JP3707957B2 - Ultrasonic probe - Google Patents

Ultrasonic probe Download PDF

Info

Publication number
JP3707957B2
JP3707957B2 JP13679199A JP13679199A JP3707957B2 JP 3707957 B2 JP3707957 B2 JP 3707957B2 JP 13679199 A JP13679199 A JP 13679199A JP 13679199 A JP13679199 A JP 13679199A JP 3707957 B2 JP3707957 B2 JP 3707957B2
Authority
JP
Japan
Prior art keywords
ultrasonic
protective plate
inspected
ultrasonic transducer
ultrasonic probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP13679199A
Other languages
Japanese (ja)
Other versions
JP2000329755A (en
Inventor
祐二 松井
義則 武捨
良明 永島
尚幸 河野
文信 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP13679199A priority Critical patent/JP3707957B2/en
Publication of JP2000329755A publication Critical patent/JP2000329755A/en
Application granted granted Critical
Publication of JP3707957B2 publication Critical patent/JP3707957B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes
    • G01N29/245Ceramic probes, e.g. lead zirconate titanate [PZT] probes

Description

【0001】
【発明の属する技術分野】
本発明は超音波探触子にかかり、特に超音波探触子表面に保護板を安定に接合して信頼性を向上した超音波探触子に関する。
【0002】
【従来の技術】
図8は従来の超音波探触子を示す図であり、図8(a)は平面図、図8(b)は断面図である。これらの図において、21は超音波振動子、22は振動子21の表面を保護する保護板、23は超音波振動子1のケース、24は超音波振動子21を駆動する駆動信号および超音波振動子の受信信号を図示しない超音波探触装置本体に伝送するケーブル、25は超音波探触子であり、超音波探触子25は超音波振動子21、保護板22、ケース23およびケーブル24からなる。
【0003】
26は被検査体、27は超音波振動子21が放射した超音波、28は超音波振動子の保護板と被検査体26間に充填したグリセリン等のペースト状の接触媒体である。
前記探触装置本体からケーブル24を介して駆動信号、例えば数十ないし数百Vの高圧パルスの駆動信号を供給する。超音波振動子25は前記高圧パルスの駆動信号を超音波に変換し、保護板22および接触媒体8を介して被検査体26の一方端から超音波27を被検査体26中に送信する。被検査体26中を伝播し、被検査体の他方端で反射した反射波は接触媒体28および保護板22を介して超音波振動子に入射する。超音波振動子21は入射した前記超音波を電気信号に変換し、ケーブル24を介して前記超音波探触装置に送信する。前記超音波探触装置は前記超音波の送信から受信までに要する時間と前記被検査体中の超音波の伝播速度から前記被検査体の厚み等を測定する。
【0004】
前記超音波探触子は、超音波振動子21としてはセラミック系振動子であるPZT(Pb(Zr,Ti)O3)を用い、保護板22としてはベークライトやアクリル樹脂等を用い、超音波振動子21と保護板22はエポキシ系接着剤で接合する。
【0005】
ところで、従来から発電プラントなどの配管の健全性を確保するため、超音波探触装置により前記配管を被破壊検査することが行われている。発電プラントが定期検査期間中で休止状態にある場合には、前記配管を常温で非破壊検査することができる。しかし、発電プラントの運転中あるいは停止直後においては前記配管は高温状態にある。例えば、沸騰水型原子力発電プラント(BWR)では、炉内温度は280℃以上、高温水が循環する配管表面温度は100℃以上になる。
【0006】
前記エポキシ接着剤は高温で接着強度が低下するため、高温配管を検査すると、超音波振動子21と保護板2間に剥離が生じる可能性がある。
【0007】
特開平10−153586号公報および特開平10−339722号公報には、高温環境で使用できる高温用超音波探触子が示されている。該高温用超音波探触子は高温環境で使用するため、超音波振動子と保護板との間にろう材を挿入し、該ろう材を加熱溶融して超音波振動子と保護板を接合している。
【0008】
図9は従来の高温用超音波探触子を示す図であり、図9(a)は平面図、図9(b)は断面図である。これらの図において、21aはニオブ酸リチウム(LiNbO3)等で形成した高温用の超音波振動子、22aは超音波振動子とほぼ同一の熱膨張係数を有するステンレス鋼の保護板であり、保護板22aは超音波振動子21aとろう材等により接合している。26aは高温配管、28aは高温用接触媒体である。なお、図において図8に示される部分と同一部分については同一符号を付してその説明を省略する。
【0009】
【発明が解決しようとする課題】
超音波振動子に用いるニオブ酸リチウム(LiNbO3)の結晶体はX、Y、Zの直交する3軸の結晶方向がある。超音波振動子はこの結晶体から平板を切り出して使用する。平板の切り出し方向によって、Xカット、YカットおよびZカットと呼ばれる振動子が得られる。
【0010】
ニオブ酸リチウム(LiNbO3)の結晶体は、前記3軸の各結晶方向で熱膨張係数が相互に相違する。このため切り出した超音波振動子の熱膨張係数はその縦方向と横方向で異なる。
【0011】
例えば、Xカットの超音波振動子の縦方向の熱膨張係数は15×10-6、横方向のそれは7.5×10-6である。この超音波振動子を、この超音波振動子の縦方向の熱膨張係数と略等しい熱膨張係数を持つステンレス鋼製の保護板(熱膨張係数は縦方向および横方向とも17×10-6)に接合すると、ろう付け後の冷却過程において、前記ステンレス鋼の保護板の熱膨張係数と超音波振動子の熱膨張係数が大きく相違する振動子の横方向に歪みが生じて、振動子に割れが発生する可能性が生じる。また、割れを生じることなく接合しても、高温下での使用による熱サイクルにより割れを生じる可能性がある。
【0012】
図10は超音波振動子と保護板の接合による割れを説明する図である。図に示すようにXカットの超音波振動子をステンレス鋼製の保護板にろう付けする。接合後の冷却過程において、Xカット振動子にはその熱膨張係数の小さい方向に沿って圧縮応力が作用し、図に示すような割れが生じる。
【0013】
一方、図9に示すように超音波探触子の保護板81は平板であるのに対し、被検査体である高温配管は筒状である場合には、超音波振動子11が送受信する超音波ビーム7の高温用接触媒体81中を通過する距離は、振動子の中央部は短く周縁部で長くなる。さらに、前記高温用接触媒体81としては、常温用の接触媒体に比して沸点が高く粘性の大きな媒体を使わざるを得ないため、高温用接触媒体81中での減衰が大きくなり、超音波探触子の検出感度が低下する。また、接触媒体中の超音波に伝播速度は前記被検査体である配管中のそれに比してかなり遅くなる。このため前記接触媒体中を通過する距離の差による伝播時間の差により、前記ビームに干渉が生じて感度が低下する。
【0014】
また、超音波振動子の材料にPZTを使用すると比較的良好な感度を持つ超音波振動子を得ることができる。しかし、キュリー温度が低いため高温用の超音波振動子として利用することはできない。このためキュリー温度の高いニオブ酸リチウム(LiNbO3)が一般的に用いられるが、ニオブ酸リチウム(LiNbO3)を用いた超音波振動子はPZTに比して感度は低い。さらに超音波振動子と保護板の接合法も制限されるため、高温用超音波振動子の感度は常温用超音波振動子のそれに比して低い。
【0015】
すなわち、高温状態の配管を検査する高温用超音波振動子においては、超音波振動子自体の感度低下のほかに、高温状態の円筒状の配管に平板状の超音波探触子の保護板を接することによる感度低下が加わり、感度低下は無視できない量になる。
【0016】
本発明は前記問題点に鑑みてなされたもので、高温下での使用に耐えることができ、また高温下での検出感度の低下しない超音波探触子を提供する。
【0017】
【課題を解決するための手段】
本発明は、上記の課題を解決するために次のような手段を採用した。
【0018】
超音波振動子と、該超音波振動子表面に接合して前記超音波振動子表面を保護する保護板からなり、前記保護板を表面に接合した超音波振動子を被検査体表面に接触して該被検査体を超音波検査する超音波探触子で、前記振動子に熱膨張係数の異方性がある場合には前記保護板と前記振動子はその熱膨張係数の大きさと方向性の両方を一致して接合した超音波探触子において、前記保護板は被検査面の曲率に合致する曲率を有し、かつ前記保護板の材質として保護板中の音速が被検査体中の音速と等しいか、あるいは、速い材質を選定した。
【0020】
【発明の実施の形態】
図1は本発明の第1の実施形態にかかる超音波探触子を示す図であり、図1(a)は平面図、図1(b)は断面図である。これらの図において、1は超音波振動子であり、ニオブ酸リチウム(LiNbO3)等の圧電材料で形成する。2は振動子1の表面を保護する保護板であり、超音波振動子1と同一材料で形成する。また、超音波振動子1の熱膨張係数と保護板2は、その熱膨張係数の方向性を一致して接合する。すなわち、すなわち振動子および保護板の接合面において、振動子1の熱膨張係数が最大となる方向と、保護板2の熱膨張係数が最大となる方向を一致させて接合する。また、保護板2の被検査体に接する面側は被検査体である配管表面の曲率に合致するように、一軸のみ凹型に形成する。
【0021】
3は超音波振動子1のケース、4は超音波振動子1を駆動する駆動信号および超音波振動子の受信信号を図示しない超音波探触装置本体に伝送するケーブル、5は超音波探触子であり、超音波探触子5は超音波振動子1、保護板2、ケース3およびケーブル4からなる。
【0022】
6は被検査体、7は超音波振動子1が放射した超音波、8は超音波振動子の保護板と被検査体6間に充填したグリセリン等のペースト状の接触媒体である。
【0023】
前記探触装置本体からケーブル4を介して駆動信号、例えば数十ないし数百Vの高圧パルスの駆動信号を供給する。超音波振動子5は前記高圧パルスの駆動信号を超音波に変換し、保護板2および接触媒体8を介して被検査体6の一方端から超音波7を被検査体6中に送信する。被検査体6中を伝播し、被検査体の他方端で反射した反射波は接触媒体8および保護板2を介して超音波振動子に入射する。超音波振動子1は入射した前記超音波を電気信号に変換し、ケーブル4を介して前記超音波探触装置に送信する。前記超音波探触装置は前記超音波の送信から受信までに要する時間と前記被検査体中の超音波の伝播速度から前記被検査体の厚み等を測定する。
【0024】
前述したように超音波振動子の表面を保護する保護板を超音波振動子と同一材料で形成し、さらに超音波振動子1の熱膨張係数と保護板2は、その熱膨張係数の方向性が一致するように接合する。これにより超音波振動子と保護板は温度変化に対して常に同一割合で伸縮するので、振動子に割れが生じることはなく、信頼性の高い高温用探触子が得られる。
【0025】
なお、前記保護板は超音波振動子と同一材料であることは必要ではなく熱膨張係数が略一致すれば他の材料でもよい。
【0026】
図2ないし図4は保護板2の管状の被検査体6に接する面を凹型に形成した場合の超音波ビームの伝播経路を保護板の材質毎に示す図である。
【0027】
図2は、保護板6中の超音波の音速が被検査体6中の音速と同程度の場合の超音波ビームの伝播経路を示す図である。例えば、炭素鋼の配管を検査するときに保護板としてステンレス鋼を使用した場合がこれに相当する。保護板2と被検査体6との界面において屈折角と入射角が等しくなるので超音波振動子1が発信した超音波は直進し被検査体の底面で反射し、反射した超音波のほとんどは超音波振動子1に入射する。このように保護板を凹型に形成することにより超音波振動子の感度の低下を抑制することができる。
【0028】
図3は、保護板6中の超音波の音速が被検査体6中の音速よりも速い場合の超音波ビームの伝播経路を示す図である。例えば、炭素鋼の配管を検査するときに保護板としてニオブ酸リチウムを使用した場合がこれに相当する。保護板2と被検査体6との界面において屈折角が入射角より小さくなるように屈折するので超音波振動子1が発信した超音波ビーム収束する方向に進行し被検査体の底面で反射し、反射した超音波のほとんどは超音波振動子1に入射する。このように保護板を凹型に形成することにより超音波振動子の感度の低下をさらに抑制することができる。
【0029】
図4は、保護板6中の超音波の音速が被検査体6中の音速よりも遅い場合の超音波ビームの伝播経路を示す図である。例えば、炭素鋼の配管を検査するときに保護板としてポリスチレンおよびアクリル等のシュー材またはベークライトを使用した場合がこれに相当する。保護板2と被検査体6との界面において屈折角が入射角より大きくなるように屈折するので超音波振動子1が発信した超音波ビームを拡散する方向に進行し被検査体の底面で反射する。しかしこの場合は反射した超音波の小部分が超音波振動子1に入射するのみであり、超音波振動子の感度の低下を抑制することはできない。
【0030】
すなわち、保護板6の材質はニオブ酸リチウムおよびステンレス鋼が望ましく、ニオブ酸リチウムが特に望ましいことが分かる。
【0031】
図5は、本発明の第2の実施形態にかかる超音波探触子を示す図であり、図5(a)は平面図、図5(b)は断面図である。これらの図において、1aは超音波振動子であり、超音波振動子1aの被検査体側の面は凹型に形成してある。2a保護板であり、保護板2はその一方の面を前記超音波振動子1aに接合するとともに、他方の管状の被検査体に接する面は凹型に形成してある。なお、図において図1に示される部分と同一部分については同一符号を付してその説明を省略する。
【0032】
本実施形態においては、保護板2aと管状の被検査体間に接触媒体の層を均一に形成することができる。また、保護板の厚みを均一に形成することができる。すなわち、接触媒体を通過する超音波の伝播距離および保護板を通過する超音波の伝播距離をそれぞれ均一に形成することができる。
【0033】
したがって、振動子の各表面で送受信する超音波の伝播時間をそろえることができ、超音波探触子の感度低下をより一層抑制することができる。
【0034】
図6は、本発明の第3の実施形態にかかる超音波探触子を示す図であり、図6(a)は平面図、図6(b)は断面図である。これらの図において、1bは超音波振動子であり、超音波振動子1bは被検査体である配管の軸方向に縦長に形成し、その縦横比は約3:1である。2bは円盤状の保護板である。なお、図において図1に示される部分と同一部分については同一符号を付してその説明を省略する。
【0035】
発明者等の実験によると、沸騰水型原子力発電プラント(BWR)の一次冷却水循環系(PLR系)配管によく用いられる呼び径12B(外径12インチ)の配管表面と平面状の保護板が実質的に接触している幅は約1mmであった。一方、現段階では長辺が3mm以上の高温用の振動子を製作することは困難である。
【0036】
このようにして形成した縦横比が3以上の振動子を用い、該振動子の長辺を配管の軸方向に向けて配置すると、保護板が実質的に接触しない部分に超音波が発信されることを抑制できる。したがって超音波の干渉を防止することができ検出感度の低下を防止することができる。
【0037】
本実施形態においては、平板状の保護板を使用するため、保護板の製作が簡単である。また、保護板2bの形状を振動子1b同様に縦長とすることもできる。
【0038】
図7は、本発明の第4の実施形態にかかる超音波探触子を示す図であり、図7(a)は平面図、図7(b)は断面図である。これらの図において、9は上面に超音波探触子5を回転可能に装着し、下面に管状の被検査体表面を装着した遮蔽材である。遮蔽材9は被検査体である配管の軸方向に沿った縦長の貫通孔を備える。
【0039】
前記遮蔽体に装着した超音波振動子1は前記貫通孔を介して前記配管と接触することができる。したがって、超音波振動子1が発信する超音波は前記貫通孔を通してのみ前記被検査体に入射することが可能であり、これによって超音波の干渉を防止して、検出感度の低下を防止することができる。
【0040】
また、前記超音波探触子を90度回転させることにより、振動面の直交する超音波をそれぞれ被検査体に送信して、被検査体の残留応力、組織の劣化等を測定することができる。
【0041】
以上の説明では、高温状態の配管等の被検査体を検査する高温用超音波探触子について説明したが、常温状態および低温状態の被検査体を検査する常温用および低温用の超音波探触子においても、超音波振動子と保護板を高温で接合する際の歪みや使用環境下での温度変化による歪みを回避することができる。
【0042】
【発明の効果】
以上説明したように本発明によれば、高温下での使用に耐えることができ、また高温下での検出感度の低下しない超音波探触子を得ることができる。
【図面の簡単な説明】
【図1】本発明の第1の実施形態にかかる超音波探触子を示す図である。
【図2】超音波ビームの伝播経路を示す図である。
【図3】超音波ビームの伝播経路を示す図である。
【図4】超音波ビームの伝播経路を示す図である。
【図5】本発明の第2の実施形態にかかる超音波探触子を示す図である。
【図6】本発明の第3の実施形態にかかる超音波探触子を示す図である。
【図7】本発明の第4の実施形態にかかる超音波探触子を示す図である。
【図8】従来の超音波探触子を示す図である。
【図9】従来の高温用超音波探触子を示す図である。
【図10】超音波振動子と保護板の接合による割れを説明する図である。
【符号の説明】
1,1a,1b 超音波振動子
2,2a,2b 保護板
3 超音波振動子のケース
4 ケーブル
5 超音波探触子
6 被検査体
7 超音波
8 接触媒体
9 遮蔽材
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrasonic probe, and more particularly to an ultrasonic probe in which a protective plate is stably bonded to the surface of the ultrasonic probe to improve reliability.
[0002]
[Prior art]
8A and 8B are diagrams showing a conventional ultrasonic probe. FIG. 8A is a plan view and FIG. 8B is a cross-sectional view. In these drawings, 21 is an ultrasonic transducer, 22 is a protective plate for protecting the surface of the transducer 21, 23 is a case of the ultrasonic transducer 1, and 24 is a drive signal and ultrasonic wave for driving the ultrasonic transducer 21. A cable for transmitting a reception signal of the vibrator to an ultrasonic probe main body (not shown), 25 is an ultrasonic probe, and the ultrasonic probe 25 is an ultrasonic vibrator 21, a protective plate 22, a case 23, and a cable. 24.
[0003]
Reference numeral 26 denotes an object to be inspected, 27 an ultrasonic wave emitted from the ultrasonic vibrator 21, and 28 a paste-like contact medium such as glycerin filled between the protective plate of the ultrasonic vibrator and the object 26 to be inspected.
A driving signal, for example, a driving signal of a high voltage pulse of several tens to several hundreds V is supplied from the probe main body via the cable 24. The ultrasonic transducer 25 converts the drive signal of the high-pressure pulse into an ultrasonic wave, and transmits an ultrasonic wave 27 from one end of the inspection object 26 into the inspection object 26 via the protective plate 22 and the contact medium 8. The reflected wave that propagates through the inspection object 26 and is reflected by the other end of the inspection object enters the ultrasonic vibrator via the contact medium 28 and the protective plate 22. The ultrasonic transducer 21 converts the incident ultrasonic wave into an electric signal and transmits the electric signal to the ultrasonic probe device via the cable 24. The ultrasonic probe device measures the thickness of the object to be inspected from the time required from transmission to reception of the ultrasonic wave and the propagation speed of the ultrasonic wave in the object to be inspected.
[0004]
In the ultrasonic probe, PZT (Pb (Zr, Ti) O 3 ), which is a ceramic vibrator, is used as the ultrasonic vibrator 21, bakelite, acrylic resin, or the like is used as the protective plate 22. The vibrator 21 and the protective plate 22 are joined with an epoxy adhesive.
[0005]
By the way, conventionally, in order to ensure the soundness of piping of a power plant or the like, the piping is subjected to a destructive inspection using an ultrasonic probe. When the power plant is in a dormant state during the regular inspection period, the pipe can be inspected nondestructively at room temperature. However, the pipe is in a high temperature state during operation of the power plant or immediately after it is stopped. For example, in a boiling water nuclear power plant (BWR), the furnace temperature is 280 ° C. or higher, and the piping surface temperature through which high-temperature water circulates is 100 ° C. or higher.
[0006]
Since the adhesive strength of the epoxy adhesive decreases at a high temperature, peeling may occur between the ultrasonic vibrator 21 and the protective plate 2 when the high-temperature pipe is inspected.
[0007]
Japanese Patent Application Laid-Open Nos. 10-153586 and 10-339722 show high-temperature ultrasonic probes that can be used in a high-temperature environment. Since the high-temperature ultrasonic probe is used in a high-temperature environment, a brazing material is inserted between the ultrasonic transducer and the protective plate, and the brazing material is heated and melted to join the ultrasonic transducer and the protective plate. are doing.
[0008]
9A and 9B are diagrams showing a conventional high-temperature ultrasonic probe. FIG. 9A is a plan view and FIG. 9B is a cross-sectional view. In these figures, 21a is a high-temperature ultrasonic vibrator formed of lithium niobate (LiNbO 3 ) or the like, and 22a is a stainless steel protective plate having a thermal expansion coefficient substantially the same as that of the ultrasonic vibrator. The plate 22a is joined to the ultrasonic transducer 21a by a brazing material or the like. Reference numeral 26a denotes a high-temperature pipe, and 28a denotes a high-temperature contact medium. In the figure, the same parts as those shown in FIG.
[0009]
[Problems to be solved by the invention]
The crystal of lithium niobate (LiNbO 3 ) used for the ultrasonic transducer has three orthogonal crystal directions of X, Y, and Z. The ultrasonic transducer is used by cutting a flat plate from this crystal. Depending on the cutting direction of the flat plate, vibrators called X-cut, Y-cut and Z-cut are obtained.
[0010]
Crystals of lithium niobate (LiNbO 3 ) have different thermal expansion coefficients in the three crystal directions. For this reason, the thermal expansion coefficient of the cut-out ultrasonic transducer differs between the vertical direction and the horizontal direction.
[0011]
For example, an X-cut ultrasonic transducer has a thermal expansion coefficient of 15 × 10 −6 in the vertical direction and 7.5 × 10 −6 in the horizontal direction. This ultrasonic vibrator is made of a stainless steel protective plate having a thermal expansion coefficient substantially equal to the thermal expansion coefficient in the vertical direction of the ultrasonic vibrator (the thermal expansion coefficient is 17 × 10 −6 in both the vertical and horizontal directions). In the cooling process after brazing, distortion occurs in the transverse direction of the vibrator in which the thermal expansion coefficient of the stainless steel protective plate and the thermal expansion coefficient of the ultrasonic vibrator are greatly different, and the vibrator is cracked. May occur. Moreover, even if it joins without producing a crack, there exists a possibility of producing a crack by the thermal cycle by use under high temperature.
[0012]
FIG. 10 is a view for explaining cracks caused by joining of the ultrasonic vibrator and the protective plate. As shown in the figure, an X-cut ultrasonic transducer is brazed to a protective plate made of stainless steel. In the cooling process after joining, the X-cut vibrator is subjected to compressive stress along the direction in which the thermal expansion coefficient is small, and cracks are generated as shown in the figure.
[0013]
On the other hand, as shown in FIG. 9, when the protection plate 81 of the ultrasonic probe is a flat plate, but the high-temperature pipe that is the object to be inspected is cylindrical, the ultrasonic transducer 11 transmits and receives an ultrasonic wave. The distance that the sound beam 7 passes through the high-temperature contact medium 81 is short at the center of the vibrator and long at the peripheral edge. Further, as the high-temperature contact medium 81, a medium having a high boiling point and a high viscosity as compared with a normal-temperature contact medium must be used. The detection sensitivity of the probe decreases. Further, the propagation speed of the ultrasonic wave in the contact medium is considerably slower than that in the pipe as the inspection object. For this reason, due to the difference in propagation time due to the difference in distance passing through the contact medium, interference occurs in the beam and the sensitivity is lowered.
[0014]
Further, when PZT is used as the material of the ultrasonic vibrator, an ultrasonic vibrator having relatively good sensitivity can be obtained. However, since the Curie temperature is low, it cannot be used as a high-temperature ultrasonic transducer. For this reason, lithium niobate (LiNbO 3 ) having a high Curie temperature is generally used. However, an ultrasonic vibrator using lithium niobate (LiNbO 3 ) has a lower sensitivity than PZT. Furthermore, since the joining method of the ultrasonic vibrator and the protective plate is also limited, the sensitivity of the high-temperature ultrasonic vibrator is lower than that of the normal-temperature ultrasonic vibrator.
[0015]
In other words, in a high-temperature ultrasonic transducer that inspects high-temperature piping, in addition to the sensitivity reduction of the ultrasonic transducer itself, a plate-shaped ultrasonic probe protection plate is attached to the high-temperature cylindrical piping. Sensitivity decrease due to contact is added, and the sensitivity decrease is an amount that cannot be ignored.
[0016]
The present invention has been made in view of the above-described problems, and provides an ultrasonic probe that can withstand use at high temperatures and does not deteriorate detection sensitivity at high temperatures.
[0017]
[Means for Solving the Problems]
The present invention employs the following means in order to solve the above problems.
[0018]
An ultrasonic transducer and a protective plate that is bonded to the surface of the ultrasonic transducer and protects the surface of the ultrasonic transducer. The ultrasonic transducer having the protective plate bonded to the surface is in contact with the surface of the object to be inspected. In the ultrasonic probe for ultrasonically inspecting the inspection object, when the vibrator has anisotropy in thermal expansion coefficient, the protection plate and the vibrator have a magnitude and directionality of the thermal expansion coefficient . In the ultrasonic probe in which both of them are joined together, the protective plate has a curvature that matches the curvature of the surface to be inspected, and the speed of sound in the protective plate is the material of the protective plate in the object to be inspected. A material that is equal to or faster than the speed of sound was selected.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
1A and 1B are diagrams showing an ultrasonic probe according to a first embodiment of the present invention. FIG. 1A is a plan view and FIG. 1B is a cross-sectional view. In these drawings, reference numeral 1 denotes an ultrasonic vibrator, which is formed of a piezoelectric material such as lithium niobate (LiNbO 3 ). Reference numeral 2 denotes a protective plate that protects the surface of the vibrator 1 and is made of the same material as the ultrasonic vibrator 1. Further, the thermal expansion coefficient of the ultrasonic transducer 1 and the protective plate 2 are joined with the directionality of the thermal expansion coefficient matched. That is, on the bonding surface of the vibrator and the protection plate, the direction in which the thermal expansion coefficient of the vibrator 1 is maximized and the direction in which the thermal expansion coefficient of the protection plate 2 is maximized are matched. In addition, the surface side of the protective plate 2 that contacts the object to be inspected is formed in a concave shape only on one axis so as to match the curvature of the pipe surface that is the object to be inspected.
[0021]
3 is a case of the ultrasonic transducer 1, 4 is a cable for transmitting a drive signal for driving the ultrasonic transducer 1 and a reception signal of the ultrasonic transducer to an ultrasonic probe main body (not shown), and 5 is an ultrasonic probe The ultrasonic probe 5 includes an ultrasonic transducer 1, a protection plate 2, a case 3, and a cable 4.
[0022]
6 is an object to be inspected, 7 is an ultrasonic wave radiated from the ultrasonic vibrator 1, and 8 is a paste-like contact medium such as glycerin filled between the protective plate of the ultrasonic vibrator and the object to be inspected 6.
[0023]
A driving signal, for example, a driving signal of a high voltage pulse of several tens to several hundreds V is supplied from the probe main body via the cable 4. The ultrasonic transducer 5 converts the drive signal of the high-pressure pulse into an ultrasonic wave, and transmits the ultrasonic wave 7 from the one end of the inspection object 6 into the inspection object 6 via the protective plate 2 and the contact medium 8. The reflected wave that propagates through the inspection object 6 and is reflected by the other end of the inspection object enters the ultrasonic vibrator via the contact medium 8 and the protective plate 2. The ultrasonic transducer 1 converts the incident ultrasonic wave into an electric signal and transmits it to the ultrasonic probe device via the cable 4. The ultrasonic probe device measures the thickness of the object to be inspected from the time required from transmission to reception of the ultrasonic wave and the propagation speed of the ultrasonic wave in the object to be inspected.
[0024]
As described above, the protective plate for protecting the surface of the ultrasonic vibrator is formed of the same material as that of the ultrasonic vibrator, and the thermal expansion coefficient of the ultrasonic vibrator 1 and the protective plate 2 are directed to the direction of the thermal expansion coefficient. Join to match. As a result, the ultrasonic transducer and the protective plate always expand and contract at the same rate with respect to the temperature change, so that the transducer is not cracked and a highly reliable probe for high temperature can be obtained.
[0025]
The protective plate is not necessarily made of the same material as that of the ultrasonic vibrator, and may be made of other materials as long as the thermal expansion coefficients substantially match.
[0026]
2 to 4 are diagrams showing the propagation path of the ultrasonic beam for each material of the protective plate when the surface of the protective plate 2 that contacts the tubular test object 6 is formed in a concave shape.
[0027]
FIG. 2 is a diagram showing a propagation path of an ultrasonic beam when the sound velocity of the ultrasonic wave in the protective plate 6 is approximately the same as the sound velocity in the inspection object 6. For example, this corresponds to the case where stainless steel is used as a protective plate when inspecting a carbon steel pipe. Since the refraction angle and the incident angle are equal at the interface between the protective plate 2 and the object 6 to be inspected, the ultrasonic wave transmitted from the ultrasonic transducer 1 goes straight and is reflected by the bottom surface of the object to be inspected, and most of the reflected ultrasonic wave is Incident on the ultrasonic transducer 1. By forming the protective plate in a concave shape in this way, it is possible to suppress a decrease in sensitivity of the ultrasonic transducer.
[0028]
FIG. 3 is a diagram showing a propagation path of the ultrasonic beam when the sound speed of the ultrasonic wave in the protection plate 6 is faster than the sound speed in the inspection object 6. For example, this corresponds to the case where lithium niobate is used as a protective plate when inspecting a carbon steel pipe. Since the refraction angle is refracted at the interface between the protective plate 2 and the object to be inspected 6 so that the refraction angle is smaller than the incident angle, the ultrasonic transducer 1 travels in the direction of convergence of the ultrasonic beam and reflects on the bottom surface of the object to be inspected. Most of the reflected ultrasonic waves are incident on the ultrasonic transducer 1. By thus forming the protective plate in a concave shape, it is possible to further suppress a decrease in sensitivity of the ultrasonic transducer.
[0029]
FIG. 4 is a diagram showing a propagation path of the ultrasonic beam when the sound speed of the ultrasonic wave in the protection plate 6 is slower than the sound speed in the test object 6. For example, this corresponds to the case where shoe material such as polystyrene and acrylic or bakelite is used as the protective plate when inspecting the piping of carbon steel. Since the refraction angle is refracted at the interface between the protective plate 2 and the object to be inspected 6 so that the refraction angle is larger than the incident angle, the ultrasonic beam transmitted by the ultrasonic transducer 1 travels in the direction of diffusion and is reflected by the bottom surface of the object to be inspected. To do. However, in this case, only a small portion of the reflected ultrasonic wave is incident on the ultrasonic transducer 1, and a decrease in sensitivity of the ultrasonic transducer cannot be suppressed.
[0030]
That is, it can be seen that the material of the protective plate 6 is preferably lithium niobate and stainless steel, and lithium niobate is particularly desirable.
[0031]
5A and 5B are diagrams showing an ultrasonic probe according to the second embodiment of the present invention, in which FIG. 5A is a plan view and FIG. 5B is a cross-sectional view. In these drawings, reference numeral 1a denotes an ultrasonic transducer, and the surface of the ultrasonic transducer 1a on the side to be inspected is formed in a concave shape. The protective plate 2a has one surface joined to the ultrasonic transducer 1a and the other surface in contact with the tubular test object is formed in a concave shape. In the figure, the same parts as those shown in FIG.
[0032]
In the present embodiment, a contact medium layer can be formed uniformly between the protective plate 2a and the tubular test object. Moreover, the thickness of the protective plate can be formed uniformly. That is, the propagation distance of the ultrasonic wave passing through the contact medium and the propagation distance of the ultrasonic wave passing through the protective plate can be formed uniformly.
[0033]
Therefore, it is possible to align the propagation times of ultrasonic waves transmitted and received on each surface of the transducer, and it is possible to further suppress the decrease in sensitivity of the ultrasonic probe.
[0034]
6A and 6B are diagrams showing an ultrasonic probe according to a third embodiment of the present invention, in which FIG. 6A is a plan view and FIG. 6B is a cross-sectional view. In these drawings, 1b is an ultrasonic transducer, and the ultrasonic transducer 1b is formed in a longitudinal direction in the axial direction of a pipe to be inspected, and its aspect ratio is about 3: 1. 2b is a disk-shaped protective plate. In the figure, the same parts as those shown in FIG.
[0035]
According to experiments by the inventors, the surface of a pipe having a nominal diameter of 12B (outer diameter of 12 inches) and a flat protective plate, which are often used for a primary cooling water circulation system (PLR system) pipe of a boiling water nuclear power plant (BWR) The substantially contacting width was about 1 mm. On the other hand, at the present stage, it is difficult to manufacture a high-temperature vibrator having a long side of 3 mm or more.
[0036]
When a vibrator having an aspect ratio of 3 or more formed in this way is used and the long side of the vibrator is arranged in the axial direction of the pipe, an ultrasonic wave is transmitted to a portion where the protective plate does not substantially contact. This can be suppressed. Therefore, interference of ultrasonic waves can be prevented and a decrease in detection sensitivity can be prevented.
[0037]
In the present embodiment, since a flat protective plate is used, the production of the protective plate is simple. Further, the shape of the protective plate 2b can be made vertically long like the vibrator 1b.
[0038]
7A and 7B are diagrams showing an ultrasonic probe according to a fourth embodiment of the present invention, in which FIG. 7A is a plan view and FIG. 7B is a cross-sectional view. In these drawings, reference numeral 9 denotes a shielding material in which the ultrasonic probe 5 is rotatably mounted on the upper surface and a tubular test object surface is mounted on the lower surface. The shielding member 9 includes a vertically long through hole along the axial direction of a pipe that is an object to be inspected.
[0039]
The ultrasonic transducer 1 attached to the shield can contact the pipe through the through hole. Therefore, the ultrasonic wave transmitted from the ultrasonic transducer 1 can be incident on the object to be inspected only through the through hole, thereby preventing the interference of the ultrasonic wave and preventing the detection sensitivity from being lowered. Can do.
[0040]
Further, by rotating the ultrasonic probe by 90 degrees, ultrasonic waves whose vibration planes are orthogonal to each other can be transmitted to the object to be inspected, and the residual stress of the object to be inspected, tissue deterioration, etc. can be measured. .
[0041]
In the above description, a high-temperature ultrasonic probe for inspecting an inspection object such as a pipe in a high-temperature state has been described. Also in the touch element, it is possible to avoid distortion when the ultrasonic vibrator and the protective plate are joined at a high temperature and distortion due to temperature change in the use environment.
[0042]
【The invention's effect】
As described above, according to the present invention, it is possible to obtain an ultrasonic probe that can withstand use at high temperatures and that does not deteriorate detection sensitivity at high temperatures.
[Brief description of the drawings]
FIG. 1 is a diagram showing an ultrasonic probe according to a first embodiment of the present invention.
FIG. 2 is a diagram showing a propagation path of an ultrasonic beam.
FIG. 3 is a diagram showing a propagation path of an ultrasonic beam.
FIG. 4 is a diagram showing a propagation path of an ultrasonic beam.
FIG. 5 is a diagram showing an ultrasonic probe according to a second embodiment of the present invention.
FIG. 6 is a diagram showing an ultrasonic probe according to a third embodiment of the present invention.
FIG. 7 is a diagram showing an ultrasonic probe according to a fourth embodiment of the present invention.
FIG. 8 is a diagram showing a conventional ultrasonic probe.
FIG. 9 is a diagram showing a conventional high-temperature ultrasonic probe.
FIG. 10 is a diagram for explaining cracking due to joining of an ultrasonic transducer and a protective plate.
[Explanation of symbols]
1, 1a, 1b Ultrasonic vibrator 2, 2a, 2b Protection plate 3 Ultrasonic vibrator case 4 Cable 5 Ultrasonic probe 6 Inspected object 7 Ultrasonic 8 Contact medium 9 Shielding material

Claims (4)

熱膨張係数に異方性がある材質でできた超音波振動子と、
該超音波振動子表面に接合して前記超音波振動子表面を保護する保護板からなり、
前記保護板を表面に接合した超音波振動子を被検査体表面に接触して該被検査体を超音波検査する超音波探触子で、
前記保護板と前記振動子はその熱膨張係数の大きさと方向性の両方を一致して接合した超音波探触子において、
前記保護板は被検査面の曲率に合致する曲率を有し、
かつ前記保護板の材質として保護板中の音速が被検査体中の音速と等しいか、あるいは、速い材質を選定したことを特徴とする超音波探触子。
An ultrasonic transducer made of a material with anisotropic thermal expansion coefficient ,
It consists of a protective plate that protects the ultrasonic transducer surface by bonding to the ultrasonic transducer surface,
An ultrasonic probe for ultrasonically inspecting the object to be inspected by contacting the surface of the object to be inspected with an ultrasonic transducer bonded to the surface of the protective plate,
In the ultrasonic probe in which the protection plate and the vibrator are joined by matching both the size and direction of the thermal expansion coefficient thereof,
The protective plate has a curvature that matches the curvature of the surface to be inspected,
An ultrasonic probe characterized in that the material of the protective plate is selected from a material in which the speed of sound in the protective plate is equal to or faster than the speed of sound in the object to be inspected.
熱膨張係数に異方性がある材質でできた超音波振動子と、
該超音波振動子表面に接合して前記超音波振動子表面を保護する保護板からなり、
前記保護板を表面に接合した超音波振動子を被検査体表面に接触して該被検査体を超音波検査する超音波探触子で、
前記保護板と前記振動子はその熱膨張係数の大きさと方向性の両方を一致して接合した超音波探触子において、
前記保護板は該保護板と円筒状の被検査面間に形成される間隙における超音波の伝播を防止するための遮蔽材を備えたことを特徴とする超音波探触子。
An ultrasonic transducer made of a material with anisotropic thermal expansion coefficient ,
It consists of a protective plate that protects the ultrasonic transducer surface by bonding to the ultrasonic transducer surface,
An ultrasonic probe for ultrasonically inspecting the object to be inspected by contacting the surface of the object to be inspected with an ultrasonic transducer bonded to the surface of the protective plate,
In the ultrasonic probe in which the protection plate and the vibrator are joined by matching both the size and direction of the thermal expansion coefficient thereof,
The ultrasonic probe according to claim 1, wherein the protective plate includes a shielding material for preventing propagation of ultrasonic waves in a gap formed between the protective plate and a cylindrical surface to be inspected.
超音波振動子と、
該超音波振動子表面に接合して前記超音波振動子表面を保護する保護板からなり、
前記保護板を表面に接合した超音波振動子を被検査体表面に接触して該被検査体を超音波検査する超音波探触子で、
前記保護板は前記超音波振動子と同材質の結晶からなり、かつ結晶の方向性を一致して接合した超音波探触子において、
前記保護板は被検査面の曲率に合致する曲率を有し、
かつ前記保護板の材質として保護板中の音速が被検査体中の音速と等しいか、あるいは、速い材質を選定したことを特徴とする超音波探触子。
An ultrasonic transducer,
It consists of a protective plate that protects the ultrasonic transducer surface by bonding to the ultrasonic transducer surface,
An ultrasonic probe for ultrasonically inspecting the object to be inspected by contacting the surface of the object to be inspected with an ultrasonic transducer bonded to the surface of the protective plate,
In the ultrasonic probe, the protective plate is made of a crystal of the same material as the ultrasonic transducer, and is bonded in accordance with the crystal directivity.
The protective plate has a curvature that matches the curvature of the surface to be inspected,
An ultrasonic probe characterized in that the material of the protective plate is selected from a material in which the speed of sound in the protective plate is equal to or faster than the speed of sound in the object to be inspected.
超音波振動子と、
該超音波振動子表面に接合して前記超音波振動子表面を保護する保護板からなり、
前記保護板を表面に接合した超音波振動子を被検査体表面に接触して該被検査体を超音波検査する超音波探触子で、
前記保護板は前記超音波振動子と同材質の結晶からなり、かつ結晶の方向性を一致して接合した超音波探触子において、
前記保護板は該保護板と円筒状の被検査面間に形成される間隙における超音波の伝播を防止するための遮蔽材を備えたことを特徴とする超音波探触子。
An ultrasonic transducer,
It consists of a protective plate that protects the ultrasonic transducer surface by bonding to the ultrasonic transducer surface,
An ultrasonic probe for ultrasonically inspecting the object to be inspected by contacting the surface of the object to be inspected with an ultrasonic transducer bonded to the surface of the protective plate,
In the ultrasonic probe, the protective plate is made of a crystal of the same material as the ultrasonic transducer, and is bonded in accordance with the crystal directivity.
The ultrasonic probe according to claim 1, wherein the protective plate includes a shielding material for preventing propagation of ultrasonic waves in a gap formed between the protective plate and a cylindrical surface to be inspected.
JP13679199A 1999-05-18 1999-05-18 Ultrasonic probe Expired - Fee Related JP3707957B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13679199A JP3707957B2 (en) 1999-05-18 1999-05-18 Ultrasonic probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13679199A JP3707957B2 (en) 1999-05-18 1999-05-18 Ultrasonic probe

Publications (2)

Publication Number Publication Date
JP2000329755A JP2000329755A (en) 2000-11-30
JP3707957B2 true JP3707957B2 (en) 2005-10-19

Family

ID=15183611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13679199A Expired - Fee Related JP3707957B2 (en) 1999-05-18 1999-05-18 Ultrasonic probe

Country Status (1)

Country Link
JP (1) JP3707957B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4728838B2 (en) * 2006-02-28 2011-07-20 Jfeスチール株式会社 Ultrasonic spot weld evaluation method and apparatus
JP2010060476A (en) * 2008-09-05 2010-03-18 Sumiju Shiken Kensa Kk Pipe inspection method
TWI617293B (en) * 2013-05-24 2018-03-11 富士膠片索諾聲公司 High frequency ultrasound probe
JP2019152598A (en) * 2018-03-06 2019-09-12 株式会社神戸製鋼所 Probe for ultrasonic flaw detection

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5266386A (en) * 1975-11-28 1977-06-01 Fujitsu Ltd Production of ultra-sonic oscillator
JPS54160194U (en) * 1978-04-28 1979-11-08
JPH0628879Y2 (en) * 1986-10-28 1994-08-03 京セラ株式会社 Oscillator
JPH0159860U (en) * 1987-10-12 1989-04-14
JPH0711418B2 (en) * 1990-03-23 1995-02-08 大阪瓦斯株式会社 Shoe of probe holder of ultrasonic measuring device
JPH08313496A (en) * 1995-05-19 1996-11-29 Yoshio Udagawa Ultrasonic probe

Also Published As

Publication number Publication date
JP2000329755A (en) 2000-11-30

Similar Documents

Publication Publication Date Title
Ritter et al. A 30-MHz piezo-composite ultrasound array for medical imaging applications
EP2525218B1 (en) Heat-resistant ultrasonic sensor and installation method thereof
US3512400A (en) Ultrasonic testing method
Hay et al. Rapid inspection of composite skin-honeycomb core structures with ultrasonic guided waves
Kirk et al. Ultrasonic arrays for monitoring cracks in an industrial plant at high temperatures
WO2017077287A1 (en) Ultrasonic thickness gauge to be used in a high temperature environment and process for attaching it
Kazys et al. Development of ultrasonic sensors for operation in a heavy liquid metal
Lin et al. Novel multi-layer-composites design for ultrasonic transducer applications
JP4388409B2 (en) Ultrasonic inspection equipment
JP3707957B2 (en) Ultrasonic probe
JP4244172B2 (en) Ultrasonic probe for high temperature
JPH0273151A (en) Ultrasonic probe
Schmarje et al. 1–3 Connectivity lithium niobate composites for high temperature operation
JP3457845B2 (en) High temperature ultrasonic probe and method of mounting the same
JP5524378B1 (en) Ultrasonic sensor for high temperature
JPH10153586A (en) Ultrasonic probe and manufacture thereof
Long et al. Further development of a conformable phased array device for inspection over irregular surfaces
JPH0267958A (en) Ultrasonic wave probe
CN217739088U (en) Ultrasonic straight probe, ultrasonic sensor and online monitoring system
Kirk et al. Lithium niobate piezocomposite phased arrays operating at high temperatures
Voleišis et al. Investigation of diffusion bonding quality by ultrasonic technique
Liao et al. Waveguide Transducer for Generation and Reception of High-Frequency Narrow-Beam Ultrasonic Wave
Kirk et al. Monolithic arrays for monitoring industrial plant at high temperatures
Lockett Lamb and torsional waves and their use in flaw detection in tubes
Qiu et al. Design of a low profile array transducer in d15 mode for high angled shear wave generation

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040810

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040824

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050601

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050726

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050802

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees