JP3687280B2 - Chip mounting method - Google Patents

Chip mounting method Download PDF

Info

Publication number
JP3687280B2
JP3687280B2 JP17674597A JP17674597A JP3687280B2 JP 3687280 B2 JP3687280 B2 JP 3687280B2 JP 17674597 A JP17674597 A JP 17674597A JP 17674597 A JP17674597 A JP 17674597A JP 3687280 B2 JP3687280 B2 JP 3687280B2
Authority
JP
Japan
Prior art keywords
substrate
mounting
bumps
semiconductor chip
bump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP17674597A
Other languages
Japanese (ja)
Other versions
JPH1126922A (en
Inventor
泰行 ▲高▼野
雅俊 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP17674597A priority Critical patent/JP3687280B2/en
Publication of JPH1126922A publication Critical patent/JPH1126922A/en
Application granted granted Critical
Publication of JP3687280B2 publication Critical patent/JP3687280B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L24/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/12Structure, shape, material or disposition of the bump connectors prior to the connecting process
    • H01L2224/13Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
    • H01L2224/13001Core members of the bump connector
    • H01L2224/13099Material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/831Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
    • H01L2224/83101Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus as prepeg comprising a layer connector, e.g. provided in an insulating plate member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/838Bonding techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92122Sequential connecting processes the first connecting process involving a bump connector
    • H01L2224/92125Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01004Beryllium [Be]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01005Boron [B]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01006Carbon [C]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01013Aluminum [Al]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01033Arsenic [As]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01039Yttrium [Y]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/013Alloys
    • H01L2924/014Solder alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/06Polymers
    • H01L2924/078Adhesive characteristics other than chemical
    • H01L2924/0781Adhesive characteristics other than chemical being an ohmic electrical conductor
    • H01L2924/07811Extrinsic, i.e. with electrical conductive fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)
  • Supply And Installment Of Electrical Components (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、バンプ付き半導体チップを基板にフェースダウンで接続するためのチップ実装方法に関するものである。
【0002】
【従来の技術】
バンプ付き半導体チップは、基板の小型化に有利なことから、各種コンピュータなどの多くの電子機器に多用されるようになってきている。バンプ付き半導体チップを基板に実装する方法として、従来より様々な方法が提案されている。
【0003】
第1の方法は、ACF(異方性導電剤)を用いる方法である。この方法は、半導体チップと基板の間にACFを介在させ、半導体チップを加熱加圧することにより、ACFに混入された導電粒子によりバンプを基板の電極に接続するものである。
【0004】
第2の方法は、バンプを半田により形成して半田バンプとし、リフローにより半田バンプを溶融固化させて基板の電極に接続するものである。この場合、半導体チップと基板の接合力を確保するために、好ましくは半導体チップと基板の間に封止用の樹脂が封入される。
【0005】
第3の方法は、バンプを金により形成して金バンプとし、また基板の電極上にはメッキ等により半田をプリコートする。そして上記第2の方法と同様にリフローにより半田付けし、好ましくは封止用の樹脂を封入する。
【0006】
第4の方法は、熱圧着硬化絶縁樹脂を用いる方法である。この方法は、基板に熱圧着硬化絶縁樹脂を塗布し、半導体チップの金バンプを基板の電極上に熱圧着し、熱圧着硬化絶縁樹脂を硬化させるものである。
【0007】
【発明が解決しようとする課題】
しかしながら上記第1の方法では、Ni粒子などの導電粒子をバンプに食い込ませるために大きな荷重を半導体チップに加える必要があり、このため基板に大きなストレスが加わって回路パターンの断線を発生しやすく、また半導体チップもダメージを受けやすい。
【0008】
また上記第2の方法は、リフローにより半田バンプを基板の電極に接着するため、荷重ストレスはほとんどないという利点がある。しかしながら第2の方法は半田のぬれ性を確保するためにフラックスを使用する必要があり、単にフラックス塗布やフラックス洗浄等の工程が必要となるだけでなく、フラックスを使用することによる環境上の問題が発生し、さらにはマイグレーションを引き起こしやすいなどの問題点がある。また樹脂封止を行った場合には、フラックスの残査により樹脂の封入時や硬化時に樹脂の流動性が阻害されてボイドが発生しやすくなり、ボイドが発生すると熱ストレスにより半田亀裂などの問題を誘発する。
【0009】
また上記第3の方法も半田を用いることから、第2の方法と同様の問題がある。また第4の方法は、半導体チップに大きな荷重を加えねばならないため第1の方法と同様の問題がある。以上のように、従来方法は、いずれも様々な問題点を有していた。
【0010】
そこで本発明は、上記従来の問題点を解決するもので、低荷重実装、フラックスレス実装を可能とし接合信頼性の高いチップ実装方法を提供することを目的としている。
【0011】
【課題を解決するための手段】
本発明は、金を材質とするバンプが形成されたチップを表面に熱圧着硬化絶縁樹脂を有する被接続母材に接続するチップ実装方法であって、前記バンプと前記被接続母材とを位置合わせした状態で前記バンプが前記被接続母材に着地する前から超音波を印加し前記熱圧着硬化絶縁樹脂を排除する加振ステップと、前記加振ステップの後に加熱して前記バンプと前記被接続母材とを接続するとともに排除された前記熱圧着硬化絶縁樹脂が硬化して前記チップと前記被接続母材とを結合する加熱ステップとを有するものである。そしてこの方法により低荷重実装、フラックスレス実装が可能となり、接合信頼性の高いチップ実装方法が得られる。
【0012】
【発明の実施の形態】
発明は、金を材質とするバンプが形成されたチップを表面に熱圧着硬化絶縁樹脂を有
する被接続母材に接続するチップ実装方法であって、前記バンプと前記被接続母材とを位置合わせした状態で前記バンプが前記被接続母材に着地する前から超音波を印加し前記熱圧着硬化絶縁樹脂を排除する加振ステップと、前記加振ステップの後に加熱して前記バンプと前記被接続母材とを接続するとともに排除された前記熱圧着硬化絶縁樹脂が硬化して前記チップと前記被接続母材とを結合する加熱ステップとを有する。
【0015】
(実施の形態1)
図1は、本発明の実施の形態1のバンプ付き半導体チップの実装工程図であって、ACFによるフリップチップ実装に超音波を印加する場合の製造工程図を示すものである。
【0016】
図1において1はACF、2はNi粒子、3は基板、4は基板3上に形成された電極、5は半導体チップ、6は半導体チップ5に形成された金バンプ、7はツールである。次に実装方法を説明する。
【0017】
ACF1の貼付が完了した基板3(図1(a))にツール7で吸着した金バンプ6の形成された半導体チップ5を位置合わせし(図1(b))、ツール7に超音波とパルスヒートをかけながら加圧する(図1(c))。
【0018】
この方法によれば、Ni粒子2が金バンプ6に捕獲後、超音波を加えながら加圧していくため、超音波の振動によりNi粒子2はバンプ6と基板3上に形成された電極4に食い込み易くなる。従って、従来はNi粒子2を金バンプ6に食い込ませるために1バンプ当たり50〜60gの荷重を印加していたが、超音波によりNi粒子2が金バンプ6及び基板3上に形成された電極4に食い込みやすくなるため、5g〜6g(約1/5〜1/6)の低荷重で接合が可能となる。また低荷重で半導体チップ5へのストレスも低減可能である。実際の超音波の印加方法は、超音波発信器を使用しツール7に超音波を印加し、超音波の方向はACF1中のNi粒子2を金バンプ6及び基板3上に形成された電極4に食い込ませるために各方向(X,Y,Z方向)併用しながら行う。
【0019】
またこの方法はNi粒子を用いたACFのみならず、樹脂ボールに金メッキ、絶縁膜を施した導電粒子を用いたACFに対しても非常に有効である。通常、このタイプのACFは実装時に高荷重をかけ絶縁膜を破り押さえつけて電気的導通をとるが、ボンディング時に超音波を併用することにより、超音波が絶縁膜を破るため低荷重化を図ることができる。
【0020】
以上のことよりACFを用いた実装において超音波併用実装は非常に信頼性向上に有効な実装手段である。なお、超音波の印加方法はツールのみでなく、基板ステージから印加してもよく、また加熱においてもツール加熱ではなく、基板ステージからの加熱でもよい。さらに本実施の形態1ではパルスヒートツールを使用したが、常時加熱のコンスタント加熱でもよい。さらに本実施の形態1ではバンプ材質を金としているがバンプ材質に関しては金に限らず、半田、アルミ等他の金属にも適用される。
【0021】
(実施の形態2)
図2は、本発明の実施の形態2のバンプ付き半導体チップの実装工程図であって、半田バンプを用いた実装方法を示すものである。図中、8は半導体チップ5に形成された半田バンプ、9は空気に触れることによりその表面に生じた酸化膜である。従来例で説明したように、半田バンプ8による実装では、実装荷重に関しては、基本的に基板3に低荷重(数g/バンプ)で実装するため、基板3への荷重ストレスと言う点では特に大きな問題はないが、基板3上に形成された電極4への半田の濡れの向上、酸化膜9除去のために、従来はフラックスを使用していたものである。
【0022】
本方法では、実装時にツール7に超音波とパルスヒートをかけ実装する。具体的には、半田バンプ8の形成された半導体チップ5をまず基板3の電極4と位置合わせを行い実装する(図2(a))。次にツール7に半導体チップ5を吸着した状態で超音波をかける(図2(b))。その結果、半田バンプ8と基板3上に形成された電極4とが超音波により擦れあい、酸化膜9が除去される。酸化膜9が除去された状態でツール7をパルスヒートにて加熱することにより半田バンプ8が溶融し、酸化膜9の無い部分において基板パターンに半田8が濡れ、良好な接合が得られる(図2(c))。その後、半導体チップ5と基板3の間に封止樹脂11を封入し、接合が完了する(図2(d))。
【0023】
以上のことから半田接合においてフラックスレスが可能となり、洗浄工程が不要になる。さらにフラックス残査による封止樹脂11の封入工程時の問題であったチップ基板間への封止樹脂11の流れにくさによるボイドの発生の防止を図ることが可能で、信頼性が低下するといった問題が解消され、非常に信頼性の高い接合状態を得ることが可能となる。なお、この実施の形態2では封止工程を半田バンプ8と基板3との接合が完了した後行っていたが、封止樹脂11を実装時に同時にパルスヒートで硬化させる実装方式でもよい。
【0024】
(実施の形態3)
図3は、本発明の実施の形態3のバンプ付き半導体チップの実装工程図であって、金バンプの形成された半導体チップを半田がプリコートされた基板に実装する方法を示している。図3において、10は基板3の電極4上にメッキ法などによる半田である。この方法においても半田を使用するという特質上、従来は半田の基板上に形成された電極への濡れの向上、酸化膜の除去のためにフラックスを使用し実装していたものである。
【0025】
本方法では実装時にツール7に超音波とパルスヒートかけ実装する。具体的には、金バンプ6の形成された半導体チップ5をまず基板3の半田プリコートされた電極4と位置合わせを行い実装する(図3(a))。次にツール7に半導体チップ5を吸着した状態で超音波をかける(図3(b))。その結果、金バンプ6と基板3上に形成された電極4に半田10とが超音波により擦れあい、半田10表面の酸化膜11が除去される(図3(c))。酸化膜9が除去された状態でツール7をパルスヒートにて加熱することにより基板3上に形成された電極4に半田10が溶融し、酸化膜9の無い部分において金バンプ6表面に半田10が濡れ、良好な接合が得られる。その後、封止樹脂11で封止工程を行い接合が完了する(図3(d))。
【0026】
以上のことから実施の形態2と同様な作用効果と同等の硬化が得られる。なお、この実施の形態3では封止工程をバンプと基板との接合が完了した後行っているが(図3(d))、樹脂をボンディング時に同時にパルスヒートで硬化させる実装方式でもよい。
【0027】
(実施の形態4)
図4は、本発明の実施の形態4のバンプ付き半導体チップの実装工程図であって、金バンプの形成されたチップを熱圧着硬化絶縁樹脂を用い基板に実装する方法を示している。具体的にはツール7に吸着された金バンプ6の形成された半導体チップ5を熱圧着硬化絶縁樹脂12が塗布された基板3上の電極4に位置合わせし実装する(図4(a))。次にツール7に半導体チップ5を吸着した状態で(すなわち、金バンプ6が電極4に着地する前から)超音波とパルスヒートをかける(図4(b))。その結果、超音波により半導体チップ5形成された金バンプ6と基板3上に形成された電極4間の熱圧着硬化絶縁樹脂12が周囲に排除され、金バンプ6表面と基板3上に形成された電極4の表面とが良好な接触が得られる。またパルスヒートによる加熱で熱圧着硬化絶縁樹脂12が硬化し半導体チップ5と基板3とが固定される(図4(c))。従って従来はバンプ基板の樹脂を排除するために高い荷重(約50g)をかけ実装していたが、超音波の併用により、低荷重(数g/バンプ)での実装が可能であり、基板へのストレスも低減されかつチップへのストレスも低減される。
【0028】
【発明の効果】
以上のように本発明は、バンプと前記被接続母材とを位置合わせした状態で前記バンプが前記被接続母材に着地する前から超音波を印加し前記熱圧着硬化絶縁樹脂を排除する加振ステップと、前記加振ステップの後に加熱して前記バンプと前記被接続母材とを接続するとともに排除された前記熱圧着硬化絶縁樹脂が硬化して前記チップと前記被接続母材とを結合するようにしたので、低荷重実装、フラックスレス実装が可能となり、接合信頼性の高い半導体チップの実装方法を実現できる。
【図面の簡単な説明】
【図1】本発明の実施の形態1のバンプ付き半導体チップの実装工程図
【図2】本発明の実施の形態2のバンプ付き半導体チップの実装工程図
【図3】本発明の実施の形態3のバンプ付き半導体チップの実装工程図
【図4】本発明の実施の形態4のバンプ付き半導体チップの実装工程図
【符号の説明】
1 ACF
2 Ni粒子
3 基板
4 電極
5 半導体チップ
6 金バンプ
7 ツール
8 半田バンプ
10 半田
11 封止樹脂
12 熱圧着硬化絶縁樹脂
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chip mounting method for connecting a bumped semiconductor chip to a substrate face down.
[0002]
[Prior art]
Bumped semiconductor chips are advantageous in reducing the size of a substrate, and are therefore widely used in many electronic devices such as various computers. Conventionally, various methods have been proposed for mounting a bumped semiconductor chip on a substrate.
[0003]
The first method is a method using ACF (anisotropic conductive agent). In this method, an ACF is interposed between a semiconductor chip and a substrate, and the semiconductor chip is heated and pressed to connect the bumps to the electrodes of the substrate by conductive particles mixed in the ACF.
[0004]
In the second method, bumps are formed by solder to form solder bumps, and the solder bumps are melted and solidified by reflow and connected to the electrodes of the substrate. In this case, in order to ensure the bonding force between the semiconductor chip and the substrate, a sealing resin is preferably sealed between the semiconductor chip and the substrate.
[0005]
In the third method, bumps are formed of gold to form gold bumps, and solder is precoated on the electrodes of the substrate by plating or the like. In the same manner as in the second method, soldering is performed by reflow, and a sealing resin is preferably sealed.
[0006]
The fourth method is a method using a thermocompression cured insulating resin. In this method, a thermocompression-curing insulating resin is applied to a substrate, a gold bump of a semiconductor chip is thermocompression-bonded on an electrode of the substrate, and the thermocompression-curing insulating resin is cured.
[0007]
[Problems to be solved by the invention]
However, in the first method, it is necessary to apply a large load to the semiconductor chip in order to cause conductive particles such as Ni particles to bite into the bumps. Therefore, a large stress is applied to the substrate, and the circuit pattern is easily disconnected. Semiconductor chips are also susceptible to damage.
[0008]
Further, the second method has an advantage that there is almost no load stress because the solder bump is bonded to the electrode of the substrate by reflow. However, in the second method, it is necessary to use a flux in order to ensure the wettability of the solder, and not only a process such as flux application and flux cleaning is required, but also environmental problems due to the use of the flux. Occurs, and it is easy to cause migration. In addition, when resin sealing is performed, the residual resin flux prevents the fluidity of the resin during resin encapsulation or curing, and voids are likely to occur. To trigger.
[0009]
The third method also uses the solder, and therefore has the same problem as the second method. The fourth method has the same problem as the first method because a large load must be applied to the semiconductor chip. As described above, all of the conventional methods have various problems.
[0010]
SUMMARY OF THE INVENTION The present invention solves the above-described conventional problems, and an object thereof is to provide a chip mounting method that enables low-load mounting and fluxless mounting and has high bonding reliability.
[0011]
[Means for Solving the Problems]
The present invention relates to a chip mounting method for connecting a chip on which a bump made of gold is formed to a connected base material having a thermocompression-curing insulating resin on the surface, wherein the bump and the connected base material are positioned. In the combined state, an ultrasonic wave is applied before the bumps land on the base material to be connected, and the thermocompression-cured insulating resin is removed, and heating is applied after the vibration step to heat the bumps and the substrate. wherein said chip the thermocompression bonding cured insulating resin that is eliminated with connecting the connection base material is cured is to have a heating step of combining the target connection matrix. This method enables low load mounting and fluxless mounting, and a chip mounting method with high bonding reliability can be obtained.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
The present invention has a thermocompression cured insulating resin on the surface of a chip on which a bump made of gold is formed.
A chip mounting method for connecting to a base material to be connected, in which the bump and the base material to be connected are aligned and ultrasonic waves are applied before the bumps land on the base material to be connected. A vibration step for removing the pressure-curing cured insulating resin, and heating and connecting the bump and the base material to be connected after the vibration step; that having a heating step of coupling the the connected base material.
[0015]
(Embodiment 1)
FIG. 1 is a mounting process diagram of a semiconductor chip with bumps according to the first embodiment of the present invention, and shows a manufacturing process diagram when ultrasonic waves are applied to flip chip mounting by ACF.
[0016]
In FIG. 1, 1 is ACF, 2 is Ni particles, 3 is a substrate, 4 is an electrode formed on the substrate 3, 5 is a semiconductor chip, 6 is a gold bump formed on the semiconductor chip 5, and 7 is a tool. Next, the mounting method will be described.
[0017]
The semiconductor chip 5 on which the gold bump 6 adsorbed by the tool 7 is positioned is aligned with the substrate 3 (FIG. 1A) on which the ACF 1 has been attached (FIG. 1B). The pressure is applied while applying heat (FIG. 1 (c)).
[0018]
According to this method, since the Ni particles 2 are captured by the gold bumps 6 and then pressurized while applying ultrasonic waves, the Ni particles 2 are applied to the bumps 6 and the electrodes 4 formed on the substrate 3 by the vibration of the ultrasonic waves. It becomes easy to bite in. Therefore, conventionally, a load of 50 to 60 g per bump is applied to cause the Ni particles 2 to penetrate into the gold bumps 6. However, the electrodes in which the Ni particles 2 are formed on the gold bumps 6 and the substrate 3 by ultrasonic waves. Since it becomes easy to bite into 4, it becomes possible to join with a low load of 5 g to 6 g (about 1/5 to 1/6). Further, the stress on the semiconductor chip 5 can be reduced with a low load. The actual method of applying ultrasonic waves is to apply ultrasonic waves to the tool 7 using an ultrasonic transmitter. The direction of the ultrasonic waves is the Ni particles 2 in the ACF 1 and the electrodes 4 formed on the gold bumps 6 and the substrate 3. In order to bite into each other, it is performed while using each direction (X, Y, Z direction) together.
[0019]
This method is very effective not only for ACF using Ni particles but also for ACF using conductive particles in which resin balls are plated with gold and an insulating film is applied. Normally, this type of ACF applies a high load during mounting and breaks down and holds down the insulating film to establish electrical continuity. However, by using ultrasonic waves together during bonding, the ultrasonic wave breaks the insulating film, reducing the load. Can do.
[0020]
From the above, in the mounting using the ACF, the ultrasonic combined mounting is a very effective mounting means for improving the reliability. In addition, the application method of an ultrasonic wave may be applied not only from a tool but also from a substrate stage, and heating may be performed not from tool heating but from a substrate stage. Furthermore, although the pulse heat tool is used in the first embodiment, constant heating that is constantly heated may be used. Further, in the first embodiment, the bump material is gold, but the bump material is not limited to gold, but can be applied to other metals such as solder and aluminum.
[0021]
(Embodiment 2)
FIG. 2 is a mounting process diagram of the semiconductor chip with bumps according to the second embodiment of the present invention, and shows a mounting method using solder bumps. In the figure, 8 is a solder bump formed on the semiconductor chip 5, and 9 is an oxide film formed on the surface of the bump by contact with air. As described in the conventional example, in the mounting using the solder bumps 8, the mounting load is basically mounted on the substrate 3 with a low load (several g / bump). Although there is no major problem, a flux is conventionally used to improve the wetting of the solder on the electrode 4 formed on the substrate 3 and to remove the oxide film 9.
[0022]
In this method, the tool 7 is mounted by applying ultrasonic waves and pulse heat at the time of mounting. Specifically, the semiconductor chip 5 on which the solder bumps 8 are formed is first aligned with the electrode 4 of the substrate 3 and mounted (FIG. 2A). Next, ultrasonic waves are applied with the semiconductor chip 5 adsorbed to the tool 7 (FIG. 2B). As a result, the solder bumps 8 and the electrodes 4 formed on the substrate 3 are rubbed with ultrasonic waves, and the oxide film 9 is removed. When the tool 7 is heated by pulse heat in the state where the oxide film 9 is removed, the solder bumps 8 are melted, and the solder 8 is wetted to the substrate pattern in a portion where the oxide film 9 is not present, so that good bonding is obtained (FIG. 2 (c)). Thereafter, the sealing resin 11 is sealed between the semiconductor chip 5 and the substrate 3 to complete the bonding (FIG. 2D).
[0023]
From the above, fluxless is possible in solder joining, and a cleaning process is unnecessary. Furthermore, it is possible to prevent the generation of voids due to the difficulty in the flow of the sealing resin 11 between the chip substrates, which was a problem during the sealing process of the sealing resin 11 due to the flux residue, and the reliability is reduced. The problem is solved, and it is possible to obtain a very reliable bonding state. In the second embodiment, the sealing process is performed after the bonding of the solder bumps 8 and the substrate 3 is completed. However, a mounting method in which the sealing resin 11 is cured by pulse heat at the same time as mounting may be used.
[0024]
(Embodiment 3)
FIG. 3 is a mounting process diagram of a semiconductor chip with bumps according to a third embodiment of the present invention, and shows a method of mounting a semiconductor chip on which gold bumps are formed on a substrate pre-coated with solder. In FIG. 3, reference numeral 10 denotes solder on the electrode 4 of the substrate 3 by plating or the like. In this method as well, due to the use of solder, conventionally, flux has been used to improve the wetting of electrodes formed on the substrate and to remove the oxide film.
[0025]
In this method, ultrasonic waves and pulse heat are applied to the tool 7 during mounting. Specifically, the semiconductor chip 5 on which the gold bumps 6 are formed is first aligned and mounted with the solder precoated electrode 4 on the substrate 3 (FIG. 3A). Next, ultrasonic waves are applied with the semiconductor chip 5 adsorbed to the tool 7 (FIG. 3B). As a result, the solder 10 rubs against the gold bump 6 and the electrode 4 formed on the substrate 3 by ultrasonic waves, and the oxide film 11 on the surface of the solder 10 is removed (FIG. 3C). When the tool 7 is heated by pulse heat in the state where the oxide film 9 is removed, the solder 10 is melted to the electrode 4 formed on the substrate 3, and the solder 10 is applied to the surface of the gold bump 6 in a portion where the oxide film 9 is not present. Get wet and good bonding is obtained. Thereafter, a sealing process is performed with the sealing resin 11 to complete the bonding (FIG. 3D).
[0026]
From the above, the same effect and hardening as in the second embodiment can be obtained. In the third embodiment, the sealing process is performed after the bonding between the bump and the substrate is completed (FIG. 3D), but a mounting method in which the resin is cured by pulse heat at the time of bonding may be used.
[0027]
(Embodiment 4)
FIG. 4 is a mounting process diagram of a bumped semiconductor chip according to the fourth embodiment of the present invention, and shows a method of mounting a chip on which a gold bump is formed on a substrate using a thermocompression cured insulating resin. Specifically, the semiconductor chip 5 on which the gold bump 6 adsorbed by the tool 7 is formed is aligned and mounted on the electrode 4 on the substrate 3 coated with the thermocompression-curing insulating resin 12 (FIG. 4A). . Next, with the semiconductor chip 5 adsorbed on the tool 7 (that is, before the gold bumps 6 land on the electrodes 4), ultrasonic waves and pulse heat are applied (FIG. 4B). As a result, the thermocompression-curing insulating resin 12 between the gold bumps 6 formed on the semiconductor chip 5 and the electrodes 4 formed on the substrate 3 is removed to the surroundings by ultrasonic waves, and formed on the surface of the gold bumps 6 and the substrate 3. Good contact with the surface of the electrode 4 is obtained. Further, the thermocompression-curing insulating resin 12 is cured by heating by pulse heat, and the semiconductor chip 5 and the substrate 3 are fixed (FIG. 4C). Therefore, in the past, mounting was performed by applying a high load (about 50 g) in order to eliminate the resin of the bump substrate, but by using ultrasonic waves, mounting with a low load (several g / bump) is possible. The stress on the chip is also reduced, and the stress on the chip is also reduced.
[0028]
【The invention's effect】
As described above, according to the present invention , an ultrasonic wave is applied before the bumps land on the connected base material in a state where the bumps and the connected base material are aligned, and the thermocompression cured insulating resin is excluded. And after the vibration step, the bump and the to-be-connected base material are heated to connect the bump and the to-be-connected base material, and the removed thermocompression-bonding insulating resin is cured to bond the chip to the to-be-connected base material. Therefore, low-load mounting and fluxless mounting are possible, and a semiconductor chip mounting method with high bonding reliability can be realized.
[Brief description of the drawings]
FIG. 1 is a mounting process diagram of a bumped semiconductor chip according to a first embodiment of the present invention. FIG. 2 is a mounting process diagram of a bumped semiconductor chip according to a second embodiment of the present invention. 3 is a process diagram for mounting a semiconductor chip with bumps. FIG. 4 is a process diagram for mounting a semiconductor chip with bumps according to a fourth embodiment of the present invention.
1 ACF
2 Ni particle 3 Substrate 4 Electrode 5 Semiconductor chip 6 Gold bump 7 Tool 8 Solder bump 10 Solder 11 Sealing resin 12 Thermocompression cured insulating resin

Claims (1)

金を材質とするバンプが形成されたチップを表面に熱圧着硬化絶縁樹脂を有する被接続母材に接続するチップ実装方法であって、
前記バンプと前記被接続母材とを位置合わせした状態で前記バンプが前記被接続母材に着地する前から超音波を印加し前記熱圧着硬化絶縁樹脂を排除する加振ステップと、前記加振ステップの後に加熱して前記バンプと前記被接続母材とを接続するとともに排除された前記熱圧着硬化絶縁樹脂が硬化して前記チップと前記被接続母材とを結合する加熱ステップとを有することを特徴とするチップ実装方法。
A chip mounting method for connecting a chip on which a bump made of gold is formed to a connected base material having a thermocompression-curing insulating resin on the surface,
An excitation step of applying ultrasonic waves before the bumps land on the connected base material in a state where the bumps and the connected base material are aligned, and excluding the thermocompression-cured insulating resin; Heating after the step to connect the bump and the base material to be connected and to cure the removed thermocompression cured insulating resin to bond the chip and the base material to be connected. A chip mounting method characterized by the above.
JP17674597A 1997-07-02 1997-07-02 Chip mounting method Expired - Lifetime JP3687280B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17674597A JP3687280B2 (en) 1997-07-02 1997-07-02 Chip mounting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17674597A JP3687280B2 (en) 1997-07-02 1997-07-02 Chip mounting method

Publications (2)

Publication Number Publication Date
JPH1126922A JPH1126922A (en) 1999-01-29
JP3687280B2 true JP3687280B2 (en) 2005-08-24

Family

ID=16019071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17674597A Expired - Lifetime JP3687280B2 (en) 1997-07-02 1997-07-02 Chip mounting method

Country Status (1)

Country Link
JP (1) JP3687280B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6583364B1 (en) * 1999-08-26 2003-06-24 Sony Chemicals Corp. Ultrasonic manufacturing apparatuses, multilayer flexible wiring boards and processes for manufacturing multilayer flexible wiring boards
JP3451373B2 (en) * 1999-11-24 2003-09-29 オムロン株式会社 Manufacturing method of data carrier capable of reading electromagnetic wave
JP2002076589A (en) * 2000-08-31 2002-03-15 Hitachi Ltd Electronic device and its manufacturing method
JP2002151551A (en) 2000-11-10 2002-05-24 Hitachi Ltd Flip-chip mounting structure, semiconductor device therewith and mounting method
KR20030014861A (en) * 2001-08-13 2003-02-20 삼성전자주식회사 underfill tape and the flip chip bonding method used of it
JP4351012B2 (en) 2003-09-25 2009-10-28 浜松ホトニクス株式会社 Semiconductor device
JP4494745B2 (en) 2003-09-25 2010-06-30 浜松ホトニクス株式会社 Semiconductor device
JP4494746B2 (en) 2003-09-25 2010-06-30 浜松ホトニクス株式会社 Semiconductor device
US10398244B2 (en) 2005-06-14 2019-09-03 Shape Shifter Design, Inc. Container holder apparatus and system and method for attaching a holder and a lid to a container
JP2007208568A (en) * 2006-01-31 2007-08-16 Nippon Dempa Kogyo Co Ltd Surface-mounted crystal oscillator
JP4905502B2 (en) * 2009-05-21 2012-03-28 日立化成工業株式会社 Circuit board manufacturing method and circuit connecting material
JP2010004067A (en) * 2009-09-16 2010-01-07 Hitachi Chem Co Ltd Circuit connection material
KR101417252B1 (en) * 2012-02-24 2014-07-08 엘지이노텍 주식회사 Device for bonding pcb to module

Also Published As

Publication number Publication date
JPH1126922A (en) 1999-01-29

Similar Documents

Publication Publication Date Title
KR100559914B1 (en) Method and apparatuses for making z-axis electrical connections
JP4659262B2 (en) Electronic component mounting method and paste material
JP3687280B2 (en) Chip mounting method
JPH11191569A (en) Flip chip-mounting method and semiconductor device
JPH06338504A (en) Semiconductor device and manufacture thereof
JP2001267541A (en) Solid-state image pickup device and manufacturing method
JP3509507B2 (en) Mounting structure and mounting method of electronic component with bump
JP2001332583A (en) Method of mounting semiconductor chip
WO2002067317A1 (en) Bumpless semiconductor device
US6998293B2 (en) Flip-chip bonding method
JP4151136B2 (en) Substrate, semiconductor device and manufacturing method thereof
JP2000174059A (en) Method of mounting electronic component
JP3252745B2 (en) Semiconductor device and manufacturing method thereof
JP2002190497A (en) Sealing resin for flip-chip mounting
JP2001284382A (en) Solder bump forming method, flip-chip mounting method and mounting structure
JP3376861B2 (en) Mounting method of work with bump
JP3570229B2 (en) Solder joining method and thermosetting resin for solder joining
JP2000022300A (en) Wiring board and electronic unit
JP2005302750A (en) Ultrasonic flip-chip mounting method
KR100614564B1 (en) A junction method of a chip bump and a substrate pad using underfill resin and supersonic
JP3726795B2 (en) Bumped workpiece mounting method
JPH1174315A (en) Device and method of bonding
JP3702929B2 (en) Wire bonding method
JP3608476B2 (en) Semiconductor chip mounting circuit board and method for mounting semiconductor chip on circuit board
JP3525331B2 (en) Semiconductor chip mounting substrate and semiconductor device mounting method

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040729

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050530

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080617

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090617

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100617

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110617

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120617

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130617

Year of fee payment: 8

EXPY Cancellation because of completion of term