JP3710708B2 - Optically active FR-900482 and its analog compounds, synthetic intermediate compounds and production method thereof - Google Patents

Optically active FR-900482 and its analog compounds, synthetic intermediate compounds and production method thereof Download PDF

Info

Publication number
JP3710708B2
JP3710708B2 JP2000404281A JP2000404281A JP3710708B2 JP 3710708 B2 JP3710708 B2 JP 3710708B2 JP 2000404281 A JP2000404281 A JP 2000404281A JP 2000404281 A JP2000404281 A JP 2000404281A JP 3710708 B2 JP3710708 B2 JP 3710708B2
Authority
JP
Japan
Prior art keywords
optically active
compound
compound represented
synthesis
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000404281A
Other languages
Japanese (ja)
Other versions
JP2002179680A (en
Inventor
透 福山
英利 徳山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
National Institute of Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency, National Institute of Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2000404281A priority Critical patent/JP3710708B2/en
Publication of JP2002179680A publication Critical patent/JP2002179680A/en
Application granted granted Critical
Publication of JP3710708B2 publication Critical patent/JP3710708B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【0001】
【発明の属する技術分野】
この出願の発明は、FR900482とその類縁体化合物並びに合成中間体の合成方法に関するものである。さらに詳しくは、この出願の発明は、Mytomycin Cに類似した作用機序をもつ抗腫瘍性物質であるFR900482とその類縁体化合物並びにこれらのための合成中間体の合成方法に関するものである。
【0002】
【従来の技術と発明の課題】
従来より、次式
【0003】
【化31】

Figure 0003710708
【0004】
で表わされるFR900482は、Mytomycin Cに類似した作用機序を持つ抗腫瘍活性物質として知られており、この出願の発明者らによって、そのラセミ体の全合成法が確立している。
【0005】
しかしながら、このFR900482については、その類縁体やそれらの合成方法についてはあまり検討が進められていない。
【0006】
そこで、抗腫瘍性抗生物質の新規な展開とその応用が期待されるFR900482やその類縁体の新しい合成方法の探索、確立が極めて重要な課題になっている。
【0007】
【課題を解決するための手段】
そこで、この出願の発明は、上記の課題を解決するものとして、前記の請求項1〜11のとおりの新しい技術手段を提供する。これらの技術手段は、FR900482、その類縁体化合物、並びにこれらの合成中間体の合成方法に関するものである。
【0008】
請求項記載の発明において、化学式に示した符号RaおよびRb並びにRおよびRは、各々、同一または別異に、水素原子または有機基である。この場合の有機基としては、アルキル基、シクロアルキル基、アリール基等の炭化水素基、アルコキシ基、アリールオキシ基、アミノ基、(ジ)アルキルアミノ基、アリールアミノ基、エステル基、アルキルカルボニル基、アリールカルボニル基、アルキルカルボニルオキシ基、ハロゲン原子等の各種のものであってよい。
【0009】
また、Rc,Rd,Re,Rf,Rgの保護基についても、従来公知のベンジル基、p−メチルフェニル基、TBS、アシル基等の各種のものが考慮されることになる。
【0010】
特に、この出願の発明においては、FR900482の合成について、大きなスケールでの反応への適用性に優れた実用的な合成方法が提供されることになる。この方法によって、光学活性体の両鏡像体のみならず、ジアステレオコーをはじめ、類縁体の各種のものが広く合成可能となる。FR900482をリード化合物とした新しい創薬展開が可能となる。
【0011】
【発明の実施の形態】
そこで以下に実施例としてFR900482の合成を示し、さらに詳しく発明の実施の形態について説明する。
【0012】
このFR90082の合成は、以下の反応工程として実現されることになる。
【0013】
【化32】
Figure 0003710708
【0014】
【化33】
Figure 0003710708
【0015】
【化34】
Figure 0003710708
【0016】
【化35】
Figure 0003710708
【0017】
【化36】
Figure 0003710708
【0018】
【化37】
Figure 0003710708
【0019】
【化38】
Figure 0003710708
【0020】
【化39】
Figure 0003710708
【0021】
以上の方法を用いることにより、FR−900482のみならず、その鏡像体とジアステレオマー、さらには種々の類縁体も光学活性体として調製可能である。
【0022】
すなわち、アセチレン13の出発原料としてL−酒石酸を用いれば、同じ経路で鏡像体が合成できる。また、化合物41の2つの2級水酸基は、区別可能であるため、化合物45の立体異性体(β−エポキシド)の合成も容易であり、したがってFR−900482の立体異性体(α−アジリジン)の合成も可能である。
【0023】
さらに、トリフラート6の代わりに、芳香環上にアルキル基、アルコキシル基、アミノ基、アシル基、ハロゲンなどを有する芳香族化合物を用いる、あるいは化合物55を種々のアミンによって加アミン分解することにより、各種類縁体の合成も可能となる。
<実施例1>
化合物3の合成
【0024】
【化40】
Figure 0003710708
【0025】
バニリン酸(150g,0.89mol)のメタノール(1L)溶液に、濃硫酸(5mL)を加え、2日間加熱還流した。溶媒を留去し、得られた残留物をクロロホルムに溶解し、飽和炭酸水素ナトリウム水溶液で洗浄した。有機層を分離し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。
【0026】
得られた残留物(173g)の酢酸(500mL)溶液に氷冷下で濃硝酸(78mL)を20分かけて加え、さらに30分間攪拌した。反応液に水(1L)を加え、氷冷下で1時間攪拌した後、析出した粗結晶を濾取し、水洗した。この粗結晶をクロロホルム(2L)に溶解し、水洗し、有機層を無水硫酸マグネシウムで乾燥した。減圧濃縮して得た粗精製物(300g)にヘキサン(400mL)を加え、析出した結晶を濾取し、減圧乾燥し、化合物3(148g)を得た。
【0027】
【表1】
Figure 0003710708
【0028】
<実施例2>
化合物4の合成
【0029】
【化41】
Figure 0003710708
【0030】
化合物3(51.9g,0.23mol)の1,2−ジクロロエタン(1L)溶液に三臭化ホウ素・ジメチルスルフィド錯体(75.0g,0.24mol)を加え、20分間加熱還流した。反応液を室温まで冷却後、水(500mL)を加え、3分間激しく攪拌した。有機層を分離し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残留物をヘキサン−酢酸エチルより再結晶し、化合物4(30.3g)を得た。
【0031】
【表2】
Figure 0003710708
【0032】
<実施例3>
化合物5の合成
【0033】
【化42】
Figure 0003710708
【0034】
水素化ナトリウム(60%オイル拡散,6.7g,0.28mol)のテトラヒドロフラン(400mL)懸濁液に、化合物4(30.0g,0.14mol)のN,N−ジメチルホルムアミド(130mL)溶液を室温で30分かけて滴下し、さらに30分間攪拌した。反応液を氷冷し、臭化ベンジル(16.6mL,23.9g,0.14mol)を5分間かけて滴下した後、室温で5時間攪拌した。反応液に1規定塩酸(300mL)を加え、激しく攪拌した後、酢酸エチル(500mL)で抽出した。有機層を飽和食塩水で洗浄し、減圧濃縮した。析出した結晶を濾取し、ヘキサンで洗浄し、減圧乾燥して化合物5(25.0g)を得た。
【0035】
【表3】
Figure 0003710708
【0036】
<実施例4>
化合物6の合成
【0037】
【化43】
Figure 0003710708
【0038】
化合物5(37.9g,0.13mol)およびピリジン(25mL,0.31mol)のジクロロメタン(1L)溶液に、氷冷下でトリフルオロメタンスルホン酸無水物(22mL,37,0.13mol)を15分間かけて滴下し、さらに1時間攪拌した。反応液を1規定塩酸、飽和食塩水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮して化合物6(53.5g)を得た。
【0039】
【表4】
Figure 0003710708
【0040】
<実施例5>
化合物11の合成
【0041】
【化44】
Figure 0003710708
【0042】
氷冷した水素化ナトリウム(30.0g,1.25mol)のテトラヒドロフラン(1L)懸濁液に、2,3−ジ−O−イソプロピリデン−D−スレイトール(Organic Synthesis Collective VolumeVIII,1993,155に従って調製、87.5g,0.54mol)のテトラヒドロフラン(150mL)溶液を、1時間かけて滴下した。反応液を室温で1時間攪拌した後、氷冷し、tert−ブチルジメチルクロロシラン(97.6g,0.65mol)のジクロロメタン(200mL)溶液を1時間かけて滴下し、さらに氷冷下で30分攪拌した。反応液を砕氷中に注ぎ、ジエチルエーテルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残留物をシリカゲルカラムクロマトグラフィー(展開液;ヘキサン:酢酸エチル=90:10〜50:50)で精製し、化合物11(113g)を得た。
【0043】
【表5】
Figure 0003710708
【0044】
<実施例6>
化合物13の合成
【0045】
【化45】
Figure 0003710708
【0046】
−78℃に冷却したオキサリルジクロリド(36.8g,0.29mol)のジクロロメタン(1L)溶液に、ジメチルスルホキシド(34.1mL,37.5g,0.48mol)のジクロロメタン(50mL)溶液および化合物11(67.3g,0.24mol)のジクロロメタン(70mL)溶液を順次滴下し、さらに同温で30分攪拌した後、トリエチルアミン(100mL,72.6g,0.72mol)を滴下し、1時間かけて室温まで昇温させた。反応液を10%クエン酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。
【0047】
得られた残留物(57.3g)をメタノール(50mL)に溶解し、氷冷した無水炭酸カリウム(58.0g,0.42mol)のメタノール(1L)懸濁液に滴下した。引き続いて氷冷下でジメチル−1−ジアゾ−2−オキソプロピルホスホネート(Synthetic Communications,1984,14,155に従って調製、48.4g,0.25mol)を15分間かけて滴下し、さらに室温で2時間攪拌した。反応液をセライト濾過し、濾液を減圧濃縮した。残留物を酢酸エチルに溶解し、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残留物をシリカゲルカラムクロマトグラフィー(展開液;ヘキサン:酢酸エチル=90:10〜50:50)で精製し、化合物13(31.6g)を得た。
【0048】
【表6】
Figure 0003710708
【0049】
<実施例7>
化合物14の合成
【0050】
【化46】
Figure 0003710708
【0051】
化合物6(39.2g,88.7mmol)、トリフェニルホスフィン(4.65g,17.7mmol)および酢酸パラジウム(1.99g,8.87mmol)のテトラヒドロフラン(200mL)、トリエチルアミン(200mL)溶液に、加硫還流下で化合物13(27.5g,0.129mol)のテトラヒドロフラン(200mL)溶液を1時間30分かけて滴下した。滴下後、反応液を室温まで冷却し、減圧濃縮した。得られた残留物を酢酸エチルに溶解し、10%クエン酸水溶液、飽和炭酸水素ナトリウム水素液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残留物をシリカゲルカラムクロマトグラフィー(展開液;ヘキサン:酢酸エチル=95:5〜90:10)で精製し、化合物14(40.9g)を得た。
【0052】
【表7】
Figure 0003710708
【0053】
<実施例8>
化合物16の合成
【0054】
【化47】
Figure 0003710708
【0055】
化合物14(104g,0.19mol)のベンゼン(1L)溶液に、室温下でピペリジン(30mL,25.7g,0.36mol)を滴下し、1時間攪拌した。反応液を氷冷し、50%酢酸水溶液(600mL)を20分かけて滴下した後、室温で2時間激しく攪拌した。有機層を分離し、飽和炭酸水素ナトリウム水溶液、10%クエン酸水溶液、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮して化合物16(110g)を得た。
【0056】
【表8】
Figure 0003710708
【0057】
<実施例9>
化合物17の合成
【0058】
【化48】
Figure 0003710708
【0059】
−25℃に冷却した化合物16(110g,0.19mol)のジエチルエーテル(500mL)溶液に、0.13M水素化ホウ素亜鉛ジエチルエーテル溶液(Chem,Pharm,Bull.,1984,32,1141に従って調製、1L)を2時間かけて滴下し、15分間乾燥した後、10%クエン酸水溶液(1L)を加えた。有機層を分離し、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残留物をシリカゲルカラムクロマトグラフィー(展開液;ヘキサン:酢酸エチル=95:5〜90:10)で精製し、化合物17(86.3g)を得た。
【0060】
【表9】
Figure 0003710708
【0061】
<実施例10>
化合物18の合成
【0062】
【化49】
Figure 0003710708
【0063】
化合物17(86.1g,0.15mol)および4−ジメチルアミノピリジン(1.8g,15mmol)のピリジン(200mL)溶液に、氷冷下で無水酢酸(28mL,0.30mol)を15分間かけて滴下した後、室温で2時間攪拌した。反応液を減圧濃縮し、得られた残留物を酢酸エチルに溶解し、1規定塩酸、飽和食塩水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮して化合物18(103g)を得た。
【0064】
【表10】
Figure 0003710708
【0065】
<実施例11>
化合物19の合成
【0066】
【化50】
Figure 0003710708
【0067】
化合物18(47.2g,76.4mmol)のメタノール(1L)溶液に、5%白金−活性炭素(10g)を加え、水素雰囲気下、室温で14時間攪拌した。反応液を濾過し、濾液に5%白金−活性炭素(5g)を加え、水素雰囲気下、室温で5時間攪拌した。反応液を濾過し、減圧濃縮し、得られた残留物をシリカゲルカラムクロマトグラフィー(展開液;クロロホルム)で精製し、化合物19(42.3g)を得た。
【0068】
【表11】
Figure 0003710708
【0069】
<実施例12>
化合物20の合成
【0070】
【化51】
Figure 0003710708
【0071】
化合物19(42.2g,71.8mol)、2−ニトロベンゼンスルホニルクロリド(23.9g,0.108mol)および4−ジメチルアミノピリジン(0.88g,7.2mmol)のジクロロメタン(150mL)溶液に、氷冷下でピリジン(23.1mL,0.287mol)を5分間かけて滴下し、室温で3時間攪拌した。反応液をクロロホルムで希釈し、1規定塩酸、飽和食塩水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残留物をシリカゲルカラムクロマトグラフィー(展開液;ヘキサン:酢酸エチル=95:5〜75:25)で精製し、化合物20(35.5g)を得た。
【0072】
【表12】
Figure 0003710708
【0073】
<実施例13>
化合物22の合成
【0074】
【化52】
Figure 0003710708
【0075】
化合物20(35.3g,45.9mmol)および酢酸(17mL,0.30mol)のテトラヒドロフラン(120mL)溶液に、氷冷下でフッ化テトラブチルアンモニウム(1M テトラヒドロフラン溶液、275mL,0.275mol)を30分間かけて滴下し、室温で17時間攪拌した。反応液を酢酸エチルで希釈し、10%クエン酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。
【0076】
得られた残留物(29.4g)およびトリフェニルホスフィン(17.5g,66.9mmol)のベンゼン(1.5L)溶液に、室温でジエチルアゾジカルボキシレート(40%トルエン溶液,24mL,52.8mmol)を20分間かけて滴下した。さらに反応液を30分間攪拌した後、減圧濃縮し、得られた残留物をシリカゲルカラムクロマトグラフィー(展開液;ヘキサン:酢酸エチル=70:30〜60:40)で精製し、化合物22(35.0g)を得た。
【0077】
【表13】
Figure 0003710708
【0078】
<実施例14>
化合物24の合成
【0079】
【化53】
Figure 0003710708
【0080】
−78℃に冷却した化合物22(34.5g)のジクロロメタン(150mL)溶液に、水素化ジイソブチルアルミニウム(1Mトルエン溶液,270mL,0.27mol)を1時間かけて滴下した。反応液を同温で15分間攪拌した後、無水メタノール(190mL)を30分間かけて滴下し、さらに室温で1時間攪拌した。反応液にクロロホルム(2L)と1規定塩酸(1L)を加え、有機層を分離し、水層をクロロホルムで抽出した。有機層を合わせ、飽和食塩水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。
【0081】
得られた残留物(31.5g)、4−メトキシフェノール(6.64g,53.5mmol)およびトリフェニルホスフィン(14.0g,53.5mmol)のベンゼン(250mL)溶液に、室温でジエチルアゾジカルボキシレート(40%トルエン溶液,24.3mL,53.5mmol)を10分間かけて滴下した。反応液を10分間攪拌した後、減圧濃縮し、得られた残留物にクロロホルム(100mL)を加え、氷冷下で攪拌した。析出した不溶物を濾別し、濾液を減圧濃縮した。得られた残留物をシリカゲルカラムクロマトグラフィー(展開液;ベンゼン:酢酸エチル=90:10)で精製し、化合物24(21.2g)を得た。
【0082】
【表14】
Figure 0003710708
【0083】
<実施例15>
化合物25の合成
【0084】
【化54】
Figure 0003710708
【0085】
−78℃に冷却したオキサリルジクロリド(3.6mL,5.2g,41.7mmol)のジクロロメタン(150mL)溶液に、ジメチルスルホキシド(3.9mL,4.3g,55.6mmol)のジクロロメタン(10mL)溶液および化合物24(21.0g,31.0mmol)のジクロロメタン(200mL)溶液を順次滴下し、さらに同温で30分間攪拌した後、トリエチルアミン(11.6mL,8.4g,83.4mmol)を滴下し、1時間かけて室温まで昇温させた。反応液を10%クエン酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残留物に酢酸エチル(50mL)とヘキサン(50mL)を加えて氷冷下で1時間攪拌した。析出した結晶を濾取し、ヘキサン−酢酸エチル(2:1)で洗浄し、減圧乾燥して化合物25(15.1g)を得た。
【0086】
【表15】
Figure 0003710708
【0087】
<実施例16>
化合物28の合成
【0088】
【化55】
Figure 0003710708
【0089】
ステンレス反応管に化合物25(15.1g,22.4mmol)、2−プロパノール(150mL)、ジメチルアミン塩酸塩(2.19g,26.9mmol)、37%ホルマリン(8.5mL,0.11mol)、トリエチルアミン(0.94mL,0.68g,6.72mmol)および水(15mL)を順次加えた後、密栓して90℃で4時間30分攪拌した。反応液を減圧濃縮し、得られた残留物をクロロホルムに溶解し、10%クエン酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。
【0090】
得られた残留物(18.8g)をテトラヒドロフラン(50mL)−メタノール(50mL)に溶解し、室温でトリエチルアミン(1.2mL,0.87g,8.96mmol)およびチオフェノール(3.4mL,3.6g,33.6mmol)を順次加え、3時間攪拌した。反応液を氷冷し、水素化ホウ素ナトリウム(0.85g,22.4mmol)を15分間かけて加え、さらに同温で15分間攪拌した。反応液をクロロホルム(1L)で希釈し、10%クエン酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残留物をシリカゲルカラムクロマトグラフィー(展開液;ベンゼン:酢酸エチル=98:2〜95:5)で精製し、化合物28(15.0g)を得た。
【0091】
【表16】
Figure 0003710708
【0092】
<実施例17>
化合物29の合成
【0093】
【化56】
Figure 0003710708
【0094】
化合物28(14.9g,18.7mmol)および4−ジメチルアミノピリジン(0.27g,2.24mmol)のピリジン(30mL)溶液に、氷冷下で無水酢酸(10.5mL,11.4g,0.11mol)を5分間かけて滴下した後、室温で2時間30分攪拌した。反応液を酢酸エチル(500mL)で希釈し、1規定塩酸、飽和食塩水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残留物をシリカゲルカラムクロマトグラフィー(展開液;ヘキサン:ジクロロメタン=30:70)で精製し、化合物29(12.5g)を得た。
【0095】
【表17】
Figure 0003710708
【0096】
<実施例18>
化合物32の合成
【0097】
【化57】
Figure 0003710708
【0098】
−13℃に冷却した化合物29(6.0g,7.13mmol)のジクロロメタン溶液(30mL)溶液に、m−クロロ過安息香酸(1.70g,6.90mmol)のジクロロメタン溶液(50mL)を1時間かけて滴下した後、同温で15分間攪拌した。反応液を氷冷した飽和水素ナトリウム水溶液に注ぎ、有機層を分離し、水層をジクロロメタンで抽出した。有機層を合わせ、無水硫酸ナトリウムで乾燥し、減圧濃縮した。
【0099】
得られた残留物(7.14g)をトルエン(30mL)に溶解し、氷冷下でトリエチルアミン(4.0mL,5.5g,28.5mmol)およびトリフルオロ酢酸無水物(2.0mL,3.0g,14.3mmol)を加え、30分間攪拌した。反応液を−78℃に冷却した水素化ホウ素ナトリウム(2.7g,71mmol)のメタノール(150mL)懸濁液中に10分間かけて滴下した後、徐々に室温まで昇温した。反応液を酢酸エチル(1L)で希釈し、10%クエン酸水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残留物をシリカゲルカラムクロマトグラフィー(展開液;ヘキサン:酢酸エチル=70:30〜0:100)で精製し、化合物32(3.90g)を得た。
【0100】
【表18】
Figure 0003710708
【0101】
<実施例19>
化合物35の合成
【0102】
【化58】
Figure 0003710708
【0103】
−78℃に冷却した化合物32(7.9g,10.5mmol)のジクロロメタン(40mL)溶液に、水素化ジイソブチルアルミニウム(1Mトルエン溶液,32mL,32mmol)を10分間かけて滴下した。反応液を同温で1時間攪拌した後、無水メタノール(22.4mL)を10分間かけて滴下し、さらに室温で1時間攪拌した。反応液にクロロホルムと1規定塩酸を加え、有機層を分離し、水層をクロロホルムで抽出した。有機層を合わせ、飽和食塩水、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。
【0104】
得られた残留物(8.4g)をジクロロメタン(40mL)に溶解し、室温で4−ジメチルアミノピリジン(120mg,1.0mmol)、トリエチルアミン(4.4mL,3.2g,31.6mmol)およびtert−ブチルジメチルクロロシラン(2.70g,17.9mol)を順次加え、さらに1時間攪拌した。反応液をクロロホルムで希釈し、10%クエン酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。
【0105】
得られた残留物(9.0g)をアセトニトリル(40mL)に溶解し、室温でチオフェノール(2.0mL,2.2g,20mmol)および炭酸セシウム(7.0g,20mmol)を順次加え、1時間攪拌した。反応液を酢酸エチルで希釈し、10%クエン酸水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残留物をシリカゲルカラムクロマトグラフィー(展開液;ヘキサン:ジクロロメタン=65:35〜25:75→ヘキサン:酢酸エチル=75:25)で精製し、化合物35(4.90g)を得た。
【0106】
【表19】
Figure 0003710708
【0107】
<実施例20>
化合物38の合成
【0108】
【化59】
Figure 0003710708
【0109】
化合物35(4.76g,7.49mmol)のジクロロメタン(50mL)溶液に、室温でm−クロロ過安息香酸(2.06g,8.37mmol)のジクロロメタン溶液(60mL)を20分間かけて滴下した後、さらに10分間攪拌した。反応液を飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。
【0110】
得られた残留物(4.24g)に無水酢酸(20mL)を加え、室温で12時間攪拌した。反応液を減圧濃縮し、得られた残留物を酢酸エチルに溶解し、10%クエン酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。
【0111】
得られた残留物(5.88g)をジクロロメタン(10mL)に溶解し、−78℃に冷却したオキサリルジクロリド(1.3mL,1.9g,15.3mmol)およびジメチルスルホキシド(2.1mL,2.3g,30.0mmol)のジクロロメタン(40mL)溶液に滴下し、さらに同温で30分間攪拌した後、トリエチルアミン(5.3mL,3.8g,38.3mmol)を滴下し、1時間かけて室温まで昇温させた。反応液をジクロロメタンで希釈し、10%クエン酸水溶液、飽和炭酸水素ナトリウム水溶液、飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残留物をシリカゲルカラムクロマトグラフィー(展開液;ジエチルエーテル:ヘキサン=50:50)で精製し、化合物38(3.70g)を得た。
【0112】
【表20】
Figure 0003710708
【0113】
<実施例21>
化合物39の合成
【0114】
【化60】
Figure 0003710708
【0115】
化合物38(3.67g,5.30mmol)のメタノール(10mL)−ジクロロメタン(10mL)溶液に、室温でヒドラジン−水和物(2.6mL,27g,53.0mmol)を加え、1時間攪拌した後、減圧濃縮した。得られた残留物をシリカゲルカラムクロマトグラフィー(展開液;ヘキサン:酢酸エチル=80:20)で精製し、化合物39(1.09g)を得た。
【0116】
【表21】
Figure 0003710708
【0117】
<実施例22>
化合物41の合成
【0118】
【化61】
Figure 0003710708
【0119】
化合物39(0.15g,0.23mmol)のメタノール(2.5mL)−ジクロロメタン(2.5mL)溶液にトリフルオロ酢酸(1Mジクロロメタン溶液、0.5mL,0.5mmol)を加え、室温で2時間、50℃で1時間攪拌した。反応液を減圧濃縮し、得られた残留物にアセトン(2.5mL)、アセトンジメチルアセタール(2.5mL)、2−メトキシプロペン(110μL,0.11mmol)およびp−トルエンスルホン酸ピリジニウム(25mg,0.10mmol)を順次加え、室温で1時間攪拌した。反応液をシリカゲルカラムクロマトグラフィー(展開液;クロロホルム:メタノール=10:1)で精製し、化合物41(70mg)を得た。
【0120】
【表22】
Figure 0003710708
【0121】
<実施例23>
化合物44の合成
【0122】
【化62】
Figure 0003710708
【0123】
化合物41(0.34g,0.63mmol)、4−ジメチルアミノピリジン(12mg,0.10mmol)およびトリエチルアミン(0.21mL,1.5mmol)のジクロロメタン(3mL)溶液に、氷冷下でトリエチルクロロシラン(0.15mL,0.13g,0.89mmol)を加え、同温で3時間攪拌した。反応液を飽和炭酸水素ナトリウム水溶液、10%クエン酸水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。
【0124】
得られた残留物(0.43g)をジクロロメタン(3mL)に溶解し、室温でトリエチルアミン(0.53mL,0.38g,3.8mmol)およびメタンスルホン酸クロリド(0.16mL,0.23g,2.0mmol)を加え、3時間攪拌した。反応液を飽和炭酸水素ナトリウム水溶液、10%クエン酸水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。
【0125】
得られた残留物(0.45g)をテトラヒドロフラン(3mL)に溶解し、氷冷下でフッ化テトラブチルアンモニウム(1Mテトラヒドロフラン溶液,1.2mL,1.2mol)を加え、1時間攪拌した。反応液を酢酸エチルでで希釈し、10%クエン酸水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残留物をシリカゲルカラムクロマトグラフィー(展開液;ヘキサン:酢酸エチル=70:30〜65:35)で精製し、化合物44(0.31g)を得た。
【0126】
【表23】
Figure 0003710708
【0127】
<実施例24>
化合物46の合成
【0128】
【化63】
Figure 0003710708
【0129】
化合物44(234mg,0.38mmol)のN,N−ジメチルホルムアミド(2mL)溶液に、水素化ナトリウム(60%オイル核酸,40mg,1.0mmol)を加え、室温で10分間、120℃で10分間攪拌した。反応液を氷冷し、飽和塩化アンモニウム水溶液を加え、水層を酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。
【0130】
得られた残留物(226mg)をN,N−ジメチルホルムアミド(3.5mL)−水(0.35mL)に溶解し、リチウムアジド(450mg,9.19mmol)を加え、120℃で3時間30分攪拌した。反応液を室温まで冷却後、氷水に注ぎ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残留物シリカゲルカラムクロマトグラフィー(展開液;ヘキサン:酢酸エチル=80:20)で精製し、化合物46(158mg)を得た。
【0131】
【表24】
Figure 0003710708
【0132】
<実施例25>
化合物47の合成
【0133】
【化64】
Figure 0003710708
【0134】
化合物46(174mg,0.31mmol)のジクロロメタン(1mL)溶液に、トリエチルアミン(136μL,0.98mmol)およびメタンスルホン酸クロリド(51μL,0.66mmol)を加え、室温で3時間攪拌した。反応液を飽和炭酸水素ナトリウム水溶液に注ぎ、クロロホルムで抽出した。有機層を10%クエン酸水溶液、飽和食塩水で順次洗浄し、無水硫酸ナトリウムで乾燥し、減圧濃縮した。得られた残留物をシリカゲルカラムクロマトグラフィー(展開液;ヘキサン:酢酸エチル=80:20〜70:30)で精製し、化合物47(157mg)を得た。
【0135】
【表25】
Figure 0003710708
【0136】
<実施例26>
化合物49の合成
【0137】
【化65】
Figure 0003710708
【0138】
化合物47(147mg,0.23mmol)のジクロロメタン(3mL)溶液に、トリフルオロ酢酸(140μL,1.84mmol)を加え、室温で3時間攪拌した。反応液をジクロロメタンで希釈し、飽和炭酸水素ナトリウム水溶液で洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。
【0139】
得られた残留物(145mg)をジクロロメタン(0.5mL)に溶解し、氷冷したトリホスゲン(297mg,1.00mol)およびピリジン(97μL,1.20mmol)のジクロロメタン(1mL)溶液中に10分間かけて滴下し、さらに同温20分間攪拌した。反応液をクロロホルムで希釈し、飽和炭酸水素ナトリウム水溶液、10%クエン酸水溶液、飽和食塩水で順次洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残留物をシリカゲルカラムクロマトグラフィー(展開液;ジクロロメタン:ヘキサン=75:25)で精製し、化合物49(132mg)を得た。
【0140】
【表26】
Figure 0003710708
【0141】
<実施例27>
化合物50の合成
【0142】
【化66】
Figure 0003710708
【0143】
化合物49(132mg,0.21mmol)のアセトニトリル(4mL)−水(1mL)溶液に、硝酸二アンモニウムセリウム(IV)(290mg,0.53mmol)を加え、室温で10分間攪拌した。反応液を飽和食塩水に注ぎ、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残留物をシリカゲルカラムクロマトグラフィー(展開液;ヘキサン:酢酸エチル=70:30〜50:50)で精製し、化合物50(92mg)を得た。
【0144】
【表27】
Figure 0003710708
【0145】
<実施例28>
化合物52の合成
【0146】
【化67】
Figure 0003710708
【0147】
化合物50(90mg,0.17mmol)のジクロロメタン(3mL)溶液に、無水硫酸マグネシウム(84mg,0.70mmol)およびクロロクロム酸ピリジニウム(75mg,0.35mmol)を順次加え、室温で1時間30分攪拌した。反応液にジエチルエーテル(5mL)を加え、3分間攪拌した後、セライト濾過した。濾液を減圧濃縮し、得られた残留物(81mg)をメタノール(4mL)に溶解し、オルトギ酸メチル(1mL)およびカンファースルホン酸(3mg,13μmol)を加え、室温で1時間攪拌した。反応液を飽和食塩水に注ぎ、ジクロロメタンで抽出した。有機層を無水硫酸ナトリウムで乾燥し、減圧濃縮し、得られた残留物をシリカゲルカラムクロマトグラフィー(展開液;ヘキサン:酢酸エチル=70:30)で精製し、化合物52(77mg)を得た。
【0148】
【表28】
Figure 0003710708
【0149】
<実施例29>
化合物53の合成
【0150】
【化68】
Figure 0003710708
【0151】
化合物52(35mg,62μmol)のテトラヒドロフラン(1mL)−水(0.1mL)溶液に、ジイソプロピルエチルアミン(13μL,75μmol)およびトリフェニルホスフィン(31mg,0.12mmol)を順次加え、60℃で1時間30分攪拌した。反応液を室温まで冷却した後、飽和食塩水に注ぎ、ジクロロメタンで抽出した。有機層を無水硫酸マグネシウムで乾燥し、減圧濃縮し、得られた残留物を分取薄層クロマトグラフィー(展開液,ベンゼン:酢酸エチル=50:50)で精製し、化合物53(23mg)を得た。
【0152】
【表29】
Figure 0003710708
【0153】
<実施例30>
化合物56の合成
【0154】
【化69】
Figure 0003710708
【0155】
化合物53(20mg,45μmol)のエタノール(1.5mL)溶液に、10パラジウム活性炭素(7mg)を加え、水素雰囲気下、室温で1時間攪拌した。反応液を濾過し、減圧濃縮し、得られた残留物(16mg)をテトラヒドロフラン(2.5mL)−水(0.25mL)に溶解し、1%過塩素酸水溶液(0.1mL)を加え、3時間30分攪拌した。反応液を飽和食塩水に注ぎ、ジエチルエーテルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸マグネシウムで乾燥し、減圧濃縮した。得られた残留物(20mg)をテトラヒドロフラン(3mL)に溶解し、室温で攪拌しながらアンモニアガスを13分間吹き込んだ。さらに2時間攪拌した後、減圧濃縮し、得られた残留物(17mg)を分取薄層クロマトグラフィー(展開液;ジクロロメタン:メタノール=85:15)で精製し、化合物56(7.1mg)を得た。
【0156】
【表30】
Figure 0003710708
【0157】
【発明の効果】
この出願の発明によって、抗腫瘍性抗生物質の新規な展開とその応用が期待されるFR900482とその類縁体並びにそれらの合成中間体の実用的な合成方法が提供される。[0001]
BACKGROUND OF THE INVENTION
The invention of this application relates to a method for synthesizing FR9000048 and its analog compounds and synthetic intermediates. More specifically, the invention of this application relates to a method for synthesizing FR90000482 and its analog compounds, which are antitumor substances having an action mechanism similar to that of Mytomycin C, and synthetic intermediates therefor.
[0002]
[Prior art and problems of the invention]
Conventionally, the following formula
[0003]
Embedded image
Figure 0003710708
[0004]
Is known as an antitumor active substance having a mechanism of action similar to that of Mytomycin C, and the inventors of this application have established a method for total synthesis of its racemate.
[0005]
However, regarding this FR9000048, its analogs and methods for synthesizing them are not so much studied.
[0006]
Accordingly, the search for and establishment of new methods for synthesizing FR9000048 and its analogs, which are expected to be developed and applied for antitumor antibiotics, are extremely important issues.
[0007]
[Means for Solving the Problems]
Accordingly, the invention of this application provides new technical means as claimed in claims 1 to 11 to solve the above-mentioned problems. These technical means relate to the synthesis method of FR9000048, its analog compounds, and synthetic intermediates thereof.
[0008]
In the claimed invention, the symbols Ra and Rb and R shown in the chemical formula 1 And R 2 Are the same or different and each represents a hydrogen atom or an organic group. Examples of the organic group in this case include hydrocarbon groups such as alkyl groups, cycloalkyl groups, and aryl groups, alkoxy groups, aryloxy groups, amino groups, (di) alkylamino groups, arylamino groups, ester groups, and alkylcarbonyl groups. , Arylcarbonyl group, alkylcarbonyloxy group, halogen atom and the like.
[0009]
Various protecting groups for Rc, Rd, Re, Rf, and Rg, such as conventionally known benzyl group, p-methylphenyl group, TBS, and acyl group, are considered.
[0010]
In particular, in the invention of this application, a practical synthesis method excellent in applicability to reactions on a large scale is provided for the synthesis of FR9000048. By this method, not only both enantiomers of optically active substances but also various kinds of analogs such as diastereoscope can be synthesized widely. New drug development using FR9000048 as a lead compound becomes possible.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Therefore, the synthesis of FR9000048 will be shown as an example below, and the embodiment of the invention will be described in more detail.
[0012]
This synthesis of FR90082 is realized as the following reaction step.
[0013]
Embedded image
Figure 0003710708
[0014]
Embedded image
Figure 0003710708
[0015]
Embedded image
Figure 0003710708
[0016]
Embedded image
Figure 0003710708
[0017]
Embedded image
Figure 0003710708
[0018]
Embedded image
Figure 0003710708
[0019]
Embedded image
Figure 0003710708
[0020]
Embedded image
Figure 0003710708
[0021]
By using the above method, not only FR-900482, but also its enantiomers and diastereomers, and various analogs can be prepared as optically active substances.
[0022]
That is, if L-tartaric acid is used as a starting material for acetylene 13, an enantiomer can be synthesized by the same route. In addition, since the two secondary hydroxyl groups of compound 41 are distinguishable, the stereoisomer (β-epoxide) of compound 45 can be easily synthesized. Therefore, the stereoisomer of FR-900482 (α-aziridine) Synthesis is also possible.
[0023]
Further, instead of the triflate 6, an aromatic compound having an alkyl group, an alkoxyl group, an amino group, an acyl group, a halogen, or the like on the aromatic ring is used, or the compound 55 is subjected to amine decomposition with various amines to obtain various kinds of compounds. Synthesis of analogs is also possible.
<Example 1>
Synthesis of compound 3
[0024]
Embedded image
Figure 0003710708
[0025]
Concentrated sulfuric acid (5 mL) was added to a methanol (1 L) solution of vanillic acid (150 g, 0.89 mol), and the mixture was heated to reflux for 2 days. The solvent was distilled off, and the resulting residue was dissolved in chloroform and washed with a saturated aqueous sodium bicarbonate solution. The organic layer was separated, dried over anhydrous magnesium sulfate and concentrated under reduced pressure.
[0026]
To a solution of the obtained residue (173 g) in acetic acid (500 mL), concentrated nitric acid (78 mL) was added over 20 minutes under ice cooling, and the mixture was further stirred for 30 minutes. Water (1 L) was added to the reaction solution, and the mixture was stirred for 1 hour under ice-cooling, and then the precipitated crude crystals were collected by filtration and washed with water. The crude crystals were dissolved in chloroform (2 L), washed with water, and the organic layer was dried over anhydrous magnesium sulfate. Hexane (400 mL) was added to the crude product (300 g) obtained by concentration under reduced pressure, and the precipitated crystals were collected by filtration and dried under reduced pressure to obtain Compound 3 (148 g).
[0027]
[Table 1]
Figure 0003710708
[0028]
<Example 2>
Synthesis of compound 4
[0029]
Embedded image
Figure 0003710708
[0030]
Boron tribromide / dimethyl sulfide complex (75.0 g, 0.24 mol) was added to a 1,2-dichloroethane (1 L) solution of Compound 3 (51.9 g, 0.23 mol), and the mixture was heated to reflux for 20 minutes. After cooling the reaction solution to room temperature, water (500 mL) was added and stirred vigorously for 3 minutes. The organic layer was separated, washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The obtained residue was recrystallized from hexane-ethyl acetate to obtain Compound 4 (30.3 g).
[0031]
[Table 2]
Figure 0003710708
[0032]
<Example 3>
Synthesis of compound 5
[0033]
Embedded image
Figure 0003710708
[0034]
A solution of compound 4 (30.0 g, 0.14 mol) in N, N-dimethylformamide (130 mL) was added to a suspension of sodium hydride (60% oil diffusion, 6.7 g, 0.28 mol) in tetrahydrofuran (400 mL). The mixture was added dropwise at room temperature over 30 minutes and stirred for another 30 minutes. The reaction solution was ice-cooled, and benzyl bromide (16.6 mL, 23.9 g, 0.14 mol) was added dropwise over 5 minutes, followed by stirring at room temperature for 5 hours. 1N Hydrochloric acid (300 mL) was added to the reaction mixture, and the mixture was vigorously stirred and extracted with ethyl acetate (500 mL). The organic layer was washed with saturated brine and concentrated under reduced pressure. The precipitated crystals were collected by filtration, washed with hexane, and dried under reduced pressure to obtain compound 5 (25.0 g).
[0035]
[Table 3]
Figure 0003710708
[0036]
<Example 4>
Synthesis of compound 6
[0037]
Embedded image
Figure 0003710708
[0038]
To a solution of compound 5 (37.9 g, 0.13 mol) and pyridine (25 mL, 0.31 mol) in dichloromethane (1 L) was added trifluoromethanesulfonic anhydride (22 mL, 37, 0.13 mol) for 15 minutes under ice cooling. The mixture was added dropwise and stirred for another hour. The reaction mixture was washed successively with 1N hydrochloric acid, saturated brine, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure to give compound 6 (53.5 g).
[0039]
[Table 4]
Figure 0003710708
[0040]
<Example 5>
Synthesis of Compound 11
[0041]
Embedded image
Figure 0003710708
[0042]
Prepared according to 2,3-di-O-isopropylidene-D-threitol (Organic Synthesis Collective Volume VIII, 1993, 155) in an ice-cooled suspension of sodium hydride (30.0 g, 1.25 mol) in tetrahydrofuran (1 L). , 87.5 g, 0.54 mol) in tetrahydrofuran (150 mL) was added dropwise over 1 hour. The reaction solution was stirred at room temperature for 1 hour and then ice-cooled, and a solution of tert-butyldimethylchlorosilane (97.6 g, 0.65 mol) in dichloromethane (200 mL) was added dropwise over 1 hour, and further under ice-cooling for 30 minutes. Stir. The reaction mixture was poured into crushed ice and extracted with diethyl ether. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solution; hexane: ethyl acetate = 90: 10-50: 50) to obtain Compound 11 (113 g).
[0043]
[Table 5]
Figure 0003710708
[0044]
<Example 6>
Synthesis of Compound 13
[0045]
Embedded image
Figure 0003710708
[0046]
To a dichloromethane (1 L) solution of oxalyl dichloride (36.8 g, 0.29 mol) cooled to −78 ° C., a solution of dimethyl sulfoxide (34.1 mL, 37.5 g, 0.48 mol) in dichloromethane (50 mL) and compound 11 ( A solution of 67.3 g, 0.24 mol) in dichloromethane (70 mL) was added dropwise in turn, and the mixture was further stirred at the same temperature for 30 minutes, and then triethylamine (100 mL, 72.6 g, 0.72 mol) was added dropwise. The temperature was raised to. The reaction mixture was washed with 10% aqueous citric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
[0047]
The obtained residue (57.3 g) was dissolved in methanol (50 mL) and added dropwise to an ice-cooled suspension of anhydrous potassium carbonate (58.0 g, 0.42 mol) in methanol (1 L). Subsequently, dimethyl-1-diazo-2-oxopropylphosphonate (prepared according to Synthetic Communications, 1984, 14, 155, 48.4 g, 0.25 mol) was added dropwise over 15 minutes under ice cooling, and further at room temperature for 2 hours. Stir. The reaction solution was filtered through Celite, and the filtrate was concentrated under reduced pressure. The residue was dissolved in ethyl acetate, washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solution; hexane: ethyl acetate = 90: 10-50: 50) to obtain Compound 13 (31.6 g).
[0048]
[Table 6]
Figure 0003710708
[0049]
<Example 7>
Synthesis of Compound 14
[0050]
Embedded image
Figure 0003710708
[0051]
To a solution of compound 6 (39.2 g, 88.7 mmol), triphenylphosphine (4.65 g, 17.7 mmol) and palladium acetate (1.99 g, 8.87 mmol) in tetrahydrofuran (200 mL) and triethylamine (200 mL) was added. A solution of compound 13 (27.5 g, 0.129 mol) in tetrahydrofuran (200 mL) was added dropwise over 1 hour 30 minutes under sulfur reflux. After dropping, the reaction solution was cooled to room temperature and concentrated under reduced pressure. The obtained residue was dissolved in ethyl acetate, washed with 10% aqueous citric acid solution, saturated sodium hydrogen carbonate solution, saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solution; hexane: ethyl acetate = 95: 5-90: 10) to obtain Compound 14 (40.9 g).
[0052]
[Table 7]
Figure 0003710708
[0053]
<Example 8>
Synthesis of Compound 16
[0054]
Embedded image
Figure 0003710708
[0055]
Piperidine (30 mL, 25.7 g, 0.36 mol) was added dropwise to a benzene (1 L) solution of compound 14 (104 g, 0.19 mol) at room temperature, and the mixture was stirred for 1 hour. The reaction mixture was ice-cooled, 50% aqueous acetic acid solution (600 mL) was added dropwise over 20 minutes, and the mixture was vigorously stirred at room temperature for 2 hours. The organic layer was separated, washed successively with saturated aqueous sodium hydrogen carbonate solution, 10% aqueous citric acid solution and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure to give compound 16 (110 g).
[0056]
[Table 8]
Figure 0003710708
[0057]
<Example 9>
Synthesis of Compound 17
[0058]
Embedded image
Figure 0003710708
[0059]
To a solution of compound 16 (110 g, 0.19 mol) in diethyl ether (500 mL) cooled to −25 ° C., 0.13 M zinc borohydride diethyl ether solution (Chem, Pharm, Bull., 1984, 32, 1141) 1 L) was added dropwise over 2 hours, and after drying for 15 minutes, a 10% aqueous citric acid solution (1 L) was added. The organic layer was separated, washed successively with saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solution; hexane: ethyl acetate = 95: 5-90: 10) to obtain Compound 17 (86.3 g).
[0060]
[Table 9]
Figure 0003710708
[0061]
<Example 10>
Synthesis of Compound 18
[0062]
Embedded image
Figure 0003710708
[0063]
A solution of compound 17 (86.1 g, 0.15 mol) and 4-dimethylaminopyridine (1.8 g, 15 mmol) in pyridine (200 mL) was added with acetic anhydride (28 mL, 0.30 mol) over 15 minutes under ice-cooling. After dropping, the mixture was stirred at room temperature for 2 hours. The reaction mixture was concentrated under reduced pressure, and the resulting residue was dissolved in ethyl acetate, washed successively with 1N hydrochloric acid, saturated brine, saturated aqueous sodium hydrogen carbonate solution, saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. Compound 18 (103 g) was obtained.
[0064]
[Table 10]
Figure 0003710708
[0065]
<Example 11>
Synthesis of Compound 19
[0066]
Embedded image
Figure 0003710708
[0067]
To a solution of compound 18 (47.2 g, 76.4 mmol) in methanol (1 L) was added 5% platinum-activated carbon (10 g), and the mixture was stirred at room temperature for 14 hours in a hydrogen atmosphere. The reaction solution was filtered, 5% platinum-activated carbon (5 g) was added to the filtrate, and the mixture was stirred at room temperature for 5 hours in a hydrogen atmosphere. The reaction solution was filtered and concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography (developing solution; chloroform) to obtain Compound 19 (42.3 g).
[0068]
[Table 11]
Figure 0003710708
[0069]
<Example 12>
Synthesis of compound 20
[0070]
Embedded image
Figure 0003710708
[0071]
To a solution of compound 19 (42.2 g, 71.8 mol), 2-nitrobenzenesulfonyl chloride (23.9 g, 0.108 mol) and 4-dimethylaminopyridine (0.88 g, 7.2 mmol) in dichloromethane (150 mL) was added ice. Pyridine (23.1 mL, 0.287 mol) was added dropwise over 5 minutes under cooling, and the mixture was stirred at room temperature for 3 hours. The reaction mixture was diluted with chloroform, washed successively with 1N hydrochloric acid, saturated brine, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solution; hexane: ethyl acetate = 95: 5-75: 25) to obtain Compound 20 (35.5 g).
[0072]
[Table 12]
Figure 0003710708
[0073]
<Example 13>
Synthesis of Compound 22
[0074]
Embedded image
Figure 0003710708
[0075]
To a solution of compound 20 (35.3 g, 45.9 mmol) and acetic acid (17 mL, 0.30 mol) in tetrahydrofuran (120 mL) was added tetrabutylammonium fluoride (1M tetrahydrofuran solution, 275 mL, 0.275 mol) under ice cooling. The solution was added dropwise over a period of time and stirred at room temperature for 17 hours. The reaction mixture was diluted with ethyl acetate, washed successively with 10% aqueous citric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
[0076]
A solution of the obtained residue (29.4 g) and triphenylphosphine (17.5 g, 66.9 mmol) in benzene (1.5 L) at room temperature with diethyl azodicarboxylate (40% toluene solution, 24 mL, 52. 8 mmol) was added dropwise over 20 minutes. The reaction mixture was further stirred for 30 minutes and then concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography (developing solution; hexane: ethyl acetate = 70: 30 to 60:40) to give compound 22 (35. 0 g) was obtained.
[0077]
[Table 13]
Figure 0003710708
[0078]
<Example 14>
Synthesis of Compound 24
[0079]
Embedded image
Figure 0003710708
[0080]
To a solution of compound 22 (34.5 g) cooled to −78 ° C. in dichloromethane (150 mL), diisobutylaluminum hydride (1M toluene solution, 270 mL, 0.27 mol) was added dropwise over 1 hour. After stirring the reaction solution at the same temperature for 15 minutes, anhydrous methanol (190 mL) was added dropwise over 30 minutes, and the mixture was further stirred at room temperature for 1 hour. Chloroform (2 L) and 1N hydrochloric acid (1 L) were added to the reaction solution, the organic layer was separated, and the aqueous layer was extracted with chloroform. The organic layers were combined, washed successively with saturated brine, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
[0081]
To a solution of the obtained residue (31.5 g), 4-methoxyphenol (6.64 g, 53.5 mmol) and triphenylphosphine (14.0 g, 53.5 mmol) in benzene (250 mL) at room temperature, diethyl azodi Carboxylate (40% toluene solution, 24.3 mL, 53.5 mmol) was added dropwise over 10 minutes. The reaction mixture was stirred for 10 minutes and then concentrated under reduced pressure. Chloroform (100 mL) was added to the resulting residue, and the mixture was stirred under ice-cooling. The precipitated insoluble material was filtered off, and the filtrate was concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solution; benzene: ethyl acetate = 90: 10) to obtain Compound 24 (21.2 g).
[0082]
[Table 14]
Figure 0003710708
[0083]
<Example 15>
Synthesis of compound 25
[0084]
Embedded image
Figure 0003710708
[0085]
To a solution of oxalyl dichloride (3.6 mL, 5.2 g, 41.7 mmol) in dichloromethane (150 mL) cooled to −78 ° C., a solution of dimethyl sulfoxide (3.9 mL, 4.3 g, 55.6 mmol) in dichloromethane (10 mL) And a solution of compound 24 (21.0 g, 31.0 mmol) in dichloromethane (200 mL) were added dropwise in turn, and the mixture was further stirred at the same temperature for 30 minutes, and then triethylamine (11.6 mL, 8.4 g, 83.4 mmol) was added dropwise. The temperature was raised to room temperature over 1 hour. The reaction mixture was washed with 10% aqueous citric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. Ethyl acetate (50 mL) and hexane (50 mL) were added to the obtained residue, and the mixture was stirred for 1 hour under ice cooling. The precipitated crystals were collected by filtration, washed with hexane-ethyl acetate (2: 1), and dried under reduced pressure to obtain compound 25 (15.1 g).
[0086]
[Table 15]
Figure 0003710708
[0087]
<Example 16>
Synthesis of Compound 28
[0088]
Embedded image
Figure 0003710708
[0089]
In a stainless steel reaction tube, compound 25 (15.1 g, 22.4 mmol), 2-propanol (150 mL), dimethylamine hydrochloride (2.19 g, 26.9 mmol), 37% formalin (8.5 mL, 0.11 mol), Triethylamine (0.94 mL, 0.68 g, 6.72 mmol) and water (15 mL) were sequentially added, then sealed and stirred at 90 ° C. for 4 hours and 30 minutes. The reaction mixture was concentrated under reduced pressure, and the resulting residue was dissolved in chloroform, washed successively with 10% aqueous citric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
[0090]
The obtained residue (18.8 g) was dissolved in tetrahydrofuran (50 mL) -methanol (50 mL), and triethylamine (1.2 mL, 0.87 g, 8.96 mmol) and thiophenol (3.4 mL, 3.96 mmol) were dissolved at room temperature. 6 g, 33.6 mmol) was sequentially added and stirred for 3 hours. The reaction mixture was ice-cooled, sodium borohydride (0.85 g, 22.4 mmol) was added over 15 minutes, and the mixture was further stirred at the same temperature for 15 minutes. The reaction mixture was diluted with chloroform (1 L), washed successively with 10% aqueous citric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solution; benzene: ethyl acetate = 98: 2-95: 5) to obtain Compound 28 (15.0 g).
[0091]
[Table 16]
Figure 0003710708
[0092]
<Example 17>
Synthesis of Compound 29
[0093]
Embedded image
Figure 0003710708
[0094]
To a solution of compound 28 (14.9 g, 18.7 mmol) and 4-dimethylaminopyridine (0.27 g, 2.24 mmol) in pyridine (30 mL) was added acetic anhydride (10.5 mL, 11.4 g, 0) under ice cooling. .11 mol) was added dropwise over 5 minutes, followed by stirring at room temperature for 2 hours 30 minutes. The reaction mixture was diluted with ethyl acetate (500 mL), washed successively with 1N hydrochloric acid, saturated brine, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solution; hexane: dichloromethane = 30: 70) to obtain Compound 29 (12.5 g).
[0095]
[Table 17]
Figure 0003710708
[0096]
<Example 18>
Synthesis of Compound 32
[0097]
Embedded image
Figure 0003710708
[0098]
A dichloromethane solution (50 mL) of m-chloroperbenzoic acid (1.70 g, 6.90 mmol) was added to a dichloromethane solution (30 mL) solution of compound 29 (6.0 g, 7.13 mmol) cooled to −13 ° C. for 1 hour. After dropwise addition, the mixture was stirred at the same temperature for 15 minutes. The reaction solution was poured into an ice-cooled saturated aqueous sodium hydrogen solution, the organic layer was separated, and the aqueous layer was extracted with dichloromethane. The organic layers were combined, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
[0099]
The obtained residue (7.14 g) was dissolved in toluene (30 mL), and triethylamine (4.0 mL, 5.5 g, 28.5 mmol) and trifluoroacetic anhydride (2.0 mL, 3. 0 g, 14.3 mmol) was added and stirred for 30 minutes. The reaction solution was dropped into a methanol (150 mL) suspension of sodium borohydride (2.7 g, 71 mmol) cooled to −78 ° C. over 10 minutes, and then gradually warmed to room temperature. The reaction mixture was diluted with ethyl acetate (1 L), washed successively with 10% aqueous citric acid solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solution; hexane: ethyl acetate = 70: 30 to 0: 100) to obtain Compound 32 (3.90 g).
[0100]
[Table 18]
Figure 0003710708
[0101]
<Example 19>
Synthesis of compound 35
[0102]
Embedded image
Figure 0003710708
[0103]
Diisobutylaluminum hydride (1M toluene solution, 32 mL, 32 mmol) was added dropwise to a solution of compound 32 (7.9 g, 10.5 mmol) cooled to −78 ° C. in dichloromethane (40 mL) over 10 minutes. After stirring the reaction solution at the same temperature for 1 hour, anhydrous methanol (22.4 mL) was added dropwise over 10 minutes, and the mixture was further stirred at room temperature for 1 hour. Chloroform and 1N hydrochloric acid were added to the reaction solution, the organic layer was separated, and the aqueous layer was extracted with chloroform. The organic layers were combined, washed successively with saturated brine, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
[0104]
The obtained residue (8.4 g) was dissolved in dichloromethane (40 mL), and 4-dimethylaminopyridine (120 mg, 1.0 mmol), triethylamine (4.4 mL, 3.2 g, 31.6 mmol) and tert were dissolved at room temperature. -Butyldimethylchlorosilane (2.70 g, 17.9 mol) was sequentially added, and the mixture was further stirred for 1 hour. The reaction mixture was diluted with chloroform, washed successively with 10% aqueous citric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
[0105]
The obtained residue (9.0 g) was dissolved in acetonitrile (40 mL), and thiophenol (2.0 mL, 2.2 g, 20 mmol) and cesium carbonate (7.0 g, 20 mmol) were sequentially added at room temperature for 1 hour. Stir. The reaction mixture was diluted with ethyl acetate, washed successively with 10% aqueous citric acid solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solution; hexane: dichloromethane = 65: 35 to 25: 75 → hexane: ethyl acetate = 75: 25) to obtain Compound 35 (4.90 g).
[0106]
[Table 19]
Figure 0003710708
[0107]
<Example 20>
Synthesis of compound 38
[0108]
Embedded image
Figure 0003710708
[0109]
To a solution of compound 35 (4.76 g, 7.49 mmol) in dichloromethane (50 mL) was added dropwise a solution of m-chloroperbenzoic acid (2.06 g, 8.37 mmol) in dichloromethane (60 mL) at room temperature over 20 minutes. The mixture was further stirred for 10 minutes. The reaction mixture was washed successively with saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
[0110]
Acetic anhydride (20 mL) was added to the obtained residue (4.24 g), and the mixture was stirred at room temperature for 12 hours. The reaction mixture was concentrated under reduced pressure, and the resulting residue was dissolved in ethyl acetate, washed successively with 10% aqueous citric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure.
[0111]
The obtained residue (5.88 g) was dissolved in dichloromethane (10 mL) and cooled to −78 ° C., oxalyl dichloride (1.3 mL, 1.9 g, 15.3 mmol) and dimethyl sulfoxide (2.1 mL, 2. 3 g, 30.0 mmol) in dichloromethane (40 mL) and further stirred at the same temperature for 30 minutes, and then triethylamine (5.3 mL, 3.8 g, 38.3 mmol) was added dropwise to room temperature over 1 hour. The temperature was raised. The reaction mixture was diluted with dichloromethane, washed with 10% aqueous citric acid solution, saturated aqueous sodium hydrogen carbonate solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solution; diethyl ether: hexane = 50: 50) to obtain Compound 38 (3.70 g).
[0112]
[Table 20]
Figure 0003710708
[0113]
<Example 21>
Synthesis of Compound 39
[0114]
Embedded image
Figure 0003710708
[0115]
To a solution of compound 38 (3.67 g, 5.30 mmol) in methanol (10 mL) -dichloromethane (10 mL) was added hydrazine-hydrate (2.6 mL, 27 g, 53.0 mmol) at room temperature and stirred for 1 hour. And concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solution; hexane: ethyl acetate = 80: 20) to obtain Compound 39 (1.09 g).
[0116]
[Table 21]
Figure 0003710708
[0117]
<Example 22>
Synthesis of Compound 41
[0118]
Embedded image
Figure 0003710708
[0119]
Trifluoroacetic acid (1M dichloromethane solution, 0.5 mL, 0.5 mmol) was added to a solution of compound 39 (0.15 g, 0.23 mmol) in methanol (2.5 mL) -dichloromethane (2.5 mL), and the mixture was stirred at room temperature for 2 hours. , And stirred at 50 ° C. for 1 hour. The reaction solution was concentrated under reduced pressure, and acetone (2.5 mL), acetone dimethyl acetal (2.5 mL), 2-methoxypropene (110 μL, 0.11 mmol) and pyridinium p-toluenesulfonate (25 mg, 0.10 mmol) was sequentially added, and the mixture was stirred at room temperature for 1 hour. The reaction solution was purified by silica gel column chromatography (developing solution; chloroform: methanol = 10: 1) to obtain Compound 41 (70 mg).
[0120]
[Table 22]
Figure 0003710708
[0121]
<Example 23>
Synthesis of Compound 44
[0122]
Embedded image
Figure 0003710708
[0123]
To a solution of compound 41 (0.34 g, 0.63 mmol), 4-dimethylaminopyridine (12 mg, 0.10 mmol) and triethylamine (0.21 mL, 1.5 mmol) in dichloromethane (3 mL) was added triethylchlorosilane ( 0.15 mL, 0.13 g, 0.89 mmol) was added, and the mixture was stirred at the same temperature for 3 hours. The reaction solution was washed successively with saturated aqueous sodium hydrogen carbonate solution, 10% aqueous citric acid solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
[0124]
The obtained residue (0.43 g) was dissolved in dichloromethane (3 mL) and triethylamine (0.53 mL, 0.38 g, 3.8 mmol) and methanesulfonic acid chloride (0.16 mL, 0.23 g, 2) were dissolved at room temperature. 0.0 mmol) was added and stirred for 3 hours. The reaction solution was washed successively with saturated aqueous sodium hydrogen carbonate solution, 10% aqueous citric acid solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
[0125]
The obtained residue (0.45 g) was dissolved in tetrahydrofuran (3 mL), tetrabutylammonium fluoride (1M tetrahydrofuran solution, 1.2 mL, 1.2 mol) was added under ice cooling, and the mixture was stirred for 1 hr. The reaction mixture was diluted with ethyl acetate, washed successively with 10% aqueous citric acid solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solution; hexane: ethyl acetate = 70: 30 to 65:35) to obtain Compound 44 (0.31 g).
[0126]
[Table 23]
Figure 0003710708
[0127]
<Example 24>
Synthesis of Compound 46
[0128]
Embedded image
Figure 0003710708
[0129]
Sodium hydride (60% oil nucleic acid, 40 mg, 1.0 mmol) was added to a solution of compound 44 (234 mg, 0.38 mmol) in N, N-dimethylformamide (2 mL), and the mixture was added at room temperature for 10 minutes and at 120 ° C. for 10 minutes. Stir. The reaction mixture was ice-cooled, saturated aqueous ammonium chloride solution was added, and the aqueous layer was extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
[0130]
The obtained residue (226 mg) was dissolved in N, N-dimethylformamide (3.5 mL) -water (0.35 mL), lithium azide (450 mg, 9.19 mmol) was added, and 120 ° C. for 3 hours 30 minutes. Stir. The reaction mixture was cooled to room temperature, poured into ice water, and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solution; hexane: ethyl acetate = 80: 20) to obtain Compound 46 (158 mg).
[0131]
[Table 24]
Figure 0003710708
[0132]
<Example 25>
Synthesis of Compound 47
[0133]
Embedded image
Figure 0003710708
[0134]
To a solution of compound 46 (174 mg, 0.31 mmol) in dichloromethane (1 mL) were added triethylamine (136 μL, 0.98 mmol) and methanesulfonic acid chloride (51 μL, 0.66 mmol), and the mixture was stirred at room temperature for 3 hours. The reaction solution was poured into a saturated aqueous sodium hydrogen carbonate solution and extracted with chloroform. The organic layer was washed successively with 10% aqueous citric acid solution and saturated brine, dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solution; hexane: ethyl acetate = 80: 20 to 70:30) to obtain Compound 47 (157 mg).
[0135]
[Table 25]
Figure 0003710708
[0136]
<Example 26>
Synthesis of Compound 49
[0137]
Embedded image
Figure 0003710708
[0138]
Trifluoroacetic acid (140 μL, 1.84 mmol) was added to a solution of compound 47 (147 mg, 0.23 mmol) in dichloromethane (3 mL), and the mixture was stirred at room temperature for 3 hours. The reaction mixture was diluted with dichloromethane, washed with saturated aqueous sodium hydrogen carbonate solution, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure.
[0139]
The obtained residue (145 mg) was dissolved in dichloromethane (0.5 mL), and ice-cooled triphosgene (297 mg, 1.00 mol) and pyridine (97 μL, 1.20 mmol) in dichloromethane (1 mL) were added over 10 minutes. Then, the mixture was further stirred for 20 minutes at the same temperature. The reaction mixture was diluted with chloroform, washed successively with saturated aqueous sodium hydrogen carbonate solution, 10% aqueous citric acid solution and saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solution; dichloromethane: hexane = 75: 25) to obtain Compound 49 (132 mg).
[0140]
[Table 26]
Figure 0003710708
[0141]
<Example 27>
Synthesis of Compound 50
[0142]
Embedded image
Figure 0003710708
[0143]
To a solution of compound 49 (132 mg, 0.21 mmol) in acetonitrile (4 mL) -water (1 mL) was added diammonium cerium (IV) nitrate (290 mg, 0.53 mmol), and the mixture was stirred at room temperature for 10 minutes. The reaction mixture was poured into saturated brine and extracted with ethyl acetate. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The obtained residue was purified by silica gel column chromatography (developing solution; hexane: ethyl acetate = 70: 30-50: 50) to obtain Compound 50 (92 mg).
[0144]
[Table 27]
Figure 0003710708
[0145]
<Example 28>
Synthesis of Compound 52
[0146]
Embedded image
Figure 0003710708
[0147]
To a solution of compound 50 (90 mg, 0.17 mmol) in dichloromethane (3 mL) was added anhydrous magnesium sulfate (84 mg, 0.70 mmol) and pyridinium chlorochromate (75 mg, 0.35 mmol) successively, and the mixture was stirred at room temperature for 1 hour 30 minutes. did. Diethyl ether (5 mL) was added to the reaction mixture, and the mixture was stirred for 3 min and filtered through celite. The filtrate was concentrated under reduced pressure, the obtained residue (81 mg) was dissolved in methanol (4 mL), methyl orthoformate (1 mL) and camphorsulfonic acid (3 mg, 13 μmol) were added, and the mixture was stirred at room temperature for 1 hr. The reaction solution was poured into saturated brine and extracted with dichloromethane. The organic layer was dried over anhydrous sodium sulfate and concentrated under reduced pressure, and the resulting residue was purified by silica gel column chromatography (developing solution; hexane: ethyl acetate = 70: 30) to obtain Compound 52 (77 mg).
[0148]
[Table 28]
Figure 0003710708
[0149]
<Example 29>
Synthesis of Compound 53
[0150]
Embedded image
Figure 0003710708
[0151]
To a solution of compound 52 (35 mg, 62 μmol) in tetrahydrofuran (1 mL) -water (0.1 mL), diisopropylethylamine (13 μL, 75 μmol) and triphenylphosphine (31 mg, 0.12 mmol) were sequentially added, and then at 60 ° C. for 1 hour 30 Stir for minutes. The reaction mixture was cooled to room temperature, poured into saturated brine, and extracted with dichloromethane. The organic layer was dried over anhydrous magnesium sulfate and concentrated under reduced pressure. The resulting residue was purified by preparative thin layer chromatography (developing solution, benzene: ethyl acetate = 50: 50) to obtain Compound 53 (23 mg). It was.
[0152]
[Table 29]
Figure 0003710708
[0153]
<Example 30>
Synthesis of Compound 56
[0154]
Embedded image
Figure 0003710708
[0155]
To a solution of compound 53 (20 mg, 45 μmol) in ethanol (1.5 mL) was added 10 palladium activated carbon (7 mg), and the mixture was stirred at room temperature for 1 hour in a hydrogen atmosphere. The reaction mixture was filtered and concentrated under reduced pressure. The obtained residue (16 mg) was dissolved in tetrahydrofuran (2.5 mL) -water (0.25 mL), 1% aqueous perchloric acid solution (0.1 mL) was added, Stir for 3 hours 30 minutes. The reaction mixture was poured into saturated brine and extracted with diethyl ether. The organic layer was washed with saturated brine, dried over anhydrous magnesium sulfate, and concentrated under reduced pressure. The obtained residue (20 mg) was dissolved in tetrahydrofuran (3 mL), and ammonia gas was blown for 13 minutes while stirring at room temperature. After further stirring for 2 hours, the mixture was concentrated under reduced pressure, and the resulting residue (17 mg) was purified by preparative thin layer chromatography (developing solution; dichloromethane: methanol = 85: 15) to obtain Compound 56 (7.1 mg). Obtained.
[0156]
[Table 30]
Figure 0003710708
[0157]
【The invention's effect】
The invention of this application provides a practical method for synthesizing FR9000048, its analogs, and their synthetic intermediates, which are expected to be used for novel development of antitumor antibiotics and their applications.

Claims (2)

次の反応工程<A><B><C><D><E><F><G><H>を含むことを特徴とする光学活性なFR900482またはその類縁化合物の合成方法。
<A>次式
Figure 0003710708
(RaおよびRbは、同一または別異に水素原子または有機基を示し、Tfはトリフラート基を示す)
で表わされるトリフラート化合物の光学活性なアセチレン化合物とのカップリング反応による次式
Figure 0003710708
(Ra、Rbは前記のものを示し、Rcは保護基を示す)
で表わされる光学活性なアセチレン化合物の合成。
<B>前記の光学活性なアセチレン化合物の、ケトン化合物への変換とカルボニル基の還元反応を経由しての、次式
Figure 0003710708
(Ra、Rb、Rcは前記のものを示す)
で表わされる光学活性なヒドロキシル化合物の合成。
<C>前記光学活性なヒドロキシル化合物のヒドロキシル基を保護した後のニトロ基のアミノ基への還元による、次式
Figure 0003710708
(Ra、Rb、Rcは前記のものを示し、Rdは保護基を示す)
で表わされる光学活性なアニリン化合物の合成。
<D>前記の光学活性なアニリン化合物のアミノ基を保護基(Re)により保護し、保護基(Rc)を脱離させてヒドロキシル基とし、次いで環化反応させて次式
Figure 0003710708
(Ra、Rb、Rd、Reは前記のものを示す)
で表わされる光学活性な8員環化合物への変換を経由したカルボニル化反応による次式
Figure 0003710708
(Ra、Rb、Rd、Reは前記のものを示す)
で表わされる光学活性なケトン化合物の合成。
<E>前記の光学活性なケトン化合物からの、次式
Figure 0003710708
(Rfは炭化水素基を、Rgは保護基を示し、Ra、Rb、Reは前記のものを示す)
で表わされる光学活性8員環スルフィド化合物への変換を経由しての、次式
Figure 0003710708
(Ra、Rb、Re、Rgは前記のものを示す)
で表わされる光学活性な8員環ヒドロキシ化合物の合成。
<F>前記の光学活性な8員環ヒドロキシ化合物からの、次式
Figure 0003710708
(Rhは保護基を示し、Ra、Rbは前記のものを示す)
で表わされる光学活性2級アミン化合物への変換、そして保護ヒドロキシアミン化合物への変換を経由しての、渡環反応による次式
Figure 0003710708
(Ra、Rb、Rhは前記のものを示す)
で表わされる光学活性な4環性化合物の合成。
<G>前記の光学活性な4環性化合物からの、次式
Figure 0003710708
(Ra、Rbは前記のものを示す)
で表わされるジオール化合物への変換とそのエポキシ化反応、アジド化反応を経由しての、次式
Figure 0003710708
(Ra、Rbは前記のものを示す)
で表わされる光学活性なアジド化合物の合成。
<H>前記の光学活性なアジド化合物からの光学活性なアジリジン化合物への変換を経由しての前記光学活性なFR900482またはその類縁化合物の合成。
A method for synthesizing optically active FR9000048 or a similar compound, comprising the following reaction steps: <A><B><C><D><E><F><G><H>.
<A> Next formula
Figure 0003710708
(Ra and Rb are the same or different and each represents a hydrogen atom or an organic group, and Tf represents a triflate group)
By the coupling reaction of the triflate compound represented by the formula with an optically active acetylene compound:
Figure 0003710708
(Ra and Rb are as defined above, and Rc is a protecting group)
Synthesis of an optically active acetylene compound represented by the formula:
<B> Conversion of the above optically active acetylene compound into a ketone compound and reduction reaction of the carbonyl group
Figure 0003710708
(Ra, Rb and Rc are the same as above)
Synthesis of an optically active hydroxyl compound represented by
<C> The following formula is obtained by reducing the nitro group to an amino group after protecting the hydroxyl group of the optically active hydroxyl compound.
Figure 0003710708
(Ra, Rb and Rc are the same as described above, and Rd is a protecting group)
Synthesis of an optically active aniline compound represented by
<D> The amino group of the optically active aniline compound is protected with a protecting group (Re), the protecting group (Rc) is removed to form a hydroxyl group, and then a cyclization reaction is carried out.
Figure 0003710708
(Ra, Rb, Rd and Re are as described above)
By the carbonylation reaction via conversion to an optically active 8-membered ring compound represented by
Figure 0003710708
(Ra, Rb, Rd and Re are as described above)
Synthesis of an optically active ketone compound represented by
<E> From the above optically active ketone compound,
Figure 0003710708
(Rf represents a hydrocarbon group, Rg represents a protecting group, and Ra, Rb, and Re represent the same as above)
Via the conversion to an optically active 8-membered sulfide compound represented by
Figure 0003710708
(Ra, Rb, Re and Rg are as described above)
Synthesis of an optically active 8-membered hydroxy compound represented by the formula:
<F> From the above optically active 8-membered hydroxy compound,
Figure 0003710708
(Rh represents a protecting group, and Ra and Rb represent the above)
By the transannular reaction via conversion to an optically active secondary amine compound represented by
Figure 0003710708
(Ra, Rb, and Rh are as described above)
Synthesis of an optically active tetracyclic compound represented by
<G> From the above optically active tetracyclic compound,
Figure 0003710708
(Ra and Rb are as described above)
Conversion to a diol compound represented by the following formula and its epoxidation reaction, azidation reaction
Figure 0003710708
(Ra and Rb are as described above)
Synthesis of an optically active azide compound represented by the formula:
<H> Synthesis of the optically active FR9000048 or a similar compound via conversion of the optically active azide compound to an optically active aziridine compound.
請求項1における光学活性なFR900482の合成方法であって、次の反応工程を含むことを特徴とする光学活性なFR900482の合成方法。
<A>次式
Figure 0003710708
で表わされるトリフラート化合物の、次式
Figure 0003710708
で表わされる光学活性なアセチレン化合物とのカップリング反応による次式
Figure 0003710708
で表わされる光学活性なアセチレン化合物の合成。
<B>前記光学活性なアセチレン化合物の、次式
Figure 0003710708
で表わされるケトン化合物への変換とカルボニル基の還元反応による、次式
Figure 0003710708
で表わされる光学活性なヒドロキシル化合物の合成。
<C>前記光学活性なヒドロキシル化合物のヒドロキシル基を保護した後の、次式
Figure 0003710708
で表わされる化合物のニトロ基のアミノ基への還元による、次式
Figure 0003710708
で表わされる光学活性なアニリン化合物の合成。
<D>前記光学活性アニリン化合物のアミノ基を保護した次式
Figure 0003710708
で表わされる化合物の保護基(TBS)を脱離させてヒドロキシル基とし、次いで環化反応させて、次式
Figure 0003710708
で表わされる光学活性な8員環化合物へ変換した後のカルボニル化反応による次式
Figure 0003710708
で表わされる光学活性なケトン化合物の合成。
<E>前記の光学活性なケトン化合物からの、次式
Figure 0003710708
で表わされる光学活性な8員環スルフィド化合物への変換を経由しての、次式
Figure 0003710708
で表わされる光学活性な8員環ヒドロキシ化合物の合成。
<F>前記の光学活性な8員環ヒドロキシル化合物からの、次式
Figure 0003710708
で表わされる光学活性2級アミン化合物への変換、そして保護ヒドロキシアミン化合物への変換を経由しての、渡環反応による次式
Figure 0003710708
で表わされる光学活性な4環性化合物の合成。
<G>前記の光学活性な4環性化合物からの、次式
Figure 0003710708
で表わされるジオール化合物への変換と、そのエポキシ化反応、アジド化反応を経由しての、次式
Figure 0003710708
で表わされる光学活性なアジド化合物の合成。
<H>前記の光学活性なアジド化合物からの、次式
Figure 0003710708
で表わされる光学活性なアジリジン化合物への変換を経由してのFR900482の合成。
The method for synthesizing optically active FR9000048 according to claim 1, comprising the following reaction step.
<A> Next formula
Figure 0003710708
Of the triflate compound represented by
Figure 0003710708
By the coupling reaction with an optically active acetylene compound represented by
Figure 0003710708
Synthesis of an optically active acetylene compound represented by the formula:
<B> The following formula of the optically active acetylene compound
Figure 0003710708
By the conversion to the ketone compound represented by
Figure 0003710708
Synthesis of an optically active hydroxyl compound represented by
<C> After protecting the hydroxyl group of the optically active hydroxyl compound,
Figure 0003710708
By the reduction of the nitro group to the amino group of the compound represented by
Figure 0003710708
Synthesis of an optically active aniline compound represented by
<D> The following formula in which the amino group of the optically active aniline compound is protected
Figure 0003710708
The protecting group (TBS) of the compound represented by the following formula is eliminated to form a hydroxyl group, and then cyclized to give the following formula:
Figure 0003710708
By the carbonylation reaction after conversion to an optically active 8-membered ring compound represented by
Figure 0003710708
Synthesis of an optically active ketone compound represented by
<E> From the above optically active ketone compound,
Figure 0003710708
Through the conversion to an optically active 8-membered ring sulfide compound represented by
Figure 0003710708
Synthesis of an optically active 8-membered hydroxy compound represented by the formula:
<F> From the above optically active 8-membered hydroxyl compound,
Figure 0003710708
By the transannular reaction via conversion to an optically active secondary amine compound represented by
Figure 0003710708
Synthesis of an optically active tetracyclic compound represented by
<G> From the above optically active tetracyclic compound,
Figure 0003710708
Conversion to the diol compound represented by the following formula and its epoxidation reaction, azidation reaction,
Figure 0003710708
Synthesis of an optically active azide compound represented by the formula:
<H> From the above optically active azide compound,
Figure 0003710708
Synthesis of FR9000048 via conversion to an optically active aziridine compound represented by
JP2000404281A 2000-12-14 2000-12-14 Optically active FR-900482 and its analog compounds, synthetic intermediate compounds and production method thereof Expired - Fee Related JP3710708B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000404281A JP3710708B2 (en) 2000-12-14 2000-12-14 Optically active FR-900482 and its analog compounds, synthetic intermediate compounds and production method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000404281A JP3710708B2 (en) 2000-12-14 2000-12-14 Optically active FR-900482 and its analog compounds, synthetic intermediate compounds and production method thereof

Publications (2)

Publication Number Publication Date
JP2002179680A JP2002179680A (en) 2002-06-26
JP3710708B2 true JP3710708B2 (en) 2005-10-26

Family

ID=18868263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000404281A Expired - Fee Related JP3710708B2 (en) 2000-12-14 2000-12-14 Optically active FR-900482 and its analog compounds, synthetic intermediate compounds and production method thereof

Country Status (1)

Country Link
JP (1) JP3710708B2 (en)

Also Published As

Publication number Publication date
JP2002179680A (en) 2002-06-26

Similar Documents

Publication Publication Date Title
JP3235448B2 (en) Method for producing 1,4-benzodioxane derivative
CZ91499A3 (en) Process for preparing ecteinascidine compounds
EP3630738B1 (en) Process for the production of ozanimod
Ramesh et al. Base catalyzed cyclization of N-aryl and N-alkyl-O-propargyl carbamates to 4-alkylidene-2-oxazolidinones
Sugiyama et al. Short synthesis of both enantiomers of cytoxazone using the Petasis reaction
JP2002533430A (en) Preparation method of aryl ether
WO2010097350A1 (en) A process for the preparation of an aldehyde beta-lactam compound
JP3710708B2 (en) Optically active FR-900482 and its analog compounds, synthetic intermediate compounds and production method thereof
JP4907043B2 (en) Method for preparing baccatin III derivative
EP0786459B1 (en) Process for the preparation of a hetero-bicyclic alcohol enantiomer
CA2286013C (en) Process for making a butylthio-isoquinoline and intermediates therefor
Sumiyoshi et al. Asymmetric synthesis of the 6-cyanoindole derivatives as non-steroidal glucocorticoid receptor modulators using (+)-and (−)-tert-butyl 6-cyano-3-[3-ethoxy-1, 1, 1-trifluoro-2-hydroxy-3-oxopropan-2-yl]-1H-indole-1-carboxylate
KR20060051371A (en) A process for preparing for imidazopyran derivatives
JP5587350B2 (en) Preparation of ramelteon
Bolchi et al. Univocal syntheses of 2-and 3-hydroxymethyl-2, 3-dihydro [1, 4] dioxino [2, 3-b] pyridine enantiomers
CN111349059B (en) Preparation method of chiral epoxy compound
WO2002072505A1 (en) Optical resolver and method of optically resolving alcohol with the same
JP3953225B2 (en) Method for producing quinoline derivative
JP4973210B2 (en) New synthesis method
JPH06228149A (en) Novel pentacyclic heterocyclic compound, production intermediate and their production
WO2005005446A1 (en) Processes for producing carbapenem intermediate
JPH09143127A (en) Nitrotoluene derivative and its production
JP2019131510A (en) Method of producing lubiprostone
JPH08245526A (en) Optically active amines, optically active imines and their production
JPH07206751A (en) Production of ticyclic compound

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Effective date: 20031210

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050810

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees