JP3711500B2 - Instantaneous heating and cooling catheter for living organs - Google Patents

Instantaneous heating and cooling catheter for living organs Download PDF

Info

Publication number
JP3711500B2
JP3711500B2 JP2002351532A JP2002351532A JP3711500B2 JP 3711500 B2 JP3711500 B2 JP 3711500B2 JP 2002351532 A JP2002351532 A JP 2002351532A JP 2002351532 A JP2002351532 A JP 2002351532A JP 3711500 B2 JP3711500 B2 JP 3711500B2
Authority
JP
Japan
Prior art keywords
temperature
balloon
seconds
cooling
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002351532A
Other languages
Japanese (ja)
Other versions
JP2004180934A (en
Inventor
恒憲 荒井
厚 内海
隆司 川端
兼人 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keio University
Japan Lifeline Co Ltd
Original Assignee
Keio University
Japan Lifeline Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keio University, Japan Lifeline Co Ltd filed Critical Keio University
Priority to JP2002351532A priority Critical patent/JP3711500B2/en
Publication of JP2004180934A publication Critical patent/JP2004180934A/en
Application granted granted Critical
Publication of JP3711500B2 publication Critical patent/JP3711500B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Thermotherapy And Cooling Therapy Devices (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Laser Surgery Devices (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、生体器官瞬間加熱冷却用カテーテル、生体器官瞬間加熱冷却装置及び生体器官の瞬間加熱冷却方法に関する。さらに詳しくは、本発明は、生体器官を極めて短時間内に加熱冷却して病変組織を治療することができ、特に経皮的冠動脈形成術などに適応して、血管を傷つけることなく安全に拡張することができる生体器官瞬間加熱冷却用カテーテル、生体器官瞬間加熱冷却装置及び生体器官の瞬間加熱冷却方法に関する。
【0002】
【従来の技術】
バルーンによる冠動脈形成術(PTCA)は、近年めざましい普及をみせている。当初は適応となる症例や病変も限られていたが、器具の開発や技術の進歩により、多枝病変はもとより、完全閉塞や急性心筋梗塞にまで適応が拡大されている。しかし、術後の再狭窄の発生頻度がかなり大きく、PTCAの最大の問題とされている。再狭窄を予防するために、各種のステントが開発され、使用されているが、再狭窄の防止効果は小さく、また、再狭窄が発生したとき、留置されたステントが、処置の邪魔になる場合がある。さらに、ステントの材料であるステンレス鋼が、組織に対してアレルギー反応を示す場合も見られる。従って、ステンレス鋼などの異物を用いることなく、狭窄を処置し、再狭窄を予防することが望まれる。過去において、レーザーで管腔組織を直接焼いたり、蒸散させるレーザー治療や、アルゴンレーザーなどで、狭窄部位を処置する方法などが試みられたが、組織に深い損傷を与えたり、分解物の悪影響が現れたりして、効果がなく失敗している。
管腔組織の再狭窄は、平滑筋細胞が損傷を受けると、幹細胞によって組織が修復されるとき、破壊された異常情報が伝達され、あるいは幹細胞の異常分化が起こり、これが再狭窄となると考えられている。また、処置される血管が、いわゆるTEC、あるいは、ロータブレーターによって削られ、外膜のみにしてステントを留置する処置もなされているが、必要な組織を切除してしまうと、仮に内皮組織ができても、これが安定化せず、結局、再狭窄が起こってしまうと考えられる。通常のPTCAでは、血管を800〜1,000kPaという高い圧力で無理やりに拡張するために、組織を引き裂いたり、大きな力で血管組織を変質させ、冠動脈の障害からの修復過程で、過剰な平滑筋細胞の増殖が生じ、再狭窄が発生しやすい。
このために、狭窄部の血管に損傷を与えることなく、血管を拡張する器具や方法の開発が試みられている。例えば、患者の身体内での熱の適用に有用な、血管形成術などの処置に有用な装置として、管腔組織に対する加熱と加圧を同時に行い、管腔組織の降伏行動又は熱伝導性の変化を検出して、組織の行動に反応するカテーテル制御手段を有する身体管腔拡張システムが提案されている(特許文献1)。しかし、病変の状態がさまざまに異なる患部の生理学的反応を一律に判断して、それぞれの患部に対して最適の処置を行うことは極めて困難である。また、PTCAにおいて、血管内膜の損傷を起こすことなく、血管内面を熱凝固させて再度の閉塞を防止できるカテーテルとして、バルーン内方に突入するレーザーファイバーと、レーザー光吸収加熱管を備えたフッ素系樹脂からなるバルーンを備えたカテーテルが提案されている(特許文献2)。しかし、血管壁を80〜90℃に加熱すると、血管壁が薄くなりやすい。さらに、バルーン内の局部的な過熱がないカテーテルとして、バルーン内に金属編組チューブと該チューブを被覆する樹脂チューブを有する発熱管及び2つの熱電対を備えたカテーテルが提案されている(特許文献3)。しかし、このカテーテルでは、血管に過度の力を加えたり、過度の熱的侵襲を加えると、安定した良好な結果が得られ難いという問題がある。この為、本発明では、これらの問題をなくす為、種々検討し、重要な知見を得るに至った。
【特許文献1】
特許第2984056号公報(第2頁)
【特許文献2】
特許第2535250号公報(第1−2頁)
【特許文献3】
特許第2864094号公報(第1−2頁)
【0003】
【発明が解決しようとする課題】
本発明は、生体器官を極めて短時間内に加熱冷却して病変組織を治療することができ、特に経皮的冠動脈形成術などに適応して、血管を傷つけることなく安全に拡張することができる生体器官瞬間加熱冷却用カテーテル、生体器官瞬間加熱冷却装置及び生体器官の瞬間加熱冷却方法を提供することを目的としてなされたものである。
【0004】
【課題を解決するための手段】
本発明者らは、上記の課題を解決すべく鋭意研究を重ねた結果、カテーテルの温度伝達部の温度を短時間で80℃まで昇温する手段と、カテーテルの温度伝達部の温度を短時間で45℃まで冷却する手段を備えた生体器官瞬間加熱冷却用カテーテルを用いることにより、損傷を与えることなく血管を拡張し得ることを見いだし、この知見に基づいて本発明を完成するに至った。
すなわち、本発明は、
(1)バルーン温度伝達部に熱媒体を送り込むことにより400kPa以下の圧力でバルーンを膨らませた後、該熱媒体の圧力を一定に維持しながらレーザーを出力してバルーン表面の温度を30秒以内に体温から57〜80℃まで昇温し、レーザー出力を調整してバルーン表面の温度を30秒以内57〜80℃に保ったのち、レーザー出力を停止して熱媒体によりバルーン表面の温度を10秒以内に57〜80℃から45℃以下に冷却する瞬間加熱冷却方法に用いる生体器官瞬間加熱冷却用カテーテルであって、先端側に設けられたバルーン温度伝達部、該バルーン温度伝達部内に収納されたレーザーエネルギー変換素子及び温度センサー、先端側と手元側をつなぐシャフト、該シャフト内に収納された熱媒体送りチューブ、熱媒体戻りチューブ及びレーザーファイバー、並びに、手元側に設けられたレーザー出力装置及び熱媒体送り装置を有するカテーテルであって、該カテーテルが、バルーン温度伝達部の温度を30秒以内に37℃から80℃まで昇温する手段、及び、バルーン温度伝達部の温度を10秒以内に80℃から45℃まで冷却する手段を有することを特徴とする生体器官瞬間加熱冷却用カテーテル、
を提供するものである。
【0005】
【発明の実施の形態】
本発明の生体器官瞬間加熱冷却カテーテルは、先端側に設けられた温度伝達部、該温度伝達部内に収納されたレーザーエネルギー変換素子及び温度センサー、先端側と手元側をつなぐシャフト、該シャフト内に収納された熱媒体送りチューブ、熱媒体戻りチューブ及びレーザーファイバー、並びに、手元側に設けられたレーザー出力装置及び熱媒体送り装置を有するカテーテルであって、該カテーテルが、温度伝達部の温度を30秒以内に37℃から80℃まで昇温する手段、及び、温度伝達部の温度を40秒以内に80℃から45℃まで冷却する手段を有するカテーテルである。
本発明の生体器官瞬間加熱冷却装置は、先端側に設けられた温度伝達部、該温度伝達部内に収納されたレーザーエネルギー変換素子及び温度センサー、先端側と手元側をつなぐシャフト、該シャフト内に収納された熱媒体送りチューブ、熱媒体戻りチューブ及びレーザーファイバー、並びに、手元側に設けられたレーザー出力装置及び熱媒体送り装置を有し、温度伝達部の温度を30秒以内に37℃から80℃まで昇温する手段、及び、温度伝達部の温度を40秒以内に80℃から45℃まで冷却する手段を有する生体器官瞬間加熱冷却用カテーテルを備え、温度センサーの情報に基づいてレーザー出力又は熱媒体の流量を調整し、温度伝達部を所定の温度に制御する装置である。
本発明のカテーテル及び装置においては、温度伝達部がバルーンであることが好ましい。本発明のカテーテル及び装置は、バルーン表面の温度を10秒以内に37℃から80℃まで昇温する手段、及び、バルーン表面の温度を10秒以内に80℃から45℃まで冷却する手段を有することが好ましい。
【0006】
図1は、本発明の生体器官瞬間加熱冷却用カテーテルの一態様の説明図である。本態様のカテーテルは、先端側に設けられた温度伝達部としてのバルーン1、先端側と手元側をつなぐシャフト2、手元側に設けられたレーザー出力装置3及び熱媒体送り装置4を有する。バルーン1内には、レーザーエネルギー変換素子5と、バルーン膜面に付着した温度センサー6が収納されている。シャフト2内には、熱媒体送りチューブ7、熱媒体戻りチューブ8、レーザーファイバー9及び温度センサー導線10が収納されている。このカテーテルを生体器官に挿入して、バルーンを病変部位に到達させ、バルーンに熱媒体を送り込むことによりバルーンを膨らませ、レーザーを出力してレーザーエネルギー変換素子により、レーザーエネルギーを熱に変換し、バルーン表面を短時間で昇温し、所定の圧力と温度を所定時間保って管腔を拡張させたのち、レーザー出力を停止し、常温の熱媒体により、バルーン表面を短時間で冷却する。昇温と冷却を短時間で行うことにより、生体器官に損傷を与えることなく、管腔を拡張することができる。
本発明においては、カテーテルが、温度伝達部の温度を30秒以内、より好ましくは10秒以内に37℃から80℃まで昇温する手段を有する。温度伝達部の昇温速度は、レーザー出力装置の出力、レーザーファイバーの伝達損失、レーザーエネルギー変換素子の変換効率、温度伝達部へ送られる熱媒体の比熱、温度伝達部内の熱媒体の容量などの要因により支配される。これらの要因の組み合わせを適切に選択することにより、温度伝達部の温度を10秒以内に37℃から80℃まで昇温する手段を構成することができる。
本発明においては、カテーテルが、温度伝達部の温度を40秒以内、より好ましくは10秒以内に80℃から45℃まで冷却する手段を有する。温度伝達部の冷却速度は、温度伝達部へ送られる熱媒体の流量、温度伝達部内の熱媒体の容量などの要因により支配される。これらの要因の組み合わせを適切に選択することにより、温度伝達部の温度を10秒以内に80℃から45℃まで冷却する手段を構成することができる。
【0007】
本発明の生体器官の瞬間加熱冷却方法においては、上記のバルーンを有する生体器官瞬間加熱冷却用カテーテルを生体器官に挿入して、バルーンを病変部位に到達させ、バルーンに熱媒体を送り込むことにより400kPa以下の圧力でバルーンを膨らませ、レーザーを出力してバルーン表面の温度を30秒以内に体温から57〜80℃まで昇温し、レーザー出力を調整してバルーン表面の温度を30秒以内57〜80℃に保ったのち、レーザー出力を停止して熱媒体によりバルーン表面の温度を40秒以内に57〜80℃から45℃以下に冷却する。
本発明方法において、バルーンを膨らませる圧力は、400kPa以下、より好ましくは250kPa以下である。本発明方法においては、バルーン表面を短時間に昇温、冷却するので、400kPa以下のような低い圧力で、生体器官の管腔に損傷を与えることなく拡張することができる。バルーンを膨らませる圧力が400kPaを超えると、管腔に損傷を生じ、施術時の拡張量が大きくても、過剰な細胞の増殖が生じ、経時的に再狭窄を生ずるおそれがある。
本発明方法においては、バルーンに熱媒体を送り込んで膨らませたのち、レーザーを出力して、バルーン表面の温度を30秒以内に体温から57〜80℃まで昇温し、より好ましくは15秒以内に体温から60〜75℃まで昇温する。昇温時間が、30秒を超えると、生体器官の管腔が損傷を受けて薄くなるとともに、経時的に再狭窄を生ずるおそれがある。バルーン表面の温度が57℃未満であると、管腔に損傷は生じないが、管腔の拡張が不十分となるおそれがある。バルーン表面の温度が80℃を超えると、生体器官の管腔が損傷を受けて薄くなるとともに、経時的に再狭窄を生ずるおそれがある。
【0008】
本発明方法においては、バルーン表面の温度を57〜80℃まで昇温したのち、レーザー出力を調整して、バルーン表面の温度を30秒以内57〜80℃に、より好ましくは15秒以内60〜75℃に保つ。レーザー出力の調整方法に特に制限はなく、例えば、温度センサーからの情報に基づいてレーザー出力をオンオフ制御することができ、あるいは、レーザー出力を連続制御することもできる。バルーン表面の温度の保持時間が、30秒を超えると、生体器官の管腔が損傷を受けて薄くなるとともに、経時的に再狭窄を生ずるおそれがある。バルーン表面の温度が57℃未満であると、管腔に損傷は生じないが、管腔の拡張が不十分となるおそれがある。バルーン表面の温度が80℃を超えると、生体器官の管腔が損傷を受けて薄くなるとともに、経時的に再狭窄を生ずるおそれがある。
本発明方法においては、バルーン表面の温度を30秒以内57〜80℃に保ったのち、レーザー出力を停止して熱媒体によりバルーン表面の温度を40秒以内に57〜80℃から45℃以下に、より好ましくは20秒以内に60〜75℃から45℃以下に冷却する。45℃以下への冷却時間が40秒を超えると、生体器官の管腔が損傷を受けて薄くなるとともに、経時的に再狭窄を生ずるおそれがある。
図2は、本発明方法の実施の一例について、バルーン内の圧力とバルーン表面の温度の状態を示すグラフである。時間0秒から熱媒体を送り始めると、バルーン内の圧力は上昇し始め、14秒後に200kPaに達する。熱媒体を送り始めて25秒後に、バルーン内の圧力が240kPaとなったとき、レーザー出力を開始すると、バルーン表面の温度は急速に上昇し、レーザー出力開始4秒後に60℃に達する。バルーン表面の温度を60〜70℃に維持するように、温度センサーから送られる信号に基づいてレーザー出力装置をオンオフ制御する。レーザー出力開始15秒後に、レーザー出力を停止すると、バルーンは熱媒体により急速に冷却され、レーザー出力停止3秒後には、バルーン表面の温度は45℃となる。レーザー出力停止20秒後に、熱媒体の潅流を停止し、バルーン内の圧力を低下させる。
【0009】
本発明に用いるレーザーエネルギー変換素子は、レーザーファイバーにより送られるレーザー光をバルーン内で受けて、熱に変換し得る素子であれば特に制限なく使用することができる。このような素子としては、例えば、金属コイル、金属メッシュ、金属編組物などを挙げることができる。本発明に用いる温度センサーに特に制限はなく、例えば、熱電対、サーミスター、白金測温抵抗体などを挙げることができる。本発明に用いるレーザー出力装置に特に制限はなく、例えば、炭酸ガスレーザー、エキシマレーザー、希ガスイオンレーザーなどの気体レーザー、色素レーザーなどの液体レーザー、YAGレーザー、ガラスレーザー、ルビーレーザーなどの固体レーザーなどを挙げることができる。
本発明に用いる温度伝達部に特に制限はないが、バルーンを特に好適に用いることができる。バルーンの材質は、圧力400kPa、温度80℃に耐えるものであれば特に制限はなく、例えば、ポリイミド、ポリアミド、シリコーン、フッ素樹脂、ポリウレタンなどを挙げることができる。本発明に用いるシャフトの材質は、形状保持性と弾力性を有する材質であれば特に制限はなく、例えば、ポリイミド、ポリアミド、ポリウレタン、ポリ塩化ビニル、ポリプロピレン、ポリエチレンなどを挙げることができる。
本発明のカテーテル及び装置を用い、本発明方法により施術すると、瞬間的に管腔組織の表面のみが加熱され、管腔組織の深部には損傷が与えられず、また、低い圧力で管腔組が拡張されるので、力による血管組織の損傷も避けることができ、安全かつ効果的に管腔組織を処置することができる。
生体細胞の熱による影響は、時間的に割合緩やかであるが、血管組織のコラーゲンなどの物性変化は物理化学的現象であり、瞬間的に起こる。管腔組織を短時間、急速に加温し、管腔組織のごく浅い層のみに熱を与えて組織を死滅させ、あるいは、アポトーシス因子を与えて、それより深い層に生物学的な損傷を与えることなく、また、物理化学的に柔軟になった血管を、比較的低圧で拡張し、組織に過度の力による損傷を与えることなく、十分な血流を得るための管腔を確保することができる。したがって、ステントなどの異物を留置しなくても、処置後の十分な血流により、管腔の安定な開存を維持することができる。
【0010】
【実施例】
以下に、実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれらの実施例によりなんら限定されるものではない。
実施例及び比較例においては、図1に示す構成の生体器官瞬間加熱冷却装置を用いた。カテーテルは、ポリアミド製で、シャフト外径1mm、全長1,400mmであり、バルーンは、ポリイミド製で、膨張時の外径3mm、長さ15mmである。カテーテル内には、外径各200μmの熱媒体送りチューブと熱媒体戻りチューブ、外径100μmの石英光ファイバー及び熱電対を挿通した。
バルーン内には、ステンレス鋼からなるレーザーエネルギー変換素子及び熱電対接点を設けた。熱媒体送りチューブの手元側には、圧力センサー、容量20mLの耐圧シリンジ及びオートインジェクターからなる熱媒体送り装置を接続し、所定の圧力を維持しながら、造影剤と生理食塩水の容量比1:1の混合液からなる熱媒体を送り出した。熱媒体戻りチューブの末端から流出する熱媒体は、マイクロ天秤上に載置した容器に受けて、その重量を測定した。石英光ファイバーの手元側には、出力5WのYAGレーザーを接続した。圧力センサー、温度センサー及びマイクロ天秤重量は、コンピューターに入力し、バルーン内の所定の圧力、昇温速度、保持温度、冷却速度が達成されるように、熱媒体の流量とレーザー出力を制御した。
あらかじめ、生体器官瞬間加熱冷却装置のカテーテルとバルーンを37℃の恒温槽に収め、所定の時間−温度−圧力を実現する運転条件を求めた。ウサギを用いた実施例及び比較例においては、あらかじめ求めた条件で運転するとともに、所定の時間−温度−圧力の関係が実現していることを確認した。
実施例及び比較例においては、ウサギの鼠径動脈にピールオフシースを挿入し、これを通してカテーテルを挿入し、所定の条件で血管拡張術を施したのち止血した。ウサギをケージに戻し、2か月飼育したのち犠死させ、剖検により血管の状態を観察するとともに、処置部位の血管の内径d1とその隣接部位の血管の内径d0を測定し、血管内径比d1/d0を求めた。さらに、観察した血管の状態と血管内径比から、総合的な評価を行った。
【0011】
参考例1及び比較例1
ウサギの左後脚で参考例1を、右後脚で比較例1を行った。2本の鼠径動脈にそれぞれ1本ずつのカテーテルを挿入し、熱媒体を潅流して圧力を200kPaに保った。左後脚の参考例1は、バルーン表面温度を37℃から70℃まで30秒で昇温し、70℃に20秒間保ったのち、40秒で45℃まで冷却した。右後脚の比較例1は、昇温に40秒、冷却に50秒をかけた以外は、参考例1と同じ条件で操作した。
2か月後、左後脚の血管に、異常はほとんど認められなかった。血管内径比は1.3であった。総合的には、良好と判定された。右後脚の血管は、薄くなっていた。血管内径比は、0.7であった。総合的には、不良と判定された。
参考例2及び比較例2
参考例1及び比較例1と同様にして、ウサギの左後脚で参考例2を、右後脚で比較例2を行った。左後脚の参考例2は、バルーン表面温度を37℃から70℃まで20秒で昇温し、70℃に10秒間保ったのち、20秒で45℃まで冷却した。右後脚の比較例2は、バルーン表面温度を37℃から90℃まで10秒で昇温し、90℃に10秒間保ったのち、10秒で45℃まで冷却した。
2か月後、左後脚の血管に、異常はほとんど認められなかった。血管内径比は1.3であった。総合的には、良好と判定された。右後脚の血管は、薄くなっていた。血管内径比は、0.9であった。総合的には、不良と判定された。
実施例3及び実施例4
参考例1及び比較例1と同様にして、ウサギの左後脚で実施例3を、右後脚で実施例4を行った。左後脚の実施例3は、バルーン表面温度を37℃から80℃まで10秒で昇温し、80℃に10秒間保ったのち、10秒で45℃まで冷却した。右後脚の実施例4は、バルーン表面温度を70℃まで昇温し、70℃に10秒間保った以外は、実施例3と同じ条件で操作した。
2か月後、左後脚の血管に、異常はほとんど認められなかった。血管内径比は1.5であった。総合的には、良好と判定された。右後脚の血管にも、異常は全く認められなかった。血管内径比は、1.5であった。総合的には、優秀と判定された。
実施例5及び実施例6
参考例1及び比較例1と同様にして、ウサギの左後脚で実施例5を、右後脚で実施例6を行った。左後脚の実施例5は、バルーン表面温度を37℃から65℃まで10秒で昇温し、65℃に10秒間保ったのち、10秒で45℃まで冷却した。右後脚の実施例6は、バルーン表面温度を60℃まで昇温し、60℃に10秒間保った以外は、実施例5と同じ条件で操作した。
2か月後、左後脚の血管に、異常は全く認められなかった。血管内径比は1.4であった。総合的には、優秀と判定された。右後脚の血管にも、異常は全く認められなかった。血管内径比は、1.4であった。総合的には、優秀と判定された。
実施例7及び比較例6
参考例1及び比較例1と同様にして、ウサギの左後脚で実施例7を、右後脚で比較例6を行った。左後脚の実施例7は、バルーン表面温度を37℃から57℃まで10秒で昇温し、57℃に10秒間保ったのち、10秒で45℃まで冷却した。右後脚の比較例6は、バルーン表面温度を55℃まで昇温し、55℃に10秒間保った以外は、実施例7と同じ条件で操作した。
2か月後、左後脚の血管に、異常は全く認められなかった。血管内径比は1.2であった。総合的には、良好と判定された。右後脚の血管にも、異常は全く認められなかった。血管内径比は、1.0であった。総合的には、やや不良と判定された。
実施例及び比較例3
ウサギの左後脚で実施例を、右後脚で比較例3を行った。2本の鼠径動脈にそれぞれ1本ずつのカテーテルを挿入し、熱媒体を潅流して左後脚の圧力を400kPaに、右後脚の圧力を600kPaにそれぞれ保った。両後脚ともに、バルーン表面温度を37℃から70℃まで10秒で昇温し、70℃に10秒間保ったのち、10秒で45℃まで冷却した。
2か月後、左後脚の血管に、異常は全く認められなかった。血管内径比は1.5であった。総合的には、優秀と判定された。右後脚の血管は、径は拡大していたが、中膜の肥厚がみられた。血管内径比は、1.2であった。総合的には、やや不良と判定された。
比較例4及び比較例5
ウサギの左後脚で比較例4を、右後脚で比較例5を行った。2本の鼠径動脈にそれぞれ1本ずつのカテーテルを挿入し、レーザーを出力することなく、常温の熱媒体を潅流して、左後脚の圧力を1,200kPaに、右後脚の圧力を400kPaにそれぞれ10秒間保ったのち、熱媒体の潅流を停止した。
2か月後、左後脚の血管は、傷つき肥厚していた。血管内径比は0.8であった。総合的には、不良と判定された。右後脚の血管は、ほとんど異常はみられなかったが、血管は拡張されておらず、血管内径比は、1.0であり、総合的には、不良と判定された。
参考例1〜2、実施例3〜8及び比較例1〜の結果を、第1表に示す。
【0012】
【表1】

Figure 0003711500
【0013】
参考例1と比較例1の結果を比較すると、バルーンの圧力が200kPa、表面温度が70℃で同じであっても、昇温を30秒、冷却を40秒で行った参考例1では良好な結果が得られているのに対して、昇温と冷却の時間がそれぞれ10秒ずつ長い比較例1では、血管が薄くなり、拡張もされていない。この結果から、バルーン表面を、短時間で昇温、冷却することが、良好な結果を得るために重要であることが分かる。
実施例3と比較例2の結果を比較すると、バルーンの圧力が200kPa、昇温と冷却の時間がそれぞれ10秒で同じであっても、バルーン表面温度を80℃とした実施例3では良好な結果が得られているのに対して、バルーン表面温度を90℃とした比較例2では、血管が薄くなり、拡張もされていない。この結果から、バルーン表面温度を、高くしすぎないことが、良好な結果を得るために重要であることが分かる。
バルーンの圧力を200kPa、バルーン表面温度を60〜70℃とし、それぞれ10秒で昇温と冷却を行った実施例4〜6では、血管の状態に異常がまったく認められず、血管の拡張の程度も大きく、優れた結果が得られている。
実施例と比較例3の結果を比較すると、バルーンの表面温度が同じ70℃、昇温と冷却の時間がそれぞれ10秒で同じであっても、バルーンの圧力を400kPaとした実施例では優れた結果が得られているのに対して、バルーンの圧力を600kPaまで高めた比較例3では、血管中膜が肥厚し、結果として、血管内径比も1.2倍までしか拡張されていない。この結果から、バルーンの圧力が高すぎると、血管の拡張に対してはかえって逆効果になることが分かる。
【0014】
【発明の効果】
本発明の生体器官瞬間加熱冷却用カテーテル、生体器官瞬間加熱冷却装置及び生体器官の瞬間加熱冷却方法によれば、生体器官を極めて短時間内に加熱冷却して病変組織を治療することができ、特に経皮的冠動脈形成術(PTCA)などに適応して、血管を傷つけることなく安全に拡張し、再狭窄を防止することができる。
【図面の簡単な説明】
【図1】図1は、本発明の生体器官瞬間加熱冷却用カテーテルの一態様の説明図である。
【図2】図2は、本発明方法の実施の一例について、バルーン内の圧力とバルーン表面の温度の状態を示すグラフである。
【符号の説明】
1 バルーン
2 シャフト
3 レーザー出力装置
4 熱媒体送り装置
5 レーザーエネルギー変換素子
6 温度センサー
7 熱媒体送りチューブ
8 熱媒体戻りチューブ
9 レーザーファイバー
10 温度センサー導線[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a living organ instantaneous heating / cooling catheter, a living organ instantaneous heating / cooling apparatus, and a living organ instantaneous heating / cooling method. More specifically, the present invention can treat a diseased tissue by heating and cooling a living organ within a very short time, and is particularly suitable for percutaneous coronary angioplasty, and can be safely expanded without damaging the blood vessel. The present invention relates to a living organ instantaneous heating / cooling catheter, a living organ instantaneous heating / cooling device, and a living organ instantaneous heating / cooling method.
[0002]
[Prior art]
Balloon coronary angioplasty (PTCA) has shown remarkable spread in recent years. Initially, the number of cases and lesions that can be indicated were limited, but due to the development of devices and advances in technology, indications have been extended not only to multi-branch lesions but also to complete occlusion and acute myocardial infarction. However, the frequency of occurrence of restenosis after surgery is quite large, which is regarded as the biggest problem of PTCA. Various types of stents have been developed and used to prevent restenosis, but the effect of preventing restenosis is small, and when a restenosis occurs, the placed stent interferes with the treatment. There is. Furthermore, there are cases where stainless steel, which is the material of the stent, shows an allergic reaction to the tissue. Therefore, it is desirable to treat stenosis and prevent restenosis without using foreign matter such as stainless steel. In the past, laser treatments that directly burn or evaporate luminal tissue with a laser, or methods that treat stenotic sites with an argon laser, etc. have been tried. It appears and fails because it has no effect.
In luminal tissue restenosis, when smooth muscle cells are damaged, when the tissue is repaired by stem cells, disrupted abnormal information is transmitted, or abnormal differentiation of stem cells occurs, which is considered to be restenosis. ing. In addition, the blood vessel to be treated is cut by a so-called TEC or rotablator, and the stent is placed only in the outer membrane. However, if the necessary tissue is excised, the endothelial tissue is temporarily removed. Even if possible, this is not stabilized, and it is thought that restenosis will eventually occur. In normal PTCA, in order to forcibly dilate blood vessels at a high pressure of 800 to 1,000 kPa, excessive smooth muscles are damaged during the repair process from coronary artery damage by tearing the tissue or altering the vascular tissue with great force. Cell proliferation occurs and restenosis is likely to occur.
For this reason, attempts have been made to develop instruments and methods for expanding blood vessels without damaging the blood vessels in the stenosis. For example, a device useful for the application of heat in a patient's body, useful for procedures such as angioplasty, is to simultaneously heat and pressurize the luminal tissue, to improve the yielding behavior or thermal conductivity of the luminal tissue. A body lumen expansion system has been proposed that has a catheter control means that detects changes and responds to tissue behavior (Patent Document 1). However, it is extremely difficult to uniformly determine the physiological response of affected areas with different lesion states and to perform optimal treatment on each affected area. In PTCA, as a catheter that can thermally coagulate the inner surface of a blood vessel and prevent re-occlusion without causing damage to the intima, a fluorine fiber provided with a laser fiber that enters the inside of the balloon and a laser light absorption heating tube A catheter having a balloon made of a resin is proposed (Patent Document 2). However, when the blood vessel wall is heated to 80 to 90 ° C., the blood vessel wall tends to become thin. Furthermore, as a catheter without local overheating in the balloon, a catheter provided with a metal braided tube and a resin tube covering the tube in the balloon and a catheter provided with two thermocouples has been proposed (Patent Document 3). ). However, this catheter has a problem that it is difficult to obtain a stable and favorable result when an excessive force is applied to the blood vessel or an excessive thermal invasion is applied. For this reason, in the present invention, in order to eliminate these problems, various studies have been made and important findings have been obtained.
[Patent Document 1]
Japanese Patent No. 2984056 (page 2)
[Patent Document 2]
Japanese Patent No. 2535250 (page 1-2)
[Patent Document 3]
Japanese Patent No. 2864094 (page 1-2)
[0003]
[Problems to be solved by the invention]
The present invention can treat a diseased tissue by heating and cooling a living organ within a very short time, and can be expanded safely without damaging a blood vessel, especially for percutaneous coronary angioplasty. An object of the present invention is to provide a living organ instantaneous heating / cooling catheter, a living organ instantaneous heating / cooling apparatus, and a living organ instantaneous heating / cooling method.
[0004]
[Means for Solving the Problems]
  As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have a means for raising the temperature of the catheter temperature transmission part to 80 ° C. in a short time and the temperature of the catheter temperature transmission part for a short time. By using a living organ instantaneous heating / cooling catheter equipped with means for cooling to 45 ° C., it was found that the blood vessel can be expanded without causing damage, and the present invention has been completed based on this finding.
  That is, the present invention
(1) After inflating the balloon at a pressure of 400 kPa or less by sending the heat medium into the balloon temperature transmission section, the laser is output while keeping the pressure of the heat medium constant, and the temperature of the balloon surface is kept within 30 seconds. The body temperature is raised from 57 to 80 ° C., the laser output is adjusted and the balloon surface temperature is maintained at 57 to 80 ° C. within 30 seconds, and then the laser output is stopped and the temperature of the balloon surface is increased by a heating medium for 10 seconds. A living organ instantaneous heating / cooling catheter used in an instantaneous heating / cooling method of cooling from 57 to 80 ° C. to 45 ° C. or less, and stored in the balloon temperature transmitting portion provided on the distal end side Laser energy conversion element and temperature sensor, shaft connecting tip side and hand side, heat medium feed tube housed in the shaft, heat medium return channel A catheter having a probe and a laser fiber, and a laser output device and a heat medium feeding device provided on the hand side, and the catheter raises the temperature of the balloon temperature transmission section from 37 ° C. to 80 ° C. within 30 seconds. A living organ instantaneous heating / cooling catheter characterized by comprising means for raising the temperature and means for cooling the temperature of the balloon temperature transmission section from 80 ° C. to 45 ° C. within 10 seconds,
Is to provide.
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The living organ instantaneous heating / cooling catheter of the present invention includes a temperature transmission part provided on the distal end side, a laser energy conversion element and a temperature sensor housed in the temperature transmission part, a shaft connecting the distal end side and the proximal side, A stored heat medium feed tube, a heat medium return tube and a laser fiber, and a catheter having a laser output device and a heat medium feed device provided on the hand side, wherein the catheter sets the temperature of the temperature transfer section to 30. It is a catheter having means for raising the temperature from 37 ° C. to 80 ° C. within 2 seconds, and means for cooling the temperature of the temperature transmission section from 80 ° C. to 45 ° C. within 40 seconds.
A living organ instantaneous heating / cooling device according to the present invention includes a temperature transmission unit provided on the distal end side, a laser energy conversion element and a temperature sensor housed in the temperature transmission unit, a shaft connecting the distal end side and the proximal side, It has a stored heat medium feed tube, a heat medium return tube and a laser fiber, and a laser output device and a heat medium feed device provided on the hand side, and the temperature of the temperature transfer section is changed from 37 ° C. to 80 ° C. within 30 seconds. And a living body instantaneous heating / cooling catheter having means for raising the temperature to 80 ° C. and means for cooling the temperature of the temperature transmission section from 80 ° C. to 45 ° C. within 40 seconds, and the laser output or It is a device that adjusts the flow rate of the heat medium and controls the temperature transmission unit to a predetermined temperature.
In the catheter and apparatus of the present invention, the temperature transmission part is preferably a balloon. The catheter and apparatus of the present invention have means for raising the temperature of the balloon surface from 37 ° C. to 80 ° C. within 10 seconds, and means for cooling the temperature of the balloon surface from 80 ° C. to 45 ° C. within 10 seconds. It is preferable.
[0006]
FIG. 1 is an explanatory view of one embodiment of a living organ instantaneous heating / cooling catheter of the present invention. The catheter of this aspect includes a balloon 1 as a temperature transmission unit provided on the distal end side, a shaft 2 connecting the distal end side and the proximal side, a laser output device 3 and a heat medium feeding device 4 provided on the proximal side. The balloon 1 contains a laser energy conversion element 5 and a temperature sensor 6 attached to the balloon membrane surface. A heat medium feed tube 7, a heat medium return tube 8, a laser fiber 9, and a temperature sensor conductor 10 are accommodated in the shaft 2. This catheter is inserted into a living organ, the balloon reaches the lesion site, the balloon is inflated by sending a heat medium into the balloon, the laser is output, the laser energy conversion element converts the laser energy into heat, and the balloon After the surface is heated in a short time and the lumen is expanded by maintaining a predetermined pressure and temperature for a predetermined time, the laser output is stopped, and the balloon surface is cooled in a short time by a heat medium at room temperature. By performing heating and cooling in a short time, the lumen can be expanded without damaging the living organ.
In the present invention, the catheter has means for raising the temperature of the temperature transmission part from 37 ° C. to 80 ° C. within 30 seconds, more preferably within 10 seconds. The temperature increase rate of the temperature transfer unit is the output of the laser output device, the transmission loss of the laser fiber, the conversion efficiency of the laser energy conversion element, the specific heat of the heat medium sent to the temperature transfer unit, the capacity of the heat medium in the temperature transfer unit, etc. Controlled by factors. By appropriately selecting a combination of these factors, a means for raising the temperature of the temperature transmission section from 37 ° C. to 80 ° C. within 10 seconds can be configured.
In the present invention, the catheter has means for cooling the temperature of the temperature transmission section from 80 ° C. to 45 ° C. within 40 seconds, more preferably within 10 seconds. The cooling rate of the temperature transfer unit is governed by factors such as the flow rate of the heat medium sent to the temperature transfer unit and the capacity of the heat medium in the temperature transfer unit. By appropriately selecting a combination of these factors, it is possible to configure means for cooling the temperature of the temperature transmission section from 80 ° C. to 45 ° C. within 10 seconds.
[0007]
In the instantaneous heating / cooling method for living organs according to the present invention, the living organ instantaneous heating / cooling catheter having the above-described balloon is inserted into the living organ, the balloon is made to reach the lesion site, and the heating medium is fed into the balloon to 400 kPa. The balloon is inflated with the following pressure, the laser is output, the temperature of the balloon surface is raised from body temperature to 57-80 ° C. within 30 seconds, and the laser output is adjusted to bring the temperature of the balloon surface within 30 seconds to 57-80 After maintaining the temperature, the laser output is stopped and the temperature of the balloon surface is cooled from 57 to 80 ° C. to 45 ° C. or less within 40 seconds by the heat medium.
In the method of the present invention, the pressure for inflating the balloon is 400 kPa or less, more preferably 250 kPa or less. In the method of the present invention, since the balloon surface is heated and cooled in a short time, it can be expanded at a low pressure such as 400 kPa or less without damaging the lumen of the living organ. If the pressure for inflating the balloon exceeds 400 kPa, the lumen may be damaged, and even if the amount of expansion during the operation is large, excessive cell proliferation may occur and restenosis may occur over time.
In the method of the present invention, a heating medium is sent into the balloon to inflate it, then a laser is output, and the temperature of the balloon surface is raised from body temperature to 57-80 ° C. within 30 seconds, more preferably within 15 seconds. The body temperature is raised from 60 to 75 ° C. If the temperature rising time exceeds 30 seconds, the lumen of the living organ is damaged and thinned, and restenosis may occur over time. When the temperature of the balloon surface is less than 57 ° C., the lumen is not damaged, but the lumen may be insufficiently expanded. When the temperature of the balloon surface exceeds 80 ° C., the lumen of the living organ is damaged and thinned, and restenosis may occur over time.
[0008]
In the method of the present invention, the temperature of the balloon surface is raised to 57 to 80 ° C., and then the laser output is adjusted so that the temperature of the balloon surface is within 30 seconds within 57 to 80 ° C., more preferably within 15 seconds within 60 to 60 ° C. Keep at 75 ° C. There is no restriction | limiting in particular in the adjustment method of a laser output, For example, a laser output can be on-off controlled based on the information from a temperature sensor, or a laser output can also be continuously controlled. If the temperature retention time on the balloon surface exceeds 30 seconds, the lumen of the living organ is damaged and thinned, and restenosis may occur over time. When the temperature of the balloon surface is less than 57 ° C., the lumen is not damaged, but the lumen may be insufficiently expanded. When the temperature of the balloon surface exceeds 80 ° C., the lumen of the living organ is damaged and thinned, and restenosis may occur over time.
In the method of the present invention, the temperature of the balloon surface is maintained at 57-80 ° C. within 30 seconds, the laser output is stopped, and the temperature of the balloon surface is reduced from 57-80 ° C. to 45 ° C. within 40 seconds by the heat medium. More preferably, it is cooled from 60 to 75 ° C. to 45 ° C. or less within 20 seconds. If the cooling time to 45 ° C. or lower exceeds 40 seconds, the lumen of the living organ is damaged and thinned, and restenosis may occur over time.
FIG. 2 is a graph showing the state of the pressure in the balloon and the temperature of the balloon surface for an example of the implementation of the method of the present invention. When the heating medium starts to be sent from time 0 seconds, the pressure in the balloon starts to increase and reaches 200 kPa after 14 seconds. When laser output is started when the pressure in the balloon reaches 240 kPa 25 seconds after the start of feeding the heat medium, the temperature of the balloon surface rapidly rises and reaches 60 ° C. 4 seconds after the start of laser output. The laser output device is on / off controlled based on a signal sent from the temperature sensor so as to maintain the temperature of the balloon surface at 60 to 70 ° C. When the laser output is stopped 15 seconds after the start of the laser output, the balloon is rapidly cooled by the heat medium, and after 3 seconds from the stop of the laser output, the temperature of the balloon surface becomes 45 ° C. 20 seconds after the laser output is stopped, the heat medium perfusion is stopped and the pressure in the balloon is reduced.
[0009]
The laser energy conversion element used in the present invention can be used without particular limitation as long as it is an element that can receive laser light transmitted by a laser fiber in a balloon and convert it into heat. Examples of such elements include a metal coil, a metal mesh, and a metal braid. There is no restriction | limiting in particular in the temperature sensor used for this invention, For example, a thermocouple, a thermistor, a platinum resistance temperature detector, etc. can be mentioned. The laser output device used in the present invention is not particularly limited. For example, a gas laser such as a carbon dioxide laser, an excimer laser, or a rare gas ion laser, a liquid laser such as a dye laser, a solid laser such as a YAG laser, a glass laser, or a ruby laser. And so on.
Although there is no restriction | limiting in particular in the temperature transmission part used for this invention, A balloon can be used especially suitably. The material of the balloon is not particularly limited as long as it can withstand a pressure of 400 kPa and a temperature of 80 ° C., and examples thereof include polyimide, polyamide, silicone, fluororesin, and polyurethane. The material of the shaft used in the present invention is not particularly limited as long as it is a material having shape retention and elasticity, and examples thereof include polyimide, polyamide, polyurethane, polyvinyl chloride, polypropylene, and polyethylene.
When the catheter and the device of the present invention are used and the treatment is performed by the method of the present invention, only the surface of the luminal tissue is instantaneously heated, the deep part of the luminal tissue is not damaged, and the luminal assembly is performed at a low pressure. Therefore, damage to the vascular tissue due to force can be avoided, and the luminal tissue can be treated safely and effectively.
Although the influence of the heat of living cells is moderate in time, changes in physical properties such as collagen in vascular tissue are physicochemical phenomena and occur instantaneously. Rapid warming of the luminal tissue for a short period of time, heating only the very shallow layer of the luminal tissue to kill the tissue, or providing an apoptotic factor to cause biological damage to the deeper layers To ensure a lumen to obtain adequate blood flow without damaging and expanding the physicochemically flexible blood vessel at a relatively low pressure without damaging the tissue due to excessive force Can do. Therefore, a stable patency of the lumen can be maintained by sufficient blood flow after the treatment without placing a foreign object such as a stent.
[0010]
【Example】
Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
In the examples and comparative examples, the living organ instantaneous heating / cooling device having the configuration shown in FIG. 1 was used. The catheter is made of polyamide and has a shaft outer diameter of 1 mm and a total length of 1,400 mm. The balloon is made of polyimide and has an outer diameter of 3 mm when expanded and a length of 15 mm. Inside the catheter, a heat medium feed tube and a heat medium return tube each having an outer diameter of 200 μm, a quartz optical fiber having an outer diameter of 100 μm, and a thermocouple were inserted.
A laser energy conversion element and a thermocouple contact made of stainless steel were provided in the balloon. A heat medium feeding device consisting of a pressure sensor, a pressure-resistant syringe with a capacity of 20 mL, and an auto injector is connected to the proximal side of the heat medium feeding tube, and while maintaining a predetermined pressure, a volume ratio of contrast medium and physiological saline 1: 1 was sent out. The heat medium flowing out from the end of the heat medium return tube was received in a container placed on a microbalance, and its weight was measured. A 5 W output YAG laser was connected to the near side of the quartz optical fiber. The pressure sensor, the temperature sensor, and the weight of the microbalance were input to a computer, and the flow rate of the heat medium and the laser output were controlled so that the predetermined pressure, the heating rate, the holding temperature, and the cooling rate in the balloon were achieved.
The operating conditions for realizing a predetermined time-temperature-pressure were determined in advance by placing the catheter and balloon of the living organ instantaneous heating / cooling device in a constant temperature bath at 37 ° C. In Examples and Comparative Examples using rabbits, it was confirmed that a predetermined time-temperature-pressure relationship was realized while operating under conditions obtained in advance.
In Examples and Comparative Examples, a peel-off sheath was inserted into the rabbit inguinal artery, a catheter was inserted through the inguinal artery, hemostasis was performed after performing vasodilation under predetermined conditions. The rabbit is returned to its cage, sacrificed for 2 months, and the state of the blood vessel is observed by necropsy.1And the inner diameter d of the blood vessel in the adjacent region0Is measured, and the blood vessel inner diameter ratio d1/ D0Asked. Furthermore, comprehensive evaluation was performed from the observed blood vessel state and the blood vessel inner diameter ratio.
[0011]
referenceExample 1 and Comparative Example 1
  On the left hind leg of the rabbitreferenceExample 1 was performed on Comparative Example 1 with the right hind leg. One catheter was inserted into each of the two inguinal arteries, and the heat medium was perfused to maintain the pressure at 200 kPa. Left hind legreferenceIn Example 1, the balloon surface temperature was raised from 37 ° C. to 70 ° C. in 30 seconds, kept at 70 ° C. for 20 seconds, and then cooled to 45 ° C. in 40 seconds. Comparative Example 1 of the right hind leg is 40 seconds for heating and 50 seconds for cooling,referenceThe operation was performed under the same conditions as in Example 1.
  Two months later, there was almost no abnormality in the blood vessels in the left hind leg. The blood vessel inner diameter ratio was 1.3. Overall, it was judged as good. The blood vessel in the right hind leg was thin. The blood vessel inner diameter ratio was 0.7. Overall, it was determined to be defective.
referenceExample 2 and Comparative Example 2
  referenceIn the same manner as in Example 1 and Comparative Example 1,referenceExample 2 was performed on Comparative Example 2 with the right hind leg. Left hind legreferenceIn Example 2, the balloon surface temperature was raised from 37 ° C. to 70 ° C. in 20 seconds, kept at 70 ° C. for 10 seconds, and then cooled to 45 ° C. in 20 seconds. In Comparative Example 2 of the right hind leg, the balloon surface temperature was raised from 37 ° C. to 90 ° C. in 10 seconds, kept at 90 ° C. for 10 seconds, and then cooled to 45 ° C. in 10 seconds.
  Two months later, there was almost no abnormality in the blood vessels in the left hind leg. The blood vessel inner diameter ratio was 1.3. Overall, it was judged as good. The blood vessel in the right hind leg was thin. The blood vessel inner diameter ratio was 0.9. Overall, it was determined to be defective.
Example 3 and Example 4
  referenceIn the same manner as in Example 1 and Comparative Example 1, Example 3 was performed on the left hind leg of the rabbit, and Example 4 was performed on the right hind leg. In Example 3 of the left hind leg, the balloon surface temperature was raised from 37 ° C. to 80 ° C. in 10 seconds, kept at 80 ° C. for 10 seconds, and then cooled to 45 ° C. in 10 seconds. Example 4 of the right hind leg was operated under the same conditions as Example 3 except that the balloon surface temperature was raised to 70 ° C. and kept at 70 ° C. for 10 seconds.
  Two months later, there was almost no abnormality in the blood vessels in the left hind leg. The blood vessel inner diameter ratio was 1.5. Overall, it was judged as good. No abnormalities were found in the blood vessels in the right hind leg. The blood vessel inner diameter ratio was 1.5. Overall, it was judged as excellent.
Example 5 and Example 6
  referenceIn the same manner as in Example 1 and Comparative Example 1, Example 5 was performed on the left hind leg of a rabbit, and Example 6 was performed on the right hind leg. In Example 5 of the left hind leg, the balloon surface temperature was raised from 37 ° C. to 65 ° C. in 10 seconds, kept at 65 ° C. for 10 seconds, and then cooled to 45 ° C. in 10 seconds. Example 6 of the right hind leg was operated under the same conditions as Example 5 except that the balloon surface temperature was raised to 60 ° C. and kept at 60 ° C. for 10 seconds.
  Two months later, no abnormality was observed in the blood vessels of the left hind leg. The blood vessel inner diameter ratio was 1.4. Overall, it was judged as excellent. No abnormalities were found in the blood vessels in the right hind leg. The blood vessel inner diameter ratio was 1.4. Overall, it was judged as excellent.
Example 7 andComparative Example 6
  referenceAs in Example 1 and Comparative Example 1, Example 7 was performed on the left hind leg of the rabbit,Comparative Example 6Went. In Example 7 of the left hind leg, the balloon surface temperature was raised from 37 ° C. to 57 ° C. in 10 seconds, kept at 57 ° C. for 10 seconds, and then cooled to 45 ° C. in 10 seconds. Right hind legComparative Example 6Was operated under the same conditions as in Example 7 except that the balloon surface temperature was raised to 55 ° C. and kept at 55 ° C. for 10 seconds.
  Two months later, no abnormality was observed in the blood vessels of the left hind leg. The blood vessel inner diameter ratio was 1.2. Overall, it was judged as good. No abnormalities were found in the blood vessels in the right hind leg. The blood vessel inner diameter ratio was 1.0. Overall, it was judged to be slightly poor.
Example8And Comparative Example 3
  Example with the left hind leg of a rabbit8Comparative Example 3 was performed on the right hind leg. One catheter was inserted into each of the two inguinal arteries, and the heat medium was perfused to maintain the left hind leg pressure at 400 kPa and the right hind leg pressure at 600 kPa. In both hind legs, the balloon surface temperature was raised from 37 ° C. to 70 ° C. in 10 seconds, kept at 70 ° C. for 10 seconds, and then cooled to 45 ° C. in 10 seconds.
  Two months later, no abnormality was observed in the blood vessels of the left hind leg. The blood vessel inner diameter ratio was 1.5. Overall, it was judged as excellent. The blood vessel in the right hind leg was enlarged in diameter, but thickened in the media. The blood vessel inner diameter ratio was 1.2. Overall, it was judged to be slightly poor.
Comparative Example 4 and Comparative Example 5
  Comparative Example 4 was performed on the left hind leg of the rabbit, and Comparative Example 5 was performed on the right hind leg. Insert one catheter into each of the two inguinal arteries and perfuse a room-temperature heat medium without outputting a laser. The pressure on the left hind leg is 1,200 kPa and the pressure on the right hind leg is 400 kPa. Then, after maintaining each for 10 seconds, the perfusion of the heat medium was stopped.
  Two months later, the blood vessel in the left hind leg was damaged and thickened. The blood vessel inner diameter ratio was 0.8. Overall, it was determined to be defective. Although the blood vessel of the right hind leg was hardly abnormal, the blood vessel was not dilated, and the blood vessel inner diameter ratio was 1.0.
  Reference Examples 1-2, Examples 3-8And Comparative Examples 1 to6The results are shown in Table 1.
[0012]
[Table 1]
Figure 0003711500
[0013]
  referenceComparing the results of Example 1 and Comparative Example 1, even when the pressure of the balloon was 200 kPa and the surface temperature was the same at 70 ° C., the temperature was raised for 30 seconds and cooled for 40 seconds.referenceIn Example 1, good results were obtained, whereas in Comparative Example 1 in which the time for heating and cooling was long by 10 seconds each, the blood vessel was thinned and not dilated. From this result, it is understood that it is important to obtain a good result by heating and cooling the balloon surface in a short time.
  When the results of Example 3 and Comparative Example 2 are compared, even if the balloon pressure is 200 kPa and the heating and cooling times are the same in 10 seconds, the balloon surface temperature is 80 ° C., which is good. While the results are obtained, in Comparative Example 2 in which the balloon surface temperature is 90 ° C., the blood vessel is thinned and not expanded. From this result, it can be seen that it is important for the balloon surface temperature not to be too high to obtain a good result.
  In Examples 4 to 6, in which the balloon pressure was 200 kPa, the balloon surface temperature was 60 to 70 ° C., and the temperature was raised and cooled in 10 seconds, respectively, no abnormality was observed in the vascular condition, and the degree of dilation The results are also excellent.
  Example8When the results of Comparative Example 3 are compared, the balloon surface pressure is 400 kPa even when the surface temperature of the balloon is the same 70 ° C. and the heating and cooling times are the same for 10 seconds each.8In Comparative Example 3 in which the balloon pressure was increased to 600 kPa, the vascular media was thickened, and as a result, the vascular inner diameter ratio was expanded only to 1.2 times. Absent. From this result, it can be seen that if the pressure of the balloon is too high, it has an adverse effect on the dilation of the blood vessel.
[0014]
【The invention's effect】
According to the living organ instantaneous heating / cooling catheter, the living organ instantaneous heating / cooling device, and the living organ instantaneous heating / cooling method of the present invention, the living organ can be heated and cooled in an extremely short time to treat a diseased tissue, In particular, it is applicable to percutaneous coronary angioplasty (PTCA) and the like, and can be safely expanded without damaging the blood vessel, and restenosis can be prevented.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of one embodiment of a living organ instantaneous heating / cooling catheter according to the present invention.
FIG. 2 is a graph showing the pressure in the balloon and the temperature of the balloon surface for an example of the implementation of the method of the present invention.
[Explanation of symbols]
1 balloon
2 Shaft
3 Laser output device
4 Heat medium feeder
5 Laser energy conversion element
6 Temperature sensor
7 Heat transfer tube
8 Heat medium return tube
9 Laser fiber
10 Temperature sensor lead

Claims (1)

バルーン温度伝達部に熱媒体を送り込むことにより400kPa以下の圧力でバルーンを膨らませた後、該熱媒体の圧力を一定に維持しながらレーザーを出力してバルーン表面の温度を30秒以内に体温から57〜80℃まで昇温し、レーザー出力を調整してバルーン表面の温度を30秒以内57〜80℃に保ったのち、レーザー出力を停止して熱媒体によりバルーン表面の温度を10秒以内に57〜80℃から45℃以下に冷却する瞬間加熱冷却方法に用いる生体器官瞬間加熱冷却用カテーテルであって、先端側に設けられたバルーン温度伝達部、該バルーン温度伝達部内に収納されたレーザーエネルギー変換素子及び温度センサー、先端側と手元側をつなぐシャフト、該シャフト内に収納された熱媒体送りチューブ、熱媒体戻りチューブ及びレーザーファイバー、並びに、手元側に設けられたレーザー出力装置及び熱媒体送り装置を有するカテーテルであって、該カテーテルが、バルーン温度伝達部の温度を30秒以内に37℃から80℃まで昇温する手段、及び、バルーン温度伝達部の温度を10秒以内に80℃から45℃まで冷却する手段を有することを特徴とする生体器官瞬間加熱冷却用カテーテル。  After inflating the balloon at a pressure of 400 kPa or less by sending a heat medium into the balloon temperature transmission section, the laser is output while maintaining the pressure of the heat medium constant, and the temperature of the balloon surface is changed from the body temperature to the body temperature within 30 seconds. After raising the temperature to -80 ° C and adjusting the laser output to keep the balloon surface temperature within 57 seconds within 57-80 ° C, the laser output is stopped and the temperature of the balloon surface is reduced to 57 within 10 seconds by the heat medium. A living organ instantaneous heating / cooling catheter used in an instantaneous heating / cooling method for cooling from -80 ° C. to 45 ° C. or less, a balloon temperature transmission unit provided on the distal end side, and a laser energy conversion housed in the balloon temperature transmission unit Element and temperature sensor, shaft connecting tip side and proximal side, heat medium feed tube housed in the shaft, heat medium return tube And a laser fiber, and a catheter having a laser output device and a heat medium feeding device provided on the hand side, the catheter raising the temperature of the balloon temperature transmission section from 37 ° C. to 80 ° C. within 30 seconds And a means for instantaneously cooling and cooling the living organ organ, comprising means for cooling the temperature of the balloon temperature transmission section from 80 ° C. to 45 ° C. within 10 seconds.
JP2002351532A 2002-12-03 2002-12-03 Instantaneous heating and cooling catheter for living organs Expired - Fee Related JP3711500B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351532A JP3711500B2 (en) 2002-12-03 2002-12-03 Instantaneous heating and cooling catheter for living organs

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351532A JP3711500B2 (en) 2002-12-03 2002-12-03 Instantaneous heating and cooling catheter for living organs

Publications (2)

Publication Number Publication Date
JP2004180934A JP2004180934A (en) 2004-07-02
JP3711500B2 true JP3711500B2 (en) 2005-11-02

Family

ID=32753416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351532A Expired - Fee Related JP3711500B2 (en) 2002-12-03 2002-12-03 Instantaneous heating and cooling catheter for living organs

Country Status (1)

Country Link
JP (1) JP3711500B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006015064A (en) * 2004-07-05 2006-01-19 Keio Gijuku Balloon catheter
JP2014508580A (en) 2011-01-19 2014-04-10 フラクティル ラボラトリーズ インコーポレイテッド Devices and methods for treatment of tissue
EP2819601B1 (en) * 2012-02-27 2022-04-06 Fractyl Health, Inc. Heat ablation systems and devices for the treatment of tissue
WO2015077571A1 (en) 2013-11-22 2015-05-28 Fractyl Laboratories, Inc. Systems, devices and methods for the creation of a therapeutic restriction in the gastrointestinal tract
WO2014022436A1 (en) 2012-07-30 2014-02-06 Fractyl Laboratories Inc. Electrical energy ablation systems, devices and methods for the treatment of tissue
WO2014026055A1 (en) 2012-08-09 2014-02-13 Fractyl Laboratories Inc. Ablation systems, devices and methods for the treatment of tissue
WO2014055997A1 (en) 2012-10-05 2014-04-10 Fractyl Laboratories Inc. Methods, systems and devices for performing multiple treatments on a patient
WO2014197632A2 (en) 2013-06-04 2014-12-11 Fractyl Laboratories, Inc. Methods, systems and devices for reducing the luminal surface area of the gastrointestinal tract
EP3043732B1 (en) 2013-09-12 2021-04-07 Fractyl Laboratories, Inc. Systems and devices for treatment of target tissue
US10959774B2 (en) 2014-03-24 2021-03-30 Fractyl Laboratories, Inc. Injectate delivery devices, systems and methods
US11185367B2 (en) 2014-07-16 2021-11-30 Fractyl Health, Inc. Methods and systems for treating diabetes and related diseases and disorders
WO2016011269A1 (en) 2014-07-16 2016-01-21 Fractyl Laboratories, Inc. Methods and systems for treating diabetes and related diseases and disorders
US9844641B2 (en) 2014-07-16 2017-12-19 Fractyl Laboratories, Inc. Systems, devices and methods for performing medical procedures in the intestine
JP6418381B2 (en) * 2014-07-29 2018-11-07 ニプロ株式会社 Vascular treatment device
JP6726933B2 (en) * 2015-04-13 2020-07-22 ニプロ株式会社 Vascular treatment device

Also Published As

Publication number Publication date
JP2004180934A (en) 2004-07-02

Similar Documents

Publication Publication Date Title
JP3711500B2 (en) Instantaneous heating and cooling catheter for living organs
US6575933B1 (en) Mechanical support for an expandable membrane
US5976152A (en) Method and system for deploying shape memory prostheses with heated fluid
US5045056A (en) Method and device for thermal ablation of hollow body organs
CA2250603C (en) Treating urinary and other body strictures
US5292321A (en) Thermal balloon angioplasty with thermoplastic stent
JP4568283B2 (en) Apparatus for treatment of tissue adjacent to a body tube by a compression balloon
US6241718B1 (en) Method for inhibiting restenosis
US6673066B2 (en) Apparatus and method to diagnose and treat vulnerable plaque
US7001378B2 (en) Method and device for performing cooling or cryo-therapies, for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US8579888B2 (en) Medical probes for the treatment of blood vessels
EP0879034B1 (en) Method and apparatus for controlling body temperature
US6905494B2 (en) Method and device for performing cooling- or cryo-therapies for, e.g., angioplasty with reduced restenosis or pulmonary vein cell necrosis to inhibit atrial fibrillation employing tissue protection
US6123083A (en) Device and method for treatment of a prostate while preventing urethral constriction due to collagen rich tissue shrinkage
US20080046046A1 (en) Method for endovascular management of body temperature
KR20110104504A (en) Selective accumulation of energy with or without knowledge of tissue topography
CN109152599A (en) Balloon catheter
US20040220559A1 (en) Preparation of working fluid for use in cryotherapies
US20030014095A1 (en) Preparation of working fluid for use in cryotherapies
US20200038672A1 (en) Radiofrequency balloon catheter system
US8025638B2 (en) Balloon catheter, medical apparatus and method for treating living organ
JP4669218B2 (en) Medical equipment
JP2006015064A (en) Balloon catheter
JPH06233779A (en) Medical ablation catheter
WO2019023185A1 (en) Method for manufacturing cryogenic balloon for intravascular catheter system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041008

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041008

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20041008

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050314

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050704

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees