JP3707053B2 - Method for manufacturing a film for a gas sensor - Google Patents

Method for manufacturing a film for a gas sensor Download PDF

Info

Publication number
JP3707053B2
JP3707053B2 JP2002133239A JP2002133239A JP3707053B2 JP 3707053 B2 JP3707053 B2 JP 3707053B2 JP 2002133239 A JP2002133239 A JP 2002133239A JP 2002133239 A JP2002133239 A JP 2002133239A JP 3707053 B2 JP3707053 B2 JP 3707053B2
Authority
JP
Japan
Prior art keywords
film
gas sensor
producing
compound semiconductor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002133239A
Other languages
Japanese (ja)
Other versions
JP2003329592A (en
Inventor
慎司 岡崎
英元 中川
祝治 朝倉
芳昌 富内
伸彦 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2002133239A priority Critical patent/JP3707053B2/en
Publication of JP2003329592A publication Critical patent/JP2003329592A/en
Application granted granted Critical
Publication of JP3707053B2 publication Critical patent/JP3707053B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、水素又は含水素化合物ガスなどの還元性ガスを解離吸着する触媒金属と、水素原子により還元される固体化合物半導体との混合層からなる膜を有する素子と、還元による前記固体化合物半導体の光吸収の変化を検出する光学手段とを備えたガスセンサ用の膜の製造方法に関する。
【0002】
【従来の技術】
還元性ガス、例えば水素ガス,アンモニアガス,シランガス,硫化水素ガスなどの水素又は含水素化合物ガスを検出するガスセンサとしては、種々の方式が知られている。
【0003】
従来のガスセンサは、触媒燃焼式もしくは半導体式が主流である。前記触媒燃焼式のガスセンサは、白金(Pt),パラジウム(Pd)等の触媒金属をヒータにより加熱し、ガスの接触による燃焼で生ずる導電率の変化を電気的に検出するものであり、また前記半導体式のガスセンサは、ガスの吸着による半導体の電気特性の変化を検出するもので、その際半導体は、ガスの選択性、応答性、素子の特性等の種々の理由から加熱した状態で使用される。
【0004】
上記のように、従来のガスセンサは、被検出ガスが、可燃性、爆発性にも係わらず、加熱や燃焼を伴なうものがほとんどであり、安全性の点で問題があり、また検知素子を加熱しているために素子の劣化が早く、さらに特性が不安定になり易く、信頼性と素子寿命にも問題があった。
【0005】
上記問題点を解決するガスセンサとして、水素又は含水素化合物ガスを解離吸着する触媒金属と、該触媒金属中の前記解離吸着により生成した水素原子により還元されると共に該水素原子が存在しなくなった場合に還元される前の状態に戻る固体化合物半導体との積層構造を備えた素子と、還元による前記固体化合物半導体の光吸収の変化を検出する光学手段とを備えたガスセンサが提案されている(特公平3−67218号公報参照)。
【0006】
上記特公平3−67218号には、ガスセンサの構成として、前記積層構造を備えた素子をガラス基板上に蒸着により形成したものや、また、前記積層構造を光ファイバのコアの外周部に形成してクラッドとして使用する、所謂、光ファイバ型ガスセンサの構成や、さらに前記積層構造の固体化合物半導体を薄膜光導波路とし、基板と触媒金属とをクラッド層として形成し、固体化合物半導体の両端に光ファイバを結合してなる別構成の光ファイバ型ガスセンサなどが開示されている。
【0007】
【発明が解決しようとする課題】
ところで、上記触媒金属と固体化合物半導体との積層構造を備えたガスセンサは、検出感度が悪く、特に0℃以下の低温では、水素吸着活性の低下に伴い応答速度が非常に遅く、実用化の上で問題があった。
【0008】
近年、H2WO4水溶液中に、塩化白金酸や塩化パラジウムを分子レベルで均一に分散させたゾルゲル溶液を、基板に塗布乾燥後焼結した膜を用いたガス検出方法や装置が報告されている。
(S.Sekimoto,H.Nakagawa,S.Okazaki,K.fukuda,S.Asakura,T.Shigemori,S.Takahashi,Sensors and Actuators B66(2000)142-145参照)
上記によれば、光ファイバ型ガスセンサを、塗布焼成により簡単に作成できる利点があるが、0℃以下の低温では、やはり実用化に必要な検出感度が得られない問題があった。
【0009】
この発明は、上記従来の問題点に鑑みてなされたもので、この発明の課題は、0℃以下の低温においても、実用上充分な感度を有し、かつ検知素子に加熱通電を行わず安全で、かつ高い信頼性と素子寿命を備えたガスセンサ用の膜の製造方法を提供することにある。
【0010】
【課題を解決するための手段】
前述の課題を解決するために、この発明は、水素又は含水素化合物ガスを解離吸着する触媒金属と、該触媒金属中の前記解離吸着により生成した水素原子により還元されると共に該水素原子が存在しなくなった場合に還元される前の状態に戻る固体化合物半導体との混合層からなる膜を有する素子と、還元による前記固体化合物半導体の光吸収の変化を検出する光学手段とを備えたガスセンサ用の膜の製造方法において、前記固体化合物半導体のゾルゲル溶液中に、触媒金属化合物を分子レベルで均一に分散させたゾルゲル溶液を、基板に塗布して焼成して膜を形成した後、乾燥空気中で30〜100℃で所定時間加熱処理する(請求項1の発明)。
【0011】
乾燥空気中で30〜100℃、好ましくは約50℃付近の温度で、例えば1時間加熱処理(エージング)することにより、触媒活性が高くなり十分な感度特性が得られる。その要因に関し、正確な理由は不明であるが、推測するに、以下のことが考えられる。即ち、触媒金属以外の成分である吸着水等が蒸発することにより、固体化合物半導体として、例えばWO3を用いた場合に、蒸発脱離した部分は金属触媒/WO3膜中で空孔となり、触媒金属、担体の固体化合物半導体WO3、気体の三相界面の面積が拡大する。これにより、0℃以下の低温においても、触媒活性が高くなり十分な感度特性が得られるものと考えられる。
【0012】
上記請求項1の発明において、触媒金属や触媒金属化合物の実施態様としては、下記請求項2ないし4の発明が好ましい。即ち、請求項1に記載の膜の製造方法において、前記触媒金属は、白金(Pt),パラジウム(Pd),ニッケル(Ni),ルテニウム(Ru),イリジウム(Ir)の内のいずれか、または混合物とする(請求項2の発明)。また、請求項1に記載の膜の製造方法において、前記触媒金属化合物は、塩化白金酸または塩化パラジウムとする(請求項3の発明)。
【0013】
さらに、請求項1に記載の膜の製造方法において、前記触媒金属化合物は、前記触媒金属のジニトロジアンミン化合物とし、その硝酸塩水溶液を前記固体化合物半導体のゾルゲル溶液中に混合する(請求項4の発明)。この場合、前記請求項3の発明における塩化白金酸または塩化パラジウムに代えて、触媒金属のジニトロジアンミン化合物の硝酸塩水溶液を用いて、膜を形成するが、前記エージングは、他の種類の膜に適用した場合にも、同様の作用効果が得られ、上記請求項4の発明は、この観点における実施態様である。
【0014】
前記ジニトロジアンミン化合物を用いた膜は、新規の膜であり、本願と同一出願人は、この新規の膜とその製造方法に関し、特願2001−370062号により出願している。ジニトロジアンミン化合物は、その分解温度が200℃〜235℃であって比較的低温のため、この化合物を適用して低温焼成することにより、触媒金属以外の成分を蒸発させて、感度特性の向上を図ることができる。このジニトロジアンミン化合物の適用による効果は、上記エージングとは異なり、焼成過程において感度特性を向上させる効果であり、前記新規の膜とエージングの両方を適用することにより、二重の感度向上効果が得られる。
【0015】
前記請求項1ないし4の発明において、焼成温度,固体化合物半導体,基板などの実施態様としては、下記請求項5ないし9の発明が好ましい。即ち、請求項1ないし4のいずれかに記載の膜の製造方法において、前記基板に塗布して焼成して膜を形成する際の焼成温度は、300〜700℃の範囲とする(請求項5の発明)。焼成温度の好適範囲は、形成する膜の種類により異なるが、感度特性の観点から、上記範囲が好ましい。なお、塩化白金酸または塩化パラジウムを用いる場合には、500〜670℃の範囲がより好ましい。
【0016】
また、請求項1ないし5のいずれかに記載の膜の製造方法において、前記固体化合物半導体は、三酸化タングステン(WO3),三酸化モリブデン(MoO3),二酸化チタン(TiO2),水酸化イリジウム(Ir(OH)n),五酸化バナジウム(V2O5),酸化ロジウム(Rh2O3・xH2O)の内のいずれかとする(請求項6の発明)。
【0017】
さらに、請求項1ないし6のいずれかに記載の膜の製造方法において、前記基板は、ガラス基板とする(請求項7の発明)。
【0018】
また、光ファイバ型ガスセンサの膜の場合には、下記請求項8ないし9の発明が好ましい。即ち、請求項7に記載の膜の製造方法において、前記基板は、前記ガラス基板に代えて光ファイバ用のコアとし、前記膜は、前記コアの外周部に形成したクラッドとする(請求項8の発明)。さらに、請求項8に記載の膜の製造方法において、前記クラッドとしてなる膜は、前記光ファイバの軸方向に複数個、所定の間隔をおいて形成する(請求項9の発明)。
【0019】
前記請求項9の発明によれば、後に詳述するように、パルス状光源を用い、光ファイバを介して複数個のガスセンサに投光し、後方散乱光を検出することにより、感度よく水素漏洩点の位置検出が可能なセンサが得られる。
【0020】
【発明の実施の形態】
図面に基づき、本発明の実施の形態について以下にのべる。
【0021】
図1は、本発明に関わるガスセンサの素子の基本的構造を示す模式的断面図であり、これに基づき、本発明のガスセンサ用の膜の製造方法について以下に説明する。
【0022】
図1において、素子1は、ガラス基板やSiO2基板、もしくは光ファイバのコア等の基体2上に、被検知ガスとしての還元性ガス、即ち、水素ガスH2、アンモニアガスNH3、シランガスSiH4、硫化水素ガスH2Sなどが接触した際にこれらのガス分子より水素原子を生成する触媒金属3と、触媒金属3中で生成された水素原子により光吸収が変化する固体化合物半導体4とが分子レベルで均一に分散してなる膜34を付けた構造を有する。
【0023】
水素を解離吸着する働きを有する触媒金属3としては、前述のように、白金(Pt),パラジウム(Pd),ニッケル(Ni),ルテニウム(Ru),イリジウム(Ir)の内のいずれかを用いることができ、また、固体化合物半導体4としては、三酸化タングステン(WO3),三酸化モリブデン(MoO3),二酸化チタン(TiO2),水酸化イリジウム(Ir(OH)n),五酸化バナジウム(V2O5),酸化ロジウム(Rh2O3・xH2O)の内のいずれかを用いることができる。
【0024】
次に、前記膜34を含む素子1の基本的製造方法に関し、例えば、触媒金属3に白金(Pt)、固体化合物半導体4にWO3(三酸化タングステン)を用いた場合について、以下に述べる。
【0025】
まず、タングステン酸ナトリウム(和光純薬工業製)を純水に溶解させた水溶液を、カチオン交換樹脂(SKN-1:三菱化学製)を用いて、ナトリウムと水素原子を交換させたゾルゲル溶液を作成する。
【0026】
そこに、塩化白金酸として、例えばヘキサクロロ白金(IV)酸(H2PtCl6・6H2O)を純水に溶解させた溶液(1mol/L)を1/10モル量加えて均一に分散混合し、この混合したゾルゲル溶液に、例えば洗浄したガラス基板を浸漬させ、ゆっくり引き上げるディップコート法により、基板にゾルゲル溶液を塗布する。
【0027】
続いて、前記基板に塗布した膜を室温で十分乾燥させた後、電気炉にて200℃1時間仮焼成した後、例えば400℃で1時間焼成する。この素子は、以下のように光吸収が変化する。
【0028】
水素ガスがゾルゲル膜中の触媒金属3の白金上に解離吸着した水素が、白金からスピルオーバーして、固体化合物半導体4のWO3(三酸化タングステン)中に注入される。触媒金属3の白金よりH+(プロトン)の注入を受けた固体化合物半導体4のWO3(三酸化タングステン)は還元されて、格子欠陥の密度が変化するタングステンブロンズと呼ばれるフォトクロミズム現象が生じ、1.4μm近辺の近赤外波長域の光吸収が増加する。水素ガスが無くなった場合には、H+(プロトン)が脱離し、光吸収も減少する。
【0029】
H+(プロトン)の注入により、このような素子の光吸収は、水素ガスの他、前述したアンモニアガスNH3、シランガスSiH4、硫化水素ガスH2S等の還元性ガスの接触の場合にも、同様になされる。なお、ヒータにより素子を加熱すれば、さらに応答速度を速めることが可能となる。
【0030】
次に、図2は図1の素子1を用いた本発明に関わるガスセンサの一実施態様を示した概念的説明図である。
【0031】
図2のガスセンサは、素子1を間に介して発光ダイオードを用いた光源5とフォトダイオードを用いた受光素子6とを配置し、光源5から発する光を素子1を介して受光素子6に入射させるように構成する。光源5には外部電源7が接続され、光源5を連続あるいは、パルス発光させる。受光素子6は検出回路8に接続され、受光素子6で得られた透過光量の変化に応じた受光出力を電気的に検出し、必要に応じ、ブザーやランプなどで警報を行うように構成する。
【0032】
図2において、ガス検出は、以下のようになされる。ガスセンサに被検知ガスが流入すると、素子1中の前記触媒金属3で水素の解離により生じた水素原子が固体化合物半導体4を還元し、固体化合物半導体4としてWO3を使用した場合、光吸収が増大し、ガス濃度に対応して透過光量が減少する。このため検出回路8における受光素子の信号強度が減少し、予め定めた数値以下となった時に、ガス警報を行う。
【0033】
なお、固体化合物半導体4としてWO3を用いた素子1を使用する場合には、還元により1.4μmを中心とした波長域で光を吸収することから、光源5としては素子1の吸収量の大きい近赤外領域の波長の光を発する光源を使用することが望ましい。
【0034】
次に、図3は本発明に関わるガスセンサの図2とは異なる実施態様を示した概念的説明図である。図3のガスセンサは、前記光ファイバ型ガスセンサに相当し、図1に示した前記素子1の膜34を光ファイバのクラッドとして使用したことを特徴とする。即ち、中心に配置した石英製光ファイバコア9の外周に、固体化合物半導体WO3中に触媒金属パラジウムを分散させたゾルゲル膜を塗布焼成して形成し、光ファイバコア9内に光源から発せられた光を通過させ、受光素子に入射させるように構成したものである。なお、上記構成の素子を、ファイバ型素子と呼称するのに対して、ガラス基板を用いた素子は、以下、薄膜型素子と呼称する。
【0035】
図3のガスセンサにおいては、被検知ガスの接触がない状態では、光ファイバのクラッドを形成する膜(固体化合物半導体4及び触媒金属3)の光吸収が小さいことから、光源から発せられ光ファイバコア9内を反射して進行する光は、効率よく伝送され、受光素子に充分な光量が到達する。一方、被検知ガスが接触すると、触媒金属3で生じた水素原子が固体化合物半導体4を還元し、固体化合物半導体4としてWO3を使用した場合、光吸収が増大し、ガス濃度に対応して、光ファイバ内を伝送される光量が減少する。この光ファイバ内を伝送される光量の減少を受光素子で検出することにより、ガス検出が行なわれる。
【0036】
次に、図4について説明する。図4は、図3とは異なる光ファイバ型ガスセンサの実施態様を示した概念的説明図である。図4のガスセンサは、光ファイバ上に、複数箇所(図4では3箇所)、所定の間隔をおいて水素感応膜を形成してなる多点式水素ガスセンサで、本発明の膜を適用することにより、感度に優れた多点式水素ガスセンサが得られるようにしたものである。図4においては、光ファイバ10の測定点A,B,C上に、3個の素子1を設け、光源5から光を発し、反射ミラー14から反射した光を分岐記3を介して、受光器6で受光するよう構成する。このガスセンサによれば、OTDR(Optical Time Domain Reflection;パルス状光源を利用して後方散乱光を検出する方法)技術を用い、反射光の時間差により測定点A,B,Cの位置を特定し、膜の光吸収による受光量の変化を測定することにより、水素漏洩点の位置検出が可能となる。
【0037】
【実施例】
(実施例1)
(1)ゾルゲル溶液(塩化白金酸使用)の作成
Na2WO4・2H2O (和光純薬工業製)13.24gをメスフラスコに取り、純水を加えて200mlに調整する。超音波を20分照射して溶解させ、無色透明のNa2WO4水溶液(0.2mol/L)を得た。カチオン交換樹脂(SKN-1:三菱化学製)を276.27g(=交換mol量:約0.6mol)をカラム塔に充填し、Na2WO4水溶液を通過させ、Na+をH+に交換し、薄い褐色のH2WO4透明水溶液を得た。これにヘキサクロロ白金(IV)酸(H2PtCl6・6H2O)、1mol/L水溶液を、1/10モル量加え、ゾルゲル溶液を作成した。
(2)薄膜型ガスセンサ素子(塩化白金酸使用)の作製
アルカリ洗浄した後、純水置換しリンサドライヤーで乾燥したガラス基板を、上述のゾルゲル溶液に浸漬した後、一定速度で引き上げてディップコートした。この時、片方の面はマスキングテープで保護し、塗布後に剥がした。
【0038】
室温にて1時間乾燥後、電気炉で200℃、1時間仮焼成した後、400℃で1時間焼成してから室温に冷却した。その後、乾燥空気中で、50℃に加熱処理し、3時間のエージングを行い、図1に示した素子1を得た。
【0039】
素子1を、図2に示すように、外気の流入が可能な容器の中に入れ、所定の被検知ガスを容器に導入し、ファイバで取り出した光吸収による変化を、フォトダイオードを用いて検出した。
【0040】
(実施例2)
(ファイバ型ガスセンサ素子(塩化白金酸使用)の作製)
コア径200μm、クラッド径230μmのステップインデックス型のプラスチッククラッドファイバ(PCF;石英コア/ポリフロロアクリレートクラッド)を、2−アミノエタノールに浸漬してクラッドを劣化させ、機械的にクラッドを剥離して除去する。実施例1に記載のゾルゲル溶液に、クラッドを除去した石英コアファイバを浸漬させた後、一定速度で引き上げてディップコートした。室温にて1時間乾燥後、電気炉で200℃で1時間仮焼成し、その後400℃で1時間焼成してから室温に冷却してファイバ型の素子を得た。その後、乾燥空気中で50℃に加熱処理し、3時間のエージングを行い、ファイバ素子1を得た。
【0041】
得られたファイバは光学系との接合のために検出部の両端を別のファイバに融着接続した。ファイバ型センサは、図3に示すように、外気の流入が可能なチャンバ11の中に入れ、所定の被検知ガスをこのチャンバ11に導入し、光ファイバ10で取り出した光吸収による変化を、フォトダイオードを用いて検出した。なお、図3において、12は恒温槽である。
【0042】
(実施例3)
(1)ゾルゲル溶液(ジニトロジアンミンパラジウム硝酸塩使用)の作製
Na2WO4・2H2O (和光純薬工業製)13.24gをメスフラスコに取り、純水を加えて200mlに調整する。超音波を20分照射して溶解させ、無色透明のNa2WO4水溶液(0.2mol/L)を得た。カチオン交換樹脂(SKN-1:三菱化学製)を276.27g(=交換mol量:約0.6mol)をカラム塔に充填し、Na2WO4水溶液を通過させ、Na+をH+に交換し、薄い褐色のH2WO4透明水溶液を得た。これにジニトロジアンミンパラジウム硝酸塩水溶液(田中貴金属製8.4466wt%)0.1g(およそ0.026mol/L)を加えゾルゲル溶液を作成した。
(2)薄膜型ガスセンサ素子(ジニトロジアンミンパラジウム硝酸塩使用)の作製
上述のゾルゲル溶液を用いて、実施例1と同様にして、薄膜型ガスセンサ素子を作製した。
【0043】
(実施例4)
(ファイバ型ガスセンサ素子(ジニトロジアンミンパラジウム硝酸塩使用)の作製)
実施例3に記載のゾルゲル溶液を用いて、実施例2と同様に、ファイバ型センサを作成した。
【0044】
(比較例1)
(薄膜型ガスセンサ素子(塩化白金酸使用)の作成)
実施例1の素子において、焼成後、50℃のエージングを行なう以外は、同様にして素子を作製した。
【0045】
(比較例2)
(ファイバ型ガスセンサ素子(塩化白金酸使用)の作製)
実施例2のファイバ型素子において、焼成後、50℃のエージングを行なう以外は、同様にして素子を作製した。
【0046】
次に、上記実施例の評価結果に関わる図5および図6について述べる。薄膜型ガスセンサに関わる実施例1,3と比較例1の透過光量低下率の温度依存特性の評価結果を図5に示す。また、ファイバ型ガスセンサに関わる実施例2,4と比較例2の同様の結果を図6に示す。
【0047】
図5および図6において、注入した水素のガス濃度は0.5%(体積濃度)、光源には1310nmの半導体レーザーを用いた。光源の入射光の初期検出出力は、48.7〜48.4μWとした。透過光量低下率は、初期の光量を100%とし、水素ガスを導入してから5分たった時の透過光量の低下率で示す。
【0048】
透過光量の低下率の実用可能な下限は、0.2〜0.3%であり、図5および図6の結果から明らかなように、いずれの実施例においても、比較例に比べて変化率は高く、エージングの効果が確認できた。また、本発明に関わる実施例の場合には、0℃以下において、−20℃の低温においても充分実用できることが明らかとなった。
【0049】
なお、図5に示す薄膜型ガスセンサに比べて、全体的に、図6に示すファイバ型ガスセンサの方が、変化率が高い値を示す。即ち、吸光度変化が大きい。その理由は、下記のとおりである。即ち、薄膜型ガスセンサの場合には、センサ膜の膜厚分のみ吸光度が変化するだけであるが、光ファイバ型ガスセンサの場合には、ファイバの周囲全体が、センサ膜で被覆されており、そこへエバネッセント光と呼ばれる光が染み出して吸収されるので、コートした部分の光路長分、吸光度変化が大きくなるからである。
【0050】
【発明の効果】
上記のとおり、この発明によれば、水素又は含水素化合物ガスを解離吸着する触媒金属と、該触媒金属中の前記解離吸着により生成した水素原子により還元されると共に該水素原子が存在しなくなった場合に還元される前の状態に戻る固体化合物半導体との混合層からなる膜を有する素子と、還元による前記固体化合物半導体の光吸収の変化を検出する光学手段とを備えたガスセンサ用の膜の製造方法において、
前記固体化合物半導体のゾルゲル溶液中に、触媒金属化合物、例えば、塩化白金酸または塩化パラジウムを分子レベルで均一に分散させたゾルゲル溶液を、あるいは、前記塩化白金酸または塩化パラジウムに代えて、前記触媒金属のジニトロジアンミン化合物の硝酸塩水溶液を、前記固体化合物半導体のゾルゲル溶液中に混合し、分子レベルで均一に分散させたゾルゲル溶液を、基板に塗布して焼成して膜を形成した後、乾燥空気中で30〜100℃で所定時間加熱処理することとしたので、
0℃以下の低温においても、実用上充分な感度を有し、かつ検知素子に加熱通電を行わず安全で、かつ高い信頼性と素子寿命を備えたガスセンサ用の膜の製造方法を提供することができる。
【0051】
近年、水素は、地球温暖化や環境問題から、次世代のクリーンエネルギーとして注目を集めている。特に、燃料電池自動車を対象とした水素ステーションでは、安全で高信頼性をもち、センサ領域の広いエリア型のセンサの要求が高い。本発明によれば、水素ガスをすべて光で感度よく検出できるので、小型化、高信頼化、耐熱、耐久、耐火、防爆などの光のもつすべての利点を生かし、かつ前記要求を満たすことが可能となる。
【図面の簡単な説明】
【図1】本発明に関わるガスセンサの素子の基本的構造を示す模式的断面図
【図2】本発明に関わるガスセンサの実施態様を示す概念的説明図
【図3】本発明に関わる光ファイバ型ガスセンサの実施態様を示す概念的説明図
【図4】図3とは異なる光ファイバ型ガスセンサの実施態様を示す概念的説明図
【図5】薄膜型ガスセンサに関わる透過光量低下率の温度依存特性の評価結果を示す図
【図6】ファイバ型ガスセンサに関わる透過光量低下率の温度依存特性の評価結果を示す図
【符号の説明】
1:素子、2:基体、3:触媒金属、4:固体化合物半導体、5:光源、6:受光素子、7:電源、8:検出回路、9:ファイバコア、10:光ファイバ、13:分岐器、14:反射ミラー、34:膜。
[0001]
BACKGROUND OF THE INVENTION
The present invention includes an element having a film composed of a mixed layer of a catalytic metal that dissociates and adsorbs a reducing gas such as hydrogen or a hydrogen-containing compound gas and a solid compound semiconductor reduced by hydrogen atoms, and the solid compound semiconductor by reduction The present invention relates to a method for manufacturing a film for a gas sensor comprising an optical means for detecting a change in light absorption of the gas.
[0002]
[Prior art]
Various methods are known as a gas sensor for detecting a reducing gas, for example, hydrogen such as hydrogen gas, ammonia gas, silane gas, and hydrogen sulfide gas, or a hydrogen-containing compound gas.
[0003]
Conventional gas sensors are mainly of catalytic combustion type or semiconductor type. The catalytic combustion type gas sensor is a device in which a catalytic metal such as platinum (Pt) or palladium (Pd) is heated by a heater to electrically detect a change in conductivity caused by combustion due to gas contact. A semiconductor gas sensor detects changes in electrical characteristics of a semiconductor due to gas adsorption. At that time, the semiconductor is used in a heated state for various reasons such as gas selectivity, responsiveness, and element characteristics. The
[0004]
As described above, in the conventional gas sensors, the gas to be detected is almost always accompanied by heating and combustion regardless of flammability and explosiveness, and there is a problem in terms of safety. Since the element is heated, the deterioration of the element is quick, the characteristics are liable to become unstable, and there is a problem in reliability and element life.
[0005]
As a gas sensor that solves the above problems, when the hydrogen atom is reduced by the catalyst metal that dissociates and adsorbs hydrogen or a hydrogen-containing compound gas and the hydrogen atom generated by the dissociative adsorption in the catalyst metal, and the hydrogen atom no longer exists There has been proposed a gas sensor including an element having a laminated structure of a solid compound semiconductor that returns to a state before being reduced to an oxygen, and an optical means for detecting a change in light absorption of the solid compound semiconductor due to the reduction (special feature). No. 3-67218).
[0006]
In the above Japanese Patent Publication No. 3-67218, as a gas sensor, an element having the laminated structure is formed by vapor deposition on a glass substrate, or the laminated structure is formed on an outer peripheral portion of an optical fiber core. The structure of a so-called optical fiber type gas sensor used as a clad, and the solid compound semiconductor having the above-mentioned laminated structure as a thin film optical waveguide, the substrate and the catalyst metal as a clad layer, and optical fibers at both ends of the solid compound semiconductor. An optical fiber type gas sensor having a different configuration formed by combining the two is disclosed.
[0007]
[Problems to be solved by the invention]
By the way, the gas sensor provided with the laminated structure of the catalytic metal and the solid compound semiconductor has poor detection sensitivity, and particularly at a low temperature of 0 ° C. or less, the response speed is very slow with the decrease in hydrogen adsorption activity. There was a problem.
[0008]
In recent years, a gas detection method and apparatus using a film in which a sol-gel solution in which chloroplatinic acid or palladium chloride is uniformly dispersed at a molecular level in an aqueous solution of H 2 WO 4 is applied to a substrate and dried and then sintered is reported. Yes.
(See S. Sekimoto, H. Nakagawa, S. Okazaki, K. fukuda, S. Asakura, T. Shigemori, S. Takahashi, Sensors and Actuators B66 (2000) 142-145)
According to the above, there is an advantage that an optical fiber type gas sensor can be easily produced by coating and baking, but there is a problem that detection sensitivity necessary for practical use cannot be obtained at a low temperature of 0 ° C. or lower.
[0009]
The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to have sufficient sensitivity for practical use even at a low temperature of 0 ° C. or lower, and to prevent the sensing element from being heated and energized. Another object of the present invention is to provide a method for manufacturing a film for a gas sensor having high reliability and element lifetime.
[0010]
[Means for Solving the Problems]
In order to solve the above-described problems, the present invention reduces a catalyst metal that dissociates and adsorbs hydrogen or a hydrogen-containing compound gas, and a hydrogen atom generated by the dissociative adsorption in the catalyst metal, and the hydrogen atom exists. For a gas sensor comprising: an element having a film composed of a mixed layer with a solid compound semiconductor that returns to a state before being reduced when no longer occurs; and optical means for detecting a change in light absorption of the solid compound semiconductor due to reduction In the method for producing a film, in the sol-gel solution of the solid compound semiconductor, a sol-gel solution in which a catalytic metal compound is uniformly dispersed at a molecular level is applied to a substrate and baked to form a film, and then in dry air Then, heat treatment is performed at 30 to 100 ° C. for a predetermined time (the invention of claim 1).
[0011]
Heat treatment (aging) at a temperature of 30 to 100 ° C., preferably about 50 ° C. in dry air, for example, for 1 hour increases the catalytic activity and provides sufficient sensitivity characteristics. The exact reason for this factor is unknown, but to guess, the following can be considered. That is, when adsorbed water or the like, which is a component other than the catalyst metal, evaporates, for example, when WO 3 is used as the solid compound semiconductor, the portion that has been evaporated and desorbed becomes pores in the metal catalyst / WO 3 film, The area of the catalyst metal, the solid compound semiconductor WO 3 of the support, and the three-phase interface of the gas is expanded. Thereby, it is considered that even at a low temperature of 0 ° C. or lower, the catalytic activity is increased and sufficient sensitivity characteristics can be obtained.
[0012]
In the first aspect of the invention, the embodiments of the catalytic metal and the catalytic metal compound are preferably the inventions of the following second to fourth aspects. That is, in the method for producing a film according to claim 1, the catalyst metal is any one of platinum (Pt), palladium (Pd), nickel (Ni), ruthenium (Ru), and iridium (Ir), or A mixture is obtained (the invention of claim 2). In the film manufacturing method according to claim 1, the catalytic metal compound is chloroplatinic acid or palladium chloride (invention of claim 3).
[0013]
Furthermore, in the film manufacturing method according to claim 1, the catalytic metal compound is a dinitrodiammine compound of the catalytic metal, and an aqueous nitrate solution thereof is mixed into the sol-gel solution of the solid compound semiconductor (the invention of claim 4). ). In this case, instead of chloroplatinic acid or palladium chloride in the invention of claim 3, a membrane is formed using a nitrate aqueous solution of a catalytic metal dinitrodiammine compound, but the aging is applied to other types of membranes. In this case, the same effect can be obtained, and the invention of claim 4 is an embodiment in this aspect.
[0014]
The film using the dinitrodiammine compound is a novel film, and the same applicant as the present application has filed an application for Japanese Patent Application No. 2001-370062 regarding this novel film and its manufacturing method. Dinitrodiammine compounds have a decomposition temperature of 200 ° C. to 235 ° C. and a relatively low temperature. By applying this compound and calcining at a low temperature, components other than the catalyst metal are evaporated to improve sensitivity characteristics. Can be planned. The effect of applying this dinitrodiammine compound is the effect of improving the sensitivity characteristics in the firing process, unlike the above aging, and by applying both the new film and the aging, a double sensitivity improvement effect is obtained. It is done.
[0015]
In the inventions of the first to fourth aspects, the inventions of the following fifth to ninth aspects are preferable as embodiments of the firing temperature, the solid compound semiconductor, the substrate and the like. That is, in the method for producing a film according to any one of claims 1 to 4, a firing temperature when the film is formed by applying to the substrate and firing is set to a range of 300 to 700 ° C. Invention). The preferred range of the firing temperature varies depending on the type of film to be formed, but the above range is preferred from the viewpoint of sensitivity characteristics. In addition, when using chloroplatinic acid or palladium chloride, the range of 500-670 degreeC is more preferable.
[0016]
6. The method for producing a film according to claim 1, wherein the solid compound semiconductor is tungsten trioxide (WO 3 ), molybdenum trioxide (MoO 3 ), titanium dioxide (TiO 2 ), hydroxide. Any one of iridium (Ir (OH) n ), vanadium pentoxide (V 2 O 5 ), and rhodium oxide (Rh 2 O 3 .xH 2 O) is used.
[0017]
Furthermore, in the manufacturing method of the film | membrane in any one of Claim 1 thru | or 6, the said board | substrate is made into a glass substrate (invention of Claim 7).
[0018]
In the case of a film of an optical fiber type gas sensor, the inventions of the following claims 8 to 9 are preferable. That is, in the film manufacturing method according to claim 7, the substrate is an optical fiber core instead of the glass substrate, and the film is a clad formed on an outer peripheral portion of the core. Invention). Furthermore, in the film manufacturing method according to claim 8, a plurality of films serving as the cladding are formed at predetermined intervals in the axial direction of the optical fiber (invention of claim 9).
[0019]
According to the ninth aspect of the present invention, as described in detail later, hydrogen leakage is detected with high sensitivity by using a pulsed light source, projecting light onto a plurality of gas sensors via an optical fiber, and detecting backscattered light. A sensor capable of detecting the position of the point is obtained.
[0020]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below based on the drawings.
[0021]
FIG. 1 is a schematic cross-sectional view showing a basic structure of a gas sensor element according to the present invention. Based on this, a method for producing a film for a gas sensor of the present invention will be described below.
[0022]
In FIG. 1, an element 1 has a reducing gas, ie, hydrogen gas H 2 , ammonia gas NH 3 , and silane gas SiH, as a gas to be detected on a substrate 2 such as a glass substrate, SiO 2 substrate, or optical fiber core. 4 , a catalytic metal 3 that generates hydrogen atoms from these gas molecules when hydrogen sulfide gas H 2 S comes into contact with the solid compound semiconductor 4 whose light absorption changes due to the hydrogen atoms generated in the catalytic metal 3, Has a structure in which a film 34 is uniformly dispersed at the molecular level.
[0023]
As described above, any one of platinum (Pt), palladium (Pd), nickel (Ni), ruthenium (Ru), and iridium (Ir) is used as the catalytic metal 3 having a function of dissociating and adsorbing hydrogen. In addition, the solid compound semiconductor 4 includes tungsten trioxide (WO 3 ), molybdenum trioxide (MoO 3 ), titanium dioxide (TiO 2 ), iridium hydroxide (Ir (OH) n ), vanadium pentoxide. Either (V 2 O 5 ) or rhodium oxide (Rh 2 O 3 .xH 2 O) can be used.
[0024]
Next, a basic manufacturing method of the element 1 including the film 34 will be described below, for example, when platinum (Pt) is used for the catalyst metal 3 and WO 3 (tungsten trioxide) is used for the solid compound semiconductor 4.
[0025]
First, an aqueous solution of sodium tungstate (manufactured by Wako Pure Chemical Industries) dissolved in pure water is used to create a sol-gel solution in which sodium and hydrogen atoms are exchanged using a cation exchange resin (SKN-1: manufactured by Mitsubishi Chemical). To do.
[0026]
Then, as chloroplatinic acid, for example, 1/10 mol amount of a solution (1 mol / L) in which hexachloroplatinic (IV) acid (H 2 PtCl 6 · 6H 2 O) is dissolved in pure water is added and uniformly dispersed and mixed. Then, for example, a washed glass substrate is immersed in the mixed sol-gel solution, and the sol-gel solution is applied to the substrate by a dip coating method in which the glass substrate is slowly pulled up.
[0027]
Subsequently, after the film applied to the substrate is sufficiently dried at room temperature, the film is temporarily baked at 200 ° C. for 1 hour in an electric furnace, and then baked at 400 ° C. for 1 hour, for example. In this element, light absorption changes as follows.
[0028]
Hydrogen in which hydrogen gas is dissociated and adsorbed on platinum of the catalytic metal 3 in the sol-gel film spills over from platinum and is injected into WO 3 (tungsten trioxide) of the solid compound semiconductor 4. WO 3 (tungsten trioxide) of the solid compound semiconductor 4 that has been injected with H + (proton) from platinum of the catalytic metal 3 is reduced, and a photochromism phenomenon called tungsten bronze in which the density of lattice defects changes is generated. Light absorption in the near-infrared wavelength region around μm increases. When hydrogen gas runs out, H + (proton) is desorbed and light absorption is also reduced.
[0029]
By injecting H + (proton), the light absorption of such an element occurs in the case of contact with a reducing gas such as ammonia gas NH 3 , silane gas SiH 4 , and hydrogen sulfide gas H 2 S as well as hydrogen gas. Is done in the same way. If the element is heated by a heater, the response speed can be further increased.
[0030]
Next, FIG. 2 is a conceptual explanatory view showing an embodiment of the gas sensor according to the present invention using the element 1 of FIG.
[0031]
The gas sensor shown in FIG. 2 includes a light source 5 using a light emitting diode and a light receiving element 6 using a photodiode with an element 1 interposed therebetween, and light emitted from the light source 5 enters the light receiving element 6 via the element 1. To be configured. An external power source 7 is connected to the light source 5 to cause the light source 5 to emit light continuously or pulsed. The light receiving element 6 is connected to the detection circuit 8 and is configured to electrically detect a light receiving output corresponding to a change in the amount of transmitted light obtained by the light receiving element 6 and to issue an alarm with a buzzer or a lamp as necessary. .
[0032]
In FIG. 2, gas detection is performed as follows. When the gas to be detected flows into the gas sensor, hydrogen atoms generated by the dissociation of hydrogen in the catalytic metal 3 in the element 1 reduce the solid compound semiconductor 4, and light absorption occurs when WO 3 is used as the solid compound semiconductor 4. It increases and the amount of transmitted light decreases corresponding to the gas concentration. For this reason, when the signal intensity of the light receiving element in the detection circuit 8 decreases and becomes a predetermined numerical value or less, a gas alarm is given.
[0033]
When the element 1 using WO 3 is used as the solid compound semiconductor 4, light is absorbed in a wavelength region centered on 1.4 μm by reduction, and thus the light source 5 has a large absorption amount of the element 1. It is desirable to use a light source that emits light having a wavelength in the near infrared region.
[0034]
Next, FIG. 3 is a conceptual explanatory view showing an embodiment different from FIG. 2 of the gas sensor according to the present invention. The gas sensor of FIG. 3 corresponds to the optical fiber type gas sensor, and is characterized in that the film 34 of the element 1 shown in FIG. 1 is used as a clad of an optical fiber. That is, a sol-gel film in which catalytic metal palladium is dispersed in a solid compound semiconductor WO 3 is applied and fired on the outer periphery of a quartz optical fiber core 9 disposed in the center, and emitted from a light source in the optical fiber core 9. The light is allowed to pass through and enter the light receiving element. The element having the above configuration is referred to as a fiber-type element, whereas an element using a glass substrate is hereinafter referred to as a thin film-type element.
[0035]
In the gas sensor of FIG. 3, in the state where there is no contact with the gas to be detected, the light absorption of the film (solid compound semiconductor 4 and catalyst metal 3) forming the cladding of the optical fiber is small, so that the optical fiber core emitted from the light source The light that travels reflecting inside the light 9 is transmitted efficiently, and a sufficient amount of light reaches the light receiving element. On the other hand, when the gas to be detected comes into contact, hydrogen atoms generated in the catalytic metal 3 reduce the solid compound semiconductor 4, and when WO 3 is used as the solid compound semiconductor 4, light absorption increases, corresponding to the gas concentration. The amount of light transmitted through the optical fiber is reduced. Gas detection is performed by detecting a decrease in the amount of light transmitted through the optical fiber with a light receiving element.
[0036]
Next, FIG. 4 will be described. FIG. 4 is a conceptual explanatory view showing an embodiment of an optical fiber type gas sensor different from FIG. The gas sensor of FIG. 4 is a multipoint hydrogen gas sensor in which a hydrogen sensitive film is formed on an optical fiber at a plurality of locations (three locations in FIG. 4) at predetermined intervals, and the membrane of the present invention is applied. Thus, a multipoint hydrogen gas sensor excellent in sensitivity can be obtained. In FIG. 4, three elements 1 are provided on measurement points A, B, and C of the optical fiber 10, light is emitted from the light source 5, and light reflected from the reflection mirror 14 is received via the branch 3. The device 6 is configured to receive light. According to this gas sensor, using OTDR (Optical Time Domain Reflection; a method of detecting backscattered light using a pulsed light source) technology, the positions of measurement points A, B, and C are specified by the time difference of reflected light, By measuring the change in the amount of light received due to the light absorption of the film, the position of the hydrogen leak point can be detected.
[0037]
【Example】
(Example 1)
(1) Preparation of sol-gel solution (using chloroplatinic acid)
Take 13.24 g of Na 2 WO 4 · 2H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.) in a measuring flask and add pure water to adjust to 200 ml. An ultrasonic wave was irradiated for 20 minutes to dissolve, and a colorless and transparent Na 2 WO 4 aqueous solution (0.2 mol / L) was obtained. Cation exchange resin (SKN-1: manufactured by Mitsubishi Chemical) to 276.27G: a (= exchange mol weight of about 0.6 mol) was filled in a column tower, passed through Na 2 WO 4 solution, to exchange Na + to H +, A light brown H 2 WO 4 clear aqueous solution was obtained. To this was added 1/10 molar amount of hexachloroplatinic (IV) acid (H 2 PtCl 6 .6H 2 O), 1 mol / L aqueous solution to prepare a sol-gel solution.
(2) Fabrication of thin-film gas sensor element (using chloroplatinic acid) After rinsing with alkali, immersing the glass substrate after replacement with pure water and drying with a rinser drier in the above sol-gel solution, pulling up at a constant speed and dip coating did. At this time, one surface was protected with a masking tape and peeled off after coating.
[0038]
After drying at room temperature for 1 hour, pre-baking at 200 ° C. for 1 hour in an electric furnace, baking at 400 ° C. for 1 hour and then cooling to room temperature. Thereafter, heat treatment was performed at 50 ° C. in dry air, and aging was performed for 3 hours to obtain the element 1 shown in FIG.
[0039]
As shown in FIG. 2, the element 1 is placed in a container capable of inflowing outside air, a predetermined gas to be detected is introduced into the container, and a change due to light absorption extracted by the fiber is detected using a photodiode. did.
[0040]
(Example 2)
(Production of fiber type gas sensor element (using chloroplatinic acid))
A step index type plastic clad fiber (PCF; quartz core / polyfluoroacrylate clad) with a core diameter of 200μm and a clad diameter of 230μm is immersed in 2-aminoethanol to degrade the clad, and mechanically peels and removes the clad. To do. The quartz core fiber from which the cladding was removed was immersed in the sol-gel solution described in Example 1, and then pulled up at a constant speed and dip-coated. After drying at room temperature for 1 hour, it was temporarily fired at 200 ° C. for 1 hour in an electric furnace, then fired at 400 ° C. for 1 hour, and then cooled to room temperature to obtain a fiber-type device. Thereafter, heat treatment was performed at 50 ° C. in dry air, and aging was performed for 3 hours to obtain a fiber element 1.
[0041]
In the obtained fiber, both ends of the detection unit were fused and connected to another fiber for bonding with the optical system. As shown in FIG. 3, the fiber type sensor is placed in a chamber 11 in which outside air can flow in, a predetermined gas to be detected is introduced into the chamber 11, and changes due to light absorption taken out by the optical fiber 10 are changed. Detection was performed using a photodiode. In addition, in FIG. 3, 12 is a thermostat.
[0042]
(Example 3)
(1) Preparation of sol-gel solution (using dinitrodiammine palladium nitrate)
Take 13.24 g of Na 2 WO 4 · 2H 2 O (manufactured by Wako Pure Chemical Industries, Ltd.) in a measuring flask and add pure water to adjust to 200 ml. An ultrasonic wave was irradiated for 20 minutes to dissolve, and a colorless and transparent Na 2 WO 4 aqueous solution (0.2 mol / L) was obtained. Cation exchange resin (SKN-1: manufactured by Mitsubishi Chemical) to 276.27G: a (= exchange mol weight of about 0.6 mol) was filled in a column tower, passed through Na 2 WO 4 solution, to exchange Na + to H +, A light brown H 2 WO 4 clear aqueous solution was obtained. To this was added 0.1 g (approximately 0.026 mol / L) of a dinitrodiammine palladium nitrate aqueous solution (8.4466 wt%, Tanaka Kikinzoku) to prepare a sol-gel solution.
(2) Production of thin-film gas sensor element (using dinitrodiammine palladium nitrate) A thin-film gas sensor element was produced in the same manner as in Example 1 using the sol-gel solution described above.
[0043]
(Example 4)
(Production of fiber type gas sensor element (using dinitrodiammine palladium nitrate))
Using the sol-gel solution described in Example 3, a fiber type sensor was prepared in the same manner as in Example 2.
[0044]
(Comparative Example 1)
(Production of thin-film gas sensor element (using chloroplatinic acid))
The device of Example 1 was fabricated in the same manner except that aging at 50 ° C. was performed after firing.
[0045]
(Comparative Example 2)
(Production of fiber type gas sensor element (using chloroplatinic acid))
In the fiber-type element of Example 2, an element was produced in the same manner except that aging at 50 ° C. was performed after firing.
[0046]
Next, FIG. 5 and FIG. 6 related to the evaluation results of the above-described embodiment will be described. FIG. 5 shows the evaluation results of the temperature-dependent characteristics of the transmitted light amount decrease rate in Examples 1 and 3 and Comparative Example 1 relating to the thin film type gas sensor. Moreover, the same result of Example 2, 4 and the comparative example 2 regarding a fiber type gas sensor is shown in FIG.
[0047]
5 and 6, the gas concentration of the injected hydrogen was 0.5% (volume concentration), and a 1310 nm semiconductor laser was used as the light source. The initial detection output of incident light from the light source was 48.7 to 48.4 μW. The transmitted light amount decrease rate is expressed as a decrease rate of the transmitted light amount when the initial light amount is 100% and 5 minutes have passed after the introduction of hydrogen gas.
[0048]
The practical lower limit of the rate of decrease in the amount of transmitted light is 0.2 to 0.3%, and as is apparent from the results of FIGS. 5 and 6, the rate of change in any of the examples compared to the comparative example. The effect of aging was confirmed. In addition, in the case of the examples according to the present invention, it was revealed that the present invention can be sufficiently put into practical use even at a low temperature of −20 ° C. at 0 ° C. or lower.
[0049]
In addition, compared with the thin film type gas sensor shown in FIG. 5, the fiber type gas sensor shown in FIG. 6 generally shows a higher change rate. That is, the change in absorbance is large. The reason is as follows. That is, in the case of a thin film type gas sensor, the absorbance only changes by the film thickness of the sensor film, but in the case of an optical fiber type gas sensor, the entire periphery of the fiber is covered with the sensor film. This is because light called hevanescent light oozes out and is absorbed, so that the change in absorbance increases by the optical path length of the coated portion.
[0050]
【The invention's effect】
As described above, according to the present invention, the hydrogen atom is reduced by the catalyst metal that dissociates and adsorbs hydrogen or a hydrogen-containing compound gas, and the hydrogen atom generated by the dissociative adsorption in the catalyst metal, and the hydrogen atom does not exist. A gas sensor film comprising: an element having a film composed of a mixed layer of a solid compound semiconductor that returns to a state before being reduced; and optical means for detecting a change in light absorption of the solid compound semiconductor due to the reduction. In the manufacturing method,
In the sol-gel solution of the solid compound semiconductor, a catalyst metal compound, for example, a sol-gel solution in which chloroplatinic acid or palladium chloride is uniformly dispersed at a molecular level, or in place of the chloroplatinic acid or palladium chloride, the catalyst After the aqueous solution of nitrate of metal dinitrodiammine compound is mixed in the sol-gel solution of the solid compound semiconductor, the sol-gel solution uniformly dispersed at the molecular level is applied to the substrate and baked to form a film, and then dried air Because it was decided to heat treatment at 30-100 ℃ for a predetermined time in
To provide a method for producing a film for a gas sensor that has sufficient sensitivity in practical use even at a low temperature of 0 ° C. or less, is safe without heating and energizing a sensing element, and has high reliability and element life. Can do.
[0051]
In recent years, hydrogen has attracted attention as a next-generation clean energy due to global warming and environmental problems. In particular, in a hydrogen station for a fuel cell vehicle, there is a high demand for an area-type sensor that is safe and highly reliable and has a wide sensor area. According to the present invention, all the hydrogen gas can be detected with light sensitivity, so that all the advantages of light such as downsizing, high reliability, heat resistance, durability, fire resistance, explosion proof, etc. can be utilized and the above requirements can be satisfied. It becomes possible.
[Brief description of the drawings]
FIG. 1 is a schematic cross-sectional view showing a basic structure of a gas sensor element according to the present invention. FIG. 2 is a conceptual explanatory view showing an embodiment of a gas sensor according to the present invention. FIG. 4 is a conceptual explanatory diagram showing an embodiment of an optical fiber type gas sensor different from FIG. 3. FIG. 5 is a graph showing a temperature dependent characteristic of a transmitted light amount reduction rate related to a thin film type gas sensor. Fig. 6 shows the results of evaluation. Fig. 6 shows the results of evaluating the temperature dependence of the rate of decrease in transmitted light related to the fiber type gas sensor.
1: Element, 2: Substrate, 3: Catalyst metal, 4: Solid compound semiconductor, 5: Light source, 6: Light receiving element, 7: Power supply, 8: Detection circuit, 9: Fiber core, 10: Optical fiber, 13: Branch 14: reflection mirror, 34: membrane.

Claims (9)

水素又は含水素化合物ガスを解離吸着する触媒金属と、該触媒金属中の前記解離吸着により生成した水素原子により還元されると共に該水素原子が存在しなくなった場合に還元される前の状態に戻る固体化合物半導体との混合層からなる膜を有する素子と、還元による前記固体化合物半導体の光吸収の変化を検出する光学手段とを備えたガスセンサ用の膜の製造方法において、
前記固体化合物半導体のゾルゲル溶液中に、触媒金属化合物を分子レベルで均一に分散させたゾルゲル溶液を、基板に塗布して焼成して膜を形成した後、乾燥空気中で30〜100℃で所定時間加熱処理することを特徴とするガスセンサ用の膜の製造方法。
It is reduced by the catalytic metal that dissociates and adsorbs hydrogen or a hydrogen-containing compound gas, and the hydrogen atom generated by the dissociative adsorption in the catalytic metal, and returns to the state before the reduction when the hydrogen atom does not exist. In a method for producing a film for a gas sensor, comprising: an element having a film composed of a mixed layer with a solid compound semiconductor; and an optical means for detecting a change in light absorption of the solid compound semiconductor due to reduction.
A sol-gel solution in which a catalytic metal compound is uniformly dispersed at a molecular level in the sol-gel solution of the solid compound semiconductor is applied to a substrate and baked to form a film, and then predetermined at 30 to 100 ° C. in dry air. A method for producing a film for a gas sensor, characterized by performing a time heating treatment.
請求項1に記載の膜の製造方法において、前記触媒金属は、白金(Pt),パラジウム(Pd),ニッケル(Ni),ルテニウム(Ru),イリジウム(Ir)の内のいずれか、または混合物とすることを特徴とするガスセンサ用の膜の製造方法。2. The method of manufacturing a membrane according to claim 1, wherein the catalyst metal is any one of platinum (Pt), palladium (Pd), nickel (Ni), ruthenium (Ru), iridium (Ir), or a mixture thereof. A method for producing a film for a gas sensor. 請求項1に記載の膜の製造方法において、前記触媒金属化合物は、塩化白金酸または塩化パラジウムとすることを特徴とするガスセンサ用の膜の製造方法。The method for producing a film for a gas sensor according to claim 1, wherein the catalytic metal compound is chloroplatinic acid or palladium chloride. 請求項1に記載の膜の製造方法において、前記触媒金属化合物は、前記触媒金属のジニトロジアンミン化合物とし、その硝酸塩水溶液を前記固体化合物半導体のゾルゲル溶液中に混合することを特徴とするガスセンサ用の膜の製造方法。2. The method for producing a film according to claim 1, wherein the catalytic metal compound is a dinitrodiammine compound of the catalytic metal, and an aqueous nitrate solution thereof is mixed into a sol-gel solution of the solid compound semiconductor. A method for producing a membrane. 請求項1ないし4のいずれかに記載の膜の製造方法において、前記基板に塗布して焼成して膜を形成する際の焼成温度は、300〜700℃の範囲とすることを特徴とするガスセンサ用の膜の製造方法。5. The gas sensor according to claim 1, wherein a baking temperature when the film is formed by applying to the substrate and baking is set to a range of 300 to 700 ° C. 5. For producing a film for use. 請求項1ないし5のいずれかに記載の膜の製造方法において、前記固体化合物半導体は、三酸化タングステン(WO3),三酸化モリブデン(MoO3),二酸化チタン(TiO2),水酸化イリジウム(Ir(OH)n),五酸化バナジウム(V2O5),酸化ロジウム(Rh2O3・xH2O)の内のいずれかとすることを特徴とするガスセンサ用の膜の製造方法。6. The method of manufacturing a film according to claim 1, wherein the solid compound semiconductor is tungsten trioxide (WO 3 ), molybdenum trioxide (MoO 3 ), titanium dioxide (TiO 2 ), iridium hydroxide ( Ir (OH) n ), vanadium pentoxide (V 2 O 5 ), or rhodium oxide (Rh 2 O 3 .xH 2 O), a method for producing a film for a gas sensor. 請求項1ないし6のいずれかに記載の膜の製造方法において、前記基板は、ガラス基板とすることを特徴とするガスセンサ用の膜の製造方法。7. The method for producing a film for a gas sensor according to claim 1, wherein the substrate is a glass substrate. 請求項7に記載の膜の製造方法において、前記基板は、前記ガラス基板に代えて光ファイバ用のコアとし、前記膜は、前記コアの外周部に形成したクラッドとすることを特徴とするガスセンサ用の膜の製造方法。8. The gas sensor according to claim 7, wherein the substrate is an optical fiber core instead of the glass substrate, and the film is a clad formed on an outer peripheral portion of the core. For producing a film for use. 請求項8に記載の膜の製造方法において、前記クラッドとしてなる膜は、前記光ファイバの軸方向に複数個、所定の間隔をおいて形成することを特徴とするガスセンサ用の膜の製造方法。9. The method of manufacturing a film for a gas sensor according to claim 8, wherein a plurality of films serving as the cladding are formed at predetermined intervals in the axial direction of the optical fiber.
JP2002133239A 2002-05-08 2002-05-08 Method for manufacturing a film for a gas sensor Expired - Lifetime JP3707053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002133239A JP3707053B2 (en) 2002-05-08 2002-05-08 Method for manufacturing a film for a gas sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002133239A JP3707053B2 (en) 2002-05-08 2002-05-08 Method for manufacturing a film for a gas sensor

Publications (2)

Publication Number Publication Date
JP2003329592A JP2003329592A (en) 2003-11-19
JP3707053B2 true JP3707053B2 (en) 2005-10-19

Family

ID=29696341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002133239A Expired - Lifetime JP3707053B2 (en) 2002-05-08 2002-05-08 Method for manufacturing a film for a gas sensor

Country Status (1)

Country Link
JP (1) JP3707053B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524363B2 (en) * 2004-06-08 2010-08-18 独立行政法人 宇宙航空研究開発機構 Optical fiber hydrogen sensor enabling hydrogen distribution measurement and measurement method using the same
JP2007071866A (en) * 2005-08-10 2007-03-22 Tokyo Univ Of Science Film for gas sensor, element for gas sensor and method for manufacturing the element for gas sensor
JP4644869B2 (en) * 2005-10-26 2011-03-09 独立行政法人 日本原子力研究開発機構 OPTICAL HYDROGEN GAS DETECTING ELEMENT AND ITS MANUFACTURING METHOD, AND OPTICAL HYDROGEN GAS DETECTING DEVICE AND METHOD USING THE ELEMENT
JP2007248367A (en) * 2006-03-17 2007-09-27 Atsumi Tec:Kk Hydrogen gas sensor
KR101704122B1 (en) * 2014-10-08 2017-02-07 현대자동차주식회사 Hydrogen detecting coloration sensor
JP6501110B2 (en) * 2015-03-04 2019-04-17 国立研究開発法人産業技術総合研究所 Hydrogen gas sensitive film and method for producing the same
JP6892152B2 (en) * 2017-11-06 2021-06-23 国立研究開発法人産業技術総合研究所 Coating liquid, manufacturing method of coating liquid, and manufacturing method of hydrogen gas sensitive film
JP6892153B2 (en) * 2017-11-06 2021-06-23 国立研究開発法人産業技術総合研究所 Coating liquid, manufacturing method of coating liquid, and manufacturing method of hydrogen gas sensitive film

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039536A (en) * 1983-08-12 1985-03-01 Hochiki Corp Gas sensor
JPS6040945A (en) * 1983-08-16 1985-03-04 Hochiki Corp Semiconductor gas sensor
JPS60209149A (en) * 1984-03-31 1985-10-21 Nippon Sheet Glass Co Ltd Hydrogen detector
JPS6166145A (en) * 1984-09-07 1986-04-04 Hochiki Corp Gas detector
JPS62251637A (en) * 1986-04-24 1987-11-02 Hochiki Corp Hydrogen sensor
JPS62257047A (en) * 1986-04-30 1987-11-09 Hochiki Corp Hydrogen sensor
JPH09113501A (en) * 1995-10-16 1997-05-02 Kurabe Ind Co Ltd Carbon monoxide gas detecting material and carbon monoxide gas detecting method
JPH1010048A (en) * 1996-06-25 1998-01-16 Tokyo Gas Co Ltd New style hydrogen detecting element, its manufacture and gas sensor
JP3327164B2 (en) * 1996-08-06 2002-09-24 松下電器産業株式会社 Catalyst body and method for producing the same
JP4057684B2 (en) * 1997-10-14 2008-03-05 日本碍子株式会社 Carbon monoxide-sensitive titanium oxide thin film, gas sensor using the same, and method for producing titanium oxide thin film
JP3674027B2 (en) * 2000-01-12 2005-07-20 株式会社豊田中央研究所 Hydrogen generating method and hydrogen generating apparatus

Also Published As

Publication number Publication date
JP2003329592A (en) 2003-11-19

Similar Documents

Publication Publication Date Title
JPH0367218B2 (en)
ES2372556T3 (en) GAS SENSOR
JP3707053B2 (en) Method for manufacturing a film for a gas sensor
JP3781354B2 (en) Membrane for gas sensor and manufacturing method thereof
EP0853762B1 (en) Gas sensor and manufacturing process thereof
JP5339305B2 (en) Nitrogen oxide detection element
CN103219418B (en) A kind of ultraviolet light detector with nano heterogeneous composite construction and preparation method thereof
US6429019B1 (en) Carbon monoxide detection and purification system for fuels cells
JP5540248B2 (en) Method for producing hydrogen-sensitive membrane
Ando Recent advances in optochemical sensors for the detection of H2, O2, O3, CO, CO2 and H2O in air
JP2016176778A (en) Optical hydrogen gas detection device and method
JP2022540875A (en) Hydrogen sensor and its manufacturing method
JP2007071866A (en) Film for gas sensor, element for gas sensor and method for manufacturing the element for gas sensor
US8758586B2 (en) Reference electrode
JP6501110B2 (en) Hydrogen gas sensitive film and method for producing the same
JP2007057233A (en) Optical gas sensor
JP5152797B2 (en) Method for producing platinum / tungsten oxide hydrogen-sensitive film
JPS6071941A (en) Detector for impure gas component in air
JPH0223826B2 (en)
US10302612B2 (en) Hydrogen concentration measuring device
JPH0210374B2 (en)
JPH10115597A (en) Gas sensor
JP2002310983A (en) Carbon monoxide gas sensor
JP2007170946A (en) Platinum composite tungsten oxide film and manufacturing method therefor
CN105954201A (en) Balloon aerating device which can inspect hydrogen leakage

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050722

R150 Certificate of patent or registration of utility model

Ref document number: 3707053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080812

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090812

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100812

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110812

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120812

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130812

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term