehicle reference point.
[0009]
Another object of the present invention is to obtain an accurate vehicle speed value by calculating a measurement error of the vehicle speed.
[0010]
[Means for Solving the Problems]
Means for detecting relative speed and azimuth angle with an object existing around the own vehicle; means for detecting the vehicle speed of the own vehicle; means for determining that the object is a stationary object based on the vehicle speed; Solves the problem by providing means for calculating the optical axis deviation amount using the azimuth angle dependence of the relative velocity with respect to a stationary object and means for correcting the azimuth angle of the detected object according to the optical axis deviation amount. To do.
[0011]
Furthermore, the present invention includes means for determining whether the obtained optical axis deviation amount is equal to or greater than a predetermined value, and means for notifying the driver when it exceeds the predetermined value.
[0012]
Furthermore, the present invention includes means for determining the calculation accuracy of the obtained optical axis deviation amount and means for storing the obtained optical axis deviation amount.
[0013]
Further, the present invention provides means for acquiring the optical axis deviation amount calculated when the radar device is attached and the calculation accuracy thereof, and means for notifying the driver when there is no optical axis deviation amount with high calculation accuracy. It is provided.
[0014]
Furthermore, the present invention provides a means for detecting a distance and an azimuth angle to an object existing in the vicinity of the own vehicle, when the traveling direction of the own vehicle is the y axis, and the horizontal direction perpendicular to the y axis is the x axis, Means for converting the distance and azimuth angle of the sensing object into xy coordinates, means for storing an offset positional relationship between the radar apparatus and the vehicle reference point when the center of the front end of the host vehicle is the vehicle reference point, and the offset position Means for correcting the xy coordinates of the object according to the relationship is provided.
[0015]
Means for detecting relative speed and azimuth angle with an object existing around the own vehicle; means for detecting the vehicle speed of the own vehicle; means for determining that the object is a stationary object based on the vehicle speed; Means for calculating the vehicle speed error using the azimuth angle dependence of the relative speed with respect to the stationary object is provided.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present application will be described below with reference to the drawings. First, an inter-vehicle distance control (ACC) system to which the present invention is applied will be described. 11 and 12 show a schematic diagram of the ACC system and a functional block diagram of the radar device 42, respectively. The ACC system controls the brake and throttle of the host vehicle 21 so as to keep the inter-vehicle distance from the preceding vehicle 41 appropriately. Therefore, the radar device 42 has a function of detecting the preceding vehicle information 19 (inter-vehicle distance, relative speed, azimuth angle with respect to the preceding vehicle) and outputting the preceding vehicle information 19 to the ACC unit 10. In order to detect 19, the radar apparatus 42 performs the processing shown in FIG. 12. First, the millimeter wave radar head 1 detects peripheral object information 11 (a distance between vehicles, a relative speed, an azimuth angle with respect to the peripheral object) including a preceding vehicle. In order to extract the preceding vehicle information 19 from the peripheral object information 11, the vehicle speed 12 and the angular velocity 13 measured by the vehicle speed sensor 2 and the angular velocity sensor 3 are used. It is the ACC system that performs inter-vehicle distance control by determining the peripheral object closest in the own lane as the preceding vehicle 19 and outputting the preceding vehicle information 19 to the ACC unit 10.
[0017]
Next, an embodiment of the present application will be described with reference to the block diagram shown in FIG. The millimeter wave radar head 1 is used as means for acquiring the peripheral object information 11, and the vehicle speed sensor 2 and the angular speed sensor 3 are used as means for detecting the vehicle speed 12 and the angular speed 13, respectively. The straight line judging means 4 judges whether or not the host vehicle is running straight. If the angular velocity 13 is equal to or less than a predetermined value for a certain period, it is judged that the vehicle is running straight, and then the stationary object judging means 5 is Do. The stationary object determination means 5 detects the stationary object information 15 from the surrounding object information 11 using the vehicle speed 12, and the relative speed distribution data collection means 6 divides the relative speed of the stationary object by the vehicle speed 12, thereby Relative speed distribution data 16 with respect to the angle is obtained. Then, the optical axis deviation amount calculation means 7 calculates the optical axis deviation amount 17 from the relative speed distribution data 16. However, the optical axis deviation amount 17 here means the deviation angle between the vehicle traveling direction and the radar optical axis direction. Further, the azimuth angle correcting means 8 corrects the azimuth angle of the peripheral object information 11 using the optical axis deviation amount 17 and outputs it as peripheral object correction information 18. The preceding vehicle detection means 9 detects the preceding vehicle information 19 from the peripheral object correction information 18 and outputs it to the ACC unit 10.
[0018]
First, the calculation principle of the optical axis deviation amount will be described with reference to FIGS. FIG. 3 shows the speed relationship between the host vehicle 21 and the stationary object 22 when the optical axis is not shifted, and it is assumed that the stationary object 22 exists in the direction of the azimuth angle θ. Here, when Vh is the vehicle speed 12 of the host vehicle 21 and Vs is the relative speed 23 of the host vehicle 21 and the stationary object 22, the relationship of the formula (1) is established between the vehicle speed Vh and the relative speed Vs.
Figure 0003733863
[0019]
However, A represents the ratio of the speed error included in the vehicle speed Vh and the relative speed Vs, and A = 1 when there is no error.
[0020]
Therefore, it can be seen from equation (1) that Vs / Vh is a cos function of the azimuth angle θ as shown in FIG.
[0021]
On the other hand, consider a case where the optical axis is shifted by α as shown in FIG. At this time, when the azimuth angle 26 with respect to the stationary object 22 is measured, it appears that θ ′ = θ−α, but the relative speed Vs does not change. By substituting this measured azimuth angle value θ ′ and relative speed Vs into equation (1), it can be rewritten into equation (2).
Figure 0003733863
[0022]
Here, FIG. 6 shows the expression (2) in the figure, which is a function in which the function of Acos (θ ′) is translated horizontally by the optical axis deviation amount α. From the above, the relationship between the azimuth angle measurement value θ ′ with respect to the stationary object 22 and the relative speed Vs / vehicle speed Vh is plotted in the graph of FIG. 6, and the relationship of Acos (θ ′ + α) is obtained. Each of the axis deviation amounts α can be obtained. That is, since the error of the vehicle speed Vh and the relative speed Vs can be absorbed as the speed error ratio A, the calculation accuracy of the optical axis deviation amount α can be improved. Further, if there is no measurement error of the relative speed Vs, the speed error ratio A represents the measurement error of the vehicle speed. By using this, the measured value of the vehicle speed can be corrected correctly.
[0023]
Next, a method for realizing the present invention will be described with reference to FIGS. First, in step 201, the peripheral object information 11, the vehicle speed 12, and the angular velocity 13 are detected using the millimeter wave radar head 1, the vehicle speed sensor 2, and the angular velocity sensor 3. In the next step 202, straight traveling determination (straight line determination means 4) is performed using the detected vehicle speed 12 and angular velocity 13, and if the vehicle is traveling straight, the process proceeds to step 203. Otherwise, the process proceeds to step 206. As the straight line determination condition, it is determined that the vehicle is traveling straight if the vehicle speed 12 is equal to or higher than a predetermined value and the angular velocity is equal to or lower than a predetermined value for a predetermined period or longer. In step 203, the stationary object information 15 is detected from the peripheral object information 11 (stationary object determining means 5), and in step 204 it is converted into the relative speed distribution data 16 (relative speed distribution data collecting means 6). Here, the relative speed distribution data 16 is obtained by plotting the stationary object information 15 in a coordinate system with the horizontal axis representing the azimuth angle measurement value 26 of the stationary object information 15 and the vertical axis representing the relative speed 23 divided by the vehicle speed 12 ( This corresponds to FIG. In step 205, the relative speed distribution data 16 is approximated to the right side of the equation (2) by using the least square method, and the optical axis deviation amount 17 and the speed error ratio 25 are calculated (optical axis deviation amount calculation means 7). In step 206, an accurate position is calculated by adding the optical axis deviation amount 17 to the azimuth angle measurement value 26 of the peripheral object information 11 (azimuth angle correction means 8), and the peripheral object correction information 11 is obtained. Finally, in step 207, the preceding vehicle information 19 is detected using the peripheral object correction information 11. Here, the peripheral object with the shortest inter-vehicle distance in the own lane is regarded as the preceding vehicle 41.
[0024]
Further, instead of the relative speed 2 3, it may be used the variation of the inter-vehicle distance in a predetermined period.
[0025]
FIG. 7 shows the following embodiment. By providing the optical axis deviation determination means 27, when the calculated optical axis deviation amount 17 exceeds a predetermined value, an optical axis deviation detection signal 28 for informing it may be output to the ACC unit 10.
[0026]
FIG. 8 shows another embodiment. By including means 30 for determining the calculation accuracy of the calculated optical axis deviation amount 17 and means 31 for storing the optical axis deviation amount, when the calculation accuracy of the optical axis deviation amount 17 is low, the optical axis deviation amount storage means 31 The stored value 29 of the stored optical axis deviation amount may be adopted as the optical axis deviation amount 17. However, a dispersion value associated with the calculation of the optical axis deviation amount 17 is used as the calculation accuracy, and when the dispersion value is equal to or greater than a predetermined value, it is determined that the calculation accuracy is low. Here, the equation (3) is used as a formula for calculating the dispersion value, and the calculation is performed from N optical axis deviation measurement values and optical axis deviation amount 17 calculation values.
Figure 0003733863
[0027]
FIG. 9 shows another embodiment. The optical axis deviation information 33 having information on the optical axis deviation amount and the calculation accuracy obtained when the radar apparatus is attached is acquired by the optical axis deviation information acquisition means 32, and further provided with an optical axis deviation amount valid determination means 34, thereby providing a predetermined value. When one or more optical axis deviation information 33 having the above calculation accuracy does not exist, a signal 35 notifying the possibility of optical axis deviation may be generated to notify the driver to that effect.
[0028]
FIG. 10 shows the following embodiment. First, the peripheral object information 11 is detected using the millimeter wave radar head 1. The peripheral object information 11 here is the inter-vehicle distance D and the azimuth angle θ with respect to the peripheral object 44 as shown in FIG. 13, and the xy coordinate conversion means 36 uses the peripheral object information 11 as the traveling direction of the host vehicle 21. Is converted into an xy coordinate system in which the horizontal direction perpendicular to the y axis is the x axis. The conversion is performed by the equation (4), and the obtained (x, y) is set as the peripheral object xy information 37. However, this xy coordinate system has the radar device 42 as the origin.
[0029]
(X, y) = (Dsinθ, Dcosθ) (4)
Further, the center of the front end of the host vehicle 21 is taken as a vehicle reference point (x0, y0) and stored in advance in the vehicle reference position storage means 38 as a vehicle reference position 39. The offset position correction means 40 corrects the peripheral object xy information 37 using the vehicle reference position 39, thereby obtaining the positional relationship between the vehicle 21 and the peripheral object 44 as (x-x0, yy0). The correction information 18 is assumed. The preceding vehicle information 19 may be detected by the preceding vehicle detection means 9 using the peripheral object correction information 18 and output to the ACC unit 10.
[0030]
Further, the vehicle speed value Vh may be corrected using the speed error ratio A calculated in step 205 as shown in equation (5).
[0031]
Vehicle speed correction value = A × Vh (5)
[0032]
【The invention's effect】
According to the present invention, since the optical axis deviation amount is calculated using the azimuth angle dependency of the vehicle speed and the relative speed ratio, a more accurate sensing object can be obtained while minimizing the influence of the measurement error of the vehicle speed and the relative speed. Position information can be obtained.
[0033]
Further, by reporting the fact to the driver when the calculated optical axis deviation amount is equal to or greater than a predetermined value, the reliability of the system using the radar device can be enhanced.
[0034]
Further, by storing the calculation result of the optical axis deviation amount, the optical axis deviation can be corrected immediately after the radar apparatus is activated.
[0035]
In addition, when there is no calculated value of the optical axis deviation amount with high calculation accuracy obtained when the radar device is mounted, it is determined that the optical axis adjustment performed when the radar device is mounted on the vehicle body is not performed, and the optical axis may be shifted. By suggesting the characteristics to the driver, the reliability of the system using the radar apparatus can be improved.
[0036]
In addition, an accurate positional relationship between the vehicle reference point and the detected object can be obtained by offset-correcting the position of the detected object according to the position of the vehicle reference point.
[0037]
Further, an accurate value of the vehicle speed can be obtained by calculating and correcting the vehicle speed error using the azimuth angle dependency of the vehicle speed and the relative speed ratio.
[Brief description of the drawings]
FIG. 1 is a block diagram illustrating optical axis deviation amount correction according to the present invention.
FIG. 2 shows a procedure for performing optical axis deviation correction according to the present invention.
FIG. 3 is an explanatory diagram of an optical axis deviation calculation principle of the present invention (when there is no optical axis deviation).
FIG. 4 is an explanatory graph of the principle of calculating the amount of optical axis deviation according to the present invention (when there is no optical axis deviation).
FIG. 5 is an explanatory diagram of an optical axis deviation calculation principle of the present invention (when there is an optical axis deviation).
FIG. 6 is a graph illustrating the principle of calculating the amount of optical axis deviation according to the present invention (when there is an optical axis deviation).
FIG. 7 is a block diagram for explaining generation notification of an optical axis deviation.
FIG. 8 is a block diagram for explaining the storing of the optical axis deviation amount.
FIG. 9 is a block diagram for explaining notification of the possibility of optical axis misalignment.
FIG. 10 is a block diagram for explaining offset position correction of a radar apparatus.
FIG. 11 is a schematic diagram of an ACC system.
FIG. 12 is a functional block diagram of a radar apparatus.
FIG. 13 is an explanatory diagram of xy coordinates.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Millimeter wave radar head, 2 ... Vehicle speed sensor, 3 ... Angular velocity sensor, 4 ... Straight ahead determination means, 5 ... Stationary object determination means, 6 ... Relative speed distribution data means, 7 ... Optical axis deviation amount calculation means, 8 ... Direction Angle correction means, 9 ... preceding vehicle detection means, 10 ... ACC unit, 11 ... peripheral object information, 12 ... vehicle speed, 13 ... angular velocity, 14 ... straight ahead determination result, 15 ... stationary object information, 16 ... relative speed distribution data, 17 ... optical axis deviation, 18 ... peripheral object correction information, 19 ... preceding vehicle information, 20 ... radar optical axis, 21 ... own vehicle, 22 ... stationary object, 23 ... relative speed, 24 ... true azimuth angle, 25 ... speed Error ratio, 26: Azimuth angle measurement value, 27: Optical axis deviation determination means, 28 ... Optical axis deviation detection signal, 29 ... Optical axis deviation amount storage value, 30 ... Calculation accuracy judgment means, 31 ... Optical axis deviation amount storage means 32 ... Optical axis deviation information acquisition means, 33 ... Optical axis deviation information, 34 Optical axis deviation amount valid determination means 35 ... Optical axis deviation attention signal 36 ... xy coordinate conversion means 37 ... Peripheral object xy information 38 ... Vehicle reference position storage means 39 ... Vehicle reference position 40 ... Offset position correction means , 41 ... preceding vehicle, 42 ... radar device, 43 ... inter-vehicle distance, 44 ... peripheral object, 45 ... vehicle reference point.

Claims (8)

自車の周辺に存在する物体との相対速度および方位角度を検知する手段と、
自車の車速を検知する手段と、
前記車速に基づき前記物体が静止物であることを判断する手段と、
前記静止物に対する相対速度の方位角度依存性を利用して車速誤差を算出する手段と、
を有するレーダ装置。
Means for detecting relative speed and azimuth angle with an object existing around the vehicle;
Means for detecting the speed of the vehicle;
Means for determining that the object is a stationary object based on the vehicle speed;
Means for calculating the vehicle speed error using the azimuth angle dependence of the relative speed with respect to the stationary object ;
A radar apparatus.
請求項1記載のレーダ装置であって、The radar apparatus according to claim 1,
前記静止物に対する相対速度の方位角度依存性を利用して光軸ずれ量を算出する手段を有するレーダ装置。A radar apparatus comprising means for calculating an optical axis deviation amount by utilizing the azimuth angle dependency of a relative speed with respect to the stationary object.
請求項2記載のレーダ装置であって、
求めた光軸ずれ量に応じ、検知した物体の方位角度を補正する手段を有するレーダ装置。
The radar apparatus according to claim 2, wherein
A radar apparatus having means for correcting the azimuth angle of a detected object in accordance with the obtained optical axis deviation amount.
請求項2記載のレーダ装置であって、
求めた光軸ずれ量が所定値以上かどうか判断する手段と、
所定値を超えた場合、運転者に報知する手段と、
を有するレーダ装置。
The radar apparatus according to claim 2, wherein
Means for determining whether the obtained optical axis deviation amount is a predetermined value or more;
Means for notifying the driver when a predetermined value is exceeded ;
A radar apparatus.
請求項2記載のレーダ装置であって、
求めた光軸ずれ量の算出精度を判定する手段と
求めた光軸ずれ量を記憶する手段と、
を有するレーダ装置。
The radar apparatus according to claim 2, wherein
Means for determining the calculation accuracy of the obtained optical axis deviation amount ;
Means for storing the obtained optical axis deviation amount ;
A radar apparatus.
請求項2記載のレーダ装置であって、
レーダ装置取付時に算出した光軸ずれ量およびその算出精度を取得する手段と、
前記算出精度が高い光軸ずれ量が存在しない時、その旨を運転者に報知する手段と、
を有するレーダ装置。
The radar apparatus according to claim 2, wherein
Means for obtaining the optical axis deviation amount calculated when the radar device is attached and the calculation accuracy thereof;
Means for notifying the driver to that effect when there is no optical axis deviation with high calculation accuracy ;
A radar apparatus.
請求項2記載のレーダ装置であって、
自車の周辺に存在する物体までの距離を検知する手段と、
自車の進行方向をy軸、ならびにy軸に直行する水平方向をx軸とした時、前記検知物体の距離および方位角度をxy座標に変換する手段と、
自車の前端中央を車両基準点とした時、レーダ装置と車両基準点間のオフセット位置関係を記憶する手段と、
前記オフセット位置関係に応じて前記物体のxy座標を補正する手段と、
を有するレーダ装置。
The radar apparatus according to claim 2, wherein
Means for detecting the distance to an object existing around the vehicle,
Means for converting the distance and azimuth angle of the detected object into xy coordinates when the traveling direction of the host vehicle is the y axis and the horizontal direction perpendicular to the y axis is the x axis;
Means for storing the offset position relationship between the radar device and the vehicle reference point when the center of the front end of the host vehicle is the vehicle reference point;
Means for correcting the xy coordinates of the object according to the offset positional relationship ;
A radar apparatus.
請求項1記載のレーダ装置であって、
求めた車速誤差を用いて、車速の測定値を補正する手段を有するレーダ装置。
The radar apparatus according to claim 1,
A radar apparatus having means for correcting a measured value of the vehicle speed using the obtained vehicle speed error.
JP2001026231A 2001-02-02 2001-02-02 Radar equipment Expired - Lifetime JP3733863B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001026231A JP3733863B2 (en) 2001-02-02 2001-02-02 Radar equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001026231A JP3733863B2 (en) 2001-02-02 2001-02-02 Radar equipment

Publications (2)

Publication Number Publication Date
JP2002228749A JP2002228749A (en) 2002-08-14
JP3733863B2 true JP3733863B2 (en) 2006-01-11

Family

ID=18891076

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001026231A Expired - Lifetime JP3733863B2 (en) 2001-02-02 2001-02-02 Radar equipment

Country Status (1)

Country Link
JP (1) JP3733863B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8115669B2 (en) 2009-09-18 2012-02-14 Mitsubishi Electric Corporation Vehicular radar device
DE112020003205T5 (en) 2019-07-02 2022-04-07 Denso Corporation In-vehicle sensor device

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10019182A1 (en) * 2000-04-17 2001-10-25 Bosch Gmbh Robert Determining incorrect radiation characteristics of vehicle speed/distance sensor, involves detecting sensor error based on quality index from vehicle driving state and deadjustment values output by filter and trajectory regression blocks
JP2004198159A (en) * 2002-12-17 2004-07-15 Nissan Motor Co Ltd Measuring device for axis misalignment of on-vehicle sensor
DE102004033114A1 (en) * 2004-07-08 2006-01-26 Ibeo Automobile Sensor Gmbh Method for calibrating a distance image sensor
US7545313B2 (en) 2004-11-12 2009-06-09 Mitsubishi Electric Corporation Off-axis angle estimation method and apparatus using the same
JP4652143B2 (en) * 2005-06-24 2011-03-16 三菱電機株式会社 Axis deviation angle estimation device and axis deviation angle estimation method
JP4265803B2 (en) * 2005-11-22 2009-05-20 三菱電機株式会社 Radar system
WO2007111130A1 (en) * 2006-03-27 2007-10-04 Murata Manufacturing Co., Ltd. Radar apparatus and mobile unit
JP4992367B2 (en) * 2006-09-28 2012-08-08 トヨタ自動車株式会社 Object detection apparatus, object detection method, and program executed by computer
JP5407443B2 (en) * 2009-03-11 2014-02-05 トヨタ自動車株式会社 Radar equipment
JP5739701B2 (en) 2011-03-23 2015-06-24 富士通テン株式会社 Arithmetic apparatus for radar apparatus, radar apparatus, arithmetic method and program for radar apparatus
DE102011015935A1 (en) * 2011-04-02 2012-10-04 Valeo Schalter Und Sensoren Gmbh Method for determining a correction value for the measurement of a target angle with a radar device, driver assistance system and motor vehicle
WO2014003615A1 (en) * 2012-06-28 2014-01-03 Autoliv Development Ab Misalignment processing for a vehicle radar sensor
JP5926208B2 (en) 2013-02-12 2016-05-25 株式会社デンソー In-vehicle radar system
WO2015166560A1 (en) * 2014-04-30 2015-11-05 三菱電機株式会社 Measurement device and measurement method
JP2016065733A (en) * 2014-09-24 2016-04-28 三菱電機株式会社 Object detection device
JP6303964B2 (en) * 2014-10-03 2018-04-04 株式会社デンソー Radar equipment
JP6520203B2 (en) 2015-02-25 2019-05-29 株式会社デンソー Mounting angle error detection method and device, vehicle-mounted radar device
JP6294853B2 (en) * 2015-05-11 2018-03-14 古河電気工業株式会社 Radar apparatus and radar apparatus control method
DE102015116441A1 (en) 2015-09-29 2017-03-30 Hella Kgaa Hueck & Co. Method for adaptively estimating an angle correction characteristic
DE102015116434A1 (en) 2015-09-29 2017-03-30 Hella Kgaa Hueck & Co. Method for estimating the airspeed
US10191144B2 (en) * 2016-02-26 2019-01-29 Waymo Llc Radar mounting estimation with unstructured data
JP2017227468A (en) 2016-06-20 2017-12-28 株式会社デンソーテン Radar device and vertical axis deviation detection method
US20200013242A1 (en) * 2016-09-29 2020-01-09 Panasonic Intellectual Property Management Co., Ltd. Sensor failure detection device and control method for same
US10481243B2 (en) * 2016-10-31 2019-11-19 Aptiv Technologies Limited Automated vehicle radar system with self-calibration
JP7028722B2 (en) * 2018-06-05 2022-03-02 株式会社Soken Axial deviation angle detector
DE102018214961A1 (en) * 2018-09-04 2020-03-05 Robert Bosch Gmbh Method for the detection of angle measurement errors in a radar sensor
JP7212604B2 (en) * 2019-10-31 2023-01-25 株式会社デンソー object detector
CN112881989A (en) * 2019-11-29 2021-06-01 上海海拉电子有限公司 Self-calibration method of millimeter wave radar on vehicle, electronic device and storage medium
JP7481196B2 (en) 2020-08-06 2024-05-10 株式会社Soken Axis offset estimation device
JP2022037373A (en) * 2020-08-25 2022-03-09 ソニーセミコンダクタソリューションズ株式会社 Information processor and method for processing information
CN112578355A (en) * 2020-12-16 2021-03-30 百度在线网络技术(北京)有限公司 Radar calibration method, device, equipment and storage medium
EP4016127A1 (en) 2020-12-16 2022-06-22 Provizio Limited Multiple input multiple steered output (mimso) radar
CN112731320A (en) * 2020-12-29 2021-04-30 福瑞泰克智能系统有限公司 Method, device and equipment for estimating error data of vehicle-mounted radar and storage medium
WO2022229386A1 (en) 2021-04-30 2022-11-03 Provizio Limited Mimo radar using a frequency scanning antenna
TWI791313B (en) * 2021-10-28 2023-02-01 為昇科科技股份有限公司 Radar self-calibration device and method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06160510A (en) * 1992-11-19 1994-06-07 Mazda Motor Corp Horizontal deviation detecting method for scanning radar device mounted on vehicle
JPH06290398A (en) * 1993-03-31 1994-10-18 Mazda Motor Corp Obstacle detector
JP3146809B2 (en) * 1993-10-22 2001-03-19 日産自動車株式会社 Vehicle environment recognition device
JP3082555B2 (en) * 1994-01-19 2000-08-28 トヨタ自動車株式会社 In-vehicle radar device
JPH0990033A (en) * 1995-09-25 1997-04-04 Mazda Motor Corp Obstacle detecting device for vehicle
JP3331882B2 (en) * 1995-12-27 2002-10-07 株式会社デンソー Central axis deflection amount calculating device, central axis deflection amount correcting device, and inter-vehicle control device of vehicle obstacle detection device
JP3140961B2 (en) * 1996-04-12 2001-03-05 三菱電機株式会社 Vehicle periphery monitoring device
JP3189711B2 (en) * 1996-11-01 2001-07-16 三菱自動車工業株式会社 Vehicle front recognition device
JP3376863B2 (en) * 1997-07-18 2003-02-10 株式会社デンソー Vehicle ahead detection device
JP3421606B2 (en) * 1999-03-11 2003-06-30 株式会社日立製作所 Radar axis adjustment method for vehicle radar device and vehicle radar device
JP4038944B2 (en) * 1999-08-30 2008-01-30 株式会社デンソー Center axis deflection amount calculation device, center axis deflection amount correction device, steering angle neutral learning device, and inter-vehicle distance control device for obstacle detection device for vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8115669B2 (en) 2009-09-18 2012-02-14 Mitsubishi Electric Corporation Vehicular radar device
DE112020003205T5 (en) 2019-07-02 2022-04-07 Denso Corporation In-vehicle sensor device

Also Published As

Publication number Publication date
JP2002228749A (en) 2002-08-14

Similar Documents

Publication Publication Date Title
JP3733863B2 (en) Radar equipment
US10486593B2 (en) In-vehicle alert apparatus
JP4698087B2 (en) Radar horizontal axis deviation occurrence detection apparatus, axis deviation determination apparatus, and axis deviation correction apparatus
JP4740449B2 (en) Vertical axis deviation detection device for automotive radar
EP2590152B1 (en) Device for estimating vehicle travel path
JP4713048B2 (en) A method and apparatus for recognizing misadjustment in a vehicle radar system or a vehicle sensor system.
JP4827956B2 (en) Automotive radar equipment
CN111624566B (en) Radar installation angle calibration method and device
JP6791032B2 (en) Pre-collision control implementation device
US8031107B2 (en) Object detection device for vehicle and object detection method for vehicle
KR101469561B1 (en) Apparatus and method for correcting error of sensor of vehicle
JP2002352399A (en) Vehicle surroundings monitor
US20120127017A1 (en) Object detection device for vehicle and object detection method for vehicle
JP2006240453A (en) Sensor failure detector and detection method of sensor failure
KR102183224B1 (en) System for Correcting Misalignment of Radar Installment Angle and Method thereof
JP2011017989A (en) Device, method and program for evaluating reliability
US10429506B2 (en) Lateral distance sensor diagnosis apparatus
US8666563B2 (en) Determination apparatus for determining erroneous application of accelerator rather than brake
US20220229168A1 (en) Axial deviation estimating device
US20220317288A1 (en) Vehicle-mounted object detection device
JP4646045B2 (en) Parking assistance device
US20170254881A1 (en) Apparatus for detecting axial misalignment
JP2011248532A (en) Preceding vehicle detection apparatus
US11433900B2 (en) Vehicle system for detection of oncoming vehicles
KR102158745B1 (en) Device for correcting the obstacle detection on the curve road and method thereof

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050510

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050711

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050927

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20051010

R151 Written notification of patent or utility model registration

Ref document number: 3733863

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091028

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101028

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111028

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121028

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131028

Year of fee payment: 8

EXPY Cancellation because of completion of term