JP3722457B2 - Glass panel for cathode ray tube - Google Patents

Glass panel for cathode ray tube Download PDF

Info

Publication number
JP3722457B2
JP3722457B2 JP14818499A JP14818499A JP3722457B2 JP 3722457 B2 JP3722457 B2 JP 3722457B2 JP 14818499 A JP14818499 A JP 14818499A JP 14818499 A JP14818499 A JP 14818499A JP 3722457 B2 JP3722457 B2 JP 3722457B2
Authority
JP
Japan
Prior art keywords
cathode ray
ray tube
glass panel
stress value
compressive stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14818499A
Other languages
Japanese (ja)
Other versions
JP2000340138A (en
Inventor
政也 教野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Electric Glass Co Ltd
Original Assignee
Nippon Electric Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Glass Co Ltd filed Critical Nippon Electric Glass Co Ltd
Priority to JP14818499A priority Critical patent/JP3722457B2/en
Publication of JP2000340138A publication Critical patent/JP2000340138A/en
Application granted granted Critical
Publication of JP3722457B2 publication Critical patent/JP3722457B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、陰極線管用ガラスパネルに関し、特に、物理強化を行うとともに熱応力に対する強度を改善した陰極線管用ガラスパネルに関する。
【0002】
【従来の技術】
近年、テレビ及びモニター装置の表示画面の平面化に伴って、表面に圧縮応力層を形成して強化し、陰極線管の破壊を防止した陰極線管用ガラスパネルが用いられている。
【0003】
図3は、従来の陰極線管用ガラスパネルを示す図である。図3(A)に示すように陰極線管用ガラスパネル1は、フェース部2とその周縁から略垂直方向に延在する側壁部3と、フェース部2と側壁部3とが屈曲面で連結するブレンドR部4とからなる構造をしており、陰極線管用ガラスパネル1を用いて陰極線管を作製した場合、内部が真空になっていることに起因して生じる最大引張応力がフェース部2の周縁、特に長辺中央の外表面の領域2cに発生する。そこで陰極線管用ガラスパネル1には、所要の耐圧強度を維持するために、フェース部2の特にその周縁の領域2cの圧縮応力値が最大になるように圧縮応力層を形成してある。
【0004】
上記のように強化された陰極線管用ガラスパネル1は、雌型及び側枠型の成形金型に充填された溶融ガラスを雄型の成形金型でプレス成形し、雄型を取り外して陰極線管用ガラスパネル1の内面を露出し、側壁部3が実質的に固化した時点で、側壁部3に接する側枠型を取り外して側壁部3を露出し、次いで陰極線管用ガラスパネル1を金型から取り出した後、陰極線管用ガラスパネル1がガラスの徐冷点以上の所定の温度下の状態から陰極線管用ガラスパネル1の内外表面に、冷却風を当ててガラスの歪み点よりも低い温度に急冷することにより製造される。
【0005】
このようにして作製された陰極線管用ガラスパネル1においては、フェース部2の有効画面部2aの対角軸方向端部2bと側壁部3とが連結するブレンドR部4の内表面4aに引張応力Tが生じていることが分かった。この引張応力Tは、陰極線管用ガラスパネル1を作製する際におけるガラスの表面を急冷して圧縮応力層を形成する過程において、ガラスパネル1の肉厚分布や三次元的な構造に起因する温度分布が生じ、この急冷過程での温度分布に基づき生じる。
【0006】
つまり、陰極線管用ガラスパネル1が冷却され歪み点より温度が下がる際は、一般に肉厚のフェース部2が側壁部3よりも温度が高くなる温度分布を示し、肉薄の側壁部3がフェース部2に先行して歪み点より低い温度に降下する。このため、フェース部2の有効画面部2aの対角軸方向端部2bと側壁部3とが連結するブレンドR部4の内表面4aに引張応力Tが生じる。特に、表面に強い圧縮応力層が形成された陰極線管用ガラスパネルの強化品の場合、各部位に分布する応力の差も大きくなり、図3(B)、(C)に中抜きの矢印で示すように、陰極線管用ガラスパネル1の三次元的な構造に起因して側壁部3を内側へ倒し込む方向の応力及びフェース部2の有効画面部2aの対角軸方向における端部2b付近に反り変形Sが生じる方向の応力が作用し、この応力に伴ってコーナーのブレンドR部4の内表面4aに引張応力Tが生じると考えられる。
【0007】
【発明が解決しようとする課題】
表面に圧縮応力層が形成され強化された前述の陰極線管用ガラスパネル1においては、取扱等によって引張応力Tが生じているブレンドR部4の内表面4aに深いキズが入った場合、そのキズを起点として肉厚方向にクラックが生じパネルが自破するという点で問題がある。また、ブレンドR部4の内表面4aのキズが僅かなものである場合でも、陰極線管用ガラスパネル1とファンネルとをフリットシールする際の昇温工程、更には陰極線管製造時の排気工程での熱応力が加わる工程において、内表面4aの僅かなキズを起点として肉厚方向にクラックが伸びて陰極線管用ガラスパネル1が破壊するという点で問題がある。更に、これらのことは、圧縮応力層により耐圧を向上させる際に制約となるという点で問題がある。
【0008】
本発明は、上記のような従来技術の問題点を解決するものであり、耐圧強度を高めるとともに熱応力による破壊を防止することを可能とする陰極線管用ガラスパネルを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明に係る陰極線管用ガラスパネルは、画像が映し出される有効画面部を備えた略矩形のフェース部と、該フェース部の周縁から略垂直方向に延在し、他の部材に封着されるシールエッジ部を有する側壁部とからなり、少なくとも外表面に圧縮応力層が形成されてなる陰極線管用ガラスパネルにおいて、前記フェース部の対角軸方向における有効画面部の端部と側壁部とが連結するブレンドR部の内表面に生じる引張応力値をσTRとし、該フェース部の周縁の領域において計測した前記圧縮応力層の最大圧縮応力値をσCMとするとき、前記最大圧縮応力値σCMと前記引張応力値σTRとが、σTR≦(1/2)σCMなる関係を有してなることを特徴とする。
【0010】
陰極線管の耐圧強度を高めるために、表面の圧縮応力層の最大圧縮応力値σCMを所定の値以上にした従来の陰極線管用ガラスパネルでは、最大圧縮応力値σCMに対してコーナーのブレンドR部の内表面に生じる引張応力の引張応力値σTRが最大圧縮応力値σCMの1/2を越え、この引張応力に起因して陰極線管用ガラスパネルが破壊する。本発明の陰極線管用ガラスパネルでは、引張応力値σTRを最大圧縮応力値σCMの1/2以下に抑制しており、所要の最大圧縮応力値σCMを有し所期の耐圧強度を有する陰極線管を作製する場合にあって、ブレンドR部の内表面の引張応力に起因する陰極線管用ガラスパネルの破壊を防止すると共に陰極線管の耐圧強度を最大に高める。
【0011】
本発明に係る陰極線管用ガラスパネルは、σTR≦(1/2)σCM、且つ、σTR≦7MPaなる関係を有することを特徴とする。前記引張応力値σTRを7MPa以下とすることにより、陰極線管用ガラスパネルの破壊の防止効果を高める。
【0012】
更に、本発明に係る陰極線管用ガラスパネルは、14MPa≦σCMなる関係を有する。最大圧縮応力値σCMを14MPa以上とすることにより、陰極線管用ガラスパネルの前記引張応力σTRにより制限されている圧縮応力値の上限を高めることができる。
【0013】
(作用)
本発明はコーナーのブレンドR部の内表面に生じる引張応力の引張応力値σTRを要部の最大圧縮応力値σCMに対して小さくした陰極線管用ガラスパネルである。陰極線管の耐圧強度を所要のレベルに確保しながら、陰極線管の製造時における前記コーナー部外表面からの破壊を防止する。破壊が防止できる所要の引張応力値σTRに対して、最大圧縮応力値σCMをより大きくし耐圧強度を一層高めた陰極線管用ガラスパネルを構成する。
【0014】
【発明の実施の形態】
図1は、本発明の陰極線管用ガラスパネルの一実施の形態の説明図であり、図中、1は陰極線管用ガラスパネルを、2は略矩形のフェース部を、2aは画像が映し出される有効画面部を、2bは有効画面部2aの対角軸方向における端部を、3はフェース部2の周縁から略垂直方向に延在する側壁部を、4はフェース部2と側壁部3とが連結するブレンドR部を、4aはブレンドR部4の内表面を各々示しており、前出の図3と同一部分には同一符号を付してそれぞれ示している。
【0015】
本実施の形態に係る陰極線管用ガラスパネルは、画像が映し出される有効画面部2aを備えた略矩形のフェース部2と、フェース部2の周縁から略垂直方向に延在して側壁を構成する側壁部3とからなり、陰極線管を作製した場合に所要の耐圧強度を維持するために、フェース部2の特にその周縁の領域2c等において圧縮応力値が最大になるようにフェース部2および側壁部3の少なくとも外表面に圧縮応力層が形成されており、更に、フェース部2の対角軸方向における有効画面部2aの端部2bと側壁部3とが連結するブレンドR部4の内表面4aに生じる引張応力値σTRが、陰極線管用ガラスパネルの表面に形成された圧縮応力層の最大圧縮応力値σCMの1/2以下の応力関係を有する。また、他の実施の形態の陰極線管用ガラスパネルとして、前記引張応力値σTRが7MPa以下であり、更に、前記圧縮応力層は前記最大圧縮応力値σCMが14MPa以上で形成されている。
【0016】
また、本発明の陰極線管用ガラスパネルを製造する場合、雌型及び側枠型の成形金型に溶融ガラスを充填し、雄型の成形金型を用いてプレス成形を行う第1の工程と、雄型を取り外して陰極線管用ガラスパネルの内面を露出し、側壁部3が実質的に固化した時点で、側壁部3に接する側枠型を取り外して側壁部3を露出する第2の工程と、陰極線管用ガラスパネルを金型から取り出し、陰極線管用ガラスパネル1がガラスの徐冷点以上の所定の温度下の状態から、フェース部2と側壁部3の温度差を極力少なくしてほぼ同様の降下温度を維持、管理しながら、陰極線管用ガラスパネル1の内外表面に冷却風を当ててガラスの歪み点よりも低い温度に急冷する第3の工程とを含む製造工程から構成される。
【0017】
特に、前記第3の工程においては、まず、側壁部3のシールエッジ部3aの付近にヒーター等を近づけて約徐冷点の温度に保温して、肉薄の側壁部3がフェース部2に先行して歪み点より温度が下がるのを防止することにより、フェース部2と側壁部3との温度差を少なくし、次に、冷却風を吹き付けることにより、フェース部2と側壁部3をほぼ同様に徐冷点以上の温度から歪み点よりも低い温度に降温させる工程を含む工程とすることができる。また、前記第3の工程は、前記ヒーター等による約徐冷点の温度の保温と、前記冷却風を吹き付けることによる急冷とを一部重複するような工程とすることができる。
【0018】
前述の第3の工程において、肉薄の側壁部3がフェース部2に先行して歪み点より温度が下がるのを防止するためのヒーター等の保温手段としては、側壁部3のシールエッジ部3aの付近を約徐冷点の温度に保温するために、例えば側壁部3のシールエッジ部3aの付近に対し、熱風を吹き付ける方法やバーナーの炎を近づけて加熱する保温方法を採用することが可能である。また、このような保温手段による保温箇所としては、側壁部3全体、側壁部3のシールエッジ部3aの付近全体、前記有効画面部2aの対角軸方向端部2bから延在する前記側壁部3のシールエッジ部3a近傍の外表面側のみ、前記シールエッジ部3a、又は前記シールエッジ部3a近傍の内外表面の何れかを対象とする。
【0019】
表面に圧縮応力層を形成した強化品の陰極線管用ガラスパネルでは、陰極線管用ガラスパネルの表面に形成された圧縮応力層の最大圧縮応力値σCMを増大させると、ブレンドR部4の内表面4aに生じる引張応力Tが増大し、最大圧縮応力値σCMが所定値より大きくなると前記引張応力値σTRの増大が一層顕著になる。従来の製造方法により製作され圧縮応力層の最大圧縮応力値σCMが所定値より大きい陰極線管用ガラスパネルは、前記圧縮応力層の最大圧縮応力値σCMの1/2より大きい引張応力Tを前記ブレンドR部4の内表面4aに生じ、後述の加傷による平均破壊時間が著しく減少し、熱応力破壊を起こしやすい。つまり、従来の圧縮応力により強化した陰極線管用ガラスパネルは、前記引張応力値σTRが圧縮応力層の最大圧縮応力値σCMの1/2より大きい値を示し、陰極線管用ガラスパネルとファンネルとをフリットシールする工程、及び陰極線管製造時の排気工程での破壊頻度が増大する。
【0020】
これに対し、本実施の形態の陰極線管用ガラスパネルは、側壁部3のシールエッジ部3aの付近の温度を前述のように制御して作製されるから、フェース部2と側壁部3との圧縮応力値の差を少なくして側壁部3が内側へ倒し込む方向の応力及びフェース部2の有効画面部2aの対角軸方向端部2b付近に反り変形Sが生じる方向の応力に基づく引張応力を緩和し、陰極線管用ガラスパネルのサイズ及びフェース形状等に拘わらず当該箇所の引張応力値σTRが抑制されるので、前記引張応力値σTRは最大圧縮応力値σCMの1/2以下の値に制限され、陰極線管を製造する際の前記フリットシール工程、及び陰極線管製造時の排気工程における破壊が防止される。また、前記破壊の防止には前記引張応力値σTRとして7MPa以下とすると好適であり、この場合には前記工程での熱応力による破壊を実質上回避することが可能である。更に、陰極線管用ガラスパネルの耐圧を高めるためには、最大圧縮応力値σCMを充分高めることが重要であるが、熱応力による破壊を防止できる最大圧縮応力値σCMの範囲を14MPa以上とすることが可能となる。
【0021】
なお、陰極線管用ガラスパネルの引張応力値σTRの測定方法としては、以下の方法を採用した。つまり、予め陰極線管用ガラスパネル1と同じガラス製で除歪み処理した試験片を多数枚作製し、一方の表面にガラスカッターで深さ300μm、長さ10mmのキズを刻設しておき、キズを刻設した表面に歪みゲージを取り付けて6〜12MPaの曲げ荷重を負荷した状態で水中に浸漬して破壊時間tを計測し、図2に示すような、表面に負荷される引張応力の値と破壊時間tとの関係を求めておく。次に、陰極線管用ガラスパネル1の引張応力値σTRは、引張応力Tが生じた表面に、ガラスカッターで深さ300μm、長さ10mmのキズを刻設し水中に浸漬して自破に要する破壊時間tを計測し、図2に示す関係に破壊時間tを当てはめることにより引張応力値σTRを得る測定方法である。
【0022】
【実施例】
以下、本発明の製造方法により作製される陰極線管用ガラスパネルの実施例1〜3と、参考例及び比較例1、2とをあげて本発明を以下説明する。表1は、本発明の陰極線管用ガラスパネルの実施例、参考例及び比較例の陰極線管用ガラスパネルの各種データを示すものである。
【0023】
本発明の陰極線管用ガラスパネルの実施例1の試料であるパネルAは、フェース部2の対角方向寸法が21インチでアスペクト比が4:3であり、フェース部2の外表面の周縁部2cにおける圧縮応力層の最大圧縮応力値σCMは平均で14.0MPaであり、フェース部2の対角軸方向における有効画面部2aの端部2bと側壁部3とが連結するブレンドR部4の内表面4aに生じる引張応力Tの引張応力値σTRは平均で6.5MPaである。自破に要した時間は、8,795〜43,239分であり、平均24,247分経った後に自破している。
【0024】
実施例2のパネルBは、フェース部2の対角方向寸法が28インチでアスペクト比が16:9であり、自破に要した時間は、2,035〜6,021分であり、平均3,627分経った後に自破している。パネルBの引張応力値σTRは、平均で6.9MPaであった。
【0025】
実施例3のパネルCは、フェース部2の対角方向寸法が32インチでアスペクト比が16:9であり、自破に要した時間は、1,193〜4,316分であり、平均2,461分経った後に自破している。パネルCの引張応力値σTRは、平均で7.0MPaであった。
【0026】
参考例のパネルDは、フェース部2の対角方向寸法が32インチでアスペクト比が16:9であり、自破に要した時間は、923〜1,548分であり、引張応力値σTRは平均で7.2MPaであった。
【0027】
また、比較例1のパネルEは、パネルCと同じ寸法を有しており、成形を終えて金型から取り出したパネルの側壁部3のシールエッジ部3aを実施例に比べて極めて短い時間保温して作製したものである。5個のパネルEの引張応力値σTRを測定した。パネルEの破壊時間は、281〜685分であり、パネルEの引張応力値σTRは、平均7.5MPaである。
【0028】
比較例2のパネルFは、パネルCと同じ寸法を有しており、成形を終えて金型から取り出したパネルの側壁部3のシールエッジ部3aを保温しない従来の工程により作製したものである。5個のパネルFの引張応力値σTRを測定した。パネルFの破壊時間は、23〜146秒であり、パネルの5個全てが、3分以内に自破している。パネルFの引張応力値σTRは、平均10.8MPaであった。
【0029】
なお、表1で示す最大圧縮応力値σCMは、フェース部2の周縁の長辺中央の外表面の領域2cを含む部位から試料片を切り出し、光弾性歪測定器を用いてJIS−S2305に規程さているセナルモン法により測定したデータのうち最大値を示したものである。
【0030】
【表1】

Figure 0003722457
【0031】
次に、本発明の陰極線管用ガラスパネル1を、パネルとファンネルとをフリットシールする際の工程における破壊の可能性を試験することにより評価を行った。先ず、ブレンドR部4の内表面4aを#320サンドペーパーで加傷して深さ約20μmのキズをつけた各10個のパネルA�、B�、C�、及び参考例の同10個のパネルD�の試料を作製した。
【0032】
比較例1’、2’としては、前記比較例1、2のパネルと同様のパネルを各10個用意し同様に加傷してそれぞれパネルE’、F’の試料を作製した。
【0033】
実施例1’〜3’のパネルA’、B’、C’、参考例のパネルD’、比較例1’、2’のパネルE’、F’のそれぞれの試料を加熱炉に入れてフリットシールする際の工程と同様の6℃/分の昇温速度で440℃まで昇温し、440℃で50分保持した後、5℃/分で降温し、破壊した試料の個数で評価を行った。表2は、前述の条件での評価結果を示すデータである。
【0034】
【表2】
Figure 0003722457
【0035】
表2に示すように、本発明のパネルA’、B’及びC’は、引張応力値σTRが平均でそれぞれ6.5MPa、6.9MPa及び7.0MPaであり、また、引張応力値と最大圧縮応力値との比率σTR/σCMは、それぞれ0.463、0.489及び0.493である。破壊例は存在していない。また、参考例のパネルD’は、引張応力値σTRが平均で7.2MPaであり、比率σTR/σCMは0.497である。10%の破壊例が存在する。
【0036】
一方、従来の製造方法により作製された比較例2’のパネルF’は、引張応力値σTRが平均で10.8MPaであり、比率σTR/σCMは0.562である。パネルF’は評価試験前に破壊に至るほか評価試験での加熱により全体で70%が破壊している。
【0037】
また、従来の製造方法において、側壁部3のシールエッジ部3aの付近を短時間の間保温した比較例1’のパネルE’は、引張応力値σTRが平均で7.5MPa、比率σTR/σCMは0.514であり、評価試験での熱応力が加わっても60%が破壊から免れ、保温の効果が出ている。
【0038】
以上のことから、物理強化を施した陰極線管用ガラスパネルにおいては、引張応力値と最大圧縮応力値の比率σTR/σCMが1/2以下の場合に、パネルのサイズ及びフェース形状等に拘わらず加傷による充分な平均破壊時間を示し、熱応力破壊の発生確率が大きく減少すること、最大圧縮応力値は14MPa以上でも熱応力による破壊を充分防止できること、及び比率σTR/σCMが1/2以下で引張応力Tが7MPa以下の場合には加傷による平均破壊時間が充分大きくなり、熱応力による破壊も極めて少なくなることが分かる。
【0039】
【発明の効果】
本発明の陰極線管用ガラスパネルによれば、要部に強い圧縮応力層が形成されており、かつフェース部の対角軸方向における有効画面部の端部と前記側壁部とを連結しているブレンドR部の内表面に生じる引張応力が所要のレベル以下に抑制されているので、陰極線管を作製した場合に所要の耐圧強度を維持するとともに、陰極線管用ガラスパネルのブレンドR部の内表面にキズが入った場合に、陰極線管用ガラスパネルが自破せず、陰極線管用ガラスパネルとファンネルとをフリットシールする際の陰極線管用ガラスパネルの破壊も防止することができるという実用上優れた効果を奏する。
【0040】
また、本発明の陰極線管用ガラスパネルは、前記ブレンドR部の内表面に許容される所要の引張応力に対してより強い圧縮応力を陰極線管用ガラスパネルの要部に形成してなるものであり、当該箇所における引張応力により制限されている圧縮応力値の上限を高めることができるから、陰極線管用ガラスパネルの薄型化、軽量化、平面化に資するという顕著な効果を奏する。
【図面の簡単な説明】
【図1】本発明に係る陰極線管用ガラスパネルの説明図であり、(A)は斜視図、(B)は(A)の要部断面図である。
【図2】陰極線管用ガラスパネルの引張応力と破壊時間の関係を示す図である。
【図3】従来の陰極線管用ガラスパネルの説明図であり、(A)は斜視図、(B)は要部破断図、(C)は(B)のY−Y断面図である。
【符号の説明】
1 陰極線管用ガラスパネル
2 フェース部
2a 有効画面部
2b 端部
2c フェース部の周縁の領域
3 側壁部
3a シールエッジ部
4 ブレンドR部
4a 内表面
S 反り変形
T 引張応力
t 破壊時間
σTR 引張応力値
σCM 最大圧縮応力[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a glass panel for a cathode ray tube, and more particularly to a glass panel for a cathode ray tube that has been physically strengthened and has improved strength against thermal stress.
[0002]
[Prior art]
In recent years, with the flattening of display screens of televisions and monitor devices, glass panels for cathode ray tubes have been used in which a compressive stress layer is formed on the surface and strengthened to prevent destruction of the cathode ray tube.
[0003]
FIG. 3 is a view showing a conventional glass panel for a cathode ray tube. As shown in FIG. 3A, the cathode ray tube glass panel 1 includes a face portion 2, a side wall portion 3 extending in a substantially vertical direction from the periphery thereof, and a blend in which the face portion 2 and the side wall portion 3 are connected by a bent surface. When the cathode ray tube is manufactured using the glass panel 1 for the cathode ray tube, the maximum tensile stress generated due to the vacuum inside is the peripheral edge of the face portion 2, This occurs particularly in the outer surface region 2c at the center of the long side. Therefore, in order to maintain the required pressure strength, the cathode ray tube glass panel 1 is formed with a compressive stress layer so that the compressive stress value of the region 2c of the face portion 2, particularly the peripheral edge thereof, is maximized.
[0004]
The glass panel 1 for cathode ray tube reinforced as described above is formed by press-molding molten glass filled in female and side frame molds with a male mold, removing the male mold, and glass for cathode ray tubes. When the inner surface of the panel 1 was exposed and the side wall portion 3 was substantially solidified, the side frame mold contacting the side wall portion 3 was removed to expose the side wall portion 3, and then the cathode ray tube glass panel 1 was taken out of the mold. Thereafter, the cathode ray tube glass panel 1 is rapidly cooled to a temperature lower than the glass strain point by applying cooling air to the inner and outer surfaces of the cathode ray tube glass panel 1 from a state under a predetermined temperature equal to or higher than the annealing point of the glass. Manufactured.
[0005]
In the cathode ray tube glass panel 1 manufactured in this way, the tensile stress is applied to the inner surface 4a of the blended R portion 4 where the diagonal end portion 2b of the effective screen portion 2a of the face portion 2 and the side wall portion 3 are connected. It was found that T occurred. This tensile stress T is a temperature distribution resulting from the thickness distribution and three-dimensional structure of the glass panel 1 in the process of forming the compressive stress layer by rapidly cooling the surface of the glass when producing the glass panel 1 for the cathode ray tube. Occurs based on the temperature distribution during this rapid cooling process.
[0006]
That is, when the cathode ray tube glass panel 1 is cooled and the temperature falls below the strain point, the thick face portion 2 generally exhibits a temperature distribution in which the temperature is higher than the side wall portion 3, and the thin side wall portion 3 is the face portion 2. The temperature drops below the strain point prior to. Therefore, a tensile stress T is generated on the inner surface 4a of the blend R portion 4 where the diagonal axial end 2b of the effective screen portion 2a of the face portion 2 and the side wall portion 3 are connected. In particular, in the case of a reinforced product of a glass panel for a cathode ray tube in which a strong compressive stress layer is formed on the surface, the difference in the stress distributed to each part also increases, and is shown by hollow arrows in FIGS. 3 (B) and 3 (C). As described above, due to the three-dimensional structure of the glass panel 1 for a cathode ray tube, the stress in the direction in which the side wall 3 is tilted inward and the warp in the vicinity of the end 2b in the diagonal axis direction of the effective screen 2a of the face 2 It is considered that a stress in the direction in which the deformation S occurs acts, and a tensile stress T is generated on the inner surface 4a of the corner blend R portion 4 along with this stress.
[0007]
[Problems to be solved by the invention]
In the above-mentioned cathode ray tube glass panel 1 in which the compressive stress layer is formed and strengthened, if the inner surface 4a of the blend R portion 4 where the tensile stress T is generated due to handling or the like is deeply scratched, As a starting point, there is a problem in that cracks occur in the thickness direction and the panel breaks itself. Further, even if the inner surface 4a of the blend R portion 4 has a slight scratch, the temperature rising process when the cathode ray tube glass panel 1 and the funnel are frit-sealed, and further in the exhaust process when the cathode ray tube is manufactured. In the step of applying thermal stress, there is a problem in that the crack extends in the thickness direction starting from slight scratches on the inner surface 4a and the glass panel 1 for cathode ray tube breaks. Furthermore, these are problematic in that they are a limitation when the pressure resistance is improved by the compressive stress layer.
[0008]
An object of the present invention is to solve the above-described problems of the prior art, and to provide a glass panel for a cathode ray tube capable of increasing the pressure resistance and preventing breakage due to thermal stress.
[0009]
[Means for Solving the Problems]
A glass panel for a cathode ray tube according to the present invention includes a substantially rectangular face portion having an effective screen portion on which an image is projected, and a seal extending in a substantially vertical direction from the periphery of the face portion and sealed to another member In a cathode ray tube glass panel comprising a side wall portion having an edge portion and having a compressive stress layer formed at least on the outer surface, the end portion of the effective screen portion and the side wall portion in the diagonal axis direction of the face portion are connected to each other. When the tensile stress value generated on the inner surface of the blend R portion is σ TR and the maximum compressive stress value of the compressive stress layer measured in the peripheral region of the face portion is σ CM , the maximum compressive stress value σ CM The tensile stress value σ TR has a relationship of σ TR ≦ (1/2) σ CM .
[0010]
In the conventional glass tube for a cathode ray tube in which the maximum compressive stress value σ CM of the compressive stress layer on the surface is set to a predetermined value or more in order to increase the pressure strength of the cathode ray tube, the corner blend R with respect to the maximum compressive stress value σ CM The tensile stress value σ TR of the tensile stress generated on the inner surface of the portion exceeds 1/2 of the maximum compressive stress value σ CM , and the glass panel for a cathode ray tube breaks due to this tensile stress. In the cathode ray tube glass panel of the present invention, a tensile stress value sigma TR is suppressed to 1/2 or less of the maximum compressive stress value sigma CM, having the desired pressure resistance has a required maximum compressive stress value sigma CM In the production of a cathode ray tube, the glass panel for a cathode ray tube is prevented from being destroyed due to the tensile stress on the inner surface of the blend R portion, and the pressure resistance of the cathode ray tube is maximized.
[0011]
The glass panel for a cathode ray tube according to the present invention has a relationship of σ TR ≦ (1/2) σ CM and σ TR ≦ 7 MPa. By setting the tensile stress value σ TR to 7 MPa or less, the effect of preventing the destruction of the glass panel for a cathode ray tube is enhanced.
[0012]
Furthermore, the cathode ray tube glass panel according to the present invention has a relationship of 14 MPa ≦ σ CM . By setting the maximum compressive stress value σ CM to 14 MPa or more, the upper limit of the compressive stress value limited by the tensile stress σ TR of the glass panel for a cathode ray tube can be increased.
[0013]
(Function)
The present invention is a cathode ray tube glass panel in which the tensile stress value σ TR of the tensile stress generated on the inner surface of the corner blend R portion is smaller than the maximum compressive stress value σ CM of the main portion. While ensuring the required strength of the cathode ray tube at a required level, destruction from the outer surface of the corner portion during manufacture of the cathode ray tube is prevented. A glass panel for a cathode ray tube is constructed in which the maximum compressive stress value σ CM is further increased with respect to the required tensile stress value σ TR capable of preventing breakage to further increase the pressure resistance.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is an explanatory view of an embodiment of a glass panel for a cathode ray tube according to the present invention. In the figure, 1 is a glass panel for a cathode ray tube, 2 is a substantially rectangular face portion, and 2a is an effective screen on which an image is displayed. 2b is an end portion of the effective screen portion 2a in the diagonal axis direction, 3 is a side wall portion extending from the peripheral edge of the face portion 2 in a substantially vertical direction, and 4 is a face portion 2 and the side wall portion 3 are connected to each other. The blending R part 4a indicates the inner surface of the blending R part 4, and the same parts as those shown in FIG.
[0015]
The cathode ray tube glass panel according to the present embodiment includes a substantially rectangular face portion 2 having an effective screen portion 2a on which an image is projected, and a side wall that extends from the periphery of the face portion 2 in a substantially vertical direction to constitute a side wall. In order to maintain the required pressure resistance when the cathode ray tube is manufactured, the face portion 2 and the side wall portion so that the compressive stress value is maximized particularly in the peripheral region 2c and the like of the face portion 2. 3, a compressive stress layer is formed on at least the outer surface, and the inner surface 4a of the blended R portion 4 where the end portion 2b of the effective screen portion 2a in the diagonal axis direction of the face portion 2 and the side wall portion 3 are connected. The tensile stress value σ TR generated in the above has a stress relationship of 1/2 or less of the maximum compressive stress value σ CM of the compressive stress layer formed on the surface of the glass panel for a cathode ray tube. Moreover, as a glass panel for a cathode ray tube of another embodiment, the tensile stress value σ TR is 7 MPa or less, and the compressive stress layer is formed with the maximum compressive stress value σ CM being 14 MPa or more.
[0016]
Moreover, when manufacturing the glass panel for cathode ray tubes of the present invention, the first step of filling the molten glass into the female mold and the side frame mold and performing press molding using the male mold; A second step of removing the male mold to expose the inner surface of the glass panel for a cathode ray tube, and removing the side frame mold in contact with the sidewall section 3 to expose the sidewall section 3 when the sidewall section 3 is substantially solidified; The cathode ray tube glass panel is removed from the mold, and the cathode ray tube glass panel 1 is in a state where the temperature difference between the face part 2 and the side wall part 3 is reduced as much as possible from a state where the glass panel 1 for the cathode ray tube is at or above the annealing point of the glass. And a third process in which cooling air is applied to the inner and outer surfaces of the cathode ray tube glass panel 1 and rapidly cooled to a temperature lower than the strain point of the glass while maintaining and managing the temperature.
[0017]
In particular, in the third step, first, a heater or the like is brought close to the vicinity of the seal edge portion 3 a of the side wall portion 3 and kept at a temperature of about an annealing point, so that the thin side wall portion 3 precedes the face portion 2. Thus, the temperature difference between the face part 2 and the side wall part 3 is reduced by preventing the temperature from dropping below the strain point, and then the face part 2 and the side wall part 3 are substantially similar by blowing cooling air. And a step including a step of lowering the temperature from the temperature above the annealing point to a temperature lower than the strain point. In addition, the third step may be a step in which the heat retention at the temperature of about the annealing point by the heater or the like and the rapid cooling by blowing the cooling air partially overlap.
[0018]
In the third step described above, as a heat retaining means such as a heater for preventing the thin side wall portion 3 from lowering the temperature from the strain point prior to the face portion 2, a seal edge portion 3a of the side wall portion 3 is used. In order to keep the vicinity at a temperature of about the annealing point, for example, a method of blowing hot air or a method of keeping the burner flame close to the vicinity of the seal edge portion 3a of the side wall portion 3 can be adopted. is there. In addition, as the heat insulation location by such heat insulation means, the side wall portion 3 as a whole, the entire vicinity of the seal edge portion 3a of the side wall portion 3, and the side wall portion extending from the diagonal axial end 2b of the effective screen portion 2a. 3, only the outer surface side in the vicinity of the seal edge portion 3 a is targeted for either the seal edge portion 3 a or the inner and outer surfaces in the vicinity of the seal edge portion 3 a.
[0019]
In a strengthened cathode ray tube glass panel having a compressive stress layer formed on the surface, when the maximum compressive stress value σ CM of the compressive stress layer formed on the surface of the cathode ray tube glass panel is increased, the inner surface 4a of the blend R portion 4 is increased. When the tensile stress T generated at the time increases and the maximum compressive stress value σ CM becomes larger than a predetermined value, the increase in the tensile stress value σ TR becomes more remarkable. A glass panel for a cathode ray tube manufactured by a conventional manufacturing method and having a maximum compressive stress value σ CM of a compressive stress layer larger than a predetermined value has a tensile stress T greater than ½ of the maximum compressive stress value σ CM of the compressive stress layer. It occurs on the inner surface 4a of the blended R portion 4, and the average fracture time due to scratching described later is remarkably reduced, and thermal stress fracture is likely to occur. That is, in the conventional glass tube for a cathode ray tube reinforced by compressive stress, the tensile stress value σ TR is larger than ½ of the maximum compressive stress value σ CM of the compressive stress layer, and the glass tube for cathode ray tube and the funnel are combined. The frequency of destruction increases in the frit sealing process and the exhaust process during the manufacture of the cathode ray tube.
[0020]
In contrast, the glass panel for a cathode ray tube according to the present embodiment is manufactured by controlling the temperature in the vicinity of the seal edge portion 3a of the side wall portion 3 as described above, so that the compression between the face portion 2 and the side wall portion 3 is performed. Tensile stress based on the stress in the direction in which the side wall portion 3 tilts inward by reducing the difference in the stress value and the stress in the direction in which the warp deformation S occurs near the diagonal end 2b of the effective screen portion 2a of the face portion 2 Since the tensile stress value σ TR of the relevant portion is suppressed regardless of the size and face shape of the glass panel for cathode ray tube, the tensile stress value σ TR is a value equal to or less than ½ of the maximum compressive stress value σ CM. Therefore, breakage in the frit seal process when manufacturing the cathode ray tube and in the exhaust process when manufacturing the cathode ray tube is prevented. In order to prevent the breakage, it is preferable that the tensile stress value σ TR is 7 MPa or less. In this case, breakage due to thermal stress in the process can be substantially avoided. Furthermore, in order to increase the breakdown voltage of the cathode ray tube glass panel are important to increase sufficiently the maximum compressive stress value sigma CM, the range of the maximum compressive stress value sigma CM capable of preventing destruction due to thermal stress and more 14MPa It becomes possible.
[0021]
In addition, the following method was employ | adopted as a measuring method of tensile-stress value (sigma) TR of the glass panel for cathode ray tubes. In other words, a large number of test pieces made of the same glass as the cathode ray tube glass panel 1 and subjected to a strain removal process in advance are prepared, and a scratch having a depth of 300 μm and a length of 10 mm is engraved on one surface with a glass cutter. A strain gauge is attached to the engraved surface and immersed in water in a state where a bending load of 6 to 12 MPa is applied. The fracture time t is measured, and the value of the tensile stress applied to the surface as shown in FIG. The relationship with the destruction time t is obtained in advance. Next, the tensile stress value σ TR of the glass panel 1 for the cathode ray tube is required for self-destruction by engraving a scratch having a depth of 300 μm and a length of 10 mm with a glass cutter on the surface where the tensile stress T is generated, and immersing it in water. This is a measurement method in which the fracture time t is measured, and the tensile stress value σ TR is obtained by applying the fracture time t to the relationship shown in FIG.
[0022]
【Example】
Hereinafter, the present invention will be described with reference to Examples 1 to 3 of the glass panel for a cathode ray tube manufactured by the manufacturing method of the present invention, and Reference Examples and Comparative Examples 1 and 2. Table 1 shows various data of the glass panel for cathode ray tube of Examples , Reference Examples and Comparative Examples of the glass panel for cathode ray tube of the present invention.
[0023]
Panel A, which is a sample of the first embodiment of the glass panel for a cathode ray tube of the present invention, has a face portion 2 having a diagonal dimension of 21 inches and an aspect ratio of 4: 3, and a peripheral edge portion 2c on the outer surface of the face portion 2. The maximum compressive stress value σ CM of the compressive stress layer at 1 is 14.0 MPa on the average, and the end portion 2b of the effective screen portion 2a in the diagonal axis direction of the face portion 2 and the side wall portion 3 are connected. The tensile stress value σ TR of the tensile stress T generated on the inner surface 4a is 6.5 MPa on average. The time required for self-destruction is 8,795 to 43,239 minutes, and the self-destruction occurs after an average of 24,247 minutes.
[0024]
In the panel B of Example 2, the diagonal dimension of the face part 2 is 28 inches, the aspect ratio is 16: 9, the time required for self-destruction is 2,035 to 6,021 minutes, an average of 3 , Self-defeated after 627 minutes. The average tensile stress value σ TR of Panel B was 6.9 MPa.
[0025]
In the panel C of Example 3, the diagonal dimension of the face portion 2 is 32 inches, the aspect ratio is 16: 9, the time required for self-destruction is 1,193 to 4,316 minutes, an average of 2 , 461 minutes later, self-defeated. Panel C had an average tensile stress value σ TR of 7.0 MPa.
[0026]
In the panel D of the reference example, the diagonal dimension of the face part 2 is 32 inches, the aspect ratio is 16: 9, the time required for self-destruction is 923 to 1,548 minutes, and the tensile stress value σ TR Was 7.2 MPa on average.
[0027]
Moreover, the panel E of the comparative example 1 has the same dimension as the panel C, and the heat insulation of the seal edge part 3a of the side wall part 3 of the panel taken out from the mold after the molding is performed is extremely shorter than that of the example. It was produced. The tensile stress value σ TR of five panels E was measured. The failure time of the panel E is 281 to 685 minutes, and the tensile stress value σ TR of the panel E is an average of 7.5 MPa.
[0028]
The panel F of Comparative Example 2 has the same dimensions as the panel C, and is manufactured by a conventional process in which the sealing edge portion 3a of the side wall portion 3 of the panel that has been molded and removed from the mold is not kept warm. . The tensile stress value σ TR of five panels F was measured. The destruction time of panel F is 23 to 146 seconds, and all five of the panels are self-destructing within 3 minutes. The average tensile stress value σ TR of panel F was 10.8 MPa.
[0029]
Note that the maximum compressive stress value σ CM shown in Table 1 is obtained by cutting a sample piece from a portion including the outer surface region 2c at the center of the long side of the peripheral edge of the face portion 2 and using a photoelastic strain measuring instrument to JIS-S2305. It shows the maximum value among the data measured by the regulated Senarmont method.
[0030]
[Table 1]
Figure 0003722457
[0031]
Next, the cathode ray tube glass panel 1 of the present invention was evaluated by testing the possibility of breakage in the process of frit-sealing the panel and the funnel. First, the blend R portion 4 of the inner surface 4a of # 320 sand paper by scratching to a depth of about 20μm each ten panels scratched the A �, B �, C �, and Samples of the same 10 panels D � of the reference example were prepared.
[0032]
As Comparative Examples 1 ′ and 2 ′, ten panels similar to those of Comparative Examples 1 and 2 were prepared and similarly scratched to prepare panels E ′ and F ′, respectively.
[0033]
'Panel A' Example 1 'to 3, B', C ', panel D of Reference Example', Comparative Example 1 ',' Panel E 'of 2, frit placed in a heating furnace Each sample of F' The temperature is increased to 440 ° C. at a temperature increase rate of 6 ° C./min similar to the process for sealing, held at 440 ° C. for 50 minutes, then cooled at 5 ° C./min, and evaluated by the number of broken samples. It was. Table 2 is data showing the evaluation results under the above-described conditions.
[0034]
[Table 2]
Figure 0003722457
[0035]
As shown in Table 2, the panels A ′, B ′, and C ′ of the present invention have an average tensile stress value σTR of 6.5 MPa, 6.9 MPa, and 7.0 MPa, respectively. The ratios σ TR / σ CM to the compression stress values are 0.463, 0.489, and 0.493, respectively. There are no examples of destruction. Further, the panel D ′ of the reference example has an average tensile stress value σ TR of 7.2 MPa and a ratio σ TR / σ CM of 0.497. There are 10% destruction cases.
[0036]
On the other hand, the panel F ′ of Comparative Example 2 ′ produced by the conventional manufacturing method has an average tensile stress value σ TR of 10.8 MPa and a ratio σ TR / σ CM of 0.562. The panel F ′ is destroyed before the evaluation test, and 70% is destroyed as a whole by heating in the evaluation test.
[0037]
Further, in the conventional manufacturing method, the panel E ′ of Comparative Example 1 ′ in which the vicinity of the seal edge portion 3a of the side wall portion 3 is kept warm for a short time has an average tensile stress value σ TR of 7.5 MPa and a ratio σ TR / Σ CM is 0.514, and even if the thermal stress in the evaluation test is applied, 60% is free from destruction, and the effect of heat insulation is obtained.
[0038]
From the above, in a glass panel for a cathode ray tube subjected to physical strengthening, when the ratio σ TR / σ CM between the tensile stress value and the maximum compressive stress value is ½ or less, the size and face shape of the panel are concerned. It shows a sufficient average failure time due to scratching, greatly reduces the probability of occurrence of thermal stress failure, can sufficiently prevent thermal stress failure even when the maximum compressive stress value is 14 MPa or more, and the ratio σ TR / σ CM is 1. When the tensile stress T is less than or equal to 2 and the tensile stress T is 7 MPa or less, it can be seen that the average fracture time due to scratching is sufficiently large, and the fracture due to thermal stress is extremely reduced.
[0039]
【The invention's effect】
According to the glass panel for a cathode ray tube of the present invention, a blend in which a strong compressive stress layer is formed in a main portion and the end portion of the effective screen portion in the diagonal axis direction of the face portion is connected to the side wall portion. Since the tensile stress generated on the inner surface of the R portion is suppressed to a required level or less, the required pressure strength is maintained when the cathode ray tube is manufactured, and the inner surface of the blended R portion of the cathode ray tube glass panel is scratched. In the case of entering, the glass panel for a cathode ray tube does not self-break, and the destruction of the glass panel for a cathode ray tube when frit-sealing the glass panel for a cathode ray tube and a funnel can be prevented.
[0040]
Moreover, the glass panel for a cathode ray tube of the present invention is formed by forming a stronger compressive stress in the main part of the glass panel for a cathode ray tube than the required tensile stress allowed on the inner surface of the blend R portion, Since the upper limit of the compressive stress value limited by the tensile stress at the location can be increased, the remarkable effect of contributing to thinning, lightening, and flattening of the cathode ray tube glass panel can be achieved.
[Brief description of the drawings]
1A and 1B are explanatory views of a glass panel for a cathode ray tube according to the present invention, in which FIG. 1A is a perspective view and FIG.
FIG. 2 is a graph showing the relationship between tensile stress and fracture time of a cathode ray tube glass panel.
3A and 3B are explanatory views of a conventional glass panel for a cathode ray tube, in which FIG. 3A is a perspective view, FIG. 3B is a cutaway view of a main part, and FIG. 3C is a YY sectional view of FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cathode-ray tube glass panel 2 Face part 2a Effective screen part 2b End part 2c Peripheral area | region 3 Side wall part 3a Seal edge part 4 Blend R part 4a Inner surface S Warp deformation T Tensile stress t Break time σ TR Tensile stress value σ CM maximum compressive stress

Claims (1)

画像が映し出される有効画面部を備えた略矩形のフェース部と、該フェース部の周縁から略垂直方向に延在し、他の部材に封着されるシールエッジ部を有する側壁部とからなり、少なくとも外表面に圧縮応力層が形成されてなる陰極線管用ガラスパネルにおいて、前記フェース部の外表面の周縁の領域の圧縮応力値が最大になるように圧縮応力層が形成されるとともに、前記フェース部の対角軸方向における有効画面部の端部と側壁部とが連結するブレンドR部の内表面に生じる引張応力値をσTRとし、該フェース部の外表面の周縁の領域において計測した前記圧縮応力層の最大圧縮応力値をσCMとするとき、前記最大圧縮応力値σCMと前記引張応力値σTRとが、σTR≦7MPa、14MPa≦σCMなる関係を有することを特徴とする陰極線管用ガラスパネル。A substantially rectangular face portion having an effective screen portion on which an image is projected, and a side wall portion having a seal edge portion extending in a substantially vertical direction from the periphery of the face portion and sealed to another member; In a glass panel for a cathode ray tube in which a compressive stress layer is formed at least on the outer surface, the compressive stress layer is formed so as to maximize the compressive stress value in the peripheral region of the outer surface of the face portion, and the face portion The tensile stress value generated on the inner surface of the blend R portion where the end portion of the effective screen portion and the side wall portion are connected in the diagonal axis direction is σ TR, and the compression measured in the peripheral region of the outer surface of the face portion When the maximum compressive stress value of the stress layer is σ CM , the maximum compressive stress value σ CM and the tensile stress value σ TR have a relationship of σ TR ≦ 7 MPa, 14 MPa ≦ σ CM. A glass panel for a cathode ray tube.
JP14818499A 1999-05-27 1999-05-27 Glass panel for cathode ray tube Expired - Fee Related JP3722457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14818499A JP3722457B2 (en) 1999-05-27 1999-05-27 Glass panel for cathode ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14818499A JP3722457B2 (en) 1999-05-27 1999-05-27 Glass panel for cathode ray tube

Publications (2)

Publication Number Publication Date
JP2000340138A JP2000340138A (en) 2000-12-08
JP3722457B2 true JP3722457B2 (en) 2005-11-30

Family

ID=15447132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14818499A Expired - Fee Related JP3722457B2 (en) 1999-05-27 1999-05-27 Glass panel for cathode ray tube

Country Status (1)

Country Link
JP (1) JP3722457B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100389539B1 (en) * 2000-09-26 2003-06-27 주식회사 엘지이아이 A braun tube

Also Published As

Publication number Publication date
JP2000340138A (en) 2000-12-08

Similar Documents

Publication Publication Date Title
JP2671766B2 (en) Glass bulb for cathode ray tube
JP3557828B2 (en) Panel glass for cathode ray tube
JPH10194766A (en) Production of panel glass for cathode ray tube
JP3722457B2 (en) Glass panel for cathode ray tube
US6669892B2 (en) Method for preventing warpage of gel plates during sintering
JP2000340139A (en) Glass panel for cathode-ray tube
JP3863299B2 (en) Glass bulb for cathode ray tube
US6812633B2 (en) Panel for use in a cathode ray tube
US6422744B1 (en) Method of testing a display device during the manufacture thereof
KR100665028B1 (en) Glass bulb for cathode ray tube
KR100671756B1 (en) Panel for cathode ray tube
KR100822873B1 (en) Cathode ray tube panel and method manufacturing the same
KR100611793B1 (en) A glass panel and a cathode ray tube employing the same
JP2001328830A (en) Method for producing glass panel for cathode ray tube
EP1124764B1 (en) Method of manufacturing a cathode ray tube
KR100480489B1 (en) Flat panel for use in a cathode ray tube
JP2001023544A (en) Glass panel for cathode ray tube
JPH0873292A (en) Graphite crucible for pulling up semiconductor single crystal
JP2000040476A (en) Glass panel for cathode-ray tube
KR20020030284A (en) Method of manufacturing a cathode ray tube
JP2001220161A (en) Method and device for cooling glass panel for cathode ray tube
JP2003109522A (en) Glass for display and glass panel for display
US20050156502A1 (en) Panel for use in a cathode ray tube
JP2003197127A (en) Glass panel for cathode-ray tube
JP2002042699A (en) Panel for cathode-ray tube

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050812

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050912

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees