JP3686626B2 - Control device for electric motor for vehicle - Google Patents

Control device for electric motor for vehicle Download PDF

Info

Publication number
JP3686626B2
JP3686626B2 JP2002117077A JP2002117077A JP3686626B2 JP 3686626 B2 JP3686626 B2 JP 3686626B2 JP 2002117077 A JP2002117077 A JP 2002117077A JP 2002117077 A JP2002117077 A JP 2002117077A JP 3686626 B2 JP3686626 B2 JP 3686626B2
Authority
JP
Japan
Prior art keywords
motor
electric motor
specified value
vehicle
drive wheels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002117077A
Other languages
Japanese (ja)
Other versions
JP2003319506A (en
Inventor
武典 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Subaru Corp
Original Assignee
Fuji Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Jukogyo KK filed Critical Fuji Jukogyo KK
Priority to JP2002117077A priority Critical patent/JP3686626B2/en
Publication of JP2003319506A publication Critical patent/JP2003319506A/en
Application granted granted Critical
Publication of JP3686626B2 publication Critical patent/JP3686626B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors

Landscapes

  • Arrangement And Driving Of Transmission Devices (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は車両の駆動輪を駆動する原動機として電動機を有する車両用電動機の制御装置に関する。
【0002】
【従来の技術】
電動機を原動機とする車両には電動機のみを原動機とする電気自動車や、電動機に加えて内燃機関を有するハイブリット車両があり、四輪駆動式のハイブリット車両には前輪を内燃機関により駆動し、後輪を電動機により駆動するようにしたものがある。電気自動車やハイブリット車両のように電動機つまり電動モータを備えた車両においては、電動機と左右駆動輪との間に、旋回走行時の左右駆動輪の回転差を吸収するためにデファレンシャル装置つまり差動装置を設け、電動機の出力を差動装置を介して左右の駆動輪に伝達するようにしている。
【0003】
一方、ハイブリット車両においては、たとえば、特開平5-131858号公報に開示されるように、エンジンの出力トルクと目標トルクとの偏差分のトルクを制御トルクとして電動機を制御するようにしたり、特開平11-318001号公報に開示されるように、前後輪の回転差に応じてオルタネータの発電を制御することにより前後輪の駆動力を配分するようにしている。
【0004】
四輪駆動式のハイブリット車両が凍結路面や雪道のような低μ路を走行する際に、後輪駆動用の電動機の出力が過大となると、後輪の左右一方が空転を起こして駆動力が空転した車輪に伝達されて、他方の車輪の駆動力がほぼゼロとなることがある。このため、四輪駆動車両としての走破性や走行性、そして差動装置の耐久性の面で問題が生じる。つまり、第1に後輪の駆動力分がなくなるので走破性が悪化し、第2に低μ路から通常の路面に戻ったときなどのように空転車輪のグリップ力が復帰したときには車両挙動が不安定になり、第3に差動装置が焼き付きを起こすことなどが想定される。
【0005】
このような問題点を解決するために、従来では、ビスカスカップリングを備えた回転数感応式差動制限装置や湿式多板クラッチを備えた予圧式差動制限装置などが用いられている。このような差動制限装置を用いない場合には、デファレンシャルケースの回転変化率を算出し、電動機の出力を制限するようにした技術がたとえば、特開平10-75506号公報に開示されている。
【0006】
【発明が解決しようとする課題】
電動機の出力を差動装置を介して駆動輪に伝達する場合、特に、四輪駆動車両の場合には、前後輪の駆動力を適正化し、車両の走破性ないし走行性を確保し、さらに差動装置の耐久性を向上するには、前述のような差動制限装置を車両に搭載する必要があるが、差動制限装置を搭載すると車両の製造コストが高くなるという問題点がある。
【0007】
本発明の目的は、差動制限装置を用いることなく車両の走行性を向上することにある。
【0008】
本発明の他の目的は、電動機により後輪を駆動するハイブリット車両の走行性を向上することにある。
【0009】
【課題を解決するための手段】
上記目的を達成するため、請求項1記載の発明は、電動機とこの電動機の出力を左右駆動輪に差動分配する差動装置を有する車両用電動機の制御装置であって、 左右の駆動輪の回転速度をそれぞれ検出する車輪速度センサと、運転者により操作されるアクセルペダルの踏み込み量を検出するアクセル開度センサと、前記左右駆動輪の回転数の差が規定値以下のときには前記アクセル開度センサからの信号によって算出される駆動力値に基づいて前記電動機を制御する一方、前記回転数の差が規定値以上のときには前記電動機へ逆転方向に通電する制御手段とを有することを特徴とする。
【0010】
請求項2記載の発明は、電動機とこの電動機の出力を左右駆動輪に差動分配する差動装置を有する車両用電動機の制御装置であって、左右の駆動輪の回転速度をそれぞれ検出する車輪速度センサと、運転者により操作されるアクセルペダルの踏み込み量を検出するアクセル開度センサと、前記左右駆動輪の回転数の差が第1の規定値以下のときには前記アクセル開度センサからの信号によって算出される駆動力値に基づいて前記電動機を制御する一方、前記左右駆動輪の回転数の差が前記第1の規定値と該第1の規定値よりも大きい第2の規定値との間にあるときには前記電動機への通電を停止し、前記左右駆動輪の回転数の差が前記第2の規定値より大きいときには前記電動機へ逆転方向に通電する制御手段とを有することを特徴とする。
【0012】
本発明の車両用電動機の制御装置にあっては、電動機の出力を左右の駆動輪に伝達するための差動装置として差動制限装置を使用することなく、車輪速度センサからの信号によって、駆動輪が空転したときには電動機の出力を制限することができるので、差動装置に過負荷が加わることを防止できる。これにより、差動装置の潤滑を簡素化することができるとともに耐久性を向上することができる。車輪速度センサによって駆動輪の空転が解消されたことを直ちに検出することができるので、空転解消時に迅速に通常制御状態に復帰させることができる。
【0013】
【発明の実施の形態】
以下、本発明の実施の形態を図面に基づいて詳細に説明する。図1はハイブリット車両の駆動系を示す概略斜視図であり、図2は図1に示された後輪駆動装置を示すスケルトン図である。
【0014】
図1に示すハイブリット車両は、左右の前輪11a,11bと左右の後輪12a,12bとを駆動する四輪駆動車であり、車両には前輪11a,11bを駆動する内燃機関13と、後輪12a,12bを駆動する電動機つまり電動モータ14とを有している。内燃機関13の動力は変速機および差動装置などを有するトランスミッション15を介して左右の前輪に伝達される。一方、電動モータ14の動力は差動装置16を介して左右の後輪に伝達される。
【0015】
図2に示すように、リヤデファレンシャルつまり後輪用の差動装置16は、終減速大歯車17が設けられたデファレンシャルケース18を有し、このデファレンシャルケース18にはドライブシャフト19aを介して後輪12aに連結されたアクスルシャフト21aに固定されるサイドギヤ22aと、ドライブシャフト19bを介して後輪12bに連結されたアクスルシャフト21bに固定されるサイドギヤ22bとが回転自在に組み込まれ、これらのサイドギヤ22a,22bは相互に対向し合っている。デファレンシャルケース18には、それぞれのアクスルシャフト21a,21bに対して直角方向にピニオンシャフト23が取り付けられ、このピニオンシャフト23には相互に対向してそれぞれ両方のサイドギヤ22a,22bに噛合うピニオンギヤ24a,24bが回転自在に装着されている。
【0016】
この差動装置16は差動制限装置を備えていない通常の差動装置であり、車体に取り付けられるギヤケース25内に組み込まれており、ギヤケース25に装着されるモータケース26内には電動モータ14が組み込まれている。この電動モータ14の主軸に固定された終減速小歯車27は終減速大歯車17に噛合っており、電動モータ14の動力は差動装置16を介して左右の後輪12a,12bに伝達され、車両が旋回走行する際には、左右の駆動輪としての後輪12a,12bの回転差を差動装置16が吸収する。なお、図2にあっては、電動モータ14がアクスルシャフト21a,21bに対して直角となって配置されているが、アクスルシャフト21a,21bに平行に電動モータ14を配置するようにしても良く、差動装置16と電動モータ14とを1つのケース内に組み込むようにしても良い。
【0017】
図3は電動機の制御回路を示すブロック図であり、電子制御ユニット(ETC)31には、運転者により操作されるアクセルペダルの踏み込み量を検出するアクセル開度センサ32からの検出信号が送られるとともに、左右の後輪の回転速度に応じた信号が第1と第2の車輪速度センサ33a,33bから送られるようになっている。電子制御ユニット31からはインバータ回路を有するモータ制御ユニット34に制御信号が送られ、このモータ制御ユニット34からの信号によって電動モータ14の作動が制御される。それぞれの車輪速度センサ33a,33bとしては、ABS(アンチロックブレーキシステム)に使用されるセンサを使用することができる。したがって、ABS搭載車両にあっては、ABS用の車輪速度センサからの信号を電動機の制御に共用することができる。
【0018】
電子制御ユニット31は、アクセル開度センサ32などからの検出信号に基づいてモータ制御ユニット34に対して送られる制御信号を演算するマイクロプロセッサ(CPU)と、制御プログラム、演算式、マップデータなどが格納されるメモリ(ROM)と、一時的にデータを格納するメモリ(RAM)とを有している。読み出し専用のメモリ(ROM)には、アクセル開度と要求トルクとの関係を示すマップデータやテーブルなどが格納されており、運転者のアクセルペダルの踏み込む量をアクセル開度センサ32により検出することよって運転者の要求トルクを算出することができる。要求トルクが算出されると、その要求トルクの値に基づいて電動モータ14の駆動力(Fr)を算出することができる。図4(A)はアクセル開度と要求トルクとの関係の一例を示す特性線図である。
【0019】
一方、左右の後輪12a,12bの回転差は、それぞれの車輪速度センサ33a,33bからの信号により算出することができる。車両が旋回走行する時には左右の前輪のみならず左右の後輪も回転差が発生するが差動装置16によって回転差が吸収されて円滑な走行が確保される。これに対して、雪道や凍結路面などの低μ路で車両が走行しているときには一方の後輪が空転した状態となることがあり、その場合には左右の後輪は旋回走行時と比較して大きな回転差となる。そこで、大きな回転差が発生したときには、電動モータ14に供給される電力を制限してモータ出力を制限するようにしている。
【0020】
図4(B)は左右の後輪の一方が空転して回転差が規定値以上となったときにおけるモータ出力の制限例を示す特性線図である。この特性線図は、回転差が規定値Aよりも大きくなったときには電動モータ14に対する電力を停止し、回転差が規定値Aよりも大きな規定値Bを越えたら電動モータ14に対して逆転方向の電力を供給するようにし、その逆転方向の電力を回転差に応じて大きくなるようにした制御特性を示す。
【0021】
図2に示した制御装置を有する車両にあっては、差動制限装置を用いることなく、簡単な差動装置16を使用することができるとともに、ABS用に使用される車輪速度センサから信号を共用することができるので、機器類を追加することなく、低コストで差動装置16の差動制限を行うことができる。また、差動装置16として差動制限装置を用いると、回転差がある程度大きくならないと空転を抑制することができないが、この制御装置を有する車両にあっては、車輪速度センサ33a,33bからの信号によって迅速に車輪の空転を止めることができ、しかも、空転を抑制する回転差を任意の値に設定することができる。
【0022】
図5は電動機の制御ルーチンの一例を示すフローチャートであり、このルーチンは所定の周期で実行される。まず、ステップS1ではアクセル開度センサ32からの信号を読みとって、運転者により操作されるアクセルペダルの踏み込み量から運転者の要求トルクを算出する。この算出結果に基づいて後輪の駆動力FrをステップS2において算出する。一方、車輪速度センサ33a,33bから送られる信号によって左右の後輪12a,12bの回転速度が求められ、それぞれの回転速度に基づいて両方の後輪の回転差がステップS3において算出される。ステップS4では回転差が規定値よりも大きいか否かが判定され、規定値に達していないと判定されたときには、ステップS5が実行されて電動モータ14に対しては、ステップS2で算出された後輪駆動力Frに対応するモータ出力Fmotを出力値として電動モータ14を制御する。
【0023】
一方、ステップS4において回転差が規定値よりも大きいと判定されたときには、ステップS6において、左右後輪の回転差に応じた制限値Fstopに設定する。この制限値Fstopは回転差が図4(B)における第1の規定値Aと該第1の規定値Aよりも大きい第2の規定値Bとの間であれば、電動モータ14に対する通電を停止するようにFstop=0に設定され、第2の規定値Bよりも回転差が大きければ、電動モータ14に対して逆転方向に通電するようにFstop<0に設定される。そして、逆転方向の通電量は回転差が大きい程大きく設定される。ステップS7では設定された制限値を出力値として電動モータ14が制御され、回転差が第1の規定値A以下となって空転が解消されると、直ちに通常の制御に復帰する。ステップS6で示すように、回転差に応じて通電停止や逆方向の通電が行われるので、図5に示す制御方式では回転差に応じたフィードバック制御が達成される。
【0025】
上述した図5に示す制御方式においては、差動制限装置を使用することなく、通常の差動装置16を使用しても、左右の駆動輪の回転差に応じて空転が防止されるので、差動装置に過負荷が加わることなく、差動装置の耐久性を向上させることができる。
【0026】
本発明は前記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。たとえば、図1に示す車両は前輪を内燃機関13により駆動し、後輪を電動モータ14により駆動するハイブリット車両を示すが、前輪を電動モータ14により駆動するようにしたハイブリット車両や、内燃機関を有することなく、前輪ないし後輪および前後輪を電動モータ14により駆動するようにした車両にも本発明を適用することが可能である。
【0027】
【発明の効果】
本発明によれば、車輪速度センサによって駆動輪の空転が検出されたときには電動機の出力を制限するようにしたので、差動装置に過負荷が加わることを防止でき、差動装置の潤滑を簡素化することができるとともに耐久性を向上することができる。電動機の出力を左右の駆動輪に伝達するための差動装置として差動制限装置を使用する必要がなく、電動機を有する車両を低コストで製造することができる。
【0028】
車輪速度センサからの信号によって、車輪速度センサによって駆動輪の空転が解消されたことを直ちに検出することができるので、空転解消時に迅速に通常制御状態に復帰させることができる。車輪速度センサとしてはABSの車輪速度センサを共用することができる。
【図面の簡単な説明】
【図1】 ハイブリッド車両の駆動系を示す概略斜視図である。
【図2】 図1に示された後輪駆動装置を示すスケルトン図である。
【図3】 電動機の制御回路を示すブロック図である。
【図4】 (A)はアクセル開度と要求トルクとの関係の一例を示す特性線図であり、(B)は左右の後輪の一方が空転して回転差が規定値以上となったときにおけるモータ出力の制限例を示す特性線図である。
【図5】 電動機の制御ルーチンの一例を示すフローチャートである。
【符号の説明】
11a,11b 前輪
12a,12b 後輪
13 内燃機関
14 電動モータ
16 差動装置
31 電子制御ユニット
32 アクセル開度センサ
33a,33b 車輪速度センサ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a control device for a vehicle motor having an electric motor as a prime mover for driving a drive wheel of the vehicle.
[0002]
[Prior art]
Vehicles that use an electric motor as a prime mover include electric vehicles that use only the electric motor as a prime mover, and hybrid vehicles that have an internal combustion engine in addition to the electric motor. In a four-wheel drive hybrid vehicle, the front wheels are driven by the internal combustion engine, and the rear wheels Is driven by an electric motor. In a vehicle equipped with an electric motor, that is, an electric motor, such as an electric vehicle or a hybrid vehicle, a differential device, that is, a differential device, is used between the electric motor and the left and right drive wheels to absorb the rotational difference between the left and right drive wheels during turning. And the output of the electric motor is transmitted to the left and right drive wheels via a differential device.
[0003]
On the other hand, in a hybrid vehicle, for example, as disclosed in Japanese Patent Application Laid-Open No. 5-131858, an electric motor is controlled using a torque corresponding to a deviation between an engine output torque and a target torque as a control torque, or As disclosed in Japanese Patent Laid-Open No. 11-318001, the driving force of the front and rear wheels is distributed by controlling the power generation of the alternator according to the rotation difference between the front and rear wheels.
[0004]
When a four-wheel drive hybrid vehicle runs on a low-μ road such as a frozen road surface or a snowy road, if the output of the motor for driving the rear wheels becomes excessive, either the left or right of the rear wheels will idle, and the driving force May be transmitted to the idle wheel, and the driving force of the other wheel may become almost zero. For this reason, problems arise in terms of running performance and running performance as a four-wheel drive vehicle and durability of the differential. That is, firstly, the driving force of the rear wheels is lost, so the running performance deteriorates. Second, when the gripping force of the idling wheel is restored, such as when returning from a low μ road to the normal road surface, the vehicle behavior is It is assumed that it becomes unstable, and thirdly, the differential device burns.
[0005]
In order to solve such problems, conventionally, a rotational speed sensitive differential limiting device having a viscous coupling, a preload differential limiting device having a wet multi-plate clutch, and the like are used. When such a differential limiting device is not used, a technique for calculating the rotational change rate of the differential case and limiting the output of the electric motor is disclosed in, for example, Japanese Patent Laid-Open No. 10-75506.
[0006]
[Problems to be solved by the invention]
When the output of the motor is transmitted to the drive wheels via the differential device, especially in the case of a four-wheel drive vehicle, the driving force of the front and rear wheels is optimized to ensure the vehicle's running performance or traveling performance. In order to improve the durability of the moving device, it is necessary to mount the differential limiting device as described above on the vehicle. However, if the differential limiting device is mounted, there is a problem that the manufacturing cost of the vehicle increases.
[0007]
An object of the present invention is to improve the running performance of a vehicle without using a differential limiting device.
[0008]
Another object of the present invention is to improve the running performance of a hybrid vehicle in which rear wheels are driven by an electric motor.
[0009]
[Means for Solving the Problems]
In order to achieve the above object, a first aspect of the present invention is a control device for a vehicle motor having a motor and a differential device that differentially distributes the output of the motor to left and right drive wheels. A wheel speed sensor for detecting the respective rotation speeds, an accelerator opening sensor for detecting the depression amount of an accelerator pedal operated by a driver, and the accelerator opening when the difference between the rotation speeds of the left and right drive wheels is equal to or less than a specified value Control means for controlling the electric motor based on a driving force value calculated from a signal from a sensor, and energizing the electric motor in a reverse direction when the difference in the rotation speed is equal to or greater than a predetermined value. .
[0010]
The invention according to claim 2 is a control device for a motor for a vehicle having a motor and a differential device that differentially distributes the output of the motor to the left and right drive wheels, and detects the rotational speeds of the left and right drive wheels, respectively. A speed sensor, an accelerator opening sensor that detects the amount of depression of the accelerator pedal operated by the driver, and a signal from the accelerator opening sensor when the difference between the rotation speeds of the left and right drive wheels is equal to or less than a first specified value. The motor is controlled on the basis of the driving force value calculated by the formula (1), while the difference between the rotation speeds of the left and right drive wheels is between the first specified value and a second specified value that is larger than the first specified value. Control means for stopping energization of the electric motor when in the middle, and energizing the electric motor in the reverse direction when the difference in rotational speed between the left and right drive wheels is greater than the second specified value. .
[0012]
In the control device for a motor for a vehicle according to the present invention, it is driven by a signal from a wheel speed sensor without using a differential limiting device as a differential device for transmitting the output of the motor to the left and right drive wheels. Since the output of the electric motor can be limited when the wheel is idling, it is possible to prevent an overload from being applied to the differential device. Thereby, the lubrication of the differential device can be simplified and the durability can be improved. Since it is possible to immediately detect that the idling of the driving wheel has been eliminated by the wheel speed sensor, it is possible to quickly return to the normal control state when the idling is eliminated.
[0013]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic perspective view showing a drive system of a hybrid vehicle, and FIG. 2 is a skeleton diagram showing the rear wheel drive device shown in FIG.
[0014]
The hybrid vehicle shown in FIG. 1 is a four-wheel drive vehicle that drives left and right front wheels 11a and 11b and left and right rear wheels 12a and 12b. The vehicle includes an internal combustion engine 13 that drives front wheels 11a and 11b, and a rear wheel. An electric motor for driving 12a and 12b, that is, an electric motor 14 is provided. The power of the internal combustion engine 13 is transmitted to the left and right front wheels via a transmission 15 having a transmission and a differential. On the other hand, the power of the electric motor 14 is transmitted to the left and right rear wheels via the differential 16.
[0015]
As shown in FIG. 2, the differential gear 16 for the rear differential, that is, the rear wheel has a differential case 18 provided with a final reduction gear 17 and is connected to the rear wheel via a drive shaft 19a. A side gear 22a fixed to the axle shaft 21a connected to 12a and a side gear 22b fixed to the axle shaft 21b connected to the rear wheel 12b via the drive shaft 19b are rotatably incorporated, and these side gears 22a. , 22b face each other. A pinion shaft 23 is attached to the differential case 18 in a direction perpendicular to the axle shafts 21a and 21b. The pinion shaft 23 opposes the pinion gears 23a and 22b, and meshes with the side gears 22a and 22b. 24b is rotatably mounted.
[0016]
The differential device 16 is a normal differential device that does not include a differential limiting device, and is incorporated in a gear case 25 that is attached to the vehicle body. An electric motor 14 is installed in a motor case 26 that is attached to the gear case 25. Is incorporated. The final reduction small gear 27 fixed to the main shaft of the electric motor 14 meshes with the final reduction large gear 17, and the power of the electric motor 14 is transmitted to the left and right rear wheels 12 a and 12 b via the differential device 16. When the vehicle turns, the differential device 16 absorbs the rotational difference between the rear wheels 12a and 12b as the left and right drive wheels. In FIG. 2, the electric motor 14 is arranged at right angles to the axle shafts 21a and 21b. However, the electric motor 14 may be arranged parallel to the axle shafts 21a and 21b. The differential device 16 and the electric motor 14 may be incorporated in one case.
[0017]
FIG. 3 is a block diagram showing a control circuit of the electric motor, and a detection signal from an accelerator opening sensor 32 for detecting the depression amount of an accelerator pedal operated by a driver is sent to an electronic control unit (ETC) 31. At the same time, signals corresponding to the rotational speeds of the left and right rear wheels are sent from the first and second wheel speed sensors 33a and 33b. A control signal is sent from the electronic control unit 31 to a motor control unit 34 having an inverter circuit, and the operation of the electric motor 14 is controlled by a signal from the motor control unit 34. As each wheel speed sensor 33a and 33b, the sensor used for ABS (anti-lock brake system) can be used. Therefore, in an ABS-equipped vehicle, a signal from an ABS wheel speed sensor can be shared for controlling the electric motor.
[0018]
The electronic control unit 31 includes a microprocessor (CPU) that calculates a control signal sent to the motor control unit 34 based on a detection signal from the accelerator opening sensor 32 and the like, a control program, an arithmetic expression, map data, and the like. A memory (ROM) to be stored and a memory (RAM) to temporarily store data are included. The read-only memory (ROM) stores map data and tables indicating the relationship between the accelerator opening and the required torque, and the accelerator opening sensor 32 detects the amount of depression of the driver's accelerator pedal. Accordingly, the driver's required torque can be calculated. When the required torque is calculated, the driving force (Fr) of the electric motor 14 can be calculated based on the value of the required torque. FIG. 4A is a characteristic diagram showing an example of the relationship between the accelerator opening and the required torque.
[0019]
On the other hand, the rotation difference between the left and right rear wheels 12a and 12b can be calculated from signals from the respective wheel speed sensors 33a and 33b. When the vehicle turns, not only the left and right front wheels but also the left and right rear wheels generate a difference in rotation, but the differential device 16 absorbs the difference in rotation and ensures smooth running. On the other hand, when the vehicle is traveling on a low μ road such as a snowy road or a frozen road surface, one of the rear wheels may be idled. Compared to this, the rotation difference is large. Therefore, when a large rotational difference occurs, the electric power supplied to the electric motor 14 is limited to limit the motor output.
[0020]
FIG. 4B is a characteristic diagram showing a motor output restriction example when one of the left and right rear wheels idles and the rotational difference becomes a specified value or more. This characteristic diagram shows that the electric power to the electric motor 14 is stopped when the rotation difference becomes larger than the specified value A, and the reverse rotation direction with respect to the electric motor 14 when the rotation difference exceeds the specified value B larger than the specified value A. The control characteristics are shown in which the power in the reverse direction is increased in accordance with the rotation difference.
[0021]
In the vehicle having the control device shown in FIG. 2, a simple differential device 16 can be used without using a differential limiting device, and a signal is sent from a wheel speed sensor used for ABS. Since they can be shared, differential limiting of the differential device 16 can be performed at low cost without adding equipment. In addition, when a differential limiting device is used as the differential device 16, the idling cannot be suppressed unless the rotational difference is increased to some extent. The idling of the wheel can be quickly stopped by the signal, and the rotation difference for suppressing idling can be set to an arbitrary value.
[0022]
FIG. 5 is a flowchart showing an example of a motor control routine, and this routine is executed at a predetermined cycle. First, in step S1, a signal from the accelerator opening sensor 32 is read, and the driver's required torque is calculated from the depression amount of the accelerator pedal operated by the driver. Based on this calculation result, the driving force Fr of the rear wheels is calculated in step S2. On the other hand, the rotational speeds of the left and right rear wheels 12a and 12b are obtained from the signals sent from the wheel speed sensors 33a and 33b, and the rotational difference between both rear wheels is calculated in step S3 based on the respective rotational speeds. In step S4, it is determined whether or not the rotation difference is larger than a specified value. If it is determined that the difference has not reached the specified value, step S5 is executed and the electric motor 14 is calculated in step S2. The electric motor 14 is controlled using the motor output Fmot corresponding to the rear wheel driving force Fr as an output value.
[0023]
On the other hand, when it is determined in step S4 that the rotation difference is larger than the specified value, in step S6, the limit value Fstop corresponding to the rotation difference between the left and right rear wheels is set. If the rotation difference is between the first specified value A and the second specified value B larger than the first specified value A in FIG. Fstop = 0 is set so as to stop, and if the rotation difference is larger than the second specified value B, Fstop <0 is set so that the electric motor 14 is energized in the reverse direction. The energization amount in the reverse direction is set to be larger as the rotation difference is larger. In step S7, the electric motor 14 is controlled using the set limit value as an output value. When the rotation difference becomes equal to or less than the first specified value A and the idling is eliminated, the normal control is immediately resumed. As shown in step S6, the energization is stopped or the energization in the reverse direction is performed according to the rotation difference, so that feedback control according to the rotation difference is achieved in the control method shown in FIG.
[0025]
In the control method shown in FIG. 5 described above, even if the normal differential device 16 is used without using the differential limiting device, idling is prevented according to the rotational difference between the left and right drive wheels. The durability of the differential device can be improved without overloading the differential device.
[0026]
The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. For example, the vehicle shown in FIG. 1 is a hybrid vehicle in which the front wheels are driven by the internal combustion engine 13 and the rear wheels are driven by the electric motor 14, but a hybrid vehicle or an internal combustion engine in which the front wheels are driven by the electric motor 14 is used. The present invention can also be applied to a vehicle in which the front wheels, rear wheels, and front and rear wheels are driven by the electric motor 14 without having them.
[0027]
【The invention's effect】
According to the present invention, when the idling of the drive wheel is detected by the wheel speed sensor, the output of the electric motor is limited, so that an overload can be prevented from being applied to the differential device, and the lubrication of the differential device is simplified. And durability can be improved. It is not necessary to use a differential limiting device as a differential device for transmitting the output of the electric motor to the left and right drive wheels, and a vehicle having an electric motor can be manufactured at low cost.
[0028]
Since it is possible to immediately detect that the idling of the driving wheel has been eliminated by the wheel speed sensor based on the signal from the wheel speed sensor, it is possible to quickly return to the normal control state when the idling is eliminated. As the wheel speed sensor, the ABS wheel speed sensor can be shared.
[Brief description of the drawings]
FIG. 1 is a schematic perspective view showing a drive system of a hybrid vehicle.
2 is a skeleton diagram showing the rear wheel drive device shown in FIG. 1; FIG.
FIG. 3 is a block diagram showing a control circuit of the electric motor.
FIG. 4A is a characteristic diagram showing an example of the relationship between the accelerator opening and the required torque, and FIG. 4B is a diagram in which one of the left and right rear wheels slips and the rotational difference becomes a specified value or more. It is a characteristic diagram which shows the example of a restriction | limiting of the motor output at the time.
FIG. 5 is a flowchart showing an example of a control routine for an electric motor.
[Explanation of symbols]
11a, 11b Front wheels 12a, 12b Rear wheels 13 Internal combustion engine 14 Electric motor 16 Differential device 31 Electronic control unit 32 Accelerator opening sensors 33a, 33b Wheel speed sensors

Claims (2)

電動機とこの電動機の出力を左右駆動輪に差動分配する差動装置を有する車両用電動機の制御装置であって、
左右の駆動輪の回転速度をそれぞれ検出する車輪速度センサと、
運転者により操作されるアクセルペダルの踏み込み量を検出するアクセル開度センサと、
前記左右駆動輪の回転数の差が規定値以下のときには前記アクセル開度センサからの信号によって算出される駆動力値に基づいて前記電動機を制御する一方、前記回転数の差が規定値以上のときには前記電動機へ逆転方向に通電する制御手段とを有することを特徴とする車両用電動機の制御装置。
A control device for a motor for a vehicle having a motor and a differential device that differentially distributes the output of the motor to left and right drive wheels,
A wheel speed sensor for detecting the rotational speeds of the left and right drive wheels respectively;
An accelerator opening sensor for detecting the amount of depression of the accelerator pedal operated by the driver;
When the difference between the rotation speeds of the left and right drive wheels is less than a specified value, the motor is controlled based on the driving force value calculated from the signal from the accelerator opening sensor, while the difference in rotation speed is greater than or equal to the specified value. And a control means for energizing the electric motor in the reverse direction .
電動機とこの電動機の出力を左右駆動輪に差動分配する差動装置を有する車両用電動機の制御装置であって、A control device for a motor for a vehicle having a motor and a differential device that differentially distributes the output of the motor to left and right drive wheels,
左右の駆動輪の回転速度をそれぞれ検出する車輪速度センサと、  A wheel speed sensor for detecting the rotational speeds of the left and right drive wheels respectively;
運転者により操作されるアクセルペダルの踏み込み量を検出するアクセル開度センサと、  An accelerator opening sensor that detects the amount of depression of the accelerator pedal operated by the driver;
前記左右駆動輪の回転数の差が第1の規定値以下のときには前記アクセル開度センサからの信号によって算出される駆動力値に基づいて前記電動機を制御する一方、前記左右駆動輪の回転数の差が前記第1の規定値と該第1の規定値よりも大きい第2の規定値との間にあるときには前記電動機への通電を停止し、前記左右駆動輪の回転数の差が前記第2の規定値より大きいときには前記電動機へ逆転方向に通電する制御手段とを有することを特徴とする車両用電動機の制御装置。When the difference between the rotation speeds of the left and right drive wheels is equal to or less than a first specified value, the motor is controlled based on a drive force value calculated by a signal from the accelerator opening sensor, while the rotation speeds of the left and right drive wheels When the difference between the first specified value and the second specified value larger than the first specified value is within the range, the energization to the motor is stopped, and the difference between the rotational speeds of the left and right drive wheels is And a control means for energizing the electric motor in the reverse direction when it is larger than the second specified value.
JP2002117077A 2002-04-19 2002-04-19 Control device for electric motor for vehicle Expired - Fee Related JP3686626B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002117077A JP3686626B2 (en) 2002-04-19 2002-04-19 Control device for electric motor for vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002117077A JP3686626B2 (en) 2002-04-19 2002-04-19 Control device for electric motor for vehicle

Publications (2)

Publication Number Publication Date
JP2003319506A JP2003319506A (en) 2003-11-07
JP3686626B2 true JP3686626B2 (en) 2005-08-24

Family

ID=29534389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002117077A Expired - Fee Related JP3686626B2 (en) 2002-04-19 2002-04-19 Control device for electric motor for vehicle

Country Status (1)

Country Link
JP (1) JP3686626B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010055222A1 (en) 2009-12-21 2011-07-14 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Regulating device for a left / right driving force adjusting device of a vehicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009261504A (en) * 2008-04-23 2009-11-12 Univ Kansai Vehicle, and method of changing running direction of the vehicle
JP6051833B2 (en) * 2012-12-17 2016-12-27 株式会社ジェイテクト Four-wheel drive vehicle control system
JP6907521B2 (en) * 2016-12-13 2021-07-21 スズキ株式会社 Drive control device for electric wheelchairs

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010055222A1 (en) 2009-12-21 2011-07-14 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Regulating device for a left / right driving force adjusting device of a vehicle

Also Published As

Publication number Publication date
JP2003319506A (en) 2003-11-07

Similar Documents

Publication Publication Date Title
US6945347B2 (en) Drive power controller for hybrid vehicle
JP4638065B2 (en) Control device for four-wheel drive vehicle
JP2002233006A (en) Control device for hybrid-type vehicle
JP2008516843A (en) All-wheel drive system
BR112012025632B1 (en) system, and torque limitation process of the internal combustion engine of an automotive vehicle with four-wheel steering system
JP2004090695A (en) Road surface state change estimation device and automobile loaded with it
JP7440377B2 (en) vehicle control system
JP3686626B2 (en) Control device for electric motor for vehicle
JP2011088492A (en) Traction control device for hybrid vehicle
WO2020240953A1 (en) Control system for vehicle
JP4712307B2 (en) Driving force control device for four-wheel drive vehicle
JP5176601B2 (en) Transmission control device
JP5048692B2 (en) Front and rear wheel drive vehicle
JP5195522B2 (en) Driving force control device for four-wheel drive vehicle
JP2598399B2 (en) Control device for vehicle with electric motor
JP4368271B2 (en) Vehicle travel control device
JP4600670B2 (en) Vehicle driving force distribution control device
JP4039319B2 (en) Drive control device for four-wheel drive vehicle
JP4265194B2 (en) Power transmission device for four-wheel drive vehicles
JPH11254986A (en) Device for detecting condition of road surface
JP3738749B2 (en) Torque distribution control device for four-wheel drive vehicle
JP3327964B2 (en) Automotive differential limiter
JP2679070B2 (en) Vehicle differential limiting control device
JP2022184191A (en) Vehicle control device
JP2701276B2 (en) Vehicle differential limiting control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050603

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3686626

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080610

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090610

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100610

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110610

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120610

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130610

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees