JP3711196B2 - Method for producing titanium for sputtering target and titanium slab used for the production - Google Patents

Method for producing titanium for sputtering target and titanium slab used for the production Download PDF

Info

Publication number
JP3711196B2
JP3711196B2 JP07791798A JP7791798A JP3711196B2 JP 3711196 B2 JP3711196 B2 JP 3711196B2 JP 07791798 A JP07791798 A JP 07791798A JP 7791798 A JP7791798 A JP 7791798A JP 3711196 B2 JP3711196 B2 JP 3711196B2
Authority
JP
Japan
Prior art keywords
rolling
slab
purity
hot
ingot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP07791798A
Other languages
Japanese (ja)
Other versions
JPH11269640A (en
Inventor
満男 石井
秀樹 藤井
由尚 河原
正夫 千葉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP07791798A priority Critical patent/JP3711196B2/en
Publication of JPH11269640A publication Critical patent/JPH11269640A/en
Application granted granted Critical
Publication of JP3711196B2 publication Critical patent/JP3711196B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)
  • Metal Rolling (AREA)
  • Forging (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、高純度チタンターゲット材に用いる高純度チタン展伸材の原素材(スラブ)、並びに原素材および展伸材の製造方法に関するものである。特に半導体デバイス製造用および液晶等の表示素子製造用の高純度チタンスパッタリングターゲット材に用いる均一なマクロ模様を有する高純度チタン展伸材(熱延厚板)の製造方法並びに該展伸材用のスラブに関するものである。
【0002】
【従来の技術】
VLSIや液晶等の表示素子の急激な高集積化に伴い、ゲート電極材、拡散バリア材料、配線材等として高融点・低抵抗の金属である高純度チタンの実用化が進められている。これら電子材料としてのチタンは主としてスパッタリング用ターゲット材として供給される。このために、ターゲット用の高純度チタン材の需要が急増している。
【0003】
従って、これらの材料に使用する材料中の純度は非常に重要である。例えば、Fe,Ni,Cu等の不純物金属元素は半導体素子のリーク電流増大を惹起し、U,Th等の放射性元素はソフトエラーの原因となることから、厳しく制限されており、上記の用途に使用する材料は高純度のものが要求されている。
【0004】
また、これら高純度チタン材は、通常次のような工程で製造される。先ず、原料となる高純度の素材は、Mg還元法(クロール法)による高純度スポンジ、沃化物法あるいは溶融塩電解精製法で得られた高純度析出物を、真空アーク溶解炉(VAR)あるいは電子ビーム溶解炉(EBR)で溶解して蒸気圧の高いアルカリ金属類を蒸散除去したのちインゴットとする。このインゴットを使用形状に合わせて熱間加工を施し、ビレット、棒材、板材、線材等に加工する方法(特開昭63−212061号公報)、およびインゴットを鍛造加工および圧延加工して形状を整える方法(特開平8−232061号公報,特開平5−255843号公報)が知られている。さらに、加工中のコンタミネーションを防止するため、室温近傍の温度における冷間加工によって所定の形状に加工する方法(特開平3−130339号公報)、また、上述の高純度析出物を圧縮容器に封入した後、HIP(熱間静水圧加工装置)で加熱・加工して直接所望の形状を得る方法もある(特開平8−277427号公報)。
【0005】
【発明が解決しようとする課題】
上記の方法は主として、高純度の原料をその純度を損ねずにターゲット材料として望ましい形状に近いまで成形することにその技術的主眼が置かれてきた。一方、技術革新の激しいVLSI分野では、ターゲット材料に対する要求品質水準が高くなる一方であり、それらに十分に応えられない事態も発生している。このような事態の発生には、例えば、圧延加工組織の残存、粗大結晶粒の混在、不均一な結晶粒径分布、好ましくない集合組織の存在、集合組織のバラツキ等が影響していると考えられるが、十分な検討は行われておらず、必ずしも需要家の要求に応えられないのが現状である。
【0006】
高純度チタン材料を製造するための原素材(すなわち、溶解して製造したインゴットや粗加工を施したスラブやビレットなど)を、さらに鍛造、圧延、熱処理等を行って展伸材にする場合、原素材からの加工工程を経て引き継いできた模様が存在するのが普通である。この模様(以下、「マクロ模様」と呼ぶ)の存在は、光学顕微鏡下での高倍率の観察では看過されることも多く、従来は十分には把握されていなかった。
【0007】
ここで、マクロ組織とマクロ模様の差異について述べる。通常、金属組織学でいうマクロ組織は鋳造組織や加工組織の現出に使用されるもので、適当な金属組織現出用酸液(例えば、硝弗酸)を用いてエッチングすることで得られる。鋳造組織や加工組織の場合、酸液の腐食作用を受けて、加工歪が集中するメタルフロー部、格子欠陥密度の高い結晶粒界、結晶粒の内部におけるコロニーと呼ばれる結晶方位がほぼ揃った領域の間の境界などが優先的に侵食されて、模様として肉眼で認識される。
【0008】
一方、マクロ模様とは原素材、すなわちインゴット若しくはそれを途中まで加工した材料中に存在する比較的粗大な結晶粒およびそれに含まれていたコロニーが、展伸加工途中の塑性変形と熱履歴を受けて、形状、大きさ、それらの分布を変化させた名残として、展伸材(本発明の場合は熱延厚板製品)をマクロエッチングすると痕跡程度の模様として存在するものを指す。マクロ模様の内部には通常の光学顕微鏡で観察されるミクロ組織を含んでいるものの、マクロ模様の境界が、上述のマクロ組織におけるような明瞭な金属組織的特徴との対応が困難な場合が多い。
【0009】
ミクロ組織の大部分は、その先祖であるマクロ組織の結晶学的な配向性を継承しているので、限られた狭い領域で観察した場合、一見ミクロ組織が均一に見えても、実際は個々のマクロ模様の内部においてミクロ組織が均一になっているだけという恐れが存在する。
【0010】
発明者らは、このマクロ模様が不均一であるとスパッタリング法により生成した膜厚の不均一性や配向性の不均一性を惹起させるとの認識から検討を行い、熱延厚板製品のマクロ模様の程度(均一性)と原素材のインゴット若しくはそれを途中まで加工した材料中に存在するマクロ組織との関連を詳細に検討することにより、本発明を成すに至ったものである。
【0011】
このようなマクロ模様が不均一に存在している熱延製品から製造したターゲット材を用いてスパッタリングすると、スパッタ粒子の放出方位分布、放出速度分布、放出エネルギー分布がマクロ模様の持つ結晶学的配向性に左右され、基盤に付着するスピードに差が出てきて、付着膜厚の不均一性や配向性の不均一性の原因となる。
【0012】
【課題を解決するための手段】
本発明は、高純度チタン展伸材のマクロ模様の不均一性の原因を、原素材、すなわち分塊鍛造・分塊圧延スラブに含まれているいわゆるマクロ組織に起因するものとして捉え、高純度チタンターゲット材を展伸加工して製造する際の原素材中に存在するマクロ組織を均一化する試験を行った結果得られたものである。すなわち、分塊鍛造・分塊圧延スラブのマクロ組織不均一性、熱延条件および高純度ターゲット素材としての厚板製品のマクロ模様不均一性の関係を詳細に調査した。
【0013】
このような調査の結果成し得た本発明は、高純度チタン展伸材の製造工程の中で、特に、原素材の製造工程、例えば、インゴットの分塊鍛造・分塊圧延工程に着目して分塊鍛造・分塊圧延工程における再結晶分率を全板厚に亘って制御した原素材を製造し、それ以降の加工工程を経てターゲット素材として使用される厚板に至るまでに引き継いできたマクロ模様が均一であることを可能とする高純度ターゲット材の原素材を提供するものである。
【0014】
【発明の実施の形態】
本発明は、基本的には以下の製造工程を前提として構築されたものである。通常、高純度チタン展伸材の製造工程は、真空アーク溶解炉(VAR)や電子ビーム再溶解炉(EBR)において高純度原料を溶解後、金属状態の円柱状インゴットまたは矩形断面インゴットに鋳造される。以下、これらを「VARインゴット」および「EBRインゴット」と呼ぶ。
【0015】
VARインゴットは、その形状のため直接厚板圧延の素材とされることは稀で、鍛造機、大型プレス機あるいは分塊圧延機と呼ばれる専用施設で円柱の形状を扁平な矩形断面状のスラブに成形することが多い。また、EBRインゴットは、円柱状や矩形断面のインゴットであり、やはり鍛造機や分塊圧延機などで後工程の厚板熱延機で操業しやすい矩形断面スラブに成形される。このようにインゴットを分塊鍛造または分塊圧延して製造したスラブ状の中間素材を本発明では「分塊鍛造・分塊圧延スラブ」、あるいは単に「スラブ」と呼ぶ。
【0016】
本発明では、鋳造ままインゴットを半径方向に加工を加えて扁平化して矩形スラブを作る方法や、場合によってはインゴットの長手方向に加工を加えて扁平化して矩形スラブを作る方法、インゴットの長手方向に加工を加えて長手方向に扁平化してインゴットの直径を増やしてから再度半径方向に加工を加えて扁平化する方法等を併用して分塊鍛造・分塊圧延を実施した。
【0017】
ここでは分塊鍛造・分塊圧延スラブのマクロ組織不均一性を、スラブ表面、板厚1/4部、板厚1/2部におけるスラブ板面(厚板製品の板面になる面)に平行な断面およびそれに直角な断面にて切出したブロック状のサンプルをマクロエッチした後、直接拡大鏡にかけて(倍率×1〜×5)で判定した。
【0018】
判定は、(1)分塊鍛造・圧延段階でできた延伸したメタルフローが明瞭で、粒界がゆがんでいることを特徴とする加工変形組織の残存量、(2)スラブ表面部で特に観察される事が多い微細再結晶組織の量、(3)スラブの板厚の大部分を占め、延伸した痕跡が無く、比較的粗粒・等軸で粒界が直線状であることを特徴とするような完全再結晶組織の量を測定した。
【0019】
これらの組織毎の総量を板厚方向の厚みで表し、全スラブ厚に対する(3)の完全再結晶組織の量の比率を再結晶分率(%)として表した。なお、ここで用いた完全再結晶組織はβ域において得られたもので、(2)に分類されるα域で得られた再結晶組織とは異なるものである。前者は、β域で再結晶した材料がβ域からα域への冷却途中で変態を起こしたもので、高倍率で光学顕微鏡観察すると、結晶粒界が笹の葉状にギザギザを呈していることで後者と容易に区別できる。後者は、基本的には微細で粒界が滑らかであることが特徴である。
【0020】
分塊鍛造・分塊圧延スラブから製造した厚板製品のマクロ模様不均一性を、板面に平行に厚板表面の黒皮部を含めて深さ0.5mm〜4mm研削し、さらに#320研磨を行って通常の硝沸酸系のマクロ腐食液でエッチングして判定した。なお、マクロ模様不均一性の判定を容易にするため、その程度の軽度のものについては#600〜#1000の研磨を行った。マクロ模様不均一性は、種々の程度のマクロ模様不均一性を有する標準サンプルを用いて、評点×(均一性不良)、△(均一性やや不良)、○(均一性やや良好)、◎(均一性良好)の4段階評価で○以上を合格と判定した。
【0021】
すなわち、 4N5 (99.995%)レベルの種々の円柱型VARインゴット(80〜500mmφ)および円形断面または矩形断面のEBRインゴットを、厚さ17〜443mmの分塊鍛造・分塊圧延スラブとした後の再結晶分率、これらの原素材をさらに厚板熱延して製造する場合の、熱延時の加工量の指標として総圧下比(圧延前厚さ/圧延後厚さ)および厚板(板厚=8mm)マクロ模様不均一性の関係を整理した。
【0022】
厚板はいずれも通常の焼鈍(大気中焼鈍,VCF焼鈍)を経て製造されたものである。
ここで、「VCF焼鈍」とは、熱間で形状矯正と焼鈍を同時に行わせる炉内で焼鈍することを指し、厚板・中板などレベラー矯正が困難な材料を、単独あるいは積層して炉内を雲母粉などで充填した後、加熱しながら真空引きすると、大気圧が板材に作用して微小なクリープ変形が生じて、形状が矯正されて平坦な板材を製造できる。
【0023】
上記判定の結果、マクロ模様均一性に優れる厚板は次の2条件を共に満足する場合に得られることが判明した。すなわち、(1)厚板熱延時の総圧下比(圧延前厚さ/圧延後厚さ)が2.7超であること、(2)分塊鍛造・分塊圧延スラブに含まれる不均一マクロ組織の量が22%未満であることである。
【0024】
表1は、熱延が総圧下比(圧延前厚さ/圧延後厚さ)が2.7超である場合について、分塊鍛造・分塊圧延スラブの再結晶分率とマクロ模様不均一性の関係を示したもので、再結晶分率が低い場合はマクロ模様の均一性の程度が悪く、再結晶分率の増加に従ってマクロ模様の均一性が顕著に改善される様子を示している。さらに、マクロ模様の均一性評点が◎点となるときは、再結晶分率が100%の場合に限定されることが判明した。これらのデータには、円柱状VARインゴットおよび円断面EBRインゴットを大型プレス機や鍛造機で鍛造スラブとしたものおよび分塊圧延機でスラブとしたものが含まれている。なお、上記データは分塊鍛造・分塊圧延スラブを直接熱延したもので、粗熱延と仕上熱延を連続一貫して行い、仕上熱延前の再加熱は行わなかった。
【0025】
また、分塊鍛造若しくは分塊圧延は、インゴットを700℃〜1300℃で最大12時間加熱して行い、厚さ16mm〜440mmの矩形断面スラブを得た。熱延は上記スラブをα域の820℃〜880℃に2〜6時間加熱したのち行い、厚さ8mmの厚板とし、製品寸法(厚さと幅、長さ)に合わせてクロス圧延比率を(0.3〜3)の間で変動させて行った。厚板の焼鈍は、板厚と加熱炉装入量に合わせて大気炉では220℃〜800℃で10〜60分、VCF炉では200℃〜700℃で0.5時間〜4時間の均熱時間を確保して行った。
ここで、「クロス圧延比率」とは、あるサイズのスラブから所定の製品寸法の熱延製品を製造するために、熱延中に適宜圧延方向を90度変更して行う圧延方法(クロス圧延)において、熱延開始時の圧延方向(L)およびそれに対して直角な方向(C)の二つの方向へ圧延した時の各圧下量の総和の比(Σ圧下量(L)/Σ圧下量(C))で表す。
【0026】
【表1】

Figure 0003711196
【0027】
なお、前述のように本発明はVARインゴットおよびEBRインゴットを分塊鍛造・分塊圧延して厚板熱延機で操業しやすい形状にした後、厚板熱延機で厚板製品を製造する工程を前提にしているが、分塊工程を経由しないでも、鋳造ままで本発明にいう高位のマクロ組織の均一性を有し、熱延用素材として形状的に合致したインゴットが使用でき、熱延時の総圧下比(圧延前厚さ/圧延後厚さ)が2.7超にできる場合は、分塊鍛造・分塊圧延工程を省略できることはいうまでもない。
【0028】
本発明において、分塊鍛造・分塊圧延スラブの仕上温度はスラブ表面を放射温度計で測定したものを指し、いわゆる材料そのものの温度ではない。過去の実測試験結果から経験的には、スラブ中央部の平均的温度は表面温度より185℃程高くなっている事が分かっている。この仕上温度は、純技術的には加工素材内部の温度を使用すべきであるが、実際の製造現場において品質管理上、実用的な管理指標であり、本発明では一貫してこの指標を使用することとした。
【0029】
本発明で扱う高純度チタンとは、純度が 4N5 (99.995%)以上のものを指す。なお、このときガス成分のO,N,Hについては純度表示にカウントしないものとする。
【0030】
【実施例】
以下に、本発明を実施例に基づいてさらに説明する。
[実施例1(大型インゴット)]
純度 4N5 (99.995%)のVAR円柱型インゴット(310mmφ,500mmφ)を分塊圧延機で分塊圧延し、さらに再加熱して熱延を行い、板厚8mmの厚板とした。分塊圧延条件、熱延条件および厚板に製造してから行うVCF焼鈍条件は、表2に示す通りである。熱延の総圧下比はいずれの場合も2.7超である。各分塊圧延スラブの端部から切出したマクロサンプルを用いてマクロ組織不均一性と、それらに対応する各厚板のマクロ模様不均一性を判定した。その結果、表2に示すように、分塊圧延スラブのマクロ組織の不均一なもの(再結晶分率が低いもの)は、それを用いて製造した厚板のマクロ模様の均一性評点が低い結果となった。
【0031】
【表2】
Figure 0003711196
【0032】
[実施例2(小形インゴット)]
純度 4N5 (99.995%)〜 5N5 (99.9995%)のEBRインゴット(80mmφ,135mmφ)およびVAR円柱型インゴット(100mmφ)を鍛造機で分塊した後、再加熱して熱延を行い、板厚8mmの厚板とした。分塊鍛造条件、熱延条件および厚板に製造してから行う大気焼鈍条件は、表3に示す通りである。熱延の総圧下比はいずれの場合も2.7超である。実施例1と同様の評価を行った結果、分塊鍛造スラブのマクロ組織の不均一なもの(再結晶分率が低いもの)は、それを用いて製造した厚板のマクロ模様の均一性評点が低い結果となった。
【0033】
【表3】
Figure 0003711196
【0034】
[実施例3(スラブβ域再加熱)]
実施例1および2で再結晶分率の低かった鍛造・分塊スラブの一部を、加工変形組織および微細再結晶組織の解消を狙って加熱炉に装入して、α域およびβ域で再加熱(加熱温度での保持時間は30〜60分間)した。850℃で加熱した場合は、加工変形組織および微細再結晶組織はほぼ解消されて均一なα域焼鈍組織となった。
【0035】
一方、β域の950〜1190℃に加熱した場合は、これらの不均一組織が解消された上に、β域での完全再結晶組織が得られた。加熱後スラブを放冷し、表4の熱延条件で熱延し、さらにVCF焼鈍を行って厚板製品とした。厚板製品のマクロ模様均一性を評価したところ、熱延素材であるスラブのマクロ組織が完全再結晶組織となっている発明例の場合は、得られた厚板のマクロ模様の均一性は全ての場合において◎の評価となった。
【0036】
また、比較例のように加工変形組織が解消されてもβ域での完全再結晶組織が得られない場合は、マクロ模様の均一性は劣悪なものとなった。
【0037】
【表4】
Figure 0003711196
【0038】
[実施例4(圧延率の影響)]
5N(99.999%)のEBRインゴット(80mmφ,135mmφ)および 4N5 (99.995%)のVARインゴット(100mmφ,310mmφ,500mmφ)を分塊鍛造機または分塊圧延機で分塊し、スラブとした。分塊圧延条件、熱延条件および厚板に製造してから行うVCF焼鈍条件は、表5に示す通りである。発明例(15)以降、比較例(12)以降では、それぞれ200mm厚さの鍛造・分塊スラブを先ず製造し、これらからさらに種々の厚さの熱延用素材を切出し、熱延に供した。
【0039】
いずれのスラブもマクロ組織の均一性の点からはほぼ均一と見なせるものである。しかしながら、このようなスラブを用いる場合であっても熱延時の総圧下比が2.7を越えない場合は、例え、それらの分塊圧延スラブの再結晶分率が非常に高い場合でもβ結晶粒の痕跡が残り、マクロ模様均一性判定結果は良くなかった。
【0040】
なお、本実施例では、主として鋳造ままインゴットを半径方向に加工を加えて扁平化し、矩形スラブを作る方法を用いたが、発明例(11,13,14)では、インゴットの長手方向に加工を加えて長手方向に扁平化してインゴットの直径を増やしてから、再度半径方向に加工を加えて扁平化する方法で鍛造・分塊圧延を実施した。
【0041】
【表5】
Figure 0003711196
【0042】
[実施例5(研削)]
実施例1および2で完全再結晶分率の低かった鍛造・分塊スラブの一部を採取し、表面に存在していた加工変形組織および微細再結晶組織等の不均一マクロ組織を機械研削により切削し、熱延に供した。熱延時のスラブ加熱温度は700℃とし、総圧下比はいずれの場合も2.7超とした。厚板に製造してから行うVCF焼鈍条件は、全て500℃×4時間保持で行った。スラブの切削を行っても不均一組織を十分に除去しない場合は、やはりマクロ模様の均一性の評価は悪くなる。
【0043】
【表6】
Figure 0003711196
【0044】
[実施例6(直接圧延)]
鋳造ままの 4N5 (99.995%)のEBR矩形断面スラブ(300mm幅)をそのまま厚板熱延機で熱延した。熱延条件および厚板に製造してから行う大気焼鈍条件は、表7に示す通りである。鋳造ままのスラブであるので、このスラブの完全再結晶分率は100%で、加工組織等の不均一なマクロ組織を含んでいなかった。
【0045】
【表7】
Figure 0003711196
【0046】
【発明の効果】
本発明は、スパッタリングターゲット用高純度チタン展伸材の製造方法並びその製造方法に用いるスラブであり、特に半導体デバイス製造用高純度チタンターゲット材に用いる均一なマクロ模様を有する高純度チタン展伸材(熱延厚板)を提供するものである。
【0047】
さらに、高純度チタン展伸材を製造する際の中間素材である分塊鍛造・分塊圧延スラブにおけるマクロ組織不均一性に着目し、これらと熱延条件、展伸材のマクロ模様均一性との関係を明らかにし、マクロ模様が均一な高純度チタン厚板を製造するための分塊鍛造・分塊圧延スラブを提供するものである。
【0048】
以上のことから本発明は、高純度チタン展伸材、高純度ターゲット材、ターゲット材の品質、生産効率および歩留りを向上させる経済的な効果が大きいばかりでなく、急激な技術革新が進む半導体や表示素子の高集積化に寄与することができ、その工業的価値は極めて大きい。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a raw material (slab) of a high-purity titanium wrought material used for a high-purity titanium target material, and a raw material and a method for producing the wrought material. In particular, a method for producing a high-purity titanium wrought material (hot-rolled thick plate) having a uniform macro pattern used for a high-purity titanium sputtering target material for manufacturing a semiconductor device and a display element such as a liquid crystal, and for the wrought material It relates to slabs.
[0002]
[Prior art]
With the rapid integration of display elements such as VLSI and liquid crystal, high-purity titanium, which is a metal having a high melting point and low resistance, is being put to practical use as a gate electrode material, a diffusion barrier material, a wiring material, and the like. Titanium as an electronic material is mainly supplied as a sputtering target material. For this reason, the demand for high-purity titanium materials for targets is increasing rapidly.
[0003]
Therefore, the purity in the materials used for these materials is very important. For example, impurity metal elements such as Fe, Ni, and Cu cause an increase in leakage current of semiconductor elements, and radioactive elements such as U and Th cause soft errors. The material used is required to have a high purity.
[0004]
These high-purity titanium materials are usually produced by the following steps. First, a high-purity material as a raw material is a high-purity sponge obtained by the Mg reduction method (Kroll method), a high-purity precipitate obtained by an iodide method or a molten salt electrolytic purification method, and a vacuum arc melting furnace (VAR) or An ingot is obtained after evaporating and removing alkali metals having a high vapor pressure by melting in an electron beam melting furnace (EBR). This ingot is hot-worked according to the shape to be used, and processed into billets, rods, plates, wires, etc. (Japanese Patent Laid-Open No. Sho 63-212061), and the ingot is forged and rolled to form the shape. There are known methods for preparing (Japanese Patent Laid-Open Nos. 8-232061 and 5-255843). Furthermore, in order to prevent contamination during processing, a method of processing into a predetermined shape by cold processing at a temperature near room temperature (Japanese Patent Laid-Open No. 3-130339), and the above-described high-purity precipitates in a compressed container There is also a method in which a desired shape is directly obtained by encapsulating and then heating and processing with a HIP (hot isostatic pressing device) (Japanese Patent Laid-Open No. 8-277427).
[0005]
[Problems to be solved by the invention]
The technical focus of the above method has mainly been to mold a high-purity raw material to a shape that is desirable as a target material without impairing its purity. On the other hand, in the VLSI field where technological innovation is intense, the required quality level for the target material is increasing, and there is a situation in which it is not possible to sufficiently meet these requirements. The occurrence of such a situation is considered to be affected by, for example, the remaining of the rolled structure, the presence of coarse crystal grains, the nonuniform crystal grain size distribution, the presence of undesirable textures, and texture variations. However, sufficient consideration has not been made and it is not always possible to meet the demands of customers.
[0006]
When a raw material for producing a high-purity titanium material (that is, an ingot produced by melting, a slab or billet subjected to rough processing, etc.) is further subjected to forging, rolling, heat treatment, etc. to make a wrought material, There are usually patterns that have been inherited through processing steps from raw materials. The presence of this pattern (hereinafter referred to as “macro pattern”) is often overlooked in high-magnification observation under an optical microscope, and has not been sufficiently grasped in the past.
[0007]
Here, the difference between the macro structure and the macro pattern is described. Usually, the macro structure in the metallography is used to reveal a cast structure or a processed structure, and can be obtained by etching using an appropriate acid solution (for example, nitric hydrofluoric acid). . In the case of a cast or processed structure, a metal flow part where processing strain concentrates due to the corrosive action of acid solution, a crystal grain boundary with a high lattice defect density, and a region where crystal orientations called colonies inside the crystal grains are almost aligned. The boundary between the two is preferentially eroded and recognized as a pattern with the naked eye.
[0008]
On the other hand, the macro pattern means that the relatively coarse crystal grains and the colonies contained in the raw material, that is, the ingot or the material processed halfway through it undergo plastic deformation and thermal history during the extension process. As a remnant of changing the shape, size, and distribution thereof, it refers to a material that exists as a trace pattern when a wrought material (in the case of the present invention, a hot-rolled thick plate product) is macro-etched. Although the inside of the macro pattern contains a microstructure that can be observed with a normal optical microscope, it is often difficult for the boundary of the macro pattern to correspond to a clear metal structure characteristic as in the macro structure described above. .
[0009]
Most of the microstructure inherits the crystallographic orientation of its ancestor macrostructure, so when observed in a limited narrow area, even though the microstructure appears to be uniform, There is a fear that the microstructure is only uniform inside the macro pattern.
[0010]
The inventors have studied from the recognition that if this macro pattern is non-uniform, it will cause non-uniformity in the film thickness produced by the sputtering method and non-uniformity in the orientation. The present invention has been made by examining in detail the relationship between the degree of pattern (uniformity) and the macro structure existing in the raw material ingot or the material processed halfway through.
[0011]
When sputtering is performed using a target material manufactured from a hot-rolled product in which such a macro pattern is unevenly present, the crystallographic orientation of the sputtered particle's emission orientation distribution, emission velocity distribution, and emission energy distribution Depending on the properties, the speed of adhesion to the substrate will be different, which will cause non-uniformity of the deposited film thickness and non-uniformity of the orientation.
[0012]
[Means for Solving the Problems]
The present invention regards the cause of the non-uniformity of the macro pattern of the high-purity titanium wrought material as being caused by the so-called macro structure contained in the raw material, that is, the forged forged / slab rolled slab. It is obtained as a result of conducting a test for homogenizing the macro structure existing in the raw material when the titanium target material is stretched and manufactured. That is, the relationship between the macro structure non-uniformity of the hot forging / slab rolling slab, the hot rolling conditions and the macro pattern non-uniformity of the thick plate product as the high purity target material was investigated in detail.
[0013]
The present invention obtained as a result of such investigation focuses on the raw material manufacturing process, for example, the ingot block forging / block rolling process, in the manufacturing process of high purity titanium wrought material. recrystallization fraction to produce a raw material which is controlled over the entire thickness of the blooming forging and blooming rolling Te, have taken over before reaching the plank used as a target material through the subsequent processing steps The present invention provides a raw material for a high-purity target material that enables a uniform macro pattern to be uniform.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is basically constructed based on the following manufacturing process. Normally, the manufacturing process of high-purity titanium wrought material is cast into a metal cylindrical ingot or rectangular ingot after melting high-purity raw materials in a vacuum arc melting furnace (VAR) or electron beam remelting furnace (EBR). The These are hereinafter referred to as “VAR ingot” and “EBR ingot”.
[0015]
The VAR ingot is rarely used as a material for direct plate rolling because of its shape, and the cylindrical shape is converted into a flat rectangular cross-section slab in a dedicated facility called a forging machine, large press machine or block mill. Often molded. The EBR ingot is a cylindrical or rectangular ingot, and is formed into a rectangular cross-section slab that can be easily operated by a thick plate hot-rolling machine in a subsequent process using a forging machine or a block rolling mill. The slab-like intermediate material produced by performing the forging or rolling of the ingot in this way is referred to as “splitting forging / slab rolling slab” or simply “slab” in the present invention.
[0016]
In the present invention, a method of making a rectangular slab by flattening by processing the ingot in the radial direction as cast, a method of making a rectangular slab by processing in the longitudinal direction of the ingot in some cases, a longitudinal direction of the ingot processing the mixture was carried out in combination with slabbing forging and blooming rolling method in which flattened by adding processing in the radial direction again increase the diameter of the ingot flattened longitudinally on.
[0017]
Here, the macro structure non-uniformity of the forging and rolling slabs is applied to the slab surface at the slab surface, 1/4 part thickness and 1/2 part thickness (the surface that becomes the plate surface of the thick product). After macro-etching a block-like sample cut out in a parallel cross section and a cross section perpendicular thereto, the sample was directly applied to a magnifying glass (magnification x1 to x5).
[0018]
Judgment is made by (1) the remaining amount of deformed microstructure characterized by the fact that the stretched metal flow formed in the forging and rolling stage is clear and the grain boundaries are distorted, and (2) the surface portion of the slab is particularly observed The amount of fine recrystallized structure that is often generated, (3) occupies most of the slab thickness, has no stretched traces, and is characterized by relatively coarse and equiaxed grain boundaries. The amount of the complete recrystallized structure was measured.
[0019]
The total amount for each structure was expressed by the thickness in the plate thickness direction, and the ratio of the amount of the complete recrystallized structure (3) to the total slab thickness was expressed as the recrystallization fraction (%). The complete recrystallized structure used here was obtained in the β region and is different from the recrystallized structure obtained in the α region classified in (2). In the former, the material recrystallized in the β region has undergone transformation during the cooling from the β region to the α region, and when observed with an optical microscope at high magnification, the grain boundary is jagged like a bamboo leaf. Can easily be distinguished from the latter. The latter is basically characterized by being fine and having a smooth grain boundary.
[0020]
The macro pattern non-uniformity of the thick plate product manufactured from the block forging and the block rolled slab is ground to a depth of 0.5 mm to 4 mm including the black skin part of the plate surface parallel to the plate surface, and further # 320 Polishing was performed, and the determination was made by etching with a normal nitric acid-based macro corrosive solution. In order to facilitate the determination of the macro pattern non-uniformity, polishing of # 600 to # 1000 was performed for such a mild pattern. Macro pattern non-uniformity is determined using standard samples having various degrees of macro pattern non-uniformity, and score x (poor uniformity), △ (slight uniformity), ○ (slight uniformity), ◎ ( In the four-stage evaluation of “good uniformity”, “◯” or more was judged as acceptable.
[0021]
That is, various cylindrical VAR ingots (80 to 500 mmφ) of 4N5 (99.995%) level and EBR ingots having a circular cross section or a rectangular cross section are formed into a forged and rolled slab with a thickness of 17 to 443 mm. The recrystallization fraction after rolling, the total rolling reduction ratio (thickness before rolling / thickness after rolling) and the thick plate as an index of the amount of processing during hot rolling when these raw materials are further hot rolled The relationship of macro pattern non-uniformity of (plate thickness = 8 mm) was arranged.
[0022]
Each of the thick plates is manufactured through ordinary annealing (in-air annealing, VCF annealing).
Here, “VCF annealing” refers to annealing in a furnace in which shape correction and annealing are performed simultaneously in hot, and materials that are difficult to leveler such as thick plates and intermediate plates are used alone or in layers. When the inside is filled with mica powder and then evacuated while being heated, atmospheric pressure acts on the plate material, minute creep deformation occurs, the shape is corrected, and a flat plate material can be manufactured.
[0023]
As a result of the above determination, it was found that a thick plate excellent in macro pattern uniformity can be obtained when both of the following two conditions are satisfied. That is, (1) the total rolling reduction ratio (thickness before rolling / thickness after rolling) at the time of hot-rolling thick plates is more than 2.7, and (2) non-uniform macro included in the forged forgot and ingot rolled slab The amount of tissue is less than 22%.
[0024]
Table 1 shows the recrystallization fraction and macro pattern inhomogeneity of the forged and ingot rolled slabs when the hot rolling has a total reduction ratio (thickness before rolling / thickness after rolling) of more than 2.7. When the recrystallization fraction is low , the degree of uniformity of the macro pattern is poor, and the macro pattern uniformity is markedly improved as the recrystallization fraction increases. Further, it was found that when the uniformity score of the macro pattern is ◎, the recrystallization fraction is limited to 100%. These data include a cylindrical VAR ingot and a circular EBR ingot made as a slab with a large press or forging machine and as a slab with a block mill. The above data was obtained by directly hot rolling the forged forged / slab rolled slab, and the rough hot rolling and the finish hot rolling were continuously and consistently performed, and the reheating before the finish hot rolling was not performed.
[0025]
Ingot forging or ingot rolling was performed by heating the ingot at 700 ° C to 1300 ° C for a maximum of 12 hours to obtain a rectangular cross-section slab having a thickness of 16 mm to 440 mm. Hot rolling is performed after heating the above slab to 820 ° C. to 880 ° C. in the α range for 2 to 6 hours to form a thick plate having a thickness of 8 mm, and the cross rolling ratio according to the product dimensions (thickness, width, length) ( 0.3-3). Thick plates are annealed at 220 ° C to 800 ° C for 10 to 60 minutes in an atmospheric furnace and at 200 ° C to 700 ° C for 0.5 hours to 4 hours according to the plate thickness and heating furnace charge. The time was secured.
Here, the “cross rolling ratio” is a rolling method (cross rolling) in which a rolling direction is appropriately changed by 90 degrees during hot rolling in order to manufacture a hot rolled product having a predetermined product size from a certain size slab. In the rolling direction at the start of hot rolling (L) and the ratio of the sum of the rolling amounts when rolling in two directions perpendicular to the rolling direction (L) (Σ rolling amount (L) / Σ rolling amount ( C)).
[0026]
[Table 1]
Figure 0003711196
[0027]
In addition, as described above, the present invention manufactures a thick plate product with a thick plate hot rolling machine after forming the VAR ingot and the EBR ingot into a shape that can be forged and rolled into a shape that can be easily operated with a thick plate hot rolling machine. The process is premised, but even without going through the lump process, an ingot that has a high-order macro structure homogeneity as referred to in the present invention as cast and conforms in shape as a hot rolling material can be used. Needless to say, when the total rolling reduction ratio (thickness before rolling / thickness after rolling) can be more than 2.7, the forging and ingot rolling steps can be omitted.
[0028]
In the present invention, the finishing temperature of the forged forged / slab rolled slab refers to the surface temperature of the slab measured with a radiation thermometer, not the so-called temperature of the material itself. From past measurement test results, it has been empirically found that the average temperature at the center of the slab is about 185 ° C. higher than the surface temperature. This finishing temperature should be the temperature inside the processed material in pure technical terms, but it is a practical management index for quality control at the actual manufacturing site, and is consistently used in the present invention. It was decided to.
[0029]
The high purity titanium used in the present invention refers to a material having a purity of 4N5 (99.995%) or more. At this time, the gas components O, N, and H are not counted in the purity display.
[0030]
【Example】
Below, the present invention will be further explained based on examples.
[Example 1 (large ingot)]
A VAR cylindrical ingot (310 mm φ, 500 mm φ) with a purity of 4N5 (99.995%) is subjected to a batch rolling with a rolling mill, and further reheated and hot rolled to obtain a thick plate with a thickness of 8 mm. did. Table 2 shows the conditions for the batch rolling, the hot rolling conditions, and the VCF annealing conditions performed after manufacturing the thick plate. The total hot rolling reduction ratio is over 2.7 in all cases. Macro-structure non-uniformity and macro-pattern non-uniformity of each thick plate corresponding to them were determined using a macro sample cut from the end of each block-rolled slab. As a result, as shown in Table 2, the non-uniform macrostructure of the rolled slab (low recrystallization fraction) has a low macro-pattern uniformity score of the thick plate manufactured using the same. As a result.
[0031]
[Table 2]
Figure 0003711196
[0032]
[Example 2 (small ingot)]
A 4N5 (99.995%) to 5N5 (99.9995%) EBR ingot (80 mm φ, 135 mm φ) and a VAR cylindrical ingot (100 mm φ) having a purity of 4N5 (100 mm φ) were lumped with a forging machine and then reheated. Then, hot rolling was performed to obtain a thick plate having a thickness of 8 mm. Table 3 shows the forging conditions, the hot rolling conditions, and the atmospheric annealing conditions performed after manufacturing the thick plate. The total hot rolling reduction ratio is over 2.7 in all cases. As a result of the same evaluation as in Example 1, the macro-structure uniformity of the thick plate produced using the non-uniform macro-structure of the forged slab (low recrystallization fraction) Was low.
[0033]
[Table 3]
Figure 0003711196
[0034]
[Example 3 (slab β region reheating)]
A part of the forging / slab slab having a low recrystallization fraction in Examples 1 and 2 was inserted into a heating furnace with the aim of eliminating the work deformation structure and the fine recrystallization structure. Reheating (the holding time at the heating temperature was 30 to 60 minutes). When heated at 850 ° C., the work deformation structure and the fine recrystallized structure were almost eliminated, and a uniform α region annealed structure was obtained.
[0035]
On the other hand, when heated to 950 to 1190 ° C. in the β region, these non-uniform structures were eliminated and a complete recrystallized structure in the β region was obtained. After heating, the slab was allowed to cool, hot-rolled under the hot rolling conditions shown in Table 4, and further subjected to VCF annealing to obtain a thick plate product. When the macro pattern uniformity of the plate product was evaluated, in the case of the invention example in which the macro structure of the slab, which is a hot-rolled material, is a completely recrystallized structure, the macro pattern uniformity of the obtained plate is all In this case, it was evaluated as ◎.
[0036]
Further, when the completely deformed structure was not obtained even when the deformed structure was eliminated as in the comparative example, the uniformity of the macro pattern was inferior.
[0037]
[Table 4]
Figure 0003711196
[0038]
[Example 4 (effect of rolling rate)]
EBR ingots (80mmφ, 135mmφ) of 5N (99.999%) and VAR ingot 4N5 (99.995%) was blooming with (100mmφ, 310mmφ, 500mmφ) a blooming forging machine or blooming mill, and slabs did. Table 5 shows the conditions for the batch rolling, the hot rolling conditions, and the VCF annealing conditions performed after manufacturing the thick plate. In invention example (15) and later, in comparative example (12) and later, forged and ingot slabs each having a thickness of 200 mm were first manufactured, and further hot-rolling materials of various thicknesses were cut out from these for use in hot rolling. .
[0039]
Any slab can be regarded as almost uniform from the viewpoint of the uniformity of the macro structure. However, even if such a slab is used, if the total rolling reduction ratio during hot rolling does not exceed 2.7, even if the recrystallization fraction of those ingot slabs is very high, β crystals Grain traces remained and the macro pattern uniformity judgment result was not good.
[0040]
In this embodiment, the method of making the rectangular slab by processing the ingot as it is cast in the radial direction and flattening it to make a rectangular slab was used. However, in the inventive examples (11, 13, 14), the ingot was processed in the longitudinal direction. In addition, after flattening in the longitudinal direction to increase the diameter of the ingot, forging and ingot rolling were performed by a method of flattening by further processing in the radial direction.
[0041]
[Table 5]
Figure 0003711196
[0042]
[Example 5 (grinding)]
A part of the forging / slab slab having a low complete recrystallization fraction in Examples 1 and 2 was collected, and a non-uniform macrostructure such as a deformed microstructure and a fine recrystallized structure existing on the surface were obtained by mechanical grinding. Cutting and hot-rolling. The slab heating temperature during hot rolling was 700 ° C., and the total reduction ratio was over 2.7 in all cases. VCF annealing conditions performed after manufacture planks were performed on all 500 ° C. × 4 hours holding. If the heterogeneous structure is not sufficiently removed even after cutting the slab, the evaluation of the uniformity of the macro pattern is deteriorated.
[0043]
[Table 6]
Figure 0003711196
[0044]
[Example 6 (direct rolling)]
An as-cast 4N5 (99.995%) EBR rectangular cross-section slab (300 mm wide) was hot-rolled as it was with a thick plate hot rolling machine. Table 7 shows the hot rolling conditions and the conditions for atmospheric annealing performed after manufacturing the thick plate. Since the slab was cast as it was, the slab had a complete recrystallization fraction of 100% and did not contain a non-uniform macrostructure such as a processed structure.
[0045]
[Table 7]
Figure 0003711196
[0046]
【The invention's effect】
The present invention is a slab for use in a method for producing a high-purity titanium wrought material for a sputtering target and a method for producing the same, and in particular, a high-purity titanium wrought material having a uniform macro pattern used for a high-purity titanium target material for semiconductor device production. (Hot-rolled thick plate) is provided.
[0047]
Furthermore, paying attention to the non-uniformity of the macro structure in the forged and rolled slab, which is an intermediate material when producing high-purity titanium wrought material, the hot rolling conditions, the macro pattern uniformity of the wrought material, The above-mentioned relationship is clarified and a forged forged / slab rolled slab for producing a high purity titanium thick plate with a uniform macro pattern is provided.
[0048]
From the above, the present invention not only has a large economic effect of improving high-purity titanium expanded material, high-purity target material, target material quality, production efficiency and yield, but also semiconductors that undergo rapid technological innovation. It can contribute to high integration of display elements, and its industrial value is extremely large.

Claims (2)

純度99.995%以上の高純度チタンであって、β域で完全再結晶した組織の全スラブ厚に対する分率が78%超であることを特徴とするスパッタリングターゲット材に使用する均一なマクロ模様を有する高純度厚板熱延用のチタンスラブ。A uniform macro used for a sputtering target material , characterized in that it is a high-purity titanium having a purity of 99.995% or more and the fraction of the total slab thickness of the structure completely recrystallized in the β region exceeds 78%. Titanium slab for hot-rolling high-purity thick plate with a pattern. 純度99.995%以上の高純度チタンの鋳造インゴットを、β変態点温度以上で分塊鍛造もしくは分塊圧延して、または該分塊鍛造もしくは分塊圧延をすることなく鋳造ままで、β域で完全再結晶した組織の全スラブ厚に対する分率が78%超となる厚板熱延用のスラブとし、該スラブを、厚板熱延の総圧下比(圧延前厚さ/圧延後厚さ)2.7超で熱延し、焼鈍を行うことを特徴とするマクロ模様が均一な高純度チタン展伸材(熱延厚板)の製造方法。 A cast ingot of high-purity titanium having a purity of 99.995% or higher is subjected to partial forging or partial rolling at a temperature equal to or higher than the β transformation temperature or as cast without performing the partial forging or partial rolling. The slab for thick plate hot-rolling with a fraction of the total slab thickness of the completely recrystallized structure at 78% exceeds 78% , and the slab is defined as the total rolling reduction ratio (thickness before rolling / thickness after rolling). ) A method for producing a high-purity titanium wrought material (hot-rolled thick plate) having a uniform macro pattern , characterized by hot-rolling at over 2.7 and annealing.
JP07791798A 1998-03-25 1998-03-25 Method for producing titanium for sputtering target and titanium slab used for the production Expired - Fee Related JP3711196B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07791798A JP3711196B2 (en) 1998-03-25 1998-03-25 Method for producing titanium for sputtering target and titanium slab used for the production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07791798A JP3711196B2 (en) 1998-03-25 1998-03-25 Method for producing titanium for sputtering target and titanium slab used for the production

Publications (2)

Publication Number Publication Date
JPH11269640A JPH11269640A (en) 1999-10-05
JP3711196B2 true JP3711196B2 (en) 2005-10-26

Family

ID=13647440

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07791798A Expired - Fee Related JP3711196B2 (en) 1998-03-25 1998-03-25 Method for producing titanium for sputtering target and titanium slab used for the production

Country Status (1)

Country Link
JP (1) JP3711196B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5226150B2 (en) * 2012-10-05 2013-07-03 Jx日鉱日石金属株式会社 Indium metal target and manufacturing method thereof
JP6077102B2 (en) * 2013-03-06 2017-02-08 Jx金属株式会社 Titanium target for sputtering and manufacturing method thereof

Also Published As

Publication number Publication date
JPH11269640A (en) 1999-10-05

Similar Documents

Publication Publication Date Title
JP5114812B2 (en) Method for producing deformed metal member
US7585380B2 (en) High purity tantalum, products containing the same, and methods of making the same
EP2253731B1 (en) Tantalum spattering target
KR100760156B1 (en) Tantalum sputtering target
JP5752736B2 (en) Sputtering target
TWI485272B (en) Pure copper plate manufacturing methods and pure copper plate
WO2004011691A1 (en) Copper sputtering targets and methods of forming copper sputtering targets
WO2015162986A1 (en) Material for cylindrical sputtering target
JPH11269621A (en) Method for working high-purity titanium material
JP4094395B2 (en) Titanium plate for electrolytic Cu foil production drum and production method thereof
US20050252268A1 (en) High integrity sputtering target material and method for producing bulk quantities of same
JP3802683B2 (en) High purity titanium plate for titanium target material and method for producing the same
JP2007521140A (en) High integrity sputtering target material and method for producing it in large quantities
JP3711196B2 (en) Method for producing titanium for sputtering target and titanium slab used for the production
JP2011132557A (en) Method of manufacturing pure copper plate and pure copper plate
JP3967897B2 (en) Titanium for copper foil production drum having uniform metal structure and production method thereof
JP3488076B2 (en) Method for producing titanium for Cu foil production drum and titanium slab used for the production
JP5406753B2 (en) Al-based alloy sputtering target and manufacturing method thereof
JP4094292B2 (en) Method for producing titanium for copper foil production drum having fine and uniform metal structure
WO2022185858A1 (en) Hot-rolled copper alloy sheet and sputtering target
JP7338036B2 (en) large grain tin sputtering target
CN114657345A (en) Iron target, iron-nickel alloy target and grain refining method of target
JPH0527481B2 (en)

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050812

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090819

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100819

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110819

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120819

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130819

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees