JP3696513B2 - Manufacturing method of needle-shaped body - Google Patents

Manufacturing method of needle-shaped body Download PDF

Info

Publication number
JP3696513B2
JP3696513B2 JP2001042373A JP2001042373A JP3696513B2 JP 3696513 B2 JP3696513 B2 JP 3696513B2 JP 2001042373 A JP2001042373 A JP 2001042373A JP 2001042373 A JP2001042373 A JP 2001042373A JP 3696513 B2 JP3696513 B2 JP 3696513B2
Authority
JP
Japan
Prior art keywords
etching
needle
silicon wafer
mask
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001042373A
Other languages
Japanese (ja)
Other versions
JP2002239014A (en
Inventor
一夫 笠井
一行 末田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Precision Products Co Ltd
Original Assignee
Sumitomo Precision Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Precision Products Co Ltd filed Critical Sumitomo Precision Products Co Ltd
Priority to JP2001042373A priority Critical patent/JP3696513B2/en
Publication of JP2002239014A publication Critical patent/JP2002239014A/en
Application granted granted Critical
Publication of JP3696513B2 publication Critical patent/JP3696513B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Micromachines (AREA)
  • Infusion, Injection, And Reservoir Apparatuses (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、例えば薬物を経皮的に身体に注入する際などに使用されるシリコン製の針状体を、シリコンウェハに対するエッチングにより製造する方法に関する。
【0002】
【従来の技術】
薬剤を被験者の身体に経皮的に注入する器具として、被験者に痛みを与えないシリコン製の針状体(マイクロニードル)の利用が試みられている。この針状体は、所望のテーパ角度を有して先端が尖っており、その先端部を薬液に浸漬またはその先端部に薬剤を塗布した針状体を、被験者の皮膚に先端から刺し込むことにより、それらの薬物を身体内に注入する。薬物が付着した先端部が、皮膚の表皮部を貫通して毛細血管,神経終末が存する真皮部まで到達すれば、薬物注入は有効となるため、その針状体の長さは150μm程度あれば良い。
【0003】
このようなシリコン製の針状体の製造には、半導体集積回路の作製技術を適用できる。そして従来では、プラズマ処理装置を用いて、反応ガスとしてSF6 /O2 ガスの導入によって生成したプラズマによるシリコンウェハに対するエッチングにより、図9の斜視図に示すような多数の針状体51を製造している。この従来の針状体51にあっては、その基端部から先端部にかけて全体にテーパ状に形成されている。
【0004】
【発明が解決しようとする課題】
従来の製造手法では、所望のテーパ形状を得るためのプロセス制御特にSF6 ガスとO2 ガスとの導入比率の制御が難しい。また、所望のテーパ形状を得るためのマスクの作製が困難である。このような課題により、従来では所定のテーパ形状を有する針状体を歩留り良く製造できないという問題がある。また、製造効率の向上を図るために、針状体の高密度化も望まれている。
【0005】
本発明は斯かる事情に鑑みてなされたものであり、等方性エッチングと異方性エッチングとを組み合わせることにより、所定のテーパ形状を有する針状体を容易に歩留り良く製造できる針状体の製造方法を提供することを目的とする。
【0006】
本発明の他の目的は、高密度化を図れて、製造効率を高めることができる針状体の製造方法を提供することにある。
【0007】
【課題を解決するための手段】
請求項1に係る針状体の製造方法は、シリコンウェハに対するエッチングにより、所定のテーパ形状を有するシリコン製の針状体を製造する方法において、前記針状体を形成すべき部分にマスクを設けて前記シリコンウェハに等方性エッチングを施す第1工程と、前記マスクを設けた態様で前記シリコンウェハに、その厚さ方向に選択エッチング性を有する異方性エッチングを施す第2工程と、前記マスクを設けた態様で前記シリコンウェハに等方性エッチングを施す第3工程とを有しており、前記第2工程にあって、反応ガスを切り替えてエッチングステップと堆積ステップとを交互に繰り返して異方性エッチングを施すことを特徴とする。
【0011】
請求項に係る針状体の製造方法は、先端に向かって細径化したテーパ状をなす先端部と該先端部に連なる長手方向にわたって同一径の基端部とを有し、前記先端部から前記基端部に向かって貫通孔が形成されているシリコン製の針状体を、シリコンウェハに対するエッチングにより製造する方法であって、前記貫通孔を形成すべき部分以外に第1マスクを設けて前記シリコンウェハに、その厚さ方向に選択エッチング性を有する異方性エッチングを施す第1工程と、前記針状体を形成すべき部分に第2マスクを設けて前記シリコンウェハに等方性エッチングを施す第2工程と、前記第2マスクを設けた態様で前記シリコンウェハに、その厚さ方向に選択エッチング性を有する異方性エッチングを施す第3工程と、前記第2マスクを設けた態様で前記シリコンウェハに等方性エッチングを施す第4工程とを、この順に有することを特徴とする。
【0012】
請求項に係る針状体の製造方法は、先端に向かって細径化したテーパ状をなす先端部と該先端部に連なる長手方向にわたって同一径の基端部とを有し、前記先端部から前記基端部に向かって貫通孔が形成されているシリコン製の針状体を、シリコンウェハに対するエッチングにより製造する方法であって、前記貫通孔を形成すべき部分以外に第1マスクを設けて前記シリコンウェハに、その厚さ方向に選択エッチング性を有する異方性エッチングを施す第1工程と、前記針状体を形成すべき部分に第2マスクを設けて前記シリコンウェハに等方性エッチングを施す第2工程と、前記第2マスクを設けた態様で前記シリコンウェハに、その厚さ方向に選択エッチング性を有する異方性エッチングを施す第3工程と、前記第2マスクを設けた態様で前記シリコンウェハに等方性エッチングを施す第4工程とを有しており、前記第1工程及び/または第3工程にあって、反応ガスを切り替えてエッチングステップと堆積ステップとを交互に繰り返して異方性エッチングを施すことを特徴とする。
【0013】
第1発明では、シリコンウェハに対して、等方性エッチング,異方性エッチング,等方性エッチングをこの順に施して、先端に所定のテーパ角度を有するシリコン製の針状体を製造する。即ち、第1工程の等方性エッチングにて、ある程度の針形状を作成し、次に、第2工程の異方性エッチングにて、針状体として必要な長さだけ厚さ方向に選択的にエッチングし、最後に、第3工程の等方性エッチングにて、先端を尖らせて所定のテーパ角度を実現する。第1発明にて製造される針状体は、異方性エッチングにて作成された円柱状の基端部と、等方性エッチングにて作成された円錐状の先端部とにて構成される。
【0014】
第2発明では、シリコンウェハに対して、異方性エッチング,等方性エッチング,異方性エッチング,等方性エッチングをこの順に施して、先端に所定のテーパ角度を有し長手方向に貫通孔を有するシリコン製の針状体を製造する。即ち、第1工程の異方性エッチングにて、貫通孔を形成し、次に第2工程の等方性エッチングにて、ある程度の針形状を作成し、次に、第3工程の異方性エッチングにて、針状体として必要な長さだけ厚さ方向に選択的にエッチングし、最後に、第4工程の等方性エッチングにて、先端を尖らせて所定のテーパ角度を実現する。第2発明にて製造される針状体は、第1発明にて製造される上記針状体に更に貫通孔が形成されたものである。
【0015】
本発明の製造方法では、プロセス処理が安定している等方性エッチングにて先端部のテーパ形状を作成するため、所望のテーパ角度を容易に実現できる。また、本発明の針状体は先端部のみがテーパ状をなしているだけであるため、全体にテーパ状をなしている従来の針状体に比べて、製造できる針状体の密度を高くでき、製造効率の向上につながる。
【0016】
また、異方性エッチングを行う第1発明の第2工程または第2発明の第1,第3工程において、反応ガスを切り替えてエッチングステップと堆積ステップとを交互に繰り返すことにより、より高精度の異方性エッチングを行える。
【0017】
【発明の実施の形態】
以下、本発明をその実施の形態を示す図面に基づいて具体的に説明する。
図1は、本発明に係る針状体の製造方法(シリコンの等方性エッチング及び異方性エッチング)を実施するための誘導結合型プラズマ装置(ICP(Inductively Coupled Plasma)装置)の構成図である。
【0018】
このICP装置では、コイルに交流電力を印加して低圧反応ガスのプラズマを発生させ、試料を載置した基板電極に交流電力を印加して、この発生させたプラズマを引き込み、引き込んだプラズマによってエッチングを行う。また、このICP装置を使用する場合、エッチングの異方性を高めるために、反応ガスとしてエッチングガス(例えばSF6 )と堆積ガス(例えばC4 8 )とを交互に導入してプラズマ化させて、エッチングステップと堆積ステップとを繰り返すASETM(Advanced Silicon Etching)手法が実施される。
【0019】
図1において、1は反応器であり、コイル3への通電によってプラズマを発生させる上方側のプラズマ発生室2aと、発生されたプラズマを引き込んで試料20に対してエッチング処理を行う下方側の反応室2bとを有する。
【0020】
プラズマ発生室2aは、セラミック製の中空円筒の形状を有しており、その周面には同心状にコイル3が囲繞されている。コイル3には、マッチングユニット7を介して所定周波数の電源8が接続されており、所望の大きさの交流電力がコイル3に印加されるようになっている。また、プラズマ発生室2aの上部壁中央には、反応器1内へ反応ガス(SF6 またはC4 8 )を導入するガス導入管4が、貫通する態様で連結されている。そして、コイル3への交流電力の印加によって、プラズマ発生室2a内にて反応ガスのプラズマを発生させるようになっている。
【0021】
反応室2bの側部壁には、図示しない排気装置を接続した排気口5が開口されている。反応室2bの底部には、エッチング対象の試料20を載置する基板電極11を有するプラテン6が配設されている。プラテン6には、マッチングユニット9を介して所定周波数の電源10が接続されており、所望の大きさの交流電力が基板電極11に印加されるようになっている。そして、基板電極11への交流電力の印加によって、プラズマ発生室2a内で発生されたプラズマが反応室2b内に引き込まれ、その引き込まれたプラズマにより試料20がエッチングされるようになっている。
【0022】
(第1実施の形態)
図2(a)は、第1実施の形態における複数の針状体31を示す斜視図、図2(b)は、1つの針状体31の断面図であり、各針状体31は、先端に向かって細径化したテーパ状をなす円錐状の先端部31a(最大径:75μm,高さ:50μm)とその先端部31aに連なる円柱状の基端部31b(径:75μm,高さ:100μm)とから構成されている。
【0023】
このような構成の針状体31を使用する場合、先端部31aを薬液に浸漬または先端部31aの周囲に薬剤を塗布した針状体31を、被験者の皮膚に先端部31aから刺し込むことにより、それらの薬物を身体内に注入することができる。また、多数の針状体31を形成したものを被験者の皮膚に刺し込んで、身体の電位を測定することも可能である。
【0024】
このような構成の針状体31の製造工程について以下に説明する。図3は、この第1実施の形態の製造工程における試料(シリコンウェハ)20の形状の推移を示す図である。
【0025】
まず、針状体31を形成すべき部分にマスク21を設けた試料(シリコンウェハ)20をプラテン6に載置する(図3(a))。なお、試料(シリコンウェハ)20の厚さは200μm程度である。そして、以下の条件に従って、試料(シリコンウェハ)20の表面から深さ50μm程度にわたる等方性エッチング(第1工程)を行って、先端部のある程度の形状を作成する(図3(b))。
【0026】
(エッチング条件)
導入する反応ガスの流量:SF6 を130sccm
ガス圧力:1.47Pa エッチング時間:20分
コイル3への印加電力:800W 基板電極11への印加電力:20W
【0027】
次に、以下の条件に従って、エッチングステップと堆積ステップとを交互に繰り返すことにより、厚さ方向にエッチング選択性を有する異方性エッチング(第2工程)を行って、深さ100μm程度の穴を作成する(図3(c))。この際、エッチングステップ(1回あたり13秒)と堆積ステップ(1回あたり5秒)とを交互に繰り返して、合計15分の異方性エッチングを実行する。なお、試料(シリコンウェハ)20の先端部は、マスク21に被われているので、この第2工程においてエッチング抑止用の堆積膜が形成されない。
【0028】
(エッチングステップの条件)
導入する反応ガスの流量:SF6 を130sccm
ガス圧力:1.47Pa 1回あたりの処理時間:13秒
コイル3への印加電力:600W 基板電極11への印加電力:15W
(堆積ステップの条件)
導入する反応ガスの流量:C4 8 を50sccm
ガス圧力:1.60Pa 1回あたりの処理時間:5秒
コイル3への印加電力:600W 基板電極11への印加電力:0W
【0029】
最後に、上記第1工程の場合と同じ条件に従って、再び等方性エッチング(第3工程)を行って、所定のテーパ形状を有する円錐状の先端部31aとそれに連なる円柱部31bとで構成される針状体31を作製する。(図3(d))。
【0030】
(第2実施の形態)
図4は、第2実施の形態における針状体41を示す断面図であり、針状体41は、針状体31の先端部31a及び基端部31bと同様の先端部41a及び基端部41bとを有しており、その径方向中心に長手方向に貫通する貫通孔42(径:15μm)が形成されている。
【0031】
このような構成の針状体41を使用する場合、一般的な注射針と同様に、貫通孔42内に吸引した薬液を無駄なく被験者の皮膚内に注入することができる。
【0032】
このような構成の針状体41の製造工程について以下に説明する。図5,図6は、この第2実施の形態の第1例の製造工程における試料20の形状の推移を示す図である。
【0033】
使用する試料20は、エッチング対象のシリコンウェハ20a(厚さ:150μm)とキャリアウェハ20bとをレジスト20cにて貼付した構成をなす。シリコンウェハ20a側で貫通孔42を形成すべき部分以外の領域にマスク22を設けた試料20をプラテン6に載置する(図5(a))。
【0034】
そして、以下の条件に従って、エッチングステップと堆積ステップとを交互に繰り返すことにより、厚さ方向にエッチング選択性を有する異方性エッチング(第1工程)を行って、貫通孔42となる深さ150μmの穴をシリコンウェハ20aを貫通して作成する(図5(b))。この際、以下の条件では、径15μmの穴のエッチングレートは2.3μm/分であるので、深さ150μmの穴を形成するために、エッチングステップ(1回あたり8秒)と堆積ステップ(1回あたり5秒)とを交互に繰り返して、合計65分の異方性エッチングを実行する。
【0035】
(エッチングステップの条件)
導入する反応ガスの流量:SF6 を110sccm,C4 8 を5sccm
ガス圧力:4Pa 1回あたりの処理時間:8秒
コイル3への印加電力:600W 基板電極11への印加電力:25W
(堆積ステップの条件)
導入する反応ガスの流量:SF6 を5sccm,C4 8 を90sccm
ガス圧力:3Pa 1回あたりの処理時間:5秒,
コイル3への印加電力:600W 基板電極11への印加電力:3W
【0036】
次に、第1実の形態の第1工程と同様に、レジストのスピンコート法により、針状体41を形成すべき部分にマスク23を設けて(図5(c))、シリコンウェハ20aの表面から深さ50μm程度にわたる等方性エッチング(第2工程)を行って、先端部のある程度の形状を作成する(図6(d))。なお、この際のエッチング条件は、上述した第1実の形態の第1工程の場合と同一である。
【0037】
次に、第1実の形態の第2工程と同様に、異方性エッチング(第3工程)を行って、レジスト20cまで達する深さ100μm程度の穴をシリコンウェハ20aに作成する(図6(e))。なお、この際のエッチング条件は、上述した第1実の形態の第2工程の場合と同一である。
【0038】
最後に、第1実の形態の第3工程と同様に、再び等方性エッチング(第4工程)を行って、所定のテーパ形状を有する円錐状の先端部41aとそれに連なる円柱部41bとを有し、長手方向に貫通孔42が形成された針状体41を作製する(図6(f))。なお、この際のエッチング条件は、上述した第1実の形態の第3工程の場合、言い換えるとこの第2実施の形態の第2工程の場合と同一である。そして、単一の針状体41を得たい場合には、アセトンによりレジスト20cを溶解させれば良い。
【0039】
図7は、この第2実施の形態に利用できる試料20の他の例を示す図であり、この試料20は、下地のシリコン体20dと絶縁体としてのSiO2 膜21eとエッチング対象のシリコン膜20f(厚さ:150μm)とを積層した構成をなす。
【0040】
このような構成の試料20においても、シリコン膜20fに対して、上記例のシリコンウェハ20aと同様のエッチング処理を施すことにより針状体41を作製できる。なお、この例では、単一の針状体41を得たい場合、フッ酸によりSiO2 膜21eを除去すれば良い。
【0041】
図8は、この第2実施の形態の第2例の製造工程における試料20の形状の推移を示す図である。上記第1例では、マスク23を設ける際に、その材料となるレジストのスピンコート条件が悪い場合には、既に形成されている貫通孔42にレジストが流れ込んでそれを塞いでしまう可能性がある。以下の第2例は、このような可能性の発生を防いだ手法である。
【0042】
第1例と同様なマスク22を設けて同様の条件にて異方性エッチング(第1工程)を行うが、第1例のようにシリコンウェハ20aを完全に貫通した貫通孔42を形成するのではなく、エッチング時間を調整して20〜30μmは残した時点で穴24の形成を終了する(図8(a))。そして、このシリコンウェハ20aをレジスト20cから外し、それを逆向きにして別のキャリアウェハ20b′にレジスト20c′にて貼付してなる試料20′を作製する(図8(b))。
【0043】
次に、穴24が形成されていないシリコンウェハ20aの表面側に、第1例と同様に、マスク23を設ける(図8(c))。この際、穴24が表面まで到達していないので、レジストが穴24に入り込む虞は全くない。そして、第1例と同様の等方性エッチング(第2工程),異方性エッチング(第3工程)及び等方性エッチング(第4工程)を順次行う。この結果、残存してある厚さ20〜30μmの部分についても先細りとなって、最終的には貫通孔42が形成されることになる(図8(d))。
【0044】
なお、上述した第1実施の形態では、シリコン単体の試料に対してエッチングを施して針状体を製造する場合について説明したが、第2実施の形態のようにSiO2 膜等の下地体にシリコン膜を形成してなる試料についても同様に行えることは勿論である。
【0045】
【発明の効果】
以上詳述した如く、本発明では、シリコンウェハに対して、等方性エッチングと異方性エッチングとを組み合わせて、先端に所定のテーパ角度を有するシリコン製の針状体を製造するようにしたので、所定のテーパ形状を有する針状体を容易に歩留り良く製造することができる。
【0046】
また本発明では、針状体の必要な部分のみがテーパ状をなしているので、全体にテーパ状をなしているものに比べて、針状体の作製密度を高くできて、製造効率を向上することができる。
【0047】
更に本発明では、反応ガスを切り替えてエッチングステップと堆積ステップとを交互に繰り返して異方性エッチングを行うようにしたので、高精度の異方性エッチングを施すことができる。
【図面の簡単な説明】
【図1】本発明に係る針状体の製造方法を実施するための誘導結合型プラズマ装置(ICP装置)の構成図である。
【図2】第1実施の形態における針状体を示す斜視図及び断面図である。
【図3】第1実施の形態における針状体の製造工程における試料の形状の推移を示す図である。
【図4】第2実施の形態における針状体を示す断面図である。
【図5】第2実施の形態の第1例における針状体の製造工程における試料の形状の推移を示す図である。
【図6】第2実施の形態の第1例における針状体の製造工程における試料の形状の推移を示す図である。
【図7】第2実施の形態に利用できる試料の他の例を示す図である。
【図8】第2実施の形態の第2例における針状体の製造工程における試料の形状の推移を示す図である。
【図9】従来例における針状体を示す斜視図である。
【符号の説明】
1 反応器
3 コイル
4 ガス導入管
6 プラテン
11 基板電極
20 試料
31,41 針状体
31a,41a 先端部
31b,41b 基端部
42 貫通孔
[0001]
BACKGROUND OF THE INVENTION
The present invention is, for example, percutaneously the silicon needle body is used like when injected into the body of the drug, to a method of forming steel Ri by the etching of the silicon wafer.
[0002]
[Prior art]
Attempts have been made to use silicon needles (microneedles) that do not cause pain to the subject as a device for transdermally injecting a drug into the subject's body. This needle-like body has a desired taper angle and has a sharp tip, and the needle-like body in which the tip is immersed in a chemical solution or coated with a drug is inserted into the skin of the subject from the tip. To inject those drugs into the body. If the tip to which the drug is attached penetrates the epidermis of the skin and reaches the dermis where the capillaries and nerve endings exist, drug injection is effective. Therefore, if the needle has a length of about 150 μm good.
[0003]
A semiconductor integrated circuit manufacturing technique can be applied to the manufacture of such silicon needles. Conventionally, a large number of needle-like bodies 51 as shown in the perspective view of FIG. 9 are manufactured by etching a silicon wafer with plasma generated by introducing SF 6 / O 2 gas as a reaction gas using a plasma processing apparatus. are doing. This conventional needle-like body 51 is formed in a tapered shape as a whole from its proximal end portion to its distal end portion.
[0004]
[Problems to be solved by the invention]
With the conventional manufacturing method, it is difficult to control the process for obtaining a desired taper shape, particularly the introduction ratio of SF 6 gas and O 2 gas. In addition, it is difficult to manufacture a mask for obtaining a desired tapered shape. Due to such a problem, there is a problem that a needle-like body having a predetermined taper shape cannot be manufactured with a high yield. In addition, in order to improve the production efficiency, it is desired to increase the density of needles.
[0005]
The present invention has been made in view of such circumstances, and by combining isotropic etching and anisotropic etching, a needle-shaped body that can easily produce a needle-shaped body having a predetermined tapered shape with a high yield is obtained. an object of the present invention is to provide a manufacturing how.
[0006]
Another object of the present invention is to provide a method for manufacturing a needle-shaped body that can increase the density and increase the manufacturing efficiency.
[0007]
[Means for Solving the Problems]
The method for manufacturing a needle-shaped body according to claim 1 is a method for manufacturing a silicon needle-shaped body having a predetermined taper shape by etching a silicon wafer, wherein a mask is provided at a portion where the needle-shaped body is to be formed. A first step of subjecting the silicon wafer to isotropic etching, a second step of subjecting the silicon wafer to anisotropic etching having selective etching properties in the thickness direction in the form of providing the mask, And a third step of performing isotropic etching on the silicon wafer in a manner in which a mask is provided. In the second step, the etching step and the deposition step are alternately repeated by switching the reaction gas. An anisotropic etching is performed .
[0011]
The method for manufacturing a needle-like body according to claim 2 has a tapered distal end portion that is reduced in diameter toward the distal end and a proximal end portion having the same diameter in the longitudinal direction continuous to the distal end portion. A method of manufacturing a silicon needle-like body having a through-hole formed from the base end toward the base end by etching a silicon wafer, wherein a first mask is provided in addition to the portion where the through-hole is to be formed A first step of subjecting the silicon wafer to anisotropic etching having selective etching properties in a thickness direction thereof, and a second mask provided in a portion where the needle-like body is to be formed, thereby isolating the silicon wafer. A second step of performing etching, a third step of performing anisotropic etching having selective etching properties in the thickness direction on the silicon wafer in a form in which the second mask is provided, and the second mask. state In a fourth step of applying isotropic etching to the silicon wafer, characterized by having in this order.
[0012]
The method for manufacturing a needle-like body according to claim 3 has a tapered distal end portion that is reduced in diameter toward the distal end and a proximal end portion having the same diameter in the longitudinal direction continuous to the distal end portion. A method of manufacturing a silicon needle-like body having a through-hole formed from the base end toward the base end by etching a silicon wafer, wherein a first mask is provided in addition to the portion where the through-hole is to be formed A first step of subjecting the silicon wafer to anisotropic etching having selective etching properties in a thickness direction thereof, and a second mask provided in a portion where the needle-like body is to be formed, thereby isolating the silicon wafer. A second step of performing etching, a third step of performing anisotropic etching having selective etching properties in the thickness direction on the silicon wafer in a form in which the second mask is provided, and the second mask. state In which a fourth step of applying isotropic etching to the silicon wafer, in the first step and / or the third step, repeating the deposition step and etch step alternately switching the reactive gas And anisotropic etching is performed.
[0013]
In the first invention, isotropic etching, anisotropic etching, and isotropic etching are performed in this order on the silicon wafer to manufacture a silicon needle having a predetermined taper angle at the tip. That is, a certain degree of needle shape is created by isotropic etching in the first step, and then, the anisotropic etching in the second step is selectively performed in the thickness direction by the necessary length as a needle-like body. Finally, the tip is sharpened to achieve a predetermined taper angle by isotropic etching in the third step. The needle-shaped body manufactured in the first invention is composed of a cylindrical base end portion made by anisotropic etching and a conical tip portion made by isotropic etching. .
[0014]
In the second invention, the silicon wafer is subjected to anisotropic etching, isotropic etching, anisotropic etching, and isotropic etching in this order, and has a predetermined taper angle at the tip and a through hole in the longitudinal direction. A silicon needle-like body having the following is manufactured. That is, through holes are formed by anisotropic etching in the first step, then a certain needle shape is created by isotropic etching in the second step, and then anisotropic in the third step. By etching, the length necessary for the needle-like body is selectively etched in the thickness direction, and finally, the tip is sharpened by the isotropic etching in the fourth step to realize a predetermined taper angle. The needle-like body manufactured according to the second invention is a needle-like body manufactured according to the first invention in which a through hole is further formed.
[0015]
In the manufacturing method of the present invention, since the tapered shape of the tip is created by isotropic etching with stable process treatment, a desired taper angle can be easily realized. In addition, since the needle-like body of the present invention has only a tapered tip, the density of the needle-like body that can be manufactured is higher than that of a conventional needle-like body that is entirely tapered. This leads to improved manufacturing efficiency.
[0016]
Further, in the second step of the first invention or the first and third steps of the second invention for performing anisotropic etching, the reaction gas is switched and the etching step and the deposition step are alternately repeated, thereby achieving higher accuracy. Anisotropic etching can be performed.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be specifically described with reference to the drawings showing embodiments thereof.
FIG. 1 is a configuration diagram of an inductively coupled plasma apparatus (ICP (Inductively Coupled Plasma) apparatus) for carrying out the needle-shaped body manufacturing method (isotropic etching and anisotropic etching of silicon) according to the present invention. is there.
[0018]
In this ICP device, AC power is applied to the coil to generate low-pressure reactive gas plasma, AC power is applied to the substrate electrode on which the sample is placed, the generated plasma is drawn, and etching is performed by the drawn plasma. I do. Further, when this ICP apparatus is used, in order to increase the anisotropy of etching, an etching gas (for example, SF 6 ) and a deposition gas (for example, C 4 F 8 ) are alternately introduced as a reaction gas to be converted into plasma. Then, an ASE (Advanced Silicon Etching) method is performed in which the etching step and the deposition step are repeated.
[0019]
In FIG. 1, reference numeral 1 denotes a reactor, and an upper plasma generation chamber 2 a that generates plasma by energizing the coil 3, and a lower reaction that draws the generated plasma and performs an etching process on the sample 20. Chamber 2b.
[0020]
The plasma generation chamber 2a has a shape of a ceramic hollow cylinder, and a coil 3 is concentrically surrounded on the peripheral surface thereof. A power supply 8 having a predetermined frequency is connected to the coil 3 via a matching unit 7 so that AC power having a desired magnitude is applied to the coil 3. A gas introduction pipe 4 for introducing a reaction gas (SF 6 or C 4 F 8 ) into the reactor 1 is connected to the center of the upper wall of the plasma generation chamber 2a so as to penetrate therethrough. A reactive gas plasma is generated in the plasma generation chamber 2 a by applying AC power to the coil 3.
[0021]
An exhaust port 5 connected to an exhaust device (not shown) is opened on the side wall of the reaction chamber 2b. A platen 6 having a substrate electrode 11 on which a sample 20 to be etched is placed is disposed at the bottom of the reaction chamber 2b. A power source 10 having a predetermined frequency is connected to the platen 6 via a matching unit 9 so that AC power having a desired magnitude is applied to the substrate electrode 11. The plasma generated in the plasma generation chamber 2a is drawn into the reaction chamber 2b by the application of AC power to the substrate electrode 11, and the sample 20 is etched by the drawn plasma.
[0022]
(First embodiment)
2A is a perspective view showing a plurality of needle-like bodies 31 in the first embodiment, FIG. 2B is a cross-sectional view of one needle-like body 31, and each needle-like body 31 is A tapered conical tip 31a (maximum diameter: 75 μm, height: 50 μm) and a cylindrical base end 31b (diameter: 75 μm, height) connected to the tip 31a are tapered toward the tip. : 100 μm).
[0023]
When the needle-like body 31 having such a configuration is used, the needle-like body 31 in which the tip 31a is immersed in a chemical solution or a medicine is applied around the tip 31a is inserted into the skin of the subject from the tip 31a. These drugs can be injected into the body. It is also possible to measure the body potential by inserting a needle having a large number of needles 31 into the skin of the subject.
[0024]
The manufacturing process of the needle-shaped body 31 having such a configuration will be described below. FIG. 3 is a diagram showing the transition of the shape of the sample (silicon wafer) 20 in the manufacturing process of the first embodiment.
[0025]
First, a sample (silicon wafer) 20 provided with a mask 21 at a portion where the needle-like body 31 is to be formed is placed on the platen 6 (FIG. 3A). Note that the thickness of the sample (silicon wafer) 20 is about 200 μm. Then, according to the following conditions, isotropic etching (first step) from the surface of the sample (silicon wafer) 20 to a depth of about 50 μm is performed to create a certain shape of the tip (FIG. 3B). .
[0026]
(Etching conditions)
Flow rate of reaction gas to be introduced: SF 6 130 sccm
Gas pressure: 1.47 Pa Etching time: 20 minutes Applied power to coil 3: 800 W Applied power to substrate electrode 11: 20 W
[0027]
Next, anisotropic etching (second process) having etching selectivity in the thickness direction is performed by alternately repeating the etching step and the deposition step according to the following conditions, and a hole having a depth of about 100 μm is formed. Create (FIG. 3C). At this time, the etching step (13 seconds per time) and the deposition step (5 seconds per time) are alternately repeated to perform anisotropic etching for a total of 15 minutes. Since the tip of the sample (silicon wafer) 20 is covered with the mask 21, no deposited film for inhibiting etching is formed in this second step.
[0028]
(Etching step conditions)
Flow rate of reaction gas to be introduced: SF 6 130 sccm
Gas pressure: 1.47 Pa Processing time per time: 13 seconds Applied power to the coil 3: 600 W Applied power to the substrate electrode 11: 15 W
(Deposition step conditions)
Flow rate of reaction gas to be introduced: 50 sccm of C 4 F 8
Gas pressure: 1.60 Pa Processing time per time: 5 seconds Applied power to coil 3: 600 W Applied power to substrate electrode 11: 0 W
[0029]
Finally, isotropic etching (third step) is performed again under the same conditions as in the first step, and a conical tip portion 31a having a predetermined taper shape and a cylindrical portion 31b connected thereto are formed. A needle-like body 31 is prepared. (FIG. 3 (d)).
[0030]
(Second Embodiment)
FIG. 4 is a cross-sectional view showing the needle-like body 41 in the second embodiment, and the needle-like body 41 is similar to the distal end portion 31a and the proximal end portion 31b of the needle-like body 31. And a through hole 42 (diameter: 15 μm) penetrating in the longitudinal direction is formed at the center in the radial direction.
[0031]
When the needle-like body 41 having such a configuration is used, the drug solution sucked into the through-hole 42 can be injected into the subject's skin without waste similarly to a general injection needle.
[0032]
The manufacturing process of the needle-shaped body 41 having such a configuration will be described below. 5 and 6 are diagrams showing the transition of the shape of the sample 20 in the manufacturing process of the first example of the second embodiment.
[0033]
The sample 20 to be used has a configuration in which a silicon wafer 20a (thickness: 150 μm) to be etched and a carrier wafer 20b are attached with a resist 20c. The sample 20 provided with the mask 22 in a region other than the portion where the through hole 42 is to be formed on the silicon wafer 20a side is placed on the platen 6 (FIG. 5A).
[0034]
Then, anisotropic etching (first step) having etching selectivity in the thickness direction is performed by alternately repeating the etching step and the deposition step according to the following conditions, and a depth of 150 μm at which the through hole 42 is formed. Are made through the silicon wafer 20a (FIG. 5B). At this time, since the etching rate of the hole having a diameter of 15 μm is 2.3 μm / min under the following conditions, in order to form a hole having a depth of 150 μm, an etching step (8 seconds per time) and a deposition step (1 The anisotropic etching is repeated for a total of 65 minutes.
[0035]
(Etching step conditions)
Flow rate of reaction gas to be introduced: 110 sccm for SF 6 and 5 sccm for C 4 F 8
Gas pressure: 4 Pa Processing time per time: 8 seconds Applied power to the coil 3: 600 W Applied power to the substrate electrode 11: 25 W
(Deposition step conditions)
Flow rate of reaction gas to be introduced: 5 sccm for SF 6 and 90 sccm for C 4 F 8
Gas pressure: 3 Pa Processing time per time: 5 seconds,
Applied power to the coil 3: 600 W Applied power to the substrate electrode 11: 3 W
[0036]
Next, as in the first step of the first embodiment, a mask 23 is provided in a portion where the needle-like body 41 is to be formed by a resist spin coating method (FIG. 5C). Isotropic etching (second step) over a depth of about 50 μm from the surface is performed to create a certain shape of the tip (FIG. 6D). The etching conditions at this time are the same as those in the first step of the first embodiment described above.
[0037]
Next, similarly to the second step of the first embodiment, anisotropic etching (third step) is performed to create a hole having a depth of about 100 μm reaching the resist 20c in the silicon wafer 20a (FIG. 6 ( e)). The etching conditions at this time are the same as those in the second process of the first embodiment described above.
[0038]
Finally, similarly to the third step of the first embodiment, isotropic etching (fourth step) is performed again, and the conical tip portion 41a having a predetermined taper shape and the cylindrical portion 41b connected thereto are formed. A needle-like body 41 having a through-hole 42 in the longitudinal direction is prepared (FIG. 6F). The etching conditions at this time are the same as those in the third step of the first embodiment described above, in other words, in the second step of the second embodiment. In order to obtain a single needle-like body 41, the resist 20c may be dissolved with acetone.
[0039]
FIG. 7 is a diagram showing another example of the sample 20 that can be used in the second embodiment. The sample 20 includes a base silicon body 20d, an SiO 2 film 21e as an insulator, and a silicon film to be etched. 20f (thickness: 150 μm) is laminated.
[0040]
Also in the sample 20 having such a configuration, the needle-like body 41 can be manufactured by performing the same etching process as the silicon wafer 20a of the above example on the silicon film 20f. In this example, when it is desired to obtain a single needle-like body 41, the SiO 2 film 21e may be removed with hydrofluoric acid.
[0041]
FIG. 8 is a diagram showing the transition of the shape of the sample 20 in the manufacturing process of the second example of the second embodiment. In the first example, when the mask 23 is provided, if the spin coating conditions of the resist used as the material are poor, there is a possibility that the resist flows into the through holes 42 that have already been formed and plugs it. . The second example below is a technique that prevents the occurrence of such a possibility.
[0042]
The same mask 22 as in the first example is provided and anisotropic etching (first step) is performed under the same conditions. However, as in the first example, the through hole 42 that completely penetrates the silicon wafer 20a is formed. Instead, the formation of the hole 24 is finished when the etching time is adjusted to leave 20 to 30 μm (FIG. 8A). Then, the silicon wafer 20a is removed from the resist 20c, and the sample 20 ′ is prepared by attaching the silicon wafer 20a to the other carrier wafer 20b ′ in the reverse direction with the resist 20c ′ (FIG. 8B).
[0043]
Next, as in the first example, a mask 23 is provided on the surface side of the silicon wafer 20a where the holes 24 are not formed (FIG. 8C). At this time, since the hole 24 does not reach the surface, there is no possibility that the resist enters the hole 24. Then, isotropic etching (second step), anisotropic etching (third step), and isotropic etching (fourth step) similar to those in the first example are sequentially performed. As a result, the remaining portion having a thickness of 20 to 30 μm is also tapered, and finally the through hole 42 is formed (FIG. 8D).
[0044]
In the first embodiment described above, the case where a needle-like body is manufactured by etching a sample of silicon alone has been described. However, as in the second embodiment, a base body such as a SiO 2 film is used. Of course, the same can be applied to a sample formed with a silicon film.
[0045]
【The invention's effect】
As described above in detail, in the present invention, a silicon needle having a predetermined taper angle at the tip is manufactured by combining isotropic etching and anisotropic etching for a silicon wafer. Therefore, a needle-like body having a predetermined taper shape can be easily manufactured with a high yield.
[0046]
In the present invention, since only the necessary portion of the needle-like body is tapered, the needle-shaped body can be manufactured at a higher density and the manufacturing efficiency can be improved as compared with the case where the entire needle-like body is tapered. can do.
[0047]
Furthermore, in the present invention, the anisotropic etching is performed by switching the reaction gas and alternately repeating the etching step and the deposition step, so that highly accurate anisotropic etching can be performed.
[Brief description of the drawings]
FIG. 1 is a configuration diagram of an inductively coupled plasma apparatus (ICP apparatus) for carrying out a method for manufacturing a needle-shaped body according to the present invention.
FIGS. 2A and 2B are a perspective view and a cross-sectional view showing a needle-like body in the first embodiment. FIGS.
FIG. 3 is a diagram showing a transition of the shape of a sample in the manufacturing process of the needle-like body in the first embodiment.
FIG. 4 is a cross-sectional view showing a needle-like body in a second embodiment.
FIG. 5 is a diagram showing the transition of the shape of a sample in the manufacturing process of the needle-like body in the first example of the second embodiment.
FIG. 6 is a diagram showing a transition of the shape of a sample in the manufacturing process of the needle-like body in the first example of the second embodiment.
FIG. 7 is a diagram showing another example of a sample that can be used in the second embodiment.
FIG. 8 is a diagram showing a transition of the shape of a sample in a manufacturing process of a needle-like body in a second example of the second embodiment.
FIG. 9 is a perspective view showing a needle-like body in a conventional example.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Reactor 3 Coil 4 Gas introduction pipe 6 Platen 11 Substrate electrode 20 Sample 31,41 Needle-like body 31a, 41a Tip part 31b, 41b Base end part 42 Through-hole

Claims (3)

シリコンウェハに対するエッチングにより、所定のテーパ形状を有するシリコン製の針状体を製造する方法において、前記針状体を形成すべき部分にマスクを設けて前記シリコンウェハに等方性エッチングを施す第1工程と、前記マスクを設けた態様で前記シリコンウェハに、その厚さ方向に選択エッチング性を有する異方性エッチングを施す第2工程と、前記マスクを設けた態様で前記シリコンウェハに等方性エッチングを施す第3工程とを有しており、前記第2工程にあって、反応ガスを切り替えてエッチングステップと堆積ステップとを交互に繰り返して異方性エッチングを施すことを特徴とする針状体の製造方法。In a method of manufacturing a silicon needle having a predetermined taper shape by etching a silicon wafer, a mask is provided at a portion where the needle is to be formed, and isotropic etching is performed on the silicon wafer. A second step of performing anisotropic etching having selective etching properties in the thickness direction on the silicon wafer in a mode in which the mask is provided, and isotropic on the silicon wafer in a mode in which the mask is provided And a third step of performing etching, and in the second step, the anisotropic etching is performed by switching the reaction gas and alternately repeating the etching step and the deposition step. Body manufacturing method. 先端に向かって細径化したテーパ状をなす先端部と該先端部に連なる長手方向にわたって同一径の基端部とを有し、前記先端部から前記基端部に向かって貫通孔が形成されているシリコン製の針状体を、シリコンウェハに対するエッチングにより製造する方法であって、前記貫通孔を形成すべき部分以外に第1マスクを設けて前記シリコンウェハに、その厚さ方向に選択エッチング性を有する異方性エッチングを施す第1工程と、前記針状体を形成すべき部分に第2マスクを設けて前記シリコンウェハに等方性エッチングを施す第2工程と、前記第2マスクを設けた態様で前記シリコンウェハに、その厚さ方向に選択エッチング性を有する異方性エッチングを施す第3工程と、前記第2マスクを設けた態様で前記シリコンウェハに等方性エッチングを施す第4工程とを、この順に有することを特徴とする針状体の製造方法。 It has a tapered tip that is tapered toward the tip, and a base end that has the same diameter in the longitudinal direction continuous to the tip, and a through hole is formed from the tip toward the base. A silicon needle-like body is manufactured by etching a silicon wafer, and a first mask is provided in addition to the portion where the through hole is to be formed, and the silicon wafer is selectively etched in the thickness direction. A first step of performing anisotropic etching having a property, a second step of applying isotropic etching to the silicon wafer by providing a second mask at a portion where the needle-like body is to be formed, and the second mask. A third step of performing anisotropic etching having selective etching properties in the thickness direction on the silicon wafer in the provided mode; and an isotropic etch on the silicon wafer in a mode of providing the second mask. The fourth a step, the production method of the needle body, characterized in that it comprises in this order to perform the ring. 先端に向かって細径化したテーパ状をなす先端部と該先端部に連なる長手方向にわたって同一径の基端部とを有し、前記先端部から前記基端部に向かって貫通孔が形成されているシリコン製の針状体を、シリコンウェハに対するエッチングにより製造する方法であって、前記貫通孔を形成すべき部分以外に第1マスクを設けて前記シリコンウェハに、その厚さ方向に選択エッチング性を有する異方性エッチングを施す第1工程と、前記針状体を形成すべき部分に第2マスクを設けて前記シリコンウェハに等方性エッチングを施す第2工程と、前記第2マスクを設けた態様で前記シリコンウェハに、その厚さ方向に選択エッチング性を有する異方性エッチングを施す第3工程と、前記第2マスクを設けた態様で前記シリコンウェハに等方性エッチングを施す第4工程とを有しており、前記第1工程及び/または第3工程にあって、反応ガスを切り替えてエッチングステップと堆積ステップとを交互に繰り返して異方性エッチングを施すことを特徴とする針状体の製造方法。It has a tapered tip that is tapered toward the tip, and a base end that has the same diameter in the longitudinal direction continuous to the tip, and a through hole is formed from the tip toward the base. A silicon needle-like body is manufactured by etching a silicon wafer, and a first mask is provided in addition to the portion where the through hole is to be formed, and the silicon wafer is selectively etched in the thickness direction. A first step of performing anisotropic etching having a property, a second step of applying isotropic etching to the silicon wafer by providing a second mask at a portion where the needle-like body is to be formed, and the second mask. A third step of performing anisotropic etching having selective etching properties in the thickness direction on the silicon wafer in the provided mode; and an isotropic etch on the silicon wafer in a mode of providing the second mask. And a fourth step of performing ring, in the first step and / or the third step, is subjected to anisotropic etching by repeating the deposition step and etch step alternately switching the reactive gas A method for producing a needle-like body characterized by the above .
JP2001042373A 2001-02-19 2001-02-19 Manufacturing method of needle-shaped body Expired - Lifetime JP3696513B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001042373A JP3696513B2 (en) 2001-02-19 2001-02-19 Manufacturing method of needle-shaped body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001042373A JP3696513B2 (en) 2001-02-19 2001-02-19 Manufacturing method of needle-shaped body

Publications (2)

Publication Number Publication Date
JP2002239014A JP2002239014A (en) 2002-08-27
JP3696513B2 true JP3696513B2 (en) 2005-09-21

Family

ID=18904676

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001042373A Expired - Lifetime JP3696513B2 (en) 2001-02-19 2001-02-19 Manufacturing method of needle-shaped body

Country Status (1)

Country Link
JP (1) JP3696513B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016330A1 (en) * 2008-08-06 2010-02-11 住友精密工業株式会社 Silicon substrate etching method
CN103101876A (en) * 2013-01-25 2013-05-15 中国科学院上海微系统与信息技术研究所 Method for preparing silicon cone structure on (111) type silicon wafer
CN106809798A (en) * 2015-11-27 2017-06-09 中国科学院苏州纳米技术与纳米仿生研究所 The preparation method of silicon-based nanometer column array

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7828827B2 (en) 2002-05-24 2010-11-09 Corium International, Inc. Method of exfoliation of skin using closely-packed microstructures
US6821281B2 (en) 2000-10-16 2004-11-23 The Procter & Gamble Company Microstructures for treating and conditioning skin
US6663820B2 (en) 2001-03-14 2003-12-16 The Procter & Gamble Company Method of manufacturing microneedle structures using soft lithography and photolithography
CN1321706C (en) * 2003-05-29 2007-06-20 财团法人工业技术研究院 Numerical group style micro-needle soft substrate structure and its manufacture
CA2560840C (en) 2004-03-24 2014-05-06 Corium International, Inc. Transdermal delivery device
CN100457211C (en) * 2006-04-10 2009-02-04 清华大学 'I' structured three-dimensional micro solid/hollow silicon needle and silicon knife
EP2036586B1 (en) 2006-07-04 2015-09-09 Toppan Printing Co., Ltd. Method for manufacturing microneedle
DE102006031506A1 (en) * 2006-07-07 2008-01-17 Robert Bosch Gmbh Method of making microneedles in a Si semiconductor substrate
KR100793615B1 (en) * 2006-07-21 2008-01-10 연세대학교 산학협력단 A biodegradable solid type microneedle and methods for preparing it
KR100781702B1 (en) * 2006-07-21 2007-12-03 연세대학교 산학협력단 A hollow type microneedle and methods for preparing it
JP5070764B2 (en) * 2006-08-18 2012-11-14 凸版印刷株式会社 Microneedle patch manufacturing method
JP4984736B2 (en) * 2006-08-18 2012-07-25 凸版印刷株式会社 Exposure apparatus and method
WO2008091602A2 (en) 2007-01-22 2008-07-31 Corium International, Inc. Applicators for microneedle arrays
JP4978245B2 (en) * 2007-03-08 2012-07-18 凸版印刷株式会社 Needle-shaped body, needle-shaped body manufacturing method, and drug transport device
CA2686093C (en) 2007-04-16 2018-05-08 Corium International, Inc. Solvent-cast microneedle arrays containing active
WO2009048607A1 (en) 2007-10-10 2009-04-16 Corium International, Inc. Vaccine delivery via microneedle arrays
KR20090059971A (en) * 2007-12-07 2009-06-11 인싸이토 주식회사 Hollow microneedle
NL2001718C2 (en) 2008-06-24 2009-12-28 Needle Holding B V U Micro needle, micro needle array and manufacturing method therefor.
EP2422836B1 (en) 2009-04-24 2015-10-07 MEDRx Co., Ltd. Medication liquid supporting jig and method of applying medication to micro-needle using same
WO2011001778A1 (en) * 2009-07-01 2011-01-06 住友精密工業株式会社 Method for manufacturing silicon structure, device for manufacturing same, and program for manufacturing same
EP2275164A1 (en) * 2009-07-15 2011-01-19 Debiotech S.A. Multichannel micro-needles
JP6327852B2 (en) 2010-05-04 2018-05-23 コリウム インターナショナル, インコーポレイテッド Methods and devices for transdermal delivery of parathyroid hormone using microprojection arrays
JP2014007350A (en) * 2012-06-27 2014-01-16 Nippon Dempa Kogyo Co Ltd Etching method and mems device
AU2013364053B2 (en) 2012-12-21 2018-08-30 Corium Pharma Solutions, Inc. Microarray for delivery of therapeutic agent and methods of use
JP5889232B2 (en) * 2013-03-06 2016-03-22 富士フイルム株式会社 Method for manufacturing concavo-convex structure
RU2674083C2 (en) 2013-03-12 2018-12-04 Кориум Интернэшнл, Инк. Microprojection applicators
WO2014150293A1 (en) 2013-03-15 2014-09-25 Corium International, Inc. Microarray with polymer-free microstructures, methods of making, and methods of use
US10384046B2 (en) 2013-03-15 2019-08-20 Corium, Inc. Microarray for delivery of therapeutic agent and methods of use
ES2761580T3 (en) 2013-03-15 2020-05-20 Corium Inc Microarrays for therapeutic agent delivery, methods of use and manufacturing methods
CA2903459C (en) 2013-03-15 2024-02-20 Corium International, Inc. Multiple impact microprojection applicators and methods of use
EP3188714A1 (en) 2014-09-04 2017-07-12 Corium International, Inc. Microstructure array, methods of making, and methods of use
KR101865446B1 (en) * 2015-03-27 2018-07-16 단국대학교 산학협력단 Micro Probe Tip Structure and Method of manufacturing the same
US10857093B2 (en) 2015-06-29 2020-12-08 Corium, Inc. Microarray for delivery of therapeutic agent, methods of use, and methods of making

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010016330A1 (en) * 2008-08-06 2010-02-11 住友精密工業株式会社 Silicon substrate etching method
JP2010059529A (en) * 2008-08-06 2010-03-18 Sumitomo Precision Prod Co Ltd Silicon substrate etching method
CN103101876A (en) * 2013-01-25 2013-05-15 中国科学院上海微系统与信息技术研究所 Method for preparing silicon cone structure on (111) type silicon wafer
CN103101876B (en) * 2013-01-25 2015-08-26 中国科学院上海微系统与信息技术研究所 A kind of method making silicon cone structure on (111) type silicon chip
CN106809798A (en) * 2015-11-27 2017-06-09 中国科学院苏州纳米技术与纳米仿生研究所 The preparation method of silicon-based nanometer column array
CN106809798B (en) * 2015-11-27 2018-09-11 中国科学院苏州纳米技术与纳米仿生研究所 The preparation method of silicon-based nanometer column array

Also Published As

Publication number Publication date
JP2002239014A (en) 2002-08-27

Similar Documents

Publication Publication Date Title
JP3696513B2 (en) Manufacturing method of needle-shaped body
US8354033B2 (en) Method for producing porous microneedles and their use
Bolton et al. Hollow silicon microneedle fabrication using advanced plasma etch technologies for applications in transdermal drug delivery
EP1418977B1 (en) Microneedles for minimally invasive drug delivery
EP1244495B1 (en) Method of forming vertical, hollow needles within a semiconductor substrate
ATE296575T1 (en) PRODUCTION METHOD FOR A MEDICAL ELECTRODE
US8637351B2 (en) Methods for making micro needles and applications thereof
US6511463B1 (en) Methods of fabricating microneedle arrays using sacrificial molds
US8402629B2 (en) Method of manufacturing hollow microneedle structures
JP4954656B2 (en) Acicular body and method for producing acicular body
JP7046728B2 (en) Microneedle
GB2481901A (en) Microneedle arrays
US20160264408A1 (en) Manufacture of microneedles
JP4486368B2 (en) Silicon needle manufacturing method
JP2005199392A (en) Silicon needle and manufacturing method therefor
CN110559553A (en) preparation method of painless microneedle array chip with holes capable of being manufactured in batch
Abd Aziz et al. Characterization of HNA etchant for silicon microneedles array fabrication
CN114939100A (en) High-density random curved surface polymer microneedle array and preparation method and application thereof
GB2574656A (en) A method of producing a structure
CN111228642A (en) Hollow microneedle array device and manufacturing method
Bhandari et al. A novel mask-less method of fabricating high aspect ratio microneedles for blood sampling
CN116173390A (en) Method for treating skin to steady state for convenient dosing
JP2009195378A (en) Manufacturing method of hollow needle-like object and hollow needle-like object
KR20180120909A (en) Microneedle for drug delivery system and method thereof
Iliescu et al. Microneedles array with biodegradable tips for transdermal drug delivery

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041018

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050322

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050629

R150 Certificate of patent or registration of utility model

Ref document number: 3696513

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080708

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090708

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100708

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110708

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120708

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130708

Year of fee payment: 8

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term