JP3689720B2 - 3D shape measuring device - Google Patents

3D shape measuring device Download PDF

Info

Publication number
JP3689720B2
JP3689720B2 JP2000315211A JP2000315211A JP3689720B2 JP 3689720 B2 JP3689720 B2 JP 3689720B2 JP 2000315211 A JP2000315211 A JP 2000315211A JP 2000315211 A JP2000315211 A JP 2000315211A JP 3689720 B2 JP3689720 B2 JP 3689720B2
Authority
JP
Japan
Prior art keywords
imaging
bright spot
bright
dimensional shape
plane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000315211A
Other languages
Japanese (ja)
Other versions
JP2002122417A (en
Inventor
広宙 青木
真人 中島
安弘 竹村
一弘 味村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Keio University
Original Assignee
Sumitomo Osaka Cement Co Ltd
Keio University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd, Keio University filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP2000315211A priority Critical patent/JP3689720B2/en
Publication of JP2002122417A publication Critical patent/JP2002122417A/en
Application granted granted Critical
Publication of JP3689720B2 publication Critical patent/JP3689720B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Optical Distance (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、三次元形状測定装置に関し、特に対象領域内の物体や人物の高さや姿勢の変化を監視するための三次元形状測定装置に関するものである。
【0002】
【従来の技術】
病院の病室内あるいはトイレ内の患者等のプライバシーを損なわずに、異常を知るための監視装置として、従来から、監視対象領域に格子状に配列された輝点を投影してその画像を撮影し、撮影された画像中の輝点の基準位置からの位置変化によって対象領域の高さ変化を検出し、対象領域内の物体や人物の有無や高さ変化、姿勢変化を監視する装置が提案されている。
【0003】
【発明が解決しようとする課題】
このような従来の装置では、監視対象領域内に物体などが存在しない状態における輝点の位置からの、物体が存在するときの輝点の移動量を調べて物体の高さを計算する。しかしながら、その高さは、物体が存在するときの輝点が、物体が存在しないときの隣の輝点の位置まで移動してしまうところで輝点同士の区別が困難となり、それ以上の測定ができなかった。図7(a)に監視対象領域に物体が存在しない場合の輝点画像の様子を、また図7(b)に物体の存在により、ある場所の輝点が隣の輝点まで移動してしまう様子を示す。図7(b)では、輝点111c、111dが移動して隣の輝点111a、111bの図7(a)での位置まで移動してしまっており、これ以上の輝点の移動を生じさせる高さの物体は測定できない。例えば、図7(b)での111c、111dが更に左に移動してしまうと、その輝点が111a、111bと区別できなくなってしまう。
【0004】
そこで本発明は、監視対象物の高さ測定範囲が広い、輝点を用いた三次元形状測定装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記目的を達成するために、請求項1に係る発明による三次元形状測定装置10は、例えば図1に示すように、撮像対象物1を置く撮像領域2に、第1の方向(y’軸方向(図2))に一定の間隔a、第1の方向(y’軸方向)に直角な第2の方向(x’軸方向)に間隔aよりも大なる一定の間隔bで格子状に配列された複数の輝点13aを投影する投影手段12と;投影手段12から見て所定の方向(y軸方向)に設置された、撮像対象物1の置かれた撮像領域2に投影された複数の輝点13aを撮像する撮像手段11と;撮像手段11で撮像された輝点画像1a’と、基準画像2a’とを比較して、撮像対象物1の三次元形状を演算する形状演算手段14とを備え;所定の方向(y軸方向)と前記第1の方向(y’軸方向)とのなす角度θは、nを自然数とするとき、arctan(b/(a・n))にほぼ等しく、且つ輝点の直径をcとするとき、前記角度はarcsin(c/a)より大であるように構成されている。
【0006】
基準画像は、典型的には、撮像対象物が置かれていない撮像領域に投影された輝点を撮像した画像である。ここで輝点画像と基準画像、はイメージ画像に限らず、輝点の位置を特定する座標によるものであってもよい。
【0007】
このように構成すると、第1の方向(y’軸方向(図2))に一定の間隔a、第1の方向に直角な第2の方向に間隔aよりも大なる一定の間隔bで格子状に配列された複数の輝点を投影する投影手段と、投影手段から見て所定の方向に設置された、撮像対象物1の置かれた撮像領域2に投影された複数の輝点を撮像する撮像手段とを備える。また所定の方向と第1の方向とのなす角度は、nを自然数とするとき、arctan(b/(a・n))にほぼ等しく、且つ輝点の直径をcとするとき、前記角度はarcsin(c/a)より大であるように構成されているので、撮像対象物の測定範囲をさらに拡大することができる。
【0008】
さらに請求項2に記載のように、また例えば図2に示すように、請求項1に記載の三次元形状測定装置10では、投影手段12が、コヒーレント光L1を発生する光源Lと;光源Lで発生されたコヒーレント光L1を通過させる2枚の回折格子13とを備え;2枚の回折格子13は、それぞれの回折方向がほぼ直交するように配置されている。
【0009】
また請求項3に記載のように、回折格子13は、ファイバーグレーティングとするとよい。回折格子を通過したコヒーレント光は干渉によりパターンを生成する。回折格子は、ファイバーグレーティングの他、例えば複数のスリットを平行に切ったスリット板、シリンドリカルレンズアレイであってもよい。また2枚のシリンドリカルレンズアレイの代わりに、マイクロレンズアレイを用いてもよい。
【0010】
【発明の実施の形態】
以下、本発明の実施の形態について、図面を参照して説明する。なお、各図において互いに同一あるいは相当する部材には同一符号または類似符号を付し、重複した説明は省略する。
【0011】
図1は、本発明の実施の形態である三次元形状測定装置10の全体像を示す概念的斜視図である。図中測定対象物ないしは撮像対象物としての直方体形状をした物体1が、測定対象領域ないしは撮像対象領域としての平面2上に載置されている。XY軸を平面2内に置くように、直交座標系XYZがとられており、物体1はXY座標系の第1象限に置かれている。物体の代わりに人物を撮像対象物としてもよい。
【0012】
一方、図中Z軸上で平面2の上方には撮像手段としての撮像光学系11が配置されている。ここでは便宜上撮像光学系は撮像レンズとしての1つの凸レンズ11aで構成されているものとして図示してある。撮像光学系11の撮像レンズ11aは、その光軸がZ軸に一致するように配置されている。撮像レンズ11aが、平面2あるいは物体1の像を結像する結像面(イメージプレーン)15は、Z軸に直交する面である。結像面15内にxy直交座標系をとり、Z軸が、xy座標系の原点を通るようにする。
【0013】
平面2から撮像レンズ11aと等距離で、撮像レンズ11aからY軸の負の方向に距離dだけ離れたところに、ファイバーグレーティング(FG)素子13が配置されている。FG素子13を含んで、投影手段としての輝点投影光学系12が構成されている。ここで結像面15の中心とFG素子の中心とを結ぶ線を基線と呼ぶ。基線はy軸方向に向いており、dは基線方向の距離(基線長)である。図2を参照して後で説明するように、FG素子13には光源Lの発生するレーザー光L1がZ軸方向に入射して、格子状に点が配列されたパターン13aが平面2に照射される。即ち、物体1と平面2は、パターン状照明光で照明される。撮像光学系11には、画像処理手段としてのコンピュータ14が電気的に接続されている。形状演算手段はコンピュータ14内に内臓されている。即ち、ハードディスクやRAM等の記憶部にインストールされた例えば演算プログラムである。
【0014】
さらに図1を参照して、三次元形状測定の原理を説明する。後で詳しく説明するFG素子13により平面2に投影された輝点パターン13aは、物体1が存在する部分は、物体1に遮られ平面2には到達しない。ここで物体1が存在しなければ、平面2上の点2a(X,Y,Z)に投射されるべき輝点は、物体1上の点1a(X1,Y1,Z1)に投射される。輝点が点2aから点1aに移動したことにより、また撮像レンズ11aとFG素子13とが距離dだけ離れているところから、結像面15上では、点2a’(x,y)に結像すべきところが点1a’(x,y+δ)に結像する。即ち、y軸方向に距離δだけ移動する。実際は、点1a’は、y軸上の点でなければx軸方向にもδxだけ移動するが、ここではその表示は省略してある。
【0015】
このδを計測することにより、物体1上の点1aの位置が三次元的に特定できる。このように、ある輝点が、物体1が存在しなければ、結像面15上に結像すべき点と、結像面15上の実際の結像位置との差を測定することにより、物体1の三次元形状が計測できる。あるいは物体1の三次元座標が計測できるといってもよい。輝点の対応関係が不明にならない程度に、パターン13aのピッチ、即ち輝点のピッチを細かくすれば、物体1の三次元形状はそれだけ詳細に計測できることになる。
【0016】
FG素子13の中心と撮像レンズ11aの中心とは、平面2に平行に距離dだけ離して配置されており、撮像レンズ11aから結像面15までの距離はl(エル)(撮像レンズとしての凸レンズ11aの焦点とほぼ等しい)、撮像レンズ11aから平面2までの距離はh、撮像対象物1の点1aの平面2からの高さはZ(図1ではZ1と図示)である。撮像対象物1が平面2上に置かれた結果、結像面15上の点2a’はδだけ離れた点1a’に移動した。
このような関係において、Zは次の式1のようにδを含む式で表される。この式を用いれば、トイレ内の人物などの姿勢を三次元的に知ることができる。
Z=(h・δ)/(d・l+h・δ) …式1
【0017】
図2を参照して、FG素子13を説明する。FG素子13は、直径が数十ミクロン、長さ10mm程度の光ファイバを100本程度シート状に並べて、それを2枚ファイバーが直交するように重ね合わせたものである。FG素子は、シートが平面2に平行に(Z軸に直角に)配置される。このFG素子13に、レーザー光源Lが発生したレーザー光L1を、Z軸方向に入射させる。するとレーザー光L1は、個々の光ファイバーの焦点で集光したのち、球面波となって広がって行き、干渉して、測定領域ないしは撮像領域としての投影面である平面2に、正方格子状に輝点マトリクスである輝点パターン13aが投影される。言いかえれば、平面2またはその上の物体1は、輝点パターン13aが投影されることによって、いわば輝点パターン状照明光で照明される。
【0018】
このようなFG素子13によれば、光の回折効果により、グレーティングからの距離に依らずに点状光(輝点)のコントラストの良いシャープな照明パターンを得ることができ、パターンの撮像に好適である。またこのようなFG素子を用いるときは、輝点の移動量を測定して演算するだけで三次元形状が測定できるので、三次元形状の測定が比較的簡単な演算手段で実現できる。また、光量を集中できるので周囲が明るい状態でも照明パターン(ここでは輝点)の撮像が簡単にでき好適である。
【0019】
FG素子13の光ファイバは、基線方向(図中y軸方向)を向いているとは限らず、xy平面に平行に、FG素子13の中心を通るZ軸方向に平行な軸を回転軸とし、θだけ回転させてある。図中、直交する光ファイバに平行な座標をx’y’座標とすれば、y’軸はy軸に対し、x’軸はx軸に対し角度θだけ傾いている。即ち、一つの格子方向と基線との成す角がθである。
【0020】
ここで平面2上の格子状輝点パターンのy’軸に平行な方向の間隔をa、x’軸に平行な方向の間隔をbとする。また直交する光ファイバの直径は、両者ほぼ等しいが、y’軸方向の光ファイバの直径をx’軸方向の光ファイバの直径よりも太くすると、輝点パターンの輝点同士の間隔は、a<bの関係となる。なお、図1の輝点パターンは、θ=0の場合を示している。
【0021】
図3は、輝点間隔がa、b(a<b)になるようなFG素子を用いた場合の輝点画像である。このような輝点画像は図2を参照して説明したようにFG素子の縦と横のファイバー径即ちファイバーピッチが違うような素子を用いることによって実現できる。レーザ及びFG素子による輝点の位置の計算式は、次の式2に示すような多重スリットによる干渉による干渉縞の式と同様に考えられるので、スリット間隔p即ちファイバーピッチを変更すれば、干渉縞の間隔を変えることができる。ここで、yは周期的な鋭い極大を与えるy軸方向位置、mは自然数、λは光の波長、hはFG素子から照明面(撮像領域の平面)までの距離、pはスリット間隔とする。
=m・λ・h/p …式2
【0022】
輝点アレイの輝点間隔の短い(図3では間隔がaの)格子方向と基線との成す角は、θ0、θ1、θ2、・・・θnのように置くことができる。図3では説明のためθ4まで表記し、θ5以上は図示を省略してある。このように基線の方向を設定することにより、ある輝点とその基線方向の隣接輝点の間隔を大きくすることができ、物体1の高さ測定範囲を広げることができる。輝点の大きさを無視すると隣接輝点との距離は、下式のように表される。
θ0の場合・・・・・ a
θ1の場合・・・・・(a+b1/2
θ2の場合・・・・・((2・a)+b1/2
θ3の場合・・・・・((3・a)+b1/2
θ4の場合・・・・・((4・a)+b1/2
【0023】
このように、格子を基線に対して傾けた場合は、傾けない場合に比較して隣接輝点間距離が大きくなる。ここで、輝点が十分に小さい場合でも、実際にはθnのnは無限大ではなく、輝点のスポット径やゆらぎなどにより制限される。ここでθを一般式で表すと次式のようになる。θをこのような値にほぼ等しくすると、隣接輝点との距離を大きくとることができる。
θ=arctan(b/(a・n)) …式3
【0024】
このような構成にすれば、輝点アレイの縦横同時に輝点間隔を大きくして、高さ測定範囲を拡大する方法よりも、単位面積当りの輝点の個数の減少を少なくすることができ、物体の高さ測定地点を疎にすることが少なくなるので、より正確な物体の三次元測定が可能になる。また、基線長dは変えないので低い高さの感度を低下させることなく、高さ測定範囲を拡大することができる。
【0025】
またa<bとすると、図4を参照して以下説明するように、輝点格子方向を基線に対して傾けて基線方向の隣接輝点間隔を拡げる場合でも、物体により輝点位置が移動するとき、隣接輝点以外の輝点にぶつかってしまうのを避けることが可能になる。
【0026】
図4を参照して、本発明の実施の形態を説明する。図中、輝点間隔にはa<bの関係があり、間隔aの方向と基線との角度はθ=arctan(b/(3・a))にとられている。このような基線と輝点格子の配置の場合、図中左下隅の輝点0は物体の高さに伴い、図中下から2行左から4列の位置の輝点1の方向に移動するが、この途中で図中下から1行左から2列の輝点2(または図中下から2行左から3列の輝点3)のすぐ脇に位置する可能性が発生する。輝点格子間隔を図のように、a、bと定義し、輝点の直径をc、nを自然数とすると、輝点0が輝点2に最も近い位置ある時の輝点同士の隙間sは、次式で表される。
s=a・b/((a・n)+b1/2−c …式4
【0027】
例えば、a=b=5mm、c=1mmとすると、s及び輝点の大きさを差引いた輝点0−1間の距離l01(エル)は、図5(a)の表1に示す通りとなり、n=5以上とすると、輝点同士が重なって見分けが難しくなることがわかる。これを避けるためには、式4においてs>0とすればよい。即ち、次式を満たすようにすればよい。
θ>arcsin(c/a) …式5
【0028】
またここで、b=8mm(>a=5mm)に変更すると、(b)の表2に示すように、ノイズなどの影響がなければ、n=7の角度まで浅くすることができる。このときは、l01の値も大きくなっており、高さ測定範囲が拡大していることがわかる。このように、縦横で違う輝点間隔の輝点画像を用いることにより、基線方向の隣接輝点を伸ばすことができ、高さ測定範囲を拡大することが可能になる。
【0029】
以上、図3で説明したように、θ1、θ2、θ3・・・・と角度を浅くしていくと(但し0度ではない)、基線方向の隣接輝点間隔が拡がり、高さ測定範囲を拡大することができるが、実際には輝点の大きさなどの影響でこの角度はあまり浅くできない。そこで、図4で説明したような輝点の配置にすることによって、角度を浅くすることができるのである。
【0030】
ここまでで説明した実施の形態では、縦と横でファイバー径の違うFG(ファイバーグレーティング)素子を用いて、格子間隔の違う輝点アレイを実現したが、他の手段として一般的な透過型一次元回折格子を2枚、格子が直交するように重ねあわせることによっても実現可能である。この場合回折格子のピッチの違うものを使用して輝点の格子間隔を縦横で違うようにする。回折格子やFG素子を用いて作った輝点は、呆けが少なく、また素子と物体との距離の影響を受けにくいので好適である。またFG素子の場合、遮光される場所がなくFG素子に入射した光のほとんどを輝点の生成に利用することができるので、エネルギー効率的が高く、好適である。
【0031】
更に図6(a)の平面図とA−A断面図で示したマイクロレンズアレイ模式構成図に示すように、小さなレンズが縦横に隙間無く敷詰められたマイクロレンズアレイ(MLA)を用いても実現できる。この場合も、縦横でレンズピッチの違う素子を用いて輝点の格子間隔を縦横で違うようにすることができる。このようなMLAは、材料として合成樹脂を用いて、金型によるプレス加工で簡単に製作することができるので好適である。また図示のような、各レンズ間に隙間のないMLAを使用すれば、入射してきた光束のほとんどを輝点の生成に利用することができ、エネルギー効率が高く好適である。
【0032】
更に図6(b)の平面図とB−B断面図で示したマイクロシリンドリカルレンズアレイ模式構成図に示すように、FG素子と類似の構成で、小さなシリンドリカレンズが隙間無く並んだマイクロシリンドリカルレンズアレイを2枚重ねてもよい。このとき2枚のアレイ間では、屈折力のある方向同士をほぼ直交するようにするとよい。すなわちそれぞれの回折方向がほぼ直交するように配置する。この場合も、重ねる2枚のアレイとして、互いにレンズピッチの違うものを使用して、輝点の格子間隔を縦横で違うようにする。
【0033】
以上説明した本発明の実施の形態である三次元形状測定装置は、例えば老人介護施設のトイレなどに用いと、トイレで何か異常が生じたような場合に、プライバシーを損なうことなく、その異常を検知することができる。
【0034】
また、光源の使用波長を可視光以外の波長としてもよい。このように構成すると、撮像対象物が人であるときなどに、対象となる人物に気づかれずに撮像することができる。
【0035】
なお撮像素子の例としては、CCDの他にCMOS構造の素子を使用してもよい。特にこれらの中には、素子自体にフレーム間差算や二値化の機能を備えたものがあり、これらの素子の使用は好適である。
【0036】
【発明の効果】
以上説明したように、本発明によれば、第1の方向に一定の間隔a、第1の方向に直角な第2の方向に間隔aよりも大なる一定の間隔bで格子状に配列された複数の輝点を投影する投影手段と、投影手段から見て所定の方向に設置された、撮像対象物1の置かれた撮像領域に投影された複数の輝点を撮像する撮像手段を備え、所定の方向と第1の方向とのなす角度は、nを自然数とするとき、arctan(b/(a・n))にほぼ等しく、且つ輝点の直径をcとするとき、前記角度はarcsin(c/a)より大であるように構成されているので、撮像対象物の測定範囲を拡大した三次元形状測定装置を提供することが可能となる。
【図面の簡単な説明】
【図1】本発明の実施の形態である三次元形状測定装置の概念的斜視図である。
【図2】図1の実施の形態で用いるFG素子を説明する概念的斜視図である。
【図3】輝点群と基線とのなす角度を示す平面図である。
【図4】図3のθ3を抜き出して説明する平面図である。
【図5】本発明の実施例における輝点間隔と2つの輝点間の距離の表を示す図である。
【図6】本発明の実施の形態で用いることのできる回折格子のうち、マイクロレンズアレイとマイクロシリンドリカルレンズアレイを示す模式図である。
【図7】物体が無いときの輝点画像と物体により隣の輝点まで移動する輝点のある画像を示す平面図である。
【符号の説明】
1 撮像対象物
2 撮像領域
10 三次元形状測定装置
11 撮像光学系
11a 撮像レンズ
12 投影光学系
13 FG素子
15 結像面
14 画像処理装置
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a three-dimensional shape measuring apparatus, and more particularly to a three-dimensional shape measuring apparatus for monitoring changes in the height and posture of an object or person in a target area.
[0002]
[Prior art]
Conventionally, as a monitoring device for knowing abnormalities without impairing the privacy of patients in hospital hospitals or toilets, a bright spot arranged in a grid pattern is projected on the monitored area, and the image is taken. , A device that detects the height change of the target area based on the change in position of the bright spot in the captured image from the reference position and monitors the presence / absence, height change, and posture change of objects and people in the target area has been proposed. ing.
[0003]
[Problems to be solved by the invention]
In such a conventional apparatus, the height of an object is calculated by examining the amount of movement of a bright spot when an object is present from the position of the bright spot when no object or the like is present in the monitoring target area. However, the height of the bright spot when the object is present moves to the position of the adjacent bright spot when the object is not present, making it difficult to distinguish the bright spots from each other, and further measurement is possible. There wasn't. FIG. 7A shows the state of the bright spot image when no object is present in the monitoring target area, and FIG. 7B shows that the bright spot at a certain location moves to the adjacent bright spot due to the presence of the object. Show the state. In FIG. 7 (b), the bright spots 111c and 111d have moved and moved to the positions of the adjacent bright spots 111a and 111b in FIG. 7 (a), causing further movement of the bright spots. A height object cannot be measured. For example, if 111c and 111d in FIG. 7B further move to the left, the bright spots cannot be distinguished from 111a and 111b.
[0004]
Therefore, an object of the present invention is to provide a three-dimensional shape measuring apparatus using a bright spot with a wide height measurement range of a monitoring object.
[0005]
[Means for Solving the Problems]
In order to achieve the above object, a three-dimensional shape measuring apparatus 10 according to the first aspect of the present invention has a first direction (y′-axis) in an imaging region 2 where an imaging target object 1 is placed, for example, as shown in FIG. In a lattice pattern with a constant interval a in the direction (FIG. 2) and a constant interval b larger than the interval a in the second direction (x′-axis direction) perpendicular to the first direction (y′-axis direction). Projecting means 12 for projecting a plurality of arranged bright spots 13a; projected onto an imaging region 2 on which the imaging object 1 is placed, which is installed in a predetermined direction (y-axis direction) when viewed from the projecting means 12; An imaging unit 11 that images a plurality of bright spots 13a; a shape calculation that calculates a three-dimensional shape of the imaging target 1 by comparing the bright spot image 1a ′ captured by the imaging unit 11 with the reference image 2a ′ An angle θ formed by a predetermined direction (y-axis direction) and the first direction (y′-axis direction) is n When a natural number, approximately equal to arctan (b / (a · n)), and when the diameter of the bright spot is is c, said angle is configured to be larger than arcsin (c / a).
[0006]
The reference image is typically an image obtained by imaging a bright spot projected on an imaging area where an imaging object is not placed. Here, the bright spot image and the reference image are not limited to image images, and may be based on coordinates that specify the position of the bright spot.
[0007]
With this configuration, a lattice is formed at a constant interval a in the first direction (y′-axis direction (FIG. 2)) and at a constant interval b greater than the interval a in a second direction perpendicular to the first direction. And projecting a plurality of bright spots projected on the imaging area 2 on which the imaging target object 1 is placed, which is installed in a predetermined direction when viewed from the projection means. Imaging means. The angle between the predetermined direction and the first direction is approximately equal to arctan (b / (a · n)), where n is a natural number, and when the diameter of the bright spot is c, the angle is Since it is configured to be larger than arcsin (c / a), the measurement range of the imaging target can be further expanded.
[0008]
Further, as described in claim 2 and, for example, as shown in FIG. 2, in the three-dimensional shape measuring apparatus 10 according to claim 1, the projection unit 12 includes a light source L that generates coherent light L <b>1; And two diffraction gratings 13 that allow the coherent light L1 generated in step 1 to pass through; the two diffraction gratings 13 are arranged so that their diffraction directions are substantially orthogonal to each other.
[0009]
Further, as described in claim 3, the diffraction grating 13 may be a fiber grating. The coherent light that has passed through the diffraction grating generates a pattern by interference. In addition to the fiber grating, the diffraction grating may be, for example, a slit plate obtained by cutting a plurality of slits in parallel, or a cylindrical lens array. Further, instead of the two cylindrical lens arrays, a microlens array may be used.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings. In addition, in each figure, the same code | symbol or a similar code | symbol is attached | subjected to the mutually same or equivalent member, and the overlapping description is abbreviate | omitted.
[0011]
FIG. 1 is a conceptual perspective view showing an overall image of a three-dimensional shape measuring apparatus 10 according to an embodiment of the present invention. In the figure, a measurement object or a rectangular parallelepiped object 1 as an imaging object is placed on a plane 2 as a measurement object area or an imaging object area. The orthogonal coordinate system XYZ is taken so that the XY axis is placed in the plane 2, and the object 1 is placed in the first quadrant of the XY coordinate system. A person may be used as an imaging object instead of an object.
[0012]
On the other hand, an imaging optical system 11 as an imaging means is disposed above the plane 2 on the Z axis in the figure. Here, for the sake of convenience, the imaging optical system is illustrated as being composed of one convex lens 11a as an imaging lens. The imaging lens 11a of the imaging optical system 11 is arranged so that its optical axis coincides with the Z axis. An imaging plane (image plane) 15 on which the imaging lens 11a forms an image of the plane 2 or the object 1 is a plane orthogonal to the Z axis. An xy orthogonal coordinate system is taken in the image plane 15 so that the Z axis passes through the origin of the xy coordinate system.
[0013]
A fiber grating (FG) element 13 is disposed at an equal distance from the plane 2 with the imaging lens 11a and a distance d away from the imaging lens 11a in the negative direction of the Y axis. A luminescent spot projecting optical system 12 as a projecting unit is configured including the FG element 13. Here, a line connecting the center of the imaging plane 15 and the center of the FG element is called a base line. The baseline is directed in the y-axis direction, and d is the distance in the baseline direction (baseline length). As will be described later with reference to FIG. 2, the laser beam L1 generated by the light source L is incident on the FG element 13 in the Z-axis direction, and a pattern 13a in which dots are arranged in a lattice shape is irradiated onto the plane 2 Is done. That is, the object 1 and the plane 2 are illuminated with the pattern illumination light. The imaging optical system 11 is electrically connected with a computer 14 as image processing means. The shape calculation means is built in the computer 14. That is, for example, an arithmetic program installed in a storage unit such as a hard disk or a RAM.
[0014]
Further, the principle of three-dimensional shape measurement will be described with reference to FIG. In the bright spot pattern 13a projected onto the plane 2 by the FG element 13 described in detail later, a portion where the object 1 exists is blocked by the object 1 and does not reach the plane 2. Here, if the object 1 does not exist, the bright point to be projected to the point 2a (X, Y, Z) on the plane 2 is projected to the point 1a (X1, Y1, Z1) on the object 1. When the bright spot is moved from the point 2a to the point 1a and the imaging lens 11a and the FG element 13 are separated from each other by the distance d, the point on the imaging plane 15 is connected to the point 2a ′ (x, y). A place to be imaged is imaged at a point 1a ′ (x, y + δ). That is, it moves by a distance δ in the y-axis direction. Actually, if the point 1a ′ is not a point on the y-axis, it moves by δx also in the x-axis direction, but the display thereof is omitted here.
[0015]
By measuring this δ, the position of the point 1a on the object 1 can be specified three-dimensionally. Thus, if a certain bright point does not exist, the difference between the point to be imaged on the imaging plane 15 and the actual imaging position on the imaging plane 15 is measured. The three-dimensional shape of the object 1 can be measured. Alternatively, it may be said that the three-dimensional coordinates of the object 1 can be measured. If the pitch of the pattern 13a, that is, the pitch of the bright spot is made fine enough that the correspondence of the bright spot is not unknown, the three-dimensional shape of the object 1 can be measured in detail.
[0016]
The center of the FG element 13 and the center of the imaging lens 11a are arranged parallel to the plane 2 by a distance d, and the distance from the imaging lens 11a to the imaging plane 15 is 1 (el) (as an imaging lens). The distance from the imaging lens 11a to the plane 2 is h, and the height of the point 1a of the imaging object 1 from the plane 2 is Z (shown as Z1 in FIG. 1). As a result of the imaging object 1 being placed on the plane 2, the point 2 a ′ on the image plane 15 has moved to a point 1 a ′ separated by δ.
In such a relationship, Z is expressed by an expression including δ as in Expression 1 below. By using this equation, the posture of a person in the toilet can be known three-dimensionally.
Z = (h 2 · δ) / (d · l + h · δ) Equation 1
[0017]
The FG element 13 will be described with reference to FIG. The FG element 13 is formed by arranging about 100 optical fibers having a diameter of several tens of microns and a length of about 10 mm in a sheet shape, and superposing them so that two fibers are orthogonal to each other. In the FG element, the sheet is arranged in parallel to the plane 2 (perpendicular to the Z axis). Laser light L1 generated by the laser light source L is incident on the FG element 13 in the Z-axis direction. Then, the laser beam L1 is collected at the focal point of each optical fiber, then spreads as a spherical wave, interferes, and shines in a square lattice pattern on the plane 2 which is a projection surface as a measurement region or an imaging region. A bright spot pattern 13a which is a point matrix is projected. In other words, the plane 2 or the object 1 thereon is illuminated with the bright spot pattern illumination light by projecting the bright spot pattern 13a.
[0018]
According to such an FG element 13, it is possible to obtain a sharp illumination pattern with good contrast of point light (bright spot) regardless of the distance from the grating due to the light diffraction effect, which is suitable for pattern imaging. It is. When such an FG element is used, the three-dimensional shape can be measured simply by measuring and calculating the amount of movement of the bright spot, so that the measurement of the three-dimensional shape can be realized with a relatively simple calculation means. Further, since the amount of light can be concentrated, it is possible to easily capture an illumination pattern (here, bright spots) even in a bright surrounding.
[0019]
The optical fiber of the FG element 13 does not necessarily face the base line direction (the y-axis direction in the figure), and the rotation axis is an axis parallel to the xy plane and parallel to the Z-axis direction passing through the center of the FG element 13. , Θ is rotated. In the figure, if the coordinates parallel to the orthogonal optical fiber are x′y ′ coordinates, the y ′ axis is inclined with respect to the y axis and the x ′ axis is inclined with respect to the x axis by an angle θ. That is, the angle formed by one lattice direction and the base line is θ.
[0020]
Here, the interval in the direction parallel to the y ′ axis of the lattice-like bright spot pattern on the plane 2 is a, and the interval in the direction parallel to the x ′ axis is b. The diameters of the orthogonal optical fibers are substantially equal to each other. However, when the diameter of the optical fiber in the y′-axis direction is larger than the diameter of the optical fiber in the x′-axis direction, the interval between the bright spots of the bright spot pattern is a <B. The bright spot pattern in FIG. 1 shows a case where θ = 0.
[0021]
FIG. 3 is a bright spot image when an FG element having bright spot intervals of a and b (a <b) is used. Such a bright spot image can be realized by using elements having different fiber diameters, that is, fiber pitches in the vertical and horizontal directions of the FG element as described with reference to FIG. Since the calculation formula of the position of the bright spot by the laser and the FG element can be considered similarly to the formula of interference fringes due to interference by multiple slits as shown in the following formula 2, if the slit interval p, that is, the fiber pitch is changed, the interference The stripe spacing can be changed. Here, y m is the y-axis direction position providing periodic sharp maxima, m is a natural number, lambda is the distance of the wavelength of light, h is from FG element to the illumination surface (the plane of the imaging area), p is the slit spacing To do.
y m = m · λ · h / p Equation 2
[0022]
The angles formed by the lattice direction having a short luminescent spot interval in the luminescent spot array (the interval is a in FIG. 3) and the base line can be set as θ0, θ1, θ2,. In FIG. 3, for the sake of explanation, up to θ4 is shown, and illustration of θ5 and above is omitted. By setting the direction of the base line in this way, the interval between a certain bright spot and the adjacent bright spot in the base line direction can be increased, and the height measurement range of the object 1 can be widened. If the size of the bright spot is ignored, the distance from the adjacent bright spot is expressed by the following formula.
For θ0: a
In the case of θ1 (a 2 + b 2 ) 1/2
In the case of θ2 ((2 · a) 2 + b 2 ) 1/2
In the case of θ3: ((3 · a) 2 + b 2 ) 1/2
In the case of θ4: ((4 · a) 2 + b 2 ) 1/2
[0023]
As described above, when the grid is tilted with respect to the base line, the distance between adjacent bright spots is larger than when the grid is not tilted. Here, even when the luminescent spot is sufficiently small, n of θn is not actually infinite, but is limited by the spot diameter of the luminescent spot, fluctuation, or the like. Here, θ is expressed by a general formula as follows. When θ is substantially equal to such a value, the distance from the adjacent bright spot can be increased.
θ = arctan (b / (a · n)) Equation 3
[0024]
With such a configuration, the decrease in the number of bright spots per unit area can be reduced compared to the method of expanding the height measurement range by simultaneously increasing the bright spot interval in the vertical and horizontal directions of the bright spot array, Since the object height measurement points are less sparse, more accurate three-dimensional measurement of the object becomes possible. Further, since the baseline length d is not changed, the height measurement range can be expanded without lowering the sensitivity of the low height.
[0025]
When a <b, as described below with reference to FIG. 4, even when the bright spot lattice direction is tilted with respect to the base line and the interval between adjacent bright spots in the base line direction is increased, the bright spot position is moved by the object. Sometimes it is possible to avoid hitting a bright spot other than the adjacent bright spot.
[0026]
An embodiment of the present invention will be described with reference to FIG. In the figure, the bright spot interval has a relationship of a <b, and the angle between the direction of the interval a and the base line is θ = arctan (b / (3 · a)). In the case of such an arrangement of the base line and the bright spot grid, the bright spot 0 at the lower left corner in the figure moves in the direction of the bright spot 1 at the position of the fourth row from the left in the second row in accordance with the height of the object. However, in the middle of this, there is a possibility that it is located immediately next to the bright spot 2 in the second column from the left in the drawing (or the bright spot 3 in the second row from the left in the drawing to the third column). As shown in the figure, when the bright spot lattice spacing is defined as a and b, and the bright spot diameters c and n are natural numbers, the gap s between the bright spots when the bright spot 0 is closest to the bright spot 2 is shown. Is expressed by the following equation.
s = a · b / ((a · n) 2 + b 2 ) 1/2c Equation 4
[0027]
For example, when a = b = 5 mm and c = 1 mm, the distance l 01 (el) between the bright spots 0-1 obtained by subtracting the size of s and the bright spots is as shown in Table 1 of FIG. Thus, when n = 5 or more, it can be seen that the bright spots overlap and it is difficult to distinguish. In order to avoid this, s> 0 may be set in Equation 4. In other words, the following equation should be satisfied.
θ> arcsin (c / a) Equation 5
[0028]
Here, if b is changed to 8 mm (> a = 5 mm), as shown in Table 2 of (b), if there is no influence of noise or the like, the angle can be reduced to an angle of n = 7. At this time, the value of l 01 is also increased, indicating that the height measurement range is expanded. Thus, by using bright spot images with different bright spot intervals in the vertical and horizontal directions, adjacent bright spots in the baseline direction can be extended, and the height measurement range can be expanded.
[0029]
As described above with reference to FIG. 3, when the angles are made shallower with θ1, θ2, θ3,... (But not 0 degrees), the distance between adjacent bright spots in the base line direction increases, and the height measurement range is increased. Although it can be magnified, this angle cannot actually be made too shallow due to the size of the bright spot. Therefore, the angle can be made shallow by arranging the bright spots as described in FIG.
[0030]
In the embodiments described so far, FG (fiber grating) elements having different fiber diameters in the vertical and horizontal directions are used to realize the bright spot array having different lattice spacings. This can also be realized by stacking two original diffraction gratings so that the gratings are orthogonal to each other. In this case, different diffraction grating pitches are used so that the lattice spacing of the bright spots is different vertically and horizontally. A bright spot made using a diffraction grating or an FG element is suitable because it has less blur and is hardly affected by the distance between the element and the object. In the case of an FG element, since there is no place to be shielded and most of the light incident on the FG element can be used for generating a bright spot, it is highly energy efficient and suitable.
[0031]
Furthermore, as shown in the plan view of FIG. 6A and the schematic configuration diagram of the microlens array shown in the AA sectional view, a microlens array (MLA) in which small lenses are laid vertically and horizontally without gaps may be used. realizable. In this case as well, the lattice spacing of the bright spots can be made different vertically and horizontally by using elements having different lens pitches in the vertical and horizontal directions. Such an MLA is suitable because it can be easily manufactured by pressing with a mold using a synthetic resin as a material. If an MLA having no gap between the lenses as shown in the figure is used, most of the incident light beam can be used for generating a bright spot, which is preferable because of high energy efficiency.
[0032]
Further, as shown in the plan view of FIG. 6B and the schematic configuration diagram of the micro cylindrical lens array shown in the BB cross-sectional view, a micro cylindrical lens having a configuration similar to the FG element and in which small cylindrical lenses are arranged without gaps. Two arrays may be stacked. At this time, between the two arrays, it is preferable that the directions having refractive power are substantially orthogonal to each other. That is, it arrange | positions so that each diffraction direction may cross substantially orthogonally. In this case, too, two overlapping arrays having different lens pitches are used so that the lattice spacing of the bright spots is different vertically and horizontally.
[0033]
The above-described three-dimensional shape measuring apparatus according to the embodiment of the present invention is used in, for example, a toilet in an elderly care facility, and when an abnormality occurs in the toilet, the abnormality is not impaired without compromising privacy. Can be detected.
[0034]
Moreover, it is good also considering the use wavelength of a light source as wavelengths other than visible light. If comprised in this way, when the imaging target object is a person, it can image without being noticed by the person who becomes object.
[0035]
As an example of the image sensor, a CMOS structure element may be used in addition to the CCD. In particular, some of the elements themselves have inter-frame difference calculation and binarization functions, and it is preferable to use these elements.
[0036]
【The invention's effect】
As described above, according to the present invention, the data are arranged in a lattice pattern at a constant interval a in the first direction and at a constant interval b larger than the interval a in the second direction perpendicular to the first direction. Projection means for projecting a plurality of bright spots, and imaging means for imaging a plurality of bright spots projected in an imaging area on which the imaging object 1 is placed, which is installed in a predetermined direction when viewed from the projection means. The angle between the predetermined direction and the first direction is approximately equal to arctan (b / (a · n)), where n is a natural number, and when the diameter of the bright spot is c, the angle is Since it is comprised so that it may be larger than arcsin (c / a), it becomes possible to provide the three-dimensional shape measuring apparatus which expanded the measurement range of the imaging target object.
[Brief description of the drawings]
FIG. 1 is a conceptual perspective view of a three-dimensional shape measuring apparatus according to an embodiment of the present invention.
FIG. 2 is a conceptual perspective view illustrating an FG element used in the embodiment of FIG.
FIG. 3 is a plan view showing an angle formed between a bright spot group and a base line.
4 is a plan view for explaining by extracting θ3 of FIG. 3; FIG.
FIG. 5 is a diagram showing a table of bright spot intervals and distances between two bright spots in an example of the present invention.
FIG. 6 is a schematic diagram showing a microlens array and a microcylindrical lens array among diffraction gratings that can be used in the embodiment of the present invention.
FIG. 7 is a plan view showing a bright spot image when there is no object and an image with a bright spot that moves to an adjacent bright spot by the object.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Imaging target object 2 Imaging region 10 Three-dimensional shape measuring apparatus 11 Imaging optical system 11a Imaging lens 12 Projection optical system 13 FG element 15 Imaging surface 14 Image processing apparatus

Claims (3)

撮像対象物を置く撮像領域に、第1の方向に一定の間隔a、前記第1の方向に直角な第2の方向に前記間隔aよりも大なる一定の間隔bで格子状に配列された複数の輝点を投影する投影手段と;
前記投影手段から見て所定の方向に設置された、前記撮像対象物の置かれた撮像領域に投影された複数の輝点を撮像する撮像手段と;
前記撮像手段で撮像された輝点画像と、基準画像とを比較して、前記撮像対象物の三次元形状を演算する形状演算手段とを備え;
前記所定の方向と前記第1の方向とのなす角度は、nを自然数とするとき、arctan(b/(a・n))にほぼ等しく、且つ輝点の直径をcとするとき、前記角度はarcsin(c/a)より大であることを特徴とする;
三次元形状測定装置。
In the imaging area where the imaging object is placed, the pixels are arranged in a grid pattern at a constant interval a in the first direction and at a constant interval b larger than the interval a in a second direction perpendicular to the first direction. Projection means for projecting a plurality of bright spots;
Imaging means for imaging a plurality of bright spots projected on an imaging area where the imaging object is placed, which is installed in a predetermined direction when viewed from the projection means;
Comprising a shape calculation means for calculating a three-dimensional shape of the imaging object by comparing a bright spot image captured by the imaging means with a reference image;
The angle formed between the predetermined direction and the first direction is substantially equal to arctan (b / (a · n)), where n is a natural number, and when the diameter of the bright spot is c, the angle Is greater than arcsin (c / a);
Three-dimensional shape measuring device.
前記投影手段が、コヒーレント光を発生する光源と;
前記光源で発生されたコヒーレント光を通過させる2枚の回折格子とを備え;
前記2枚の回折格子は、それぞれの回折方向がほぼ直交するように配置されている;
請求項1に記載の三次元形状測定装置。
A light source for generating coherent light;
Two diffraction gratings for passing coherent light generated by the light source;
The two diffraction gratings are arranged such that their diffraction directions are substantially orthogonal;
The three-dimensional shape measuring apparatus according to claim 1.
前記回折格子は、ファイバーグレーティングである、請求項2に記載の三次元形状測定装置。The three-dimensional shape measuring apparatus according to claim 2, wherein the diffraction grating is a fiber grating.
JP2000315211A 2000-10-16 2000-10-16 3D shape measuring device Expired - Fee Related JP3689720B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000315211A JP3689720B2 (en) 2000-10-16 2000-10-16 3D shape measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000315211A JP3689720B2 (en) 2000-10-16 2000-10-16 3D shape measuring device

Publications (2)

Publication Number Publication Date
JP2002122417A JP2002122417A (en) 2002-04-26
JP3689720B2 true JP3689720B2 (en) 2005-08-31

Family

ID=18794355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000315211A Expired - Fee Related JP3689720B2 (en) 2000-10-16 2000-10-16 3D shape measuring device

Country Status (1)

Country Link
JP (1) JP3689720B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7630537B2 (en) 2003-06-09 2009-12-08 Sumitomo Osaka Cement Co., Ltd. Three-dimensional shape-measuring device

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101288105B (en) 2005-10-11 2016-05-25 苹果公司 For the method and system of object reconstruction
US8390821B2 (en) 2005-10-11 2013-03-05 Primesense Ltd. Three-dimensional sensing using speckle patterns
CN101501442B (en) 2006-03-14 2014-03-19 普莱姆传感有限公司 Depth-varying light fields for three dimensional sensing
JP2010048553A (en) * 2006-12-19 2010-03-04 Panasonic Corp Inspecting method of compound-eye distance measuring device and chart used for same
WO2008087652A2 (en) 2007-01-21 2008-07-24 Prime Sense Ltd. Depth mapping using multi-beam illumination
US8493496B2 (en) 2007-04-02 2013-07-23 Primesense Ltd. Depth mapping using projected patterns
US8150142B2 (en) 2007-04-02 2012-04-03 Prime Sense Ltd. Depth mapping using projected patterns
WO2008155770A2 (en) 2007-06-19 2008-12-24 Prime Sense Ltd. Distance-varying illumination and imaging techniques for depth mapping
US8456517B2 (en) 2008-07-09 2013-06-04 Primesense Ltd. Integrated processor for 3D mapping
US8462207B2 (en) 2009-02-12 2013-06-11 Primesense Ltd. Depth ranging with Moiré patterns
US8786682B2 (en) 2009-03-05 2014-07-22 Primesense Ltd. Reference image techniques for three-dimensional sensing
WO2011013079A1 (en) 2009-07-30 2011-02-03 Primesense Ltd. Depth mapping based on pattern matching and stereoscopic information
US8830227B2 (en) 2009-12-06 2014-09-09 Primesense Ltd. Depth-based gain control
US8982182B2 (en) 2010-03-01 2015-03-17 Apple Inc. Non-uniform spatial resource allocation for depth mapping
JP5849954B2 (en) 2010-08-06 2016-02-03 旭硝子株式会社 Diffractive optical element and measuring device
JP5834602B2 (en) * 2010-08-10 2015-12-24 旭硝子株式会社 Diffractive optical element and measuring device
CN103053167B (en) 2010-08-11 2016-01-20 苹果公司 Scanning projector and the image capture module mapped for 3D
JP5760391B2 (en) 2010-11-02 2015-08-12 旭硝子株式会社 Diffractive optical element and measuring device
EP2643659B1 (en) 2010-11-19 2019-12-25 Apple Inc. Depth mapping using time-coded illumination
US9131136B2 (en) 2010-12-06 2015-09-08 Apple Inc. Lens arrays for pattern projection and imaging
JP5948949B2 (en) * 2011-06-28 2016-07-06 旭硝子株式会社 Diffractive optical element and measuring device
US9052512B2 (en) * 2011-03-03 2015-06-09 Asahi Glass Company, Limited Diffractive optical element and measuring apparatus
CN106154563B (en) * 2011-03-03 2019-02-15 Agc株式会社 Diffraction optical element and measuring device
JP5948948B2 (en) * 2011-03-03 2016-07-06 旭硝子株式会社 Diffractive optical element and measuring device
US9030528B2 (en) 2011-04-04 2015-05-12 Apple Inc. Multi-zone imaging sensor and lens array
JP6069847B2 (en) * 2011-06-28 2017-02-01 旭硝子株式会社 Diffractive optical element and measuring device
JP2014238259A (en) * 2011-09-28 2014-12-18 三洋電機株式会社 Information acquisition apparatus and object detector
JP2014238262A (en) * 2011-09-29 2014-12-18 三洋電機株式会社 Information acquisition apparatus and object detector
US9651417B2 (en) 2012-02-15 2017-05-16 Apple Inc. Scanning depth engine
JP6119232B2 (en) 2012-12-19 2017-04-26 株式会社ソシオネクスト Distance measuring device and distance measuring method
JP6337677B2 (en) * 2014-07-31 2018-06-06 アルプス電気株式会社 3D measuring device
DE112021007116T5 (en) * 2021-02-16 2023-12-21 Sony Semiconductor Solutions Corporation OPTICAL MODULE AND DISTANCE MEASUREMENT DEVICE

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7630537B2 (en) 2003-06-09 2009-12-08 Sumitomo Osaka Cement Co., Ltd. Three-dimensional shape-measuring device

Also Published As

Publication number Publication date
JP2002122417A (en) 2002-04-26

Similar Documents

Publication Publication Date Title
JP3689720B2 (en) 3D shape measuring device
JP4611782B2 (en) Three-dimensional shape measuring method and measuring apparatus
KR101906780B1 (en) Measurement system of a light source in space
JP3975892B2 (en) Position measurement system
EP2613121B1 (en) Image sensor, attitude detector, contact probe, and multi-sensing probe
US7075097B2 (en) Optical path array and angular filter for translation and orientation sensing
JP4043931B2 (en) 3D information acquisition system
JP5798810B2 (en) Image correlation displacement sensor
JP2000097639A (en) Displacement measuring device
CN104284625A (en) Apparatus and method for profiling a depth of a surface of a target object
JP3677444B2 (en) 3D shape measuring device
US8823952B2 (en) Measurement system for optical touch trigger or scanning probe with a concave mirror
JP2007163429A (en) Three-dimensional distance measuring method, and instrument therefor
JP3977172B2 (en) Pattern light projector and measuring device
JP2010117253A (en) Device for capturing image invariant optical speckle and method for the same
JP2004037274A (en) Height measuring apparatus and monitoring device
JPH01242033A (en) Measuring endoscopic apparatus
JP2673196B2 (en) 3D shape sensor
TWI731523B (en) Projection objective lens wave aberration detection device and method, and photoetching machine
KR100651791B1 (en) Apparatus and method for inspecting parts
JP2504944B2 (en) Three-dimensional information processing method
JPS62291511A (en) Distance measuring apparatus
JP2001330557A (en) Optical scanner and tommographic image acquisition device using it
JPH0810126B2 (en) Alignment method
JPS62291509A (en) Distance measuring apparatus

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20040422

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040423

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050502

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R154 Certificate of patent or utility model (reissue)

Free format text: JAPANESE INTERMEDIATE CODE: R154

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080624

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees